

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 2 Wavefront File Formats

2 Object Files (.obj)
Figure 2-0.
Table 2-0.
Object files define the geometry and other properties for objects in
Wavefront’s Advanced Visualizer. Object files can also be used to
transfer geometric data back and forth between the Advanced
Visualizer and other applications.

Object files can be in ASCII format (.obj) or binary format (.mod). This
chapter describes the ASCII format for object files. These files must
have the extension .obj.

The .obj file format supports both polygonal objects and free-form
objects. Polygonal geometry uses points, lines, and faces to define
objects while free-form geometry uses curves and surfaces.

The curve and surface extensions to the .obj file format were developed
in conjunction with mental images GmbH & Co. KG, Berlin, Germany,
as part of a joint development project to incorporate free-form surfaces
into Wavefront’s Advanced Visualizer.

About this section
This information is for those who want to use the .obj format to
translate geometric data from their other software applications to
Wavefront products. It also provides detailed information on the
Wavefront .obj file format for Advanced Visualizer users.

How this section is organized

Most of this chapter describes the different parts of an .obj file and how
those parts are arranged in the file.

It includes the following sections:

• File structure

• General statement

• Vertex data

• Specifying free-form curves/surfaces

• Free-form curve/surface attributes

• Elements

• Free-form curve/surface body statements

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

• Connectivity between free-form surfaces

• Grouping

• Display/render attributes

• Comments

• Mathematics for free-form curves/surfaces

File structure
The following types of data may be included in an .obj file. In this list,
the keyword (in parentheses) follows the data type.

Vertex data

• geometric vertices (v)

• texture vertices (vt)

• vertex normals (vn)

• parameter space vertices (vp)

Free-form curve/surface attributes

• rational or non-rational forms of curve or surface type:
basis matrix, Bezier, B-spline, Cardinal, Taylor (cstype)

• degree (deg)

• basis matrix (bmat)

• step size (step)

Elements

• point (p)

• line (l)

• face (f)

• curve (curv)

• 2D curve (curv2)

• surface (surf)

Free-form curve/surface body statements

• parameter values (parm)

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 4 Wavefront File Formats

• outer trimming loop (trim)

• inner trimming loop (hole)

• special curve (scrv)

• special point (sp)

• end statement (end)

Connectivity between free-form surfaces

• connect (con)

Grouping

• group name (g)

• smoothing group (s)

• merging group (mg)

• object name (o)

Display/render attributes

• bevel interpolation (bevel)

• color interpolation (c_interp)

• dissolve interpolation (d_interp)

• level of detail (lod)

• material name (usemtl)

• material library (mtllib)

• shadow casting (shadow_obj)

• ray tracing (trace_obj)

• curve approximation technique (ctech)

• surface approximation technique (stech)

The following diagram shows how these parts fit together in a
typical .obj file.

Figure 2-1.    Typical .obj file structure

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

General statement

call filename.ext arg1 arg2…

Reads the contents of the specified .obj or .mod file at this
location. The call statement can be inserted into .obj files using a
text editor.

filename.ext is the name of the .obj or .mod file to be read. You
must include the extension with the filename.

arg1 arg2… specifies a series of optional integer arguments that
are passed to the called file. There is no limit to the number of
nested calls that can be made.

Arguments passed to the called file are substituted in the same way
as in UNIX scripts; for example, $1 in the called file is replaced by
arg1,    $2 in the called file is replaced by arg2, and so on.

If the frame number is needed in the called file for variable
substitution, “$1” must be used as the first argument in the call
statement. For example:

call filename.obj $1

Then the statement in the called file,

scmp filename.pv $1

will work as expected. For more information on the scmp
statement, see appendix C, Variable Substitution.

Another method to do the same thing is:

scmp filename.pv $1
call filename.obj

Using this method, the scmp statement provides the .pv file for all
subsequently called .obj or .mod files.

csh command
csh -command

Executes the requested UNIX command. If the UNIX command
returns an error, the parser flags an error during parsing.

If a dash (-) precedes the UNIX command, the error is ignored.

command is the UNIX command.

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 6 Wavefront File Formats

Vertex data
Vertex data provides coordinates for:

• geometric vertices

• texture vertices

• vertex normals

For free-form objects, the vertex data also provides:

• parameter space vertices

The vertex data is represented by four vertex lists; one for each type of
vertex coordinate. A right-hand coordinate system is used to specify the
coordinate locations.

The following sample is a portion of an .obj file that contains the four
types of vertex information.

v -5.000000 5.000000 0.000000
v -5.000000 -5.000000 0.000000
v 5.000000 -5.000000 0.000000
v 5.000000 5.000000 0.000000
vt -5.000000 5.000000 0.000000
vt -5.000000 -5.000000 0.000000
vt 5.000000 -5.000000 0.000000
vt 5.000000 5.000000 0.000000
vn 0.000000 0.000000 1.000000
vn 0.000000 0.000000 1.000000
vn 0.000000 0.000000 1.000000
vn 0.000000 0.000000 1.000000
vp 0.210000 3.590000
vp 0.000000 0.000000
vp 1.000000 0.000000
vp 0.500000 0.500000

When vertices are loaded into the Advanced Visualizer, they are
sequentially numbered, starting with 1. These reference numbers are
used in element statements.

Syntax

The following syntax statements are listed in order of complexity.

v x y z w

Polygonal and free-form geometry statement.
Specifies a geometric vertex and its x y z coordinates. Rational

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

curves and surfaces require a fourth homogeneous coordinate, also
called the weight.

x y z are the x, y, and z coordinates for the vertex. These are
floating point numbers that define the position of the vertex in
three dimensions.

w is the weight required for rational curves and surfaces. It is not
required for non-rational curves and surfaces. If you do not specify
a value for w, the default is 1.0.

Tip A positive weight value is recommended. Using zero or negative values
may result in an undefined point in a curve or surface.

vp u v w

Free-form geometry statement.
Specifies a point in the parameter space of a curve or surface.

The usage determines how many coordinates are required. Special
points for curves require a 1D control point (u only) in the
parameter space of the curve. Special points for surfaces require a
2D point (u and v) in the parameter space of the surface. Control
points for non-rational trimming curves require u and v
coordinates. Control points for rational trimming curves require u,
v, and w (weight) coordinates.

u is the point in the parameter space of a curve or the first
coordinate in the parameter space of a surface.

v is the second coordinate in the parameter space of a surface.

w is the weight required for rational trimming curves. If you do not
specify a value for w, it defaults to 1.0.

Tip For additional information on parameter vertices, see the curv2 and sp
statements.

vn i j k

Polygonal and free-form geometry statement.
Specifies a normal vector with components i, j, and k.

Vertex normals affect the smooth-shading and rendering of
geometry. For polygons, vertex normals are used in place of the
actual facet normals. For surfaces, vertex normals are interpolated
over the entire surface and replace the actual analytic surface
normal.

When vertex normals are present, they supersede smoothing

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 8 Wavefront File Formats

groups.

i j k are the i, j, and k coordinates for the vertex normal. They are
floating point numbers.

vt u v w

Vertex statement for both polygonal and free-form geometry.
Specifies a texture vertex and its coordinates. A 1D texture requires
only u texture coordinates, a 2D texture requires both u and v
texture coordinates, and a 3D texture requires all three coordinates.

u is the value for the horizontal direction of the texture.

v is an optional argument.
v is the value for the vertical direction of the texture. The default is
0.

w is an optional argument.
w is a value for the depth of the texture. The default is 0.

Specifying free-form curves/surfaces
There are three steps involved in specifying a free-form curve or
surface element.

• Specify the type of curve or surface (basis matrix, Bezier, B-spline,
Cardinal, or Taylor) using free-form curve/surface attributes.

• Describe the curve or surface with element statements.

• Supply additional information, using free-form curve/surface body
statements.

The next three sections provide detailed information on each of these
steps.

Data requirements for curves and surfaces

All curves and surfaces require a certain set of data. This consists of the
following:

Free-form curve/surface attributes

• All curves and surfaces require type data, which is given with the
cstype statement.

• All curves and surfaces require degree data, which is given with

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

the deg statement.

• Basis matrix curves or surfaces require a bmat statement.

• Basis matrix curves or surfaces also require a step size, which is
given with the step statement.

Elements

• All curves and surfaces require control points, which are
referenced in the curv, curv2, or surf statements.

• 3D curves and surfaces require a parameter range, which is given
in the curv and surf statements, respectively.

Free-form curve/surface body statements

• All curves and surfaces require a set of global parameters or a knot
vector, both of which are given with the parm statement.

• All curves and surfaces body statements require an explicit end
statement.

Error checks

The above set of data starts out empty with no default values when
reading of an .obj file begins. While the file is being read, statements
are encountered, information is accumulated, and some errors may be
reported.

When the end statement is encountered, the following error checks,
which involve consistency between various statements, are performed:

• All required information is present.

• The number of control points, number of parameter values (knots),
and degree are consistent with the curve or surface type. If the type
is bmatrix, the step size is also consistent. (For more information,
refer to the parameter vector equations in the section,
“Mathematics for free-form curves/surfaces” on page 2-57.)

• If the type is bmatrix and the degree is n, the size of the basis
matrix is (n + 1) x (n + 1).

Tip Any information given by the state-setting statements remains in effect
from one curve or surface to the next. Information given within a curve

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 10 Wavefront File Formats

or surface body is only effective for the curve or surface it is given
with.

Free-form curve/surface attributes
Five types of free-form geometry are available in the .obj file format:

• Bezier

• basis matrix

• B-spline

• Cardinal

• Taylor

You can apply these types only to curves and surfaces. Each of these
five types can be rational or non-rational.

In addition to specifying the type, you must define the degree for the
curve or surface. For basis matrix curve and surface elements, you must
also specify the basis matrix and step size.

All free-form curve and surface attribute statements are state-setting.
This means that once an attribute statement is set, it applies to all
elements that follow until it is reset to a different value.

Syntax

The following syntax statements are listed in order of use.

cstype rat type

Free-form geometry statement.
Specifies the type of curve or surface and indicates a rational or
non-rational form.

rat is an optional argument.
rat specifies a rational form for the curve or surface type. If rat is
not included, the curve or surface is non-rational.

type specifies the curve or surface type. Allowed types are:

bmatrix basis matrix
bezier Bezier
bspline B-spline
cardinal Cardinal
taylor Taylor

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

There is no default. A value must be supplied.

deg degu degv

Free-form geometry statement.
Sets the polynomial degree for curves and surfaces.

degu is the degree in the u direction. It is required for both curves
and surfaces.

degv is the degree in the v direction. It is required only for
surfaces. For Bezier, B-spline, Taylor, and basis matrix, there is no
default; a value must be supplied. For Cardinal, the degree is
always 3. If some other value is given for Cardinal, it will be
ignored.

bmat u matrix
bmat v matrix

Free-form geometry statement.
Sets the basis matrices used for basis matrix curves and surfaces.
The u and v values must be specified in separate bmat statements.

Tip The deg statement must be given before the bmat statements and the
size of the matrix must be appropriate for the degree.

u specifies that the basis matrix is applied in the u direction.

v specifies that the basis matrix is applied in the v direction.

matrix lists the contents of the basis matrix with column subscript j
varying the fastest. If n is the degree in the given u or v direction,
the matrix (i,j) should be of size (n + 1) x (n + 1).

There is no default. A value must be supplied.

Tip The arrangement of the matrix is different from that commonly found
in other references. For more information, see the examples at the end
of this section and also the section,“Mathematics for free-form
curves/surfaces” on page 2-57.

step stepu stepv

Free-form geometry statement.
Sets the step size for curves and surfaces that use a basis matrix.

stepu is the step size in the u direction. It is required for both
curves and surfaces that use a basis matrix.

stepv is the step size in the v direction. It is required only for
surfaces that use a basis matrix. There is no default. A value must

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 12 Wavefront File Formats

be supplied.

When a curve or surface is being evaluated and a transition from
one segment or patch to the next occurs, the set of control points
used is incremented by the step size. The appropriate step size
depends on the representation type, which is expressed through the
basis matrix, and on the degree.

That is, suppose we are given a curve with k control points:

If the curve is of degree n, then n + 1 control points are needed for
each polynomial segment. If the step size is given as s, then the ith
polynomial segment, where i = 0 is the first segment, will use the
control points:

For example, for Bezier curves, s = n .

For surfaces, the above description applies independently to each
parametric direction.

When you create a file which uses the basis matrix type, be sure to
specify a step size appropriate for the current curve or surface
representation.

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

Examples

1 Cubic Bezier surface made with a basis matrix

To create a cubic Bezier surface:

cstype bmatrix
deg 3 3
step 3 3
bmat u 1 -3 3 -1 \

0 3 -6 3 \
0 0 3 -3 \
0 0 0 1

bmat v 1 -3 3 -1 \
0 3 -6 3 \
0 0 3 -3 \
0 0 0 1

2 Hermite curve made with a basis matrix

To create a Hermite curve:

cstype bmatrix
deg 3
step 2
bmat u 1 0 -3 2 0 0 3 -2 \

0 1 -2 1 0 0 -1 1

3 Bezier in u direction with B-spline in v direction;
made with a basis matrix

To create a surface with a cubic Bezier in the u direction and cubic
uniform B-spline in the v direction:

cstype bmatrix
deg 3 3
step 3 1
bmat u 1 -3 3 -1 \

0 3 -6 3 \
0 0 3 -3 \
0 0 0 1

bmat v 0.16666 -0.50000 0.50000 -0.16666 \
0.66666 0.00000 -1.00000 0.50000 \
0.16666 0.50000 0.50000 -0.50000 \
0.00000 0.00000 0.00000 0.16666

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 14 Wavefront File Formats

Elements
For polygonal geometry, the element types available in the .obj file are:

• points

• lines

• faces

For free-form geometry, the element types available in the .obj file are:

• curve

• 2D curve on a surface

• surface

All elements can be freely intermixed in the file.

Referencing vertex data

For all elements, reference numbers are used to identify geometric
vertices, texture vertices, vertex normals, and parameter space vertices.

Each of these types of vertices is numbered separately, starting with 1.
This means that the first geometric vertex in the file is 1, the second is
2, and so on. The first texture vertex in the file is 1, the second is 2, and
so on. The numbering continues sequentially throughout the entire file.
Frequently, files have multiple lists of vertex data. This numbering
sequence continues even when vertex data is separated by other data.

In addition to counting vertices down from the top of the first list in the
file, you can also count vertices back up the list from an element’s
position in the file. When you count up the list from an element, the
reference numbers are negative. A reference number of -1 indicates the
vertex immediately above the element. A reference number of -2
indicates two references above and so on.

Referencing groups of vertices

Some elements, such as faces and surfaces, may have a triplet of
numbers that reference vertex data. These numbers are the reference
numbers for a geometric vertex, a texture vertex, and a vertex normal.

Each triplet of numbers specifies a geometric vertex, texture vertex,
and vertex normal. The reference numbers must be in order and must
separated by slashes (/).

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

• The first reference number is the geometric vertex.

• The second reference number is the texture vertex. It follows the
first slash.

• The third reference number is the vertex normal. It follows the
second slash.

There is no space between numbers and the slashes. There may be more
than one series of geometric vertex/texture vertex/vertex normal
numbers on a line.

The following is a portion of a sample file for a four-sided face
element:

f 1/1/1 2/2/2 3/3/3 4/4/4

Using v, vt, and vn to represent geometric vertices, texture vertices, and
vertex normals, the statement would read:

f v/vt/vn v/vt/vn v/vt/vn v/vt/vn

If there are only vertices and vertex normals for a face element (no
texture vertices), you would enter two slashes (//). For example, to
specify only the vertex and vertex normal reference numbers, you
would enter:

f 1//1 2//2 3//3 4//4

When you are using a series of triplets, you must be consistent in the
way you reference the vertex data. For example, it is illegal to give
vertex normals for some vertices, but not all.

The following is an example of an illegal statement.

f 1/1/1 2/2/2 3//3 4//4

Syntax

The following syntax statements are listed in order of complexity of
geometry.

p v1 v2 v3…

Polygonal geometry statement.
Specifies a point element and its vertex. You can specify multiple
points with this statement. Although points cannot be shaded or
rendered, they are used by other Advanced Visualizer programs.

v is the vertex reference number for a point element. Each point
element requires one vertex. Positive values indicate absolute

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 16 Wavefront File Formats

vertex numbers. Negative values indicate relative vertex numbers.

l v1/vt1 v2/vt2 v3/vt3…

Polygonal geometry statement.
Specifies a line and its vertex reference numbers. You can
optionally include the texture vertex reference numbers. Although
lines cannot be shaded or rendered, they are used by other
Advanced Visualizer programs.

The reference numbers for the vertices and texture vertices must be
separated by a slash (/). There is no space between the number and
the slash.

v is a reference number for a vertex on the line. A minimum of two
vertex numbers are required. There is no limit on the maximum.
Positive values indicate absolute vertex numbers. Negative values
indicate relative vertex numbers.

vt is an optional argument.
vt is the reference number for a texture vertex in the line element.
It must always follow the first slash.

f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3…

Polygonal geometry statement.
Specifies a face element and its vertex reference number. You can
optionally include the texture vertex and vertex normal reference
numbers.

The reference numbers for the vertices, texture vertices, and vertex
normals must be separated by slashes (/). There is no space
between the number and the slash.

v is the reference number for a vertex in the face element. A
minimum of three vertices are required.

vt is an optional argument.
vt is the reference number for a texture vertex in the face element.
It always follows the first slash.

vn is an optional argument.
vn is the reference number for a vertex normal in the face element.
It must always follow the second slash.

Face elements use surface normals to indicate their orientation. If
vertices are ordered counterclockwise around the face, both the
face and the normal will point toward the viewer. If the vertex
ordering is clockwise, both will point away from the viewer. If

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

vertex normals are assigned, they should point in the general
direction of the surface normal, otherwise unpredictable results
may occur.

If a face has a texture map assigned to it and no texture vertices are
assigned in the f statement, the texture map is ignored when the
element is rendered.

curv u0 u1 v1 v2…

Element statement for free-form geometry.
Specifies a curve, its parameter range, and its control vertices.
Although curves cannot be shaded or rendered, they are used by
other Advanced Visualizer programs.

u0 is the starting parameter value for the curve. This is a floating
point number.

u1 is the ending parameter value for the curve. This is a floating
point number.

v is the vertex reference number for a control point. You can
specify multiple control points. A minimum of two control points
are required for a curve.

For a non-rational curve, the control points must be 3D. For a
rational curve, the control points are 3D or 4D. The fourth
coordinate (weight) defaults to 1.0 if omitted.

curv2 vp1 vp2 vp3…

Free-form geometry statement.
Specifies a 2D curve on a surface and its control points. A 2D
curve is used as an outer or inner trimming curve, as a special
curve, or for connectivity.

vp is the parameter vertex reference number for the control point.
You can specify multiple control points. A minimum of two control
points is required for a 2D curve.

The control points are parameter vertices because the curve must
lie in the parameter space of some surface. For a non-rational
curve, the control vertices can be 2D. For a rational curve, the
control vertices can be 2D or 3D. The third coordinate (weight)
defaults to 1.0 if omitted.

surf s0 s1 t0 t1 v1/vt1/vn1 v2/vt2/vn2…

Element statement for free-form geometry.
Specifies a surface, its parameter range, and its control vertices.

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 18 Wavefront File Formats

The surface is evaluated within the global parameter range from s0
to s1 in the u direction and t0 to t1 in the v direction.

s0 is the starting parameter value for the surface in the u direction.

s1 is the ending parameter value for the surface in the u direction.

t0 is the starting parameter value for the surface in the v direction.

t1 is the ending parameter value for the surface in the v direction.

v is the reference number for a control vertex in the surface.

vt is an optional argument.
vt is the reference number for a texture vertex in the surface. It
must always follow the first slash.

vn is an optional argument.
vn is the reference number for a vertex normal in the surface. It
must always follow the second slash.

For a non-rational surface the control vertices are 3D. For a
rational surface the control vertices can be 3D or 4D. The fourth
coordinate (weight) defaults to 1.0 if omitted.

Tip For more information on the ordering of control points for surfaces,
refer to the section on surfaces and control points in “Mathematics for
free-form curves/surfaces” on page 2-57.

Examples

These are examples for polygonal geometry.

For examples using free-form geometry, see the examples in “Free-
form curve/surface body statements” on page 2-21.

1 Square

This example shows a square that measures two units on each side
and faces in the positive direction (toward the camera). Note that
the ordering of the vertices is counterclockwise. This ordering
determines that the square is facing forward.

v 0.000000 2.000000 0.000000
v 0.000000 0.000000 0.000000
v 2.000000 0.000000 0.000000
v 2.000000 2.000000 0.000000
f 1 2 3 4

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

2 Cube

This is a cube that measures two units on each side. Each vertex is
shared by three different faces.

v 0.000000 2.000000 2.000000
v 0.000000 0.000000 2.000000
v 2.000000 0.000000 2.000000
v 2.000000 2.000000 2.000000
v 0.000000 2.000000 0.000000
v 0.000000 0.000000 0.000000
v 2.000000 0.000000 0.000000
v 2.000000 2.000000 0.000000
f 1 2 3 4
f 8 7 6 5
f 4 3 7 8
f 5 1 4 8
f 5 6 2 1
f 2 6 7 3

3 Cube with negative reference numbers

This is a cube with negative vertex reference numbers. Each
element references the vertices stored immediately above it in the
file. Note that vertices are not shared.

v 0.000000 2.000000 2.000000
v 0.000000 0.000000 2.000000
v 2.000000 0.000000 2.000000
v 2.000000 2.000000 2.000000
f -4 -3 -2 -1

v 2.000000 2.000000 0.000000
v 2.000000 0.000000 0.000000
v 0.000000 0.000000 0.000000
v 0.000000 2.000000 0.000000
f -4 -3 -2 -1

v 2.000000 2.000000 2.000000
v 2.000000 0.000000 2.000000
v 2.000000 0.000000 0.000000
v 2.000000 2.000000 0.000000
f -4 -3 -2 -1

v 0.000000 2.000000 0.000000
v 0.000000 2.000000 2.000000
v 2.000000 2.000000 2.000000
v 2.000000 2.000000 0.000000
f -4 -3 -2 -1

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 20 Wavefront File Formats

v 0.000000 2.000000 0.000000
v 0.000000 0.000000 0.000000
v 0.000000 0.000000 2.000000
v 0.000000 2.000000 2.000000
f -4 -3 -2 -1

v 0.000000 0.000000 2.000000
v 0.000000 0.000000 0.000000
v 2.000000 0.000000 0.000000
v 2.000000 0.000000 2.000000
f -4 -3 -2 -1

Free-form curve/surface body statements
You can specify additional information for free-form curve and surface
elements using a series of statements called body statements. The series
is concluded by an end statement.

Body statements are valid only when they appear between the free-
form element statement (curv, curv2, surf) and the end statement. If
they are anywhere else in the .obj file, they do not have any effect.

You can use body statements to specify the following values:

• parameter

• knot vector

• trimming loop

• hole

• special curve

• special point

You cannot use any other statements between the free-form curve or
surface statement and the end statement. Using any other of type of
statement may cause unpredictable results.

This portion of a sample file shows the knot vector values for a rational
B-spline surface with a trimming loop. Notice the end statement to
conclude the body statements.

cstype rat bspline
deg 2 2
surf -1.0 2.5 -2.0 2.0 -9 -8 -7 -6 -5 -4 -3 -2 -1
parm u -1.00 -1.00 -1.00 2.50 2.50 2.50
parm v -2.00 -2.00 -2.00 -2.00 -2.00 -2.00

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

trim 0.0 2.0 1
end

Parameter values and knot vectors

All curve and surface elements require a set of parameter values.

For polynomial curves and surfaces, this specifies global parameter
values. For B-spline curves and surfaces, this specifies the knot vectors.

For surfaces, the parameter values must be specified for both the u and
v directions. For curves, the parameter values must be specified for
only the u direction.

If multiple parameter value statements for the same parametric
direction are used inside a single curve or surface body, the last
statement is used.

Trimming loops and holes

The trimming loop statement builds a single outer trimming loop as a
sequence of curves which lie on a given surface.

The hole statement builds a single inner trimming loop as a sequence of
curves which lie on a given surface. The inner loop creates a hole.

The curves are referenced by number in the same way vertices are
referenced by face elements.

The individual curves must lie end-to-end to form a closed loop which
does not intersect itself and which lies within the parameter range
specified for the surface. The loop as a whole may be oriented in either
direction (clockwise or counterclockwise).

To cut one or more holes in a region, use a trim statement followed by
one or more hole statements. To introduce another trimmed region in
the same surface, use another trim statement followed by one or more
hole statements. The ordering that associates holes and the regions they
cut is important and must be maintained.

If the first trim statement in the sequence is omitted, the enclosing outer
trimming loop is taken to be the parameter range of the surface. If no
trim or hole statements are specified, then the surface is trimmed at its
parameter range.

This portion of a sample file shows a non-rational Bezier surface with
two regions, each with a single hole:

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 22 Wavefront File Formats

cstype bezier
deg 1 1
surf 0.0 2.0 0.0 2.0 1 2 3 4
parm u 0.00 2.00
parm v 0.00 2.00
trim 0.0 4.0 1
hole 0.0 4.0 2
trim 0.0 4.0 3
hole 0.0 4.0 4
end

Special curve

A special curve statement builds a single special curve as a sequence of
curves which lie on a given surface.

The curves are referenced by number in the same way vertices are
referenced by face elements.

A special curve is guaranteed to be included in any triangulation of the
surface. This means that the line formed by approximating the special
curve with a sequence of straight line segments will actually appear as
a sequence of triangle edges in the final triangulation.

Special point

A special point statement specifies that special geometric points are to
be associated with a curve or surface. For space curves and trimming
curves, the parameter vertices must be 1D. For surfaces, the parameter
vertices must be 2D.

These special points will be included in any linear approximation of the
curve or surface.

For space curves, this means that the point corresponding to the given
curve parameter is included as one of the vertices in an approximation
consisting of a sequence of line segments.

For surfaces, this means that the point corresponding to the given
surface parameters is included as a triangle vertex in the triangulation.

For trimming curves, the treatment is slightly different: a special point
on a trimming curve is essentially the same as a special point on the
surface it trims.

The following portion of a sample file shows special points for a
rational Bezier 2D curve on a surface.

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

vp -0.675    1.850    3.000
vp    0.915    1.930
vp    2.485    0.470    2.000
vp    2.485 -1.030
vp    1.605 -1.890 10.700
vp -0.745 -0.654    0.500
cstype rat bezier
curv2 -6 -5 -4 -3 -2 -1 -6
parm u 0.00 1.00 2.00
sp 2 3
end

Syntax

The following syntax statements are listed in order of normal use.

parm u p1 p2 p3…
parm v p1 p2 p3…

Body statement for free-form geometry.
Specifies global parameter values. For B-spline curves and
surfaces, this specifies the knot vectors.

u is the u direction for the parameter values.

v is the v direction for the parameter values.

To set u and v values, use separate command lines.

p is the global parameter or knot value. You can specify multiple
values. A minimum of two parameter values are required.
Parameter values must increase monotonically. The type of surface
and the degree dictate the number of values required.

trim u0 u1 curv2d u0 u1 curv2d…

Body statement for free-form geometry.
Specifies a sequence of curves to build a single outer trimming
loop.

u0 is the starting parameter value for the trimming curve curv2d.

u1 is the ending parameter value for the trimming curve curv2d.

curv2d is the index of the trimming curve lying in the parameter
space of the surface. This curve must have been previously defined
with the curv2 statement.

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 24 Wavefront File Formats

hole u0 u1 curv2d u0 u1 curv2d…

Body statement for free-form geometry.
Specifies a sequence of curves to build a single inner trimming
loop (hole).

u0 is the starting parameter value for the trimming curve curv2d.

u1 is the ending parameter value for the trimming curve curv2d.

curv2d is the index of the trimming curve lying in the parameter
space of the surface. This curve must have been previously defined
with the curv2 statement.

scrv u0 u1 curv2d u0 u1 curv2d…

Body statement for free-form geometry.
Specifies a sequence of curves which lie on the given surface to
build a single special curve.

u0 is the starting parameter value for the special curve curv2d.

u1 is the ending parameter value for the special curve curv2d.

curv2d is the index of the special curve lying in the parameter
space of the surface. This curve must have been previously defined
with the curv2 statement.

sp vp1 vp…

Body statement for free-form geometry.
Specifies special geometric points to be associated with a curve or
surface. For space curves and trimming curves, the parameter
vertices must be 1D. For surfaces, the parameter vertices must be
2D.

vp is the reference number for the parameter vertex of a special
point to be associated with the parameter space point of the curve
or surface.

end

Body statement for free-form geometry.
Specifies the end of a curve or surface body begun by a curv,
curv2, or surf statement.

Examples

1 Taylor curve

For creating a single-segment Taylor polynomial curve of the form:

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

x = 3 + 2.3t + 7.98t2 + 8.3t3 + 6.34t4
y = 1 - 10.1t + 5.4t2 - 4.7t3 + 2.03t4
z = -2.5 + 0.5t - 7.0t2 + 18.1t3 + 0.08t4

and evaluated between the global parameters 0.5 and 1.6:

v 3.000 1.000 -2.500
v 2.300 -10.100 0.500
v 7.980 5.400 -7.000
v 8.300 -4.700 18.100
v 6.340 2.030 0.080
cstype taylor
deg 4
curv 0.500 1.600 1 2 3 4 5
parm u 0.000 2.000
end

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 26 Wavefront File Formats

2 Bezier curve

This example shows a non-rational Bezier curve with 13 control
points.

v -2.300000 1.950000 0.000000
v -2.200000 0.790000 0.000000
v -2.340000 -1.510000 0.000000
v -1.530000 -1.490000 0.000000
v -0.720000 -1.470000 0.000000
v -0.780000 0.230000 0.000000
v 0.070000 0.250000 0.000000
v 0.920000 0.270000 0.000000
v 0.800000 -1.610000 0.000000
v 1.620000 -1.590000 0.000000
v 2.440000 -1.570000 0.000000
v 2.690000 0.670000 0.000000
v 2.900000 1.980000 0.000000
13 vertices

cstype bezier
ctech cparm 1.000000
deg 3
curv 0.000000 4.000000 1 2 3 4 5 6 7 8 9 10 \
11 12 13
parm u 0.000000 1.000000 2.000000 3.000000    \
4.000000
end
1 element

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

3 B-spline surface

This is an example of a cubic B-spline surface.

g bspatch
v -5.000000 -5.000000 -7.808327
v -5.000000 -1.666667 -7.808327
v -5.000000 1.666667 -7.808327
v -5.000000 5.000000 -7.808327
v -1.666667 -5.000000 -7.808327
v -1.666667 -1.666667 11.977780
v -1.666667 1.666667 11.977780
v -1.666667 5.000000 -7.808327
v 1.666667 -5.000000 -7.808327
v 1.666667 -1.666667 11.977780
v 1.666667 1.666667 11.977780
v 1.666667 5.000000 -7.808327
v 5.000000 -5.000000 -7.808327
v 5.000000 -1.666667 -7.808327
v 5.000000 1.666667 -7.808327
v 5.000000 5.000000 -7.808327
16 vertices

cstype bspline
stech curv 0.5 10.000000
deg 3 3
8surf 0.000000 1.000000 0.000000 1.000000 13 14 \ 15 16 9 10 11 12 5 6
7 8 1 2 3 4
parm u -3.000000 -2.000000 -1.000000 0.000000    \
1.000000 2.000000 3.000000 4.000000
parm v -3.000000 -2.000000 -1.000000 0.000000    \
1.000000 2.000000 3.000000 4.000000
end
1 element

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 28 Wavefront File Formats

4 Cardinal surface

This example shows a Cardinal surface.

v -5.000000 -5.000000 0.000000
v -5.000000 -1.666667 0.000000
v -5.000000 1.666667 0.000000
v -5.000000 5.000000 0.000000
v -1.666667 -5.000000 0.000000
v -1.666667 -1.666667 0.000000
v -1.666667 1.666667 0.000000
v -1.666667 5.000000 0.000000
v 1.666667 -5.000000 0.000000
v 1.666667 -1.666667 0.000000
v 1.666667 1.666667 0.000000
v 1.666667 5.000000 0.000000
v 5.000000 -5.000000 0.000000
v 5.000000 -1.666667 0.000000
v 5.000000 1.666667 0.000000
v 5.000000 5.000000 0.000000
16 vertices

cstype cardinal
stech cparma 1.000000 1.000000
deg 3 3
surf 0.000000 1.000000 0.000000 1.000000 13 14 \
15 16 9 10 11 12 5 6 7 8 1 2 3 4
parm u 0.000000 1.000000
parm v 0.000000 1.000000
end
1 element

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

5 Rational B-spline surface

This example creates a second-degree, rational B-spline surface
using open, uniform knot vectors. A texture map is applied to the
surface.

v -1.3 -1.0    0.0
v    0.1 -1.0    0.4    7.6
v    1.4 -1.0    0.0    2.3
v -1.4    0.0    0.2
v    0.1    0.0    0.9    0.5
v    1.3    0.0    0.4    1.5
v -1.4    1.0    0.0    2.3
v    0.1    1.0    0.3    6.1
v    1.1    1.0    0.0    3.3
vt 0.0    0.0
vt 0.5    0.0
vt 1.0    0.0
vt 0.0    0.5
vt 0.5    0.5
vt 1.0    0.5
vt 0.0    1.0
vt 0.5    1.0
vt 1.0    1.0
cstype rat bspline
deg 2 2
surf 0.0 1.0 0.0 1.0 1/1 2/2 3/3 4/4 5/5 6/6 \
7/7 8/8 9/9
parm u 0.0 0.0 0.0 1.0 1.0 1.0
parm v 0.0 0.0 0.0 1.0 1.0 1.0
end

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 30 Wavefront File Formats

6 Trimmed NURB surface

This is a complete example of a file containing a trimmed NURB
surface with negative reference numbers for vertices.

trimming curve
vp -0.675    1.850    3.000
vp    0.915    1.930
vp    2.485    0.470    2.000
vp    2.485 -1.030
vp    1.605 -1.890 10.700
vp -0.745 -0.654    0.500
cstype rat bezier
deg 3
curv2 -6 -5 -4 -3 -2 -1 -6
parm u 0.00 1.00 2.00
end
surface
v -1.350 -1.030 0.000
v    0.130 -1.030 0.432 7.600
v    1.480 -1.030 0.000 2.300
v -1.460    0.060 0.201
v    0.120    0.060 0.915 0.500
v    1.380    0.060 0.454 1.500
v -1.480    1.030 0.000 2.300
v    0.120    1.030 0.394 6.100
v    1.170    1.030 0.000 3.300
cstype rat bspline
deg 2 2
surf -1.0 2.5 -2.0 2.0 -9 -8 -7 -6 -5 -4 -3 -2 -1
parm u -1.00 -1.00 -1.00 2.50 2.50 2.50
parm v -2.00 -2.00 -2.00 -2.00 -2.00 -2.00
trim 0.0 2.0 1
end

7 Two trimming regions with a hole

This example shows a Bezier surface with two trimming regions,
each with a hole in them.

outer loop of first region
deg 1
cstype bezier
vp 0.100 0.100
vp 0.900 0.100
vp 0.900 0.900
vp 0.100 0.900
curv2 1 2 3 4 1
parm u 0.00 1.00 2.00 3.00 4.00

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

end
hole in first region
vp 0.300 0.300
vp 0.700 0.300
vp 0.700 0.700
vp 0.300 0.700
curv2 5 6 7 8 5
parm u 0.00 1.00 2.00 3.00 4.00
end
outer loop of second region
vp 1.100 1.100
vp 1.900 1.100
vp 1.900 1.900
vp 1.100 1.900
curv2 9 10 11 12 9
parm u 0.00 1.00 2.00 3.00 4.00
end
hole in second region
vp 1.300 1.300
vp 1.700 1.300
vp 1.700 1.700
vp 1.300 1.700
curv2 13 14 15 16 13
parm u 0.00 1.00 2.00 3.00 4.00
end
surface
v 0.000 0.000 0.000
v 1.000 0.000 0.000
v 0.000 1.000 0.000
v 1.000 1.000 0.000
deg 1 1
cstype bezier
surf 0.0 2.0 0.0 2.0 1 2 3 4
parm u 0.00 2.00
parm v 0.00 2.00
trim 0.0 4.0 1
hole 0.0 4.0 2
trim 0.0 4.0 3
hole 0.0 4.0 4
end

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 32 Wavefront File Formats

8 Trimming with a special curve

This example is similar to the example, “Trimmed NURB surface”
on page 2-30, except there is a special curve on the surface. This
example uses negative vertex numbers.

trimming curve
vp -0.675    1.850    3.000
vp    0.915    1.930
vp    2.485    0.470    2.000
vp    2.485 -1.030
vp    1.605 -1.890 10.700
vp -0.745 -0.654    0.500
cstype rat bezier
deg 3
curv2 -6 -5 -4 -3 -2 -1 -6
parm u 0.00 1.00 2.00
end
special curve
vp -0.185    0.322
vp    0.214    0.818
vp    1.652    0.207
vp    1.652 -0.455
curv2 -4 -3 -2 -1
parm u 2.00 10.00
end
surface
v -1.350 -1.030 0.000
v    0.130 -1.030 0.432 7.600
v    1.480 -1.030 0.000 2.300
v -1.460    0.060 0.201
v    0.120    0.060 0.915 0.500
v    1.380    0.060 0.454 1.500
v -1.480    1.030 0.000 2.300
v    0.120    1.030 0.394 6.100
v    1.170    1.030 0.000 3.300
cstype rat bspline
deg 2 2
surf -1.0 2.5 -2.0 2.0 -9 -8 -7 -6 -5 -4 -3 -2 -1
parm u -1.00 -1.00 -1.00 2.50 2.50 2.50
parm v -2.00 -2.00 -2.00 2.00 2.00 2.00
trim 0.0 2.0 1
scrv 4.2 9.7 2
end

9 Trimming with special points

This example extends the example, “Trimmed NURB surface” on

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

page 2-30, to include special points on both the trimming curve
and surface. A space curve with a special point is also included.
This example uses negative vertex numbers.

special point and space curve data
vp 0.500
vp 0.700
vp 1.100
vp 0.200 0.950
v    0.300 1.500 0.100
v    0.000    0.000    0.000
v    1.000    1.000    0.000
v    2.000    1.000    0.000
v    3.000    0.000    0.000
cstype bezier
deg 3
curv 0.2 0.9 -4 -3 -2 -1
sp 1
parm u 0.00 1.00
end
trimming curve
vp -0.675    1.850    3.000
vp    0.915    1.930
vp    2.485    0.470    2.000
vp    2.485 -1.030
vp    1.605 -1.890 10.700
vp -0.745 -0.654    0.500
cstype rat bezier
curv2 -6 -5 -4 -3 -2 -1 -6
parm u 0.00 1.00 2.00
sp 2 3
end
surface
v -1.350 -1.030 0.000
v    0.130 -1.030 0.432 7.600
v    1.480 -1.030 0.000 2.300
v -1.460    0.060 0.201
v    0.120    0.060 0.915 0.500
v    1.380    0.060 0.454 1.500
v -1.480    1.030 0.000 2.300
v    0.120    1.030 0.394 6.100
v    1.170    1.030 0.000 3.300
cstype rat bspline
deg 2 2
surf -1.0 2.5 -2.0 2.0 -9 -8 -7 -6 -5 -4 -3 -2 -1
parm u -1.00 -1.00 -1.00 2.50 2.50 2.50
parm v -2.00 -2.00 -2.00 2.00 2.00 2.00

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 34 Wavefront File Formats

trim 0.0 2.0 1
sp 4
end

Connectivity between free-form surfaces
Connectivity connects two surfaces along their trimming curves.

The con statement specifies the first surface with its trimming curve
and the second surface with its trimming curve. This information is
useful for edge merging. Without this surface and curve data,
connectivity must be determined numerically at greater expense and
with reduced accuracy using the mg statement.

Connectivity between surfaces in different merging groups is ignored.
Also, although connectivity which crosses points of C1discontinuity in
trimming curves is legal, it is not recommended. Instead, use two
connectivity statements which meet at the point of discontinuity.

The two curves and their starting and ending parameters should all map
to the same curve and starting and ending points in object space.

Syntax

con surf_1 q0_1 q1_1 curv2d_1 surf_2 q0_2 q1_2 curv2d_2

Free-form geometry statement.
Specifies connectivity between two surfaces.

surf_1 is the index of the first surface.

q0_1 is the starting parameter for the curve referenced by
curv2d_1.

q1_1 is the ending parameter for the curve referenced by curv2d_1.

curv2d_1 is the index of a curve on the first surface. This curve
must have been previously defined with the curv2 statement.

surf_2 is the index of the second surface.

q0_2 is the starting parameter for the curve referenced by
curv2d_2.

q1_2 is the ending parameter for the curve referenced by curv2d_2.

curv2d_2 is the index of a curve on the second surface. This curve
must have been previously defined with the curv2 statement.

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

Example

1 Connectivity between two surfaces

This example shows the connectivity between two surfaces with
trimming curves.

cstype bezier
deg 1 1

v 0 0 0
v 1 0 0
v 0 1 0
v 1 1 0

vp 0 0
vp 1 0
vp 1 1
vp 0 1

curv2 1 2 3 4 1
parm u 0.0 1.0 2.0 3.0 4.0
end

surf 0.0 1.0 0.0 1.0 1 2 3 4
parm u 0.0 1.0
parm v 0.0 1.0
trim 0.0 4.0 1
end

v 1 0 0
v 2 0 0
v 1 1 0
v 2 1 0

surf 0.0 1.0 0.0 1.0 5 6 7 8
parm u 0.0 1.0
parm v 0.0 1.0
trim 0.0 4.0 1
end

con 1 2.0 2.0 1 2 4.0 3.0 1

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 36 Wavefront File Formats

Grouping
There are four statements in the .obj file to help you manipulate groups
of elements:

• Group name statements are used to organize collections of
elements and simplify data manipulation for operations in Model.

• Smoothing group statements let you identify elements over which
normals are to be interpolated to give those elements a smooth,
non-faceted appearance. This is a quick way to specify vertex
normals.

• Merging group statements are used to identify free-form elements
that should be inspected for adjacency detection. You can also use
merging groups to exclude surfaces which are close enough to be
considered adjacent but should not be merged.

• Object name statements let you assign a name to an entire object in
a single file.

All grouping statements are state-setting. This means that once a group
statement is set, it applies to all elements that follow until the next
group statement.

This portion of a sample file shows a single element which belongs to
three groups. The smoothing group is turned off.

g square thing all
s off
f 1 2 3 4

This example shows two surfaces in merging group 1 with a merge
resolution of 0.5.

mg 1 .5
surf 0.0 1.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
surf 0.0 1.0 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

Syntax

g group_name1 group_name2…

Polygonal and free-form geometry statement.
Specifies the group name for the elements that follow it. You can
have multiple group names. If there are multiple groups on one
line, the data that follows belong to all groups. Group information
is optional.

group_name is the name for the group. Letters, numbers, and
combinations of letters and numbers are accepted for group names.
The default group name is default.

s group_number

Polygonal and free-form geometry statement.
Sets the smoothing group for the elements that follow it. If you do
not want to use a smoothing group, specify off or a value of 0.

To display with smooth shading in Model and PreView, you must
create vertex normals after you have assigned the smoothing
groups. You can create vertex normals with the vn statement or
with the Model program.

To smooth polygonal geometry for rendering with Image, it is
sufficient to put elements in some smoothing group. However,
vertex normals override smoothing information for Image.

group_number is the smoothing group number. To turn off
smoothing groups, use a value of 0 or off. Polygonal elements use
group numbers to put elements in different smoothing groups. For
free-form surfaces, smoothing groups are either turned on or off;
there is no difference between values greater than 0.

mg group_number res

Free-form geometry statement.
Sets the merging group and merge resolution for the free-form
surfaces that follow it. If you do not want to use a merging group,
specify off or a value of 0.

Adjacency detection is performed only within groups, never
between groups. Connectivity between surfaces in different
merging groups is not allowed. Surfaces in the same merging
group are merged together along edges that are within the distance
res apart.

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 38 Wavefront File Formats

Tip Adjacency detection is an expensive numerical comparison process. It
is best to restrict this process to as small a domain as possible by using
small merging groups.

group_number is the merging group number. To turn off adjacency
detection, use a value of 0 or off.

res is the maximum distance between two surfaces that will be
merged together. The resolution must be a value greater than 0.
This is a required argument only when using merging groups.

o object_name

Polygonal and free-form geometry statement.
Optional statement; it is not processed by any Wavefront programs.
It specifies a user-defined object name for the elements defined
after this statement.

object_name is the user-defined object name. There is no default.

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

Examples

1 Cube with group names

The following example is a cube with each of its faces placed in a
separate group. In addition, all elements belong to the group cube.

v 0.000000 2.000000 2.000000
v 0.000000 0.000000 2.000000
v 2.000000 0.000000 2.000000
v 2.000000 2.000000 2.000000
v 0.000000 2.000000 0.000000
v 0.000000 0.000000 0.000000
v 2.000000 0.000000 0.000000
v 2.000000 2.000000 0.000000
8 vertices

g front cube
f 1 2 3 4
g back cube
f 8 7 6 5
g right cube
f 4 3 7 8
g top cube
f 5 1 4 8
g left cube
f 5 6 2 1
g bottom cube
f 2 6 7 3
6 elements

2 Two adjoining squares with a smoothing group

This example shows two adjoining squares that share a common
edge. The squares are placed in a smoothing group to ensure that
their common edge will be smoothed when rendered with Image.

v 0.000000 2.000000 0.000000
v 0.000000 0.000000 0.000000
v 2.000000 0.000000 0.000000
v 2.000000 2.000000 0.000000
v 4.000000 0.000000 -1.255298
v 4.000000 2.000000 -1.255298
6 vertices

g all
s 1
f 1 2 3 4

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 40 Wavefront File Formats

f 4 3 5 6
2 elements

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

3 Two adjoining squares with vertex normals

This example also shows two squares that share a common edge.
Vertex normals have been added to the corners of each square to
ensure that their common edge will be smoothed during display in
Model and PreView and when rendered with Image.

v 0.000000 2.000000 0.000000
v 0.000000 0.000000 0.000000
v 2.000000 0.000000 0.000000
v 2.000000 2.000000 0.000000
v 4.000000 0.000000 -1.255298
v 4.000000 2.000000 -1.255298
vn 0.000000 0.000000 1.000000
vn 0.000000 0.000000 1.000000
vn 0.276597 0.000000 0.960986
vn 0.276597 0.000000 0.960986
vn 0.531611 0.000000 0.846988
vn 0.531611 0.000000 0.846988
6 vertices

6 normals

g all
s 1
f 1//1 2//2 3//3 4//4
f 4//4 3//3 5//5 6//6
2 elements

4 Merging group

This example shows two Bezier surfaces that meet at a common
edge. They have both been placed in the same merging group to
ensure continuity at the edge where they meet. This prevents
“cracks” from appearing along the seam between the two surfaces
during rendering. Merging groups will be ignored during flat-
shading, smooth-shading, and material shading of the surface.

v -4.949854 -5.000000 0.000000
v -4.949854 -1.666667 0.000000
v -4.949854 1.666667 0.000000
v -4.949854 5.000000 0.000000
v -1.616521 -5.000000 0.000000
v -1.616521 -1.666667 0.000000
v -1.616521 1.666667 0.000000
v -1.616521 5.000000 0.000000
v 1.716813 -5.000000 0.000000
v 1.716813 -1.666667 0.000000

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 42 Wavefront File Formats

v 1.716813 1.666667 0.000000
v 1.716813 5.000000 0.000000
v 5.050146 -5.000000 0.000000
v 5.050146 -1.666667 0.000000
v 5.050146 1.666667 0.000000
v 5.050146 5.000000 0.000000
v -15.015566 -4.974991 0.000000
v -15.015566 -1.641658 0.000000
v -15.015566 1.691675 0.000000
v -15.015566 5.025009 0.000000
v -11.682233 -4.974991 0.000000
v -11.682233 -1.641658 0.000000
v -11.682233 1.691675 0.000000
v -11.682233 5.025009 0.000000
v -8.348900 -4.974991 0.000000
v -8.348900 -1.641658 0.000000
v -8.348900 1.691675 0.000000
v -8.348900 5.025009 0.000000
v -5.015566 -4.974991 0.000000
v -5.015566 -1.641658 0.000000
v -5.015566 1.691675 0.000000
v -5.015566 5.025009 0.000000

mg 1 0.500000

cstype bezier
deg 3 3
surf 0.000000 1.000000 0.000000 1.000000 13 14 \
15 16 9 10 11 12 5 6 7 8 1 2 3 4
parm u 0.000000 1.000000
parm v 0.000000 1.000000
end
surf 0.000000 1.000000 0.000000 1.000000 29 30 31 32 25 26 27 28 21
22 \
 23 24 17 18 19 20
parm u 0.000000 1.000000
parm v 0.000000 1.000000
end

Display/render attributes
Display and render attributes describe how an object looks when
displayed in Model and PreView or when rendered with Image.

Some attributes apply to both free-form and polygonal geometry, such
as material name and library, ray tracing, and shadow casting.

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

Interpolation attributes apply only to polygonal geometry. Curve and
surface resolutions are used for only free-form geometry.

The following chart shows the display and render statements available
for polygonal and free-form geometry.

Table 2-1.    Display and render attributes

polygonal only polygonal or free-
form

free-form only

bevel lod ctech

c_interp usemtl stech

d_interp mtllib

shadow_obj

trace_obj

All display and render attribute statements are state-setting. This means
that once an attribute statement is set, it applies to all elements that
follow until it is reset to a different value.

The following sample shows rendering and display statements for a
face element.:

s 1
usemtl blue
usemap marble
f 1 2 3 4

Syntax

The following syntax statements are listed by the type of geometry.
First are statements for polygonal geometry. Second are statements for
both free-form and polygonal geometry. Third are statements for free-
form geometry only.

bevel on | off

Polygonal geometry statement.
Sets bevel interpolation on or off. It works only with beveled
objects, that is, objects with sides separated by beveled faces.

Bevel interpolation uses normal vector interpolation to give an
illusion of roundness to a flat bevel. It does not affect the
smoothing of non-bevelled faces.

Bevel interpolation does not alter the geometry of the original

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 44 Wavefront File Formats

object.

on turns on bevel interpolation.

off turns off bevel interpolation. The default is off.

Tip Image cannot render bevel-interpolated elements that have vertex
normals.

c_interp on | off

Polygonal geometry statement.
Sets color interpolation on or off.

Color interpolation creates a blend across the surface of a polygon
between the materials assigned to its vertices. This creates a
blending of colors across a face element.

To support color interpolation, materials must be assigned per
vertex, not per element. The illumination models for all materials
of vertices attached to the polygon must be the same. Color
interpolation applies to the values for ambient (Ka), diffuse (Kd),
specular (Ks), and specular highlight (Ns) material properties.

on turns on color interpolation.

off turns off color interpolation. The default is off.

d_interp on | off

Polygonal geometry statement.
Sets dissolve interpolation on or off.

Dissolve interpolation creates an interpolation or blend across a
polygon between the dissolve (d) values of the materials assigned
to its vertices. This feature is used to create effects exhibiting
varying degrees of apparent transparency, as in glass or clouds.

To support dissolve interpolation, materials must be assigned per
vertex, not per element. All the materials assigned to the vertices
involved in the dissolve interpolation must contain a dissolve
factor command to specify a dissolve.

on turns on dissolve interpolation.

off turns off dissolve interpolation. The default is off.

lod level

Polygonal and free-form geometry statement.
Sets the level of detail to be displayed in a PreView animation. The
level of detail feature lets you control which elements of an object

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

are displayed while working in PreView.

level is the level of detail to be displayed. When you set the level
of detail to 0 or omit the lod statement, all elements are displayed.
Specifying an integer between 1 and 100 sets the level of detail to
be displayed when reading the .obj file.

maplib filename1 filename2…

This is a rendering identifier that specifies the map library file for
the texture map definitions set with the usemap identifier. You can
specify multiple filenames with maplib. If multiple filenames are
specified, the first file listed is searched first for the map definition,
the second file is searched next, and so on.

When you assign a map library using the Model program, Model
allows only one map library per .obj file. You can assign multiple
libraries using a text editor.

filename is the name of the library file where the texture maps are
defined. There is no default.

usemap map_name | off

This is a rendering identifier that specifies the texture map name
for the element following it. To turn off texture mapping, specify
off instead of the map name.

If you specify texture mapping for a face without texture vertices,
the texture map will be ignored.

map_name is the name of the texture map.

off turns off texture mapping. The default is off.

usemtl material_name

Polygonal and free-form geometry statement.
Specifies the material name for the element following it. Once a
material is assigned, it cannot be turned off; it can only be
changed.

material_name is the name of the material. If a material name is
not specified, a white material is used.

mtllib filename1 filename2…

Polygonal and free-form geometry statement.
Specifies the material library file for the material definitions set
with the usemtl statement. You can specify multiple filenames with
mtllib. If multiple filenames are specified, the first file listed is

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 46 Wavefront File Formats

searched first for the material definition, the second file is searched
next, and so on.

When you assign a material library using the Model program, only
one map library per .obj file is allowed. You can assign multiple
libraries using a text editor.

filename is the name of the library file that defines the materials.
There is no default.

shadow_obj filename

Polygonal and free-form geometry statement.
Specifies the shadow object filename. This object is used to cast
shadows for the current object. Shadows are only visible in a
rendered image; they cannot be seen using hardware shading. The
shadow object is invisible except for its shadow.

An object will cast shadows only if it has a shadow object. You can
use an object as its own shadow object. However, a simplified
version of the original object is usually preferable for shadow
objects, since shadow casting can greatly increase rendering time.

 filename is the filename for the shadow object. You can enter any
valid object filename for the shadow object. The object file can be
an .obj or .mod file. If a filename is given without an extension, an
extension of .obj is assumed.

Only one shadow object can be stored in a file. If more than one
shadow object is specified, the last one specified will be used.

trace_obj filename

Polygonal and free-form geometry statement.
Specifies the ray tracing object filename. This object will be used
in generating reflections of the current object on reflective
surfaces. Reflections are only visible in a rendered image; they
cannot be seen using hardware shading.

An object will appear in reflections only if it has a trace object.
You can use an object as its own trace object. However, a
simplified version of the original object is usually preferable for
trace objects, since ray tracing can greatly increase rendering time.

filename is the filename for the ray tracing object. You can enter
any valid object filename for the trace object. You can enter any
valid object filename for the shadow object. The object file can be
an .obj or .mod file. If a filename is given without an extension, an
extension of .obj is assumed.

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

Only one trace object can be stored in a file. If more than one is
specified, the last one is used.

ctech technique resolution

Free-form geometry statement.
Specifies a curve approximation technique. The arguments specify
the technique and resolution for the curve.

You must select from one of the following three techniques.

ctech cparm res

Specifies a curve with constant parametric subdivision using one
resolution parameter. Each polynomial segment of the curve is
subdivided n times in parameter space, where n is the resolution
parameter multiplied by the degree of the curve.

res is the resolution parameter. The larger the value, the finer the
resolution. If res has a value of 0, each polynomial curve segment
is represented by a single line segment.

ctech cspace maxlength

Specifies a curve with constant spatial subdivision. The curve is
approximated by a series of line segments whose lengths in real
space are less than or equal to the maxlength.

maxlength is the maximum length of the line segments. The
smaller the value, the finer the resolution.

ctech curv maxdist maxangle

Specifies curvature-dependent subdivision using separate
resolution parameters for the maximum distance and the maximum
angle.

The curve is approximated by a series of line segments in which
1) the distance in object space between a line segment and the
actual curve must be less than the maxdist parameter and 2) the
angle in degrees between tangent vectors at the ends of a line
segment must be less than the maxangle parameter.

maxdist is the distance in real space between a line segment and
the actual curve.

maxangle is the angle (in degrees) between tangent vectors at the
ends of a line segment.

The smaller the values for maxdist and maxangle, the finer the
resolution.

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 48 Wavefront File Formats

Tip Approximation information for trimming, hole, and special curves is
stored in the corresponding surface. The ctech statement for the surface
is used, not the ctech statement applied to the curv2 statement.
Although untrimmed surfaces have no explicit trimming loop, a loop is
constructed which bounds the legal parameter range. This implicit loop
follows the same rules as any other loop and is approximated according
to the ctech information for the surface.

stech technique resolution

Free-form geometry statement.
Specifies a surface approximation technique. The arguments
specify the technique and resolution for the surface.

You must select from one of the following techniques:

stech cparma ures vres

Specifies a surface with constant parametric subdivision using
separate resolution parameters for the u and v directions. Each
patch of the surface is subdivided n times in parameter space,
where n is the resolution parameter multiplied by the degree of the
surface.

ures is the resolution parameter for the u direction.

vres is the resolution parameter for the v direction.

The larger the values for ures and vres, the finer the resolution. If
you enter a value of 0 for both ures and vres, each patch is
approximated by two triangles.

stech cparmb uvres

Specifies a surface with constant parametric subdivision, with
refinement using one resolution parameter for both the u and v
directions.

An initial triangulation is performed using only the points on the
trimming curves. This triangulation is then refined until all edges
are of an appropriate length. The resulting triangles are not
oriented along isoparametric lines as they are in the cparma
technique.

uvres is the resolution parameter for both the u and v directions.
The larger the value, the finer the resolution.

stech cspace maxlength

Specifies a surface with constant spatial subdivision.

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

The surface is subdivided in rectangular regions until the length in
real space of any rectangle edge is less than the maxlength. These
rectangular regions are then triangulated.

maxlength is the length in real space of any rectangle edge. The
smaller the value, the finer the resolution.

stech curv maxdist maxangle

Specifies a surface with curvature-dependent subdivision using
separate resolution parameters for the maximum distance and the
maximum angle.

The surface is subdivided in rectangular regions until 1) the
distance in real space between the approximating rectangle and the
actual surface is less than the maxdist (approximately) and 2) the
angle in degrees between surface normals at the corners of the
rectangle is less than the maxangle. Following subdivision, the
regions are triangulated.

maxdist is the distance in real space between the approximating
rectangle and the actual surface.

maxangle is the angle in degrees between surface normals at the
corners of the rectangle.

The smaller the values for maxdist and maxangle, the finer the
resolution.

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 50 Wavefront File Formats

Examples

1 Cube with materials

This cube has a different material applied to each of its faces.

mtllib master.mtl

v 0.000000 2.000000 2.000000
v 0.000000 0.000000 2.000000
v 2.000000 0.000000 2.000000
v 2.000000 2.000000 2.000000
v 0.000000 2.000000 0.000000
v 0.000000 0.000000 0.000000
v 2.000000 0.000000 0.000000
v 2.000000 2.000000 0.000000
8 vertices

g front
usemtl red
f 1 2 3 4
g back
usemtl blue
f 8 7 6 5
g right
usemtl green
f 4 3 7 8
g top
usemtl gold
f 5 1 4 8
g left
usemtl orange
f 5 6 2 1
g bottom
usemtl purple
f 2 6 7 3
6 elements

2 Cube casting a shadow

In this example, the cube casts a shadow on the other objects when
it is rendered with Image. The cube, which is stored in the file
cube.obj, references itself as the shadow object.

mtllib master.mtl
shadow_obj cube.obj

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

v 0.000000 2.000000 2.000000
v 0.000000 0.000000 2.000000
v 2.000000 0.000000 2.000000
v 2.000000 2.000000 2.000000
v 0.000000 2.000000 0.000000
v 0.000000 0.000000 0.000000
v 2.000000 0.000000 0.000000
v 2.000000 2.000000 0.000000
8 vertices

g front
usemtl red
f 1 2 3 4
g back
usemtl blue
f 8 7 6 5
g right
usemtl green
f 4 3 7 8
g top
usemtl gold
f 5 1 4 8
g left
usemtl orange
f 5 6 2 1
g bottom
usemtl purple
f 2 6 7 3
6 elements

3 Cube casting a reflection

This cube casts its reflection on any reflective objects when it is
rendered with Image. The cube, which is stored in the file cube.obj,
references itself as the trace object.

mtllib master.mtl
trace_obj cube.obj

v 0.000000 2.000000 2.000000
v 0.000000 0.000000 2.000000
v 2.000000 0.000000 2.000000
v 2.000000 2.000000 2.000000
v 0.000000 2.000000 0.000000
v 0.000000 0.000000 0.000000

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 52 Wavefront File Formats

v 2.000000 0.000000 0.000000
v 2.000000 2.000000 0.000000
8 vertices

g front
usemtl red
f 1 2 3 4
g back
usemtl blue
f 8 7 6 5
g right
usemtl green
f 4 3 7 8
g top
usemtl gold
f 5 1 4 8
g left
usemtl orange
f 5 6 2 1
g bottom
usemtl purple
f 2 6 7 3
6 elements

4 Texture-mapped square

This example describes a 2 x 2 square. It is mapped with a 1 x 1
square texture. The texture is stretched to fit the square exactly.

mtllib master.mtl

v 0.000000 2.000000 0.000000
v 0.000000 0.000000 0.000000
v 2.000000 0.000000 0.000000
v 2.000000 2.000000 0.000000
vt 0.000000 1.000000 0.000000
vt 0.000000 0.000000 0.000000
vt 1.000000 0.000000 0.000000
vt 1.000000 1.000000 0.000000
4 vertices

usemtl wood
f 1/1 2/2 3/3 4/4
1 element

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

5 Approximation technique for a surface

This example shows a B-spline surface which will be
approximated using curvature-dependent subdivision specified by
the stech command.

g bspatch
v -5.000000 -5.000000 -7.808327
v -5.000000 -1.666667 -7.808327
v -5.000000 1.666667 -7.808327
v -5.000000 5.000000 -7.808327
v -1.666667 -5.000000 -7.808327
v -1.666667 -1.666667 11.977780
v -1.666667 1.666667 11.977780
v -1.666667 5.000000 -7.808327
v 1.666667 -5.000000 -7.808327
v 1.666667 -1.666667 11.977780
v 1.666667 1.666667 11.977780
v 1.666667 5.000000 -7.808327
v 5.000000 -5.000000 -7.808327
v 5.000000 -1.666667 -7.808327
v 5.000000 1.666667 -7.808327
v 5.000000 5.000000 -7.808327
16 vertices

g bspatch
cstype bspline
stech curv 0.5 10.000000
deg 3 3
surf 0.000000 1.000000 0.000000 1.000000 13 14 \ 15 16 9 10 11 12 5 6 7
8 1 2 3 4
parm u -3.000000 -2.000000 -1.000000 0.000000    \
1.000000 2.000000 3.000000 4.000000
parm v -3.000000 -2.000000 -1.000000 0.000000    \
1.000000 2.000000 3.000000 4.000000
end
1 element

6 Approximation technique for a curve

This example shows a Bezier curve which will be approximated
using constant parametric subdivision specified by the ctech
command.

v -2.300000 1.950000 0.000000
v -2.200000 0.790000 0.000000
v -2.340000 -1.510000 0.000000
v -1.530000 -1.490000 0.000000

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 54 Wavefront File Formats

v -0.720000 -1.470000 0.000000
v -0.780000 0.230000 0.000000
v 0.070000 0.250000 0.000000
v 0.920000 0.270000 0.000000
v 0.800000 -1.610000 0.000000
v 1.620000 -1.590000 0.000000
v 2.440000 -1.570000 0.000000
v 2.690000 0.670000 0.000000
v 2.900000 1.980000 0.000000
13 vertices

g default
cstype bezier
ctech cparm 1.000000
deg 3
curv 0.000000 4.000000 1 2 3 4 5 6 7 8 9 10 \
11 12 13
parm u 0.000000 1.000000 2.000000 3.000000    \
4.000000
end
1 element

Comments
Comments can appear anywhere in an .obj file. They are used to
annotate the file; they are not processed.

Here is an example:

this is a comment

The Model program automatically inserts comments when it
creates .obj files. For example, it reports the number of geometric
vertices, texture vertices, and vertex normals in a file.

4 vertices
4 texture vertices
4 normals

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

Mathematics for free-form curves/surfaces

General forms

Rational and non-rational curves and surfaces

In general, any non-rational curve segment may be written as:

where

K + 1 is the number of control points
di are the control points

n is the degree of the curve

Ni,n(t) are the degree n basis functions

Extending this to the bivariate case, any non-rational surface patch may
be written as:

where:

K1 + 1 is the number of control points in the u direction

K2 + 1 is the number of control points in the v direction

di,j are the control points

m is the degree of the surface in the u direction

n is the degree of the surface in the v direction

Ni,m(u) are the degree m basis functions in the u direction

Nj,n(v) are the degree n basis functions in the v direction

Tip The front of the surface is defined as the side where the u parameter
increases to the right and the v parameter increases upward.

We may extend this curve to the rational case as:

where wi are the weights associated with the control points di.
Similarly, a rational surface may be expressed as:

where wi,j are the weights associated with the control points di,j.

Tip If a curve or surface in an .obj file is rational, it must use the rat option
with the cstype statement and it requires some weight values for each
control point.

The weights for the rational form are given as a third control point
coordinate (for trimming curves) or fourth coordinate (for space curves
and surfaces). These weights are optional and default to 1.0 if not

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 56 Wavefront File Formats

given.

This default weight is only reasonable for curves and surfaces whose
basis functions sum to 1.0, such as Bezier, Cardinal, and NURB. It does
not make sense for Taylor and may or may not make sense for a
representation given in basis-matrix form.

For all forms other than B-spline, the final curve or surface is
constructed by piecing together the individual curve segments or
surface patches. A global parameter space is then defined over the
entire composite curve or surface using the parameter vector given
with the parm statement.

The parameter vector for a curve is a list of p global parameter values
{t1, …, tp}. If t1 # t < ti+1 is a point in global parameter space, then:

is the corresponding point in local parameter space for the ith
polynomial segment. It is this t which is used when evaluating a given
segment of the piecewise curve. For surfaces, this mapping from global
to local parameter space is applied independently in both the u and v
parametric directions.

B-splines require a knot vector rather than a parameter vector, although
this is also given with the parm statement. Refer to the description of
B-splines below.

The following discussion of each type is expressed in terms of the
above definitions.

Tip The maximum degree for all curve and surface types is currently set at
20, which is high enough for most purposes.

Free-form curve and surface types

B-spline

Type bspline specifies arbitrary degree non-uniform B-splines which
are commonly referred to as NURBs in their rational form. The basis
functions are defined by the Cox-deBoor recursion formulas as:

and:

where, by convention, 0/0 = 0.

The xi Œ {x0,…,xq} form a set known as the knot vector which is
given by the parm statement. It is required that

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

1 xi # xi + 1,

2 x0 < xn + 1,

3 xq -n -1 < xq,

4 xi < xi + n for 0 < i < q - n - 1,

5 xn # t min < tmax # xK+ 1, where [tmin, tmax] is the parameter
over which the B-spline is to be evaluated, and

6 K = q - n - 1.

A knot is said to be of multiplicity r if its value is repeated r times in
the knot vector. The second through fourth conditions above restrict
knots to be of at most multiplicity n + 1 at the ends of the vector and at
most n everywhere else.

The last condition requires that the number of control points is equal to
one less than the number of knots minus the degree. For surfaces, all of
the above conditions apply independently for the u and v parametric
directions.

Bezier

Type bezier specifies arbitrary degree Bezier curves and surfaces. This
basis function is defined as:

where:

When using type bezier, the number of global parameter values given
with the parm statement must be K/n + 1, where K is the number of
control points. For surfaces, this requirement applies independently for
the u and v parametric directions.

Cardinal

Type cardinal specifies a cubic, first derivative, continuous curve or
surface. For curves, this interpolates all but the first and last control
points. For surfaces, all but the first and last row and column of control
points are interpolated.

Cardinal splines, also known as Catmull-Rom splines, are best
understood by considering the conversion from Cardinal to Bezier
control points for a single curve segment:

Here, the ci variables are the Cardinal control points and the bi

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 58 Wavefront File Formats

variables are the Bezier control points. We see that the second and third
Cardinal points are the beginning and ending points for the segment,
respectively. Also, the beginning tangent lies along the vector from the
first to the third point, and the ending tangent along the vector from the
second to the last point.

If we let Bi(t) be the cubic Bezier basis functions (i.e. what was given
above for Bezier as Ni,n(t) with n = 3), then we may write the Cardinal
basis functions as:

Note that Cardinal splines are only defined for the cubic case.

When using type cardinal, the number of global parameter values given
with the parm statement must be K - n + 2, where K is the number of
control points. For surfaces, this requirement applies independently for
the u and v parametric directions.

Taylor

Type taylor specifies arbitrary degree Taylor polynomial curves and
surfaces. The basis function is simply:

Tip The control points in this case are the polynomial coefficients and have
no obvious geometric significance.

When using type taylor, the number of global parameter values given
with the parm statement must be (K + 1)/(n + 1) + 1, where K is the
number of control points. For surfaces, this requirement applies
independently for the u and v parametric directions.

Basis matrix

Type bmatrix specifies general, arbitrary-degree curves defined through
the use of a basis matrix rather than an explicit type such as Bezier. The
basis functions are defined as:

where the basis matrix is the bi,j. In order to make the matrix nature of
this more obvious, we may also write:

When constructing basis matrices, you should keep this definition in
mind, as different authors write this in different ways. A more common
matrix representation is:

To use such matrices in the .obj file, simply transpose the matrix and
reverse the column ordering.

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

When using type basis, the number of global parameter values given
with the parm statement must be (K - n)/s + 2, where K is the number
of control points and s is the step size given with the step statement. For
surfaces, this requirement applies independently for the u and v
parametric directions.

Surface vertex data

Control points

The control points for a surface consisting of a single patch are listed in
the order i = 0 to K1 for j = 0, followed by i = 0 to K1 for j = 1, and so
on until j = K2.

For surfaces made up of many patches, which is the usual case, the
control points are ordered as if the surface were a single large patch.
For example, the control points for a bicubic Bezier surface consisting
of four patches would be arranged as follows:

where (m, n) is the global parameter space of the surface and the
numbers indicate the ordering of the vertex indices in the surf
statement.

Texture vertices and texture mapping

When texture vertices are not supplied, the original surface
parameterization is used for texture mapping. However, if texture
vertices are supplied, they are interpreted as additional information to
be interpolated or approximated separately from, but using the same
interpolation functions as the control vertices.

That is, whereas the surface itself, in the non-rational case, was given in
the section “Rational and non-rational curves and surfaces” on page 2-
57 as:

the texture vertices are interpolated or approximated by:

where ti,j are the texture vertices and the basis functions are the same
as for S(u,v). It is T(u,v), rather than the surface parameterization (u,v),
which is used when a texture map is applied.

Vertex normals and normal mapping

Vertex normals are treated exactly like texture vertices. When vertex

$paratext[Head2,Head2Top]

$paranumonly[Chapter] - 60 Wavefront File Formats

normals are not supplied, the true surface normals are used. If vertex
normals are supplied, they are calculated as:

where qi,j are the vertex normals and the basis functions are the same
as for S(u,v) and T(u,v).

Tip Vertex normals do not affect the shape of the surface; they are simply
associated with the triangle vertices in the final triangulation. As with
faces, supplying vertex normals only affects lighting calculations for
the surface.

The treatment of both texture vertices and vertex normals in the case of
rational surfaces is identical. It is important to notice that even when
the surface S(u,v) is rational, the texture and normal surfaces, T(u,v)
and Q(u,v), are not rational. This is because the control points (the
texture vertices and vertex normals) are never rational.

Curve and surface operations

Special points

The following equations give a more precise description of special
points for space curves and discuss the extension to trimming curves
and surfaces.

Let C(t) be a space curve with the global parameter t. We can
approximate this curve by a set of k-1 line segments which connect the
points:

for some set of k global parameter values {t1,...,tk}.

Given a special point ts in the parameter space of the curve (referenced
by vp), we guarantee that ts Œ {t1, . . . ,tk}. More specifically, we
approximate the curve by:

where, at the point i where ts is inserted, we have ti # ts < ti+1.

Special curves

The following equations give a more precise description of a special
curve.

Let T(t) be a special curve with the global parameter t. We have:

where (m,n) is a point in the global parameter space of a surface. We
can approximate this curve by a set of k-1 line segments which connect
the points:

$paratext[Head2,Head2Top]

$paratext[Chapter] $paranumonly[Chapter] -

for some set of k global parameter values.

Let S(m,n) be a surface with the global parameters m and n. We can
approximate this surface by a triangulation of a set of p points.

which lie on the surface. We further define E as the set of all edges such
that ei,j Œ E implies that S(mi,ni) and S(mj,nj) are connected in the
triangulation. Finally, we guarantee that there exists some subset of E:

such that the points:

are connected in the triangulation.

Connectivity

Recall that the syntax of the con statement is:

con surf_1 q0_1 q1_1 curv2d_1 surf_2 q0_2 q1_2 curv2d_2

If we let:

T1(t1) be the curve referenced by curv2d_1
S1(m1, n1) be the surface referenced by surf1 on which T1(t1) lies
T2(t2) be the curve referenced by curv2d_2
S2(m2, n2) be the surface referenced by surf2 on which T2(t2) lies

then S1(T1(t1)), S2(T2(t2)) must be identical up to reparameterization.
Moreover, it must be the case that:

S1(T1(q0_1)) = S2(T2(q0_2))

and:

S1(T1(q1_1)) = S2(T2(q1_2))

It is along the curve S1(T1(t1)) between t1 = q0_1 and t1 = q1_1, and
the curve S2(T2(t2)) between t2 = q0_2 and t2 = q1_2 that the surface
S1(m1, n1) is connected to the surface S2(m2, n2).

