
Volume II

Khoros Programmer’s Manual

Chapter 1

WRITING PROGRAMS / VIFF FORMAT

Writing Programs Under the Khoros System

Primary Author(s):

Danielle Argiro & Charlie Gage

Copyright  1992 University of New Mexico. All rights reserved.

Printed: March 18, 1992

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

WRITING PROGRAMS / VIFF FORMAT

A. OVERVIEW OF THE KHOROS PROGRAMMER’S MANUAL

Volume II of the Khoros Manuals contains documentation for the program developer who

wishes to create new applications using the Khoros user interface development tools and the
source configuration tools.

In simplest terms, a Khoros application consists of application-specific algorithms which

are accessed by an automatically generated user interface based on a User Interface Specification
(UIS). The Khoros User Interface Development System (UIDS) supports the creation of three

types of user interfaces: graphical, textual, and the visual language.

The source configuration tools help you to maintain the extensions that you have made to

Khoros using the UIDS. The software engineering tools in Khoros embed conventions that we

have chosen and modern software practices. The tools attempt to automate complex tasks. At
this point in the evolution of Khoros, we are partially successful in hiding the complexity from

the user. When a tool is complicated to use, we attempt in this manual to document and explain
how a user should proceed.

The underlying philosophy is that you are creating your extensions to Khoros to have the

characteristics of reusability and maintainability.

A.1 CHAPTER SUMMARIES

Chapter 1 is where the Khoros programmer should begin. If you are new to Khoros, you

should read through Chapter 1, then become familiar with the rest of Volume II, and then read
Chapter 1 again.

Chapter 2 provides an in-depth explanation of the use of the UIS file. The first task for the
application designer who wishes to develop a Khoros program is to create a UIS file, so a careful

study of this chapter is important for anyone who wishes to develop a program under the Khoros

system. Information concerning the physical appearance and functionality of an application
interface is contained here. Designed as a high level description, the specification is used

directly to generate the code for both the graphical and the command line user interfaces.

Chapter 3 gives instructions for the use of preview, a program that allows you to prototype

the graphical user interface defined by a UIS.

Chapter 4 gives instructions for the use of composer, a program that allows you to
interactively edit a UIS file and a Program Specification (PS) file.

Chapter 5 details the use of the ghost routines for automatic generation and maintenance
of code for the command line user interface (CLUI) of a Khoros program. Use of the ghost

routines is required for creation of any Khoros program.

Chapter 6 explains conductor, an automatic code generation program for xvroutines only.
Conductor generates the C code necessary to mediate between the xvforms library and the

application program’s graphical user interface.

KHOROS Release: 1.0 1 - 1

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

Chapter 7 gives examples of xvroutines; there is no need for additional examples of
vroutines, as more than enough are available in the vipl and dspl libraries.

Chapter 8 introduces the libraries which form the foundation on which the Khoros system
is based. They provide utilities so that the program developer may create applications under X

Windows, Version 11, Release 4, while knowing only a little about X programming. For those

who have already developed programs using the Khoros libraries, changes to library routines are
listed in the first section.

Chapter 9 contains the documentation for the layout of of the Khoros Source Tree. In
addition, it gives details on the use of Makefiles and Imakefiles.

Chapter 10 is the installation guide. Yes we know - it should be chapter 1.

Chapter 11 contains the documentation for kraftsman. This chapter was added when we
released patch 3 to Khoros 1.0.

A.2 RECIPE FOR USING VOLUME II

Volume II is an integrated set of documents. The order in which you should learn them
depends on what stage of development you are in and what your goals are. Ideally, you could get

started using the tools and the Khoros environment with out having to know all of the details of
the system. Then as you begin to use the system, you can come back to Volume II as you need.

The following recipe is for someone new to Khoros and investigating the possibilities of using

Khoros as a software development environment.

1) Get Familiar with Volume II - Read Chapter 1 sections A through I so that you can
become familiar with the terminology used and the tools that are available. The details of

this material will not sink in until you begin programming. Then, spend about an hour or

two looking through the rest of Volume II, reading the sections that look interesting.

2) Experiment with Composer - Create yourself a work directory for experimenting with

composer. Create a user interface for a simple vroutine and use ghostwriter to generate
code for it. Do not attempt to install it yet. Access your new routine via the cantata user

interface as described in Chapter 1.

3) Read Chapter 1 Again - This time through Chapter 1, read the documentation
critically and try and understand most of the details. You are now preparing yourself to

completely install a new program into the Khoros environment.

4) Study Configuration Management - Most casual programmers are not familiar with

configuration management and lack a knowledge of Imake, etc. But, if you want your

software to have the qualities it needs to be maintainable and usable by others, then learn
configuration management. This material is in Chapter 9 of Volume II.

5) Create a Toolbox - Following the instructions in Chapter 11 and Chapter 1, create a new
toolbox.

6) Write and Install a Simple Program - Use the simple program that you created in step

2) above and install it into your toolbox.

Good Luck!

KHOROS Release: 1.0 1 - 2

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

B. WRITING PROGRAMS IN THE KHOROS ENVIRONMENT

This chapter provides information necessary to writing a new program and its integration
into the Khoros system. An introduction is provided outlining the differences between the two

main types of programs in Khoros (vroutines and xvroutines). Section C specifically outlines the
writing of a vroutine, while section D outlines how to write an xvroutine. Each of these sections

gives appropriate instructions on creating the UIS file, using the ghost routines for automatic

program generation, and the installation process. Notes on use of the Program Specification file
are given in section E, which is followed by section F, on integrating the new program into

cantata. Section G presents information on maintenance of new programs in the Khoros system.
All programs that are added to the Khoros system are to be installed in a toolbox. Section I

explains the use of kraftsman to create a toolbox and use of toolboxes.

In addition, this document also contains general information about the Khoros system,
including argument and file naming conventions, and important style and coding conventions. It

is strongly recommended that you follow these guidelines for consistency and maintainability of
your programs. Usage of the provided information and recommendations will result in a high

degree of standardization in the source code and an increased understanding of the Khoros

system.

B.1 INTRODUCTION TO KHOROS VROUTINES & XVROUTINES

First of all, it is necessary for the reader to distinguish between the two types of programs

in the Khoros system: programs that are referred to as xvroutines, and those that are referred to
as vroutines. There are also some programs in the Khoros system that are a cross between the

two. These are referred to as hybrid routines.

Usually, an xvroutine is an application which has a graphical user interface, regardless of

whether or not it is executed from the command line; there are only a few notable exceptions to

this rule. An xvroutine is characterized by the fact that it must link against at least one of the
xvforms, xvutils, xvdisplay, or xvgraphics libraries. In general, an xvroutine must also use the

conductor code generation program to initialize and extract information from the graphical user
interface. An example of an xvroutine is editimage, which is used to interactively display and

manipulate an image.

Khoros vroutines also have a graphical user interface, but this graphical user interface is
provided entirely through their inclusion into the cantata visual language, or via interpretation

and display by the composer or preview programs - the graphical user interface is NOT
supported by the vroutine programs themselves. When a vroutine is run from the command line,

there is no graphical display; data is input, processed, and output. An example of a vroutine is

vadd, which is one of the many image processing routines within Khoros.

The first task of a programmer working in the Khoros environment is to decide which of the

above types of programs they will be writing, let us explain the difference in greater detail.
Xvroutines will always involve some sort of graphic display on a screen supporting X Windows,

independently of any accessibility they may have through cantata. Xvroutines always use the X

Toolkit and the Athena widget set indirectly (since they will link against one of the Khoros
libraries that uses X11.4). Xlib, the X Toolkit and/or the Athena Widget Set may also be used

directly by the xvroutine if desired. Examples of xvroutines include all the major applications of
Khoros: animate, cantata, composer, editimage, preview, viewimage, warpimage, xprism2,

and xprism3.

KHOROS Release: 1.0 1 - 3

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

All these programs meet the first criterion for an xvroutine: they always have a graphical
user interface, regardless of whether they are run from the command line, or executed via

cantata. With one notable exception, the Khoros programmer for each of these programs had to
use the conductor code generation program in the development and maintenance of the program.

The only exception to this rule is cantata, which, as a necessarily extensible visual language, is

interpretive -- that is, it interprets the graphical user interface on its own, without the aid of
automatically generated code, at runtime.

While the Khoros xvroutines are highly visible, the vast majority of the programs that make
up the Khoros system are vroutines rather than xvroutines. These include all the programs in the

image processing library (vipl), all the programs in the digital signal processing library (dspl), all

the file-formatting programs, all the classification algorithms and morphology routines ... in
general, almost all the Khoros programs besides those major applications listed above.

Some programs, however, cannot be classified as either a vroutine or an xvroutine. For
instance, some programs may involve graphic display (like an xvroutine), but may NOT have an

interactive graphical user interface when run from the command line (like a vroutine). These

graphic hybrid routines must be located with the xvroutines in the Khoros source tree, as they
will usually need the utilities provided by the xvdisplay or xvgraphics libraries. However, they

are NOT xvroutines, per se, as they are not interactive, and do not have a graphical user interface
when run from the command line; thus, they do NOT use the conductor code generation

program, as they have no graphical user interface from which to extract information; they simply

provide non-interactive graphic display. Examples of these programs are: iconimage, putimage,

xverror, and xvviewer. The reader is highly encouraged to write this type of application;

however, be aware that it falls into a "grey" area of the Khoros domain.

On the other hand, some existing non-graphic Khoros programs must be located in the

Khoros source tree with the xvroutines since they must link against the xvforms library. In

particular, getimage, ghostreader, ghostwriter, and conductor take advantage of these libraries
to parse and deparse lines out of UIS files, and perform other necessary operations. Since they do

not display graphics of any sort (user interface or otherwise), they are not xvroutines, and do not
use conductor; the procedure followed to write them was, like the graphic hybrid routines, the

same as the procedure that will be outlined for vroutines. These routines are classified as non-

graphic hybrid xvroutines. In contrast to graphic hybrid routines, however, it is NOT
RECOMMENDED to attempt to write a non-graphic hybrid routine! The reason for this is

(identical to the reason that the reader is not encouraged to write an interpretive application such
as cantata) that a detailed & thorough knowledge of the internal workings of the xvforms and

xvutils libraries would be necessary for such a task. While we are confident that Khoros users

may be quite capable of acquiring such knowledge, any use of the non-public, undocumented
regions of these libraries is strongly discouraged, as this code is subject to change at any time

without notice.

To summarize briefly, simply remember this simple rule of thumb: if your program will

have a graphical user interface when it is run from the command line, it will be an xvroutine; if it

doesn’t, it will be a vroutine. In the case that you would like to write an application that is
graphical but non-interactive, it will be a graphic hybrid routine; follow the instructions for

writing a vroutine, but installing an xvroutine. The only real difference between writing an
xvroutine and writing a vroutine (aside from adding the code that will provide the actual

functionality of the program), is that when writing an xvroutine, you will be required to perform

the extra step of running the conductor code generation program in addition to using the
ghostwriter code generation program, and you will have to do a little work in order to integrate

the code generated by these two programs.

KHOROS Release: 1.0 1 - 4

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

Regardless of the type of program, adding a new program to the Khoros system involves
integrating it into the cantata graphical user interface. This is easily achieved by modifying the

appropriate cantata UIS file to allow access to any new program added to the system. Once a
new program is written, it is necessary to follow a few guidelines to ensure that the program is

integrated correctly within the graphical user interface and to provide consistent and

maintainable code.

Throughout the course of writing a new program, several utilities are available to aid the

programmer in writing the source code and designing a form for the graphical user interface; two
of these have already been mentioned. A complete description of each utility, with usage

information, can be obtained by reading the appropriate sections of the Khoros manual; online

manual pages will provide a quick reference for those already familiar with the utilities. A
listing of these utilities is provided below.

ghost routines : ghostwriter, ghostreader, and ghostcheck-

These are a set of utilities (used with ALL Khoros programs) which are used to facilitate

the writing of programs in the Khoros environment. The user interface specification file
(UIS file) provides the information which ghostwriter uses to generate code which

automatically parses the command line, prints manual pages, and generates usage
statements. Ghostwriter ensures that certain conventions are followed for all new code

added to the Khoros system. This is to ensure that the command line and graphical user

interface are correctly applied and installed. In addition, with the use of a program
specification file (PS file) ghostwriter guarantees that the source code can be easily

modified and maintained within the framework of the Khoros system. Ghostreader

automatically updates the PS file according to changes made in source code and man pages,

while ghostcheck attempts to provide advice when, in the course of program maintenance,

the user is not sure whether to begin by running ghostwriter or ghostreader. In-depth
explanations of the ghost routines are provided in Chapter 5 of the Khoros Programmer’s

Manual.

conductor -

This is a utility (used ONLY with xvroutines) which automatically generates code to

initialize and extract information from the graphical user interface. A complete explanation
of conductor is provided in Volume 2, Chapter 6 of the Khoros Programmer’s Manual.

composer -

This is a top level tool (used ONLY with vroutines) that provides interactive

creation/modification of the UIS pane file and PS file. In addition, it presents a graphical

user interface to the ghost routines. Complete documentation on composer is provided in
Volume 2, Chapter 4 of the Khoros Programmer’s Manual.

preview -

This is a utility (used with ALL Khoros programs) that allows the user to view and edit an

existing graphical user interface specification (UIS) file. Preview is covered in Volume 2,

Chapter 3 of the Khoros Programmer’s Manual.

kraftsman -

This interactive program creates the framework needed to start a toolbox.

kinstall -

This utility (used with vroutines) walks you through the installation of your new vroutine

into a toolbox in a step-by-step process.

KHOROS Release: 1.0 1 - 5

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

B.2 OVERVIEW OF PROGRAMMING IN THE KHOROS
ENVIRONMENT

If you are unfamiliar with the details of the User Interface Specification (UIS), it may be
helpful to review Chapter 2 of the Khoros Programmer’s Manual. All of the programs in Khoros

are based on the UIS. Reviewing the documentation on the code generators in Chapter 5 (Ghost
Routines) may be helpful, if you have not used these routines before. If your program is to be an

xvroutine, it is suggested that you read Chapter 6 (Conductor). If you are going to write a

vroutine, it is suggested that you first try to recreate a existing program that is similar to the one
you will be attempting to write, using it as a model or example (this is not really recommended

for writers of xvroutines, as existing programs are simply too long to attempt to re-create.
However, it is advisable to become familiar with the graphical user interface and operation of

other xvroutines).

If your new program is an xvroutine, it is recommended that prior to designing your
xvroutine, you become familiar with the layout and operation of existing xvroutines. Chapter 7

provides example xvroutines -- simple programs that follow the Khoros standards for xvroutines,
and that use the xvforms, xvutils, xvgraphics and/or xvdisplay libraries. After you have used

ghostwriter to generate your command-line program, you will need to use conductor to

generate the code that will initialize and extract information from the graphical user interface.
Next, you will need to integrate the main driver generated by conductor with the one generated

by ghostwriter. There are instructions for doing this in Chapter 6 of the Khoros Programmer’s
Manual.

After getting the program started under the Khoros system, you will, of course, need to add

the code that will give your new program its functionality. Finally, you will need to install your
new routine in your toolbox source tree, and add it into the cantata visual language. To help you

do this with your vroutine is a utility program called kinstall. Unfortunately, kinstall does not
work with xvroutines, which must be installed and added to cantata by hand. Sections C and D

of this chapter describe each of the procedures that should be followed when writing new

programs under the Khoros system. Follow Section C if your intention is to write a vroutine;
otherwise, follow Section D on writing an xvroutine.

C. WRITING A VROUTINE

The information provided in this section concerns the process of writing a vroutine. This is

prefaced by an outline of the steps involved in writing a vroutine, followed by more detailed

information concerning each step in the process.

If your intention is to create a set of programs that extend the Khoros system, then you will

eventually have to learn about toolboxes. You should not modify any of the source code in the
Khoros source tree if you want to maintain or update it with patches supplied by the Khoros

group. You can completely create a simple new vroutine without knowledge of toolboxes.

When you are ready to install a vroutine, and an appropriate toolbox does not exist, you
must create one. For example, if you are writing a group of routines to do medical imaging, you

might create a "medical" toolbox; all programs written to address medical imaging problems
would then be added to the "medical" toolbox. For complete instructions on creating and using a

toolbox, please see Section I.

After you read through this section, it is appropriate to go to Chapter 4 and experiment with
composer.

KHOROS Release: 1.0 1 - 6

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

1) Creating the UIS file - First, create your User Interface Specification (UIS) file (ie,
*.pane file) which will contain the definitions and specifications for both the Command

Line User Interface (CLUI) and the Graphical User Interface (GUI) of your program. This
necessitates that all input and output parameters be defined and specified prior to writing of

the source code. You may do this by using an existing UIS file as a template, and

modifying it as desired using preview; alternatively, you may use composer to
interactively generate your UIS file.

2) Using the ghost routines - The ghost routines help to automate writing of the source

code and ensure consistency throughout the Khoros system. Ghostwriter is a code

generator that generates your main driver, include file, library file, and man pages.
Attention must be paid to the [-type] flag, since it indicates whether the routine links

against FORTRAN code. Specify [-type fprog] if your routine links against FORTRAN,
otherwise use [-type prog], which is also the default. The first time ghostwriter is run, a

template Program Specification (PS) file is created for you, which contains key fields for the

documentation and source code. DO NOT DELETE any of the tags that ghostwriter will
insert into your source code and man pages! The ghost routines facilitate the writing and

maintenance of new programs via this PS file, which, once completed, contains all of the
necessary information to re-generate the manual pages and associated source code files at

any time, thus making the future addition or deletion of command line arguments a trivial

process.

3) Writing the new program - As you add your code and documentation to the files
generated by ghostwriter, run ghostreader occasionally to update your PS file.

Documentation and source code will be inserted into the program specification (PS) file

between the appropriate keys. Several important points are discussed later in this chapter
concerning arguments, error handling, data structures, and memory allocation.

4) Installing the new program & integrating it into cantata- Once the new program is

completed to your satisfaction, you install it in the appropriate toolbox, and integrate it into

the cantata visual language. To ensure that your vroutine gets installed and added to
cantata correctly, the kinstall utility program should be used.

The following sections describe each of the above steps in greater detail.

C.1 CREATING THE UIS FILE

The first step in creating a new program is to create a UIS (*.pane) file for the new program.
A thorough discussion of UIS files and the methods for creating a UIS file is provided in Chapters

2 through 4 of the Khoros Programmer’s Manual. The UIS file can be thought of as a program.
That is, each line of the UIS file has a strictly defined syntax and meaning. Therefore, particular

attention must be paid to order of occurrence and syntax.

The *.pane file for your vroutine will be used for two purposes: it will be used as input to
ghostwriter to generate the command line user interface for your vroutine, and it will be used to

integrate your vroutine into cantata. For the purpose of using ghostwriter, it is important to
make sure that the *.pane file provides a complete description of all desired program arguments.

In addition, for the purpose of using the *.pane file to integrate your vroutine into cantata, you

must make sure that the *.pane file describes a visually coherent I/0 pane that will fit into the
appropriate subform of cantata, that it includes a Help Button, and that it has a Routine button so

KHOROS Release: 1.0 1 - 7

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

that the user will be able to access your new vroutine through cantata. No extraneous UIS lines
should appear in your *.pane file.

There are many different types of UIS lines, some of which are required to appear in every
UIS file. Certain UIS lines contain information that is used by both the command- line and

graphical user interfaces, whereas others contain information that is used only by the graphical

user interface.

There are several required lines for all UIS (*.pane) files. The required lines include:

• StartForm (-F) - The (-F) line begins the user interface specification. This line

contains several fields which contain information concerning the version number of

the xvforms library, the geometry of the form, and the title of the form among
others (the -F line is required in every UIS file).

• StartSubForm (-M) - The (-M) line contains information describing the size,
position, and title of the subform (the -M line is required in every UIS file).

• StartPane (-P) - The (-P) line describes the graphical user interface pane that

provides a backplane for selections and action buttons to allow input to the
application program (the -P line is required in every UIS file).

• Help (-H) - The (-H) line describes a specialized button on the user interface which
will bring up an on-line help file when selected. A help button is required to appear

on all cantata panes; therefore your *.pane file should contain a -H line that

references the version of the man1 page for your vroutine that is formatted for
online help. Note that the -H line is ignored by ghostwriter.

• End (-E) - The (-E) line is used to end a set of definitions in a UIS file. The (-E)
line closes a corresponding definition line in the UIS file. For example, a (-F) line

must have a corresponding (-E) line to complete the form definition, a (-M) line

must have a corresponding (-E) line to complete the subform definition, and a (-P)
line must have a (-E) line to complete the pane definition.

Optional lines for structuring the user interface include:

• Toggle (-T) - The (-T) line defines a set of one or more selection items of the same
type. The value of the toggle group will take on the default value of the selected

item (except in the case of a Logical toggle, which takes on the number of the
selected item, where logical members of the toggle are numbered starting at 1 with

the first item).

• MutualExclusion (-C) - The (-C) line defines a mutually exclusive group of
selections. Members of the mutually exclusive group may be of the same or

different types. The value of the mutually exclusive group will take on the current
value of the selected item.

Other lines that may appear in the UIS pane file pertain to selections and actions, which are

used to identify the inputs, outputs, and program arguments. These include the following:

• InputFile (-I) - The (-I) line specifies an input file selection.

• OutputFile (-O) - The (-O) line specifies an output file selection.

• Integer (-i) - The (-i) line specifies an integer selection.

KHOROS Release: 1.0 1 - 8

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

• Float (-f) - The (-f) line specifies a float selection.

• String (-s) - The (-s) line specifies a string selection.

• Logical (-l) - The (-l) line specifies a logical selection.

• Routine (-R) - The (-R) line describes a specialized action button which must

appear on the pane when it is integrated into cantata. When the user clicks on this

button, the vroutine will be executed. This line is ignored by ghostwriter.

• Blank (-b) - The (-b) line is used for adding comments and extra titles into the

pane, for extra clarity on the pane when it is integrated into cantata. Note that the
-b line is ignored by ghostwriter.

A complete description of each of the UIS lines can be found in Chapter 2, section B.3 of the
Khoros Programmer’s Manual.

An example of a UIS pane file is presented below. This illustrates the use and placement of

the various lines in a UIS pane file.

-F 4.2 1 0 170x7+10+20 +35+1 ’CANTATA Visual Programming Environment for the KHOROS System’ cantata

-M 1 0 100x40+10+20 +34+1 ’Histogram’ histogram

-P 1 0 80x38+22+2 +0+0 ’Enhancement Using Local Standard Deviation and Mean’ venhance

-I 1 0 0 1 0 1 50x1+2+2 +0+0 ’ ’ ’Input Image ’ ’input image filename’ i

-O 1 0 0 1 0 1 50x1+2+3 +0+0 ’ ’ ’Output Image ’ ’output image filename’ o

-i 1 0 0 1 0 50x1+2+5 +0+0 1 100 3 ’Window Width ’ ’window width of local area’ w

-i 1 0 0 1 0 50x1+2+6 +0+0 1 100 3 ’Window Height’ ’window height of local area’ h

-f 1 0 0 1 0 50x1+2+8 +0+0 0 1 0.5 ’Tuning factor’ ’specifies scale factor’ k

-f 1 0 0 1 0 50x1+2+9 +0+0 0 2000 1 ’Min Std Dev ’ ’specifies minimum standard deviation’

-R 1 0 1 13x2+1+13 ’Execute’ ’do operation’ venhance

-H 1 13x2+39+13 ’Help’ ’man page for venhance’ KHOROS_HOME/doc/manpages/venhance.1

-E

-E

-E

In this example, there are three lines for structuring the user interface. These include the
StartForm (-F) line for starting a user interface specification, a StartSubForm (-M) line

beginning the definition of a subform, and a StartPane (-P) line beginning the definition of an

I/O pane. Note that each of these lines has a corresponding End (-E) line to terminate the
respective set of definitions. Chapter 2 discusses other types of UIS lines that are used to

structure that graphical user interface into multiple subforms, and multiple panes; however,
these lines are generally not used by vroutines, and are always ignored by ghostwriter. This

particular example has both an InputFile (-I) line and an OutputFile (-O) line to specify the

input and output file selections. There are also lines for Integer (-i) and Float (-f) selections, as
well as a Routine (-R) action button line and a Help (-H) line for access to the on-line man page.

Next we will provide a brief discussion of some of the more common fields in the UIS file
to get the reader started in constructing one of their own.

The StartForm (-F) line always has the version number as its first field. This provides a

way of keeping track of outdated UIS files. The next field in the (-F) line, and the first field in
most other lines, is the activation field. This field allows various parts of the form to be disabled,

thus it should always be set to 1 (TRUE), unless that part of the form is to be deactivated. The
next field that is found on most lines is the selected field, which is used by the xvforms library to

KHOROS Release: 1.0 1 - 9

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

indicate if an item has recently had its value changed by the user. The selected field should
always be set to 0 (FALSE) with a few exceptions as noted in Chapter 2.

Lines that appear only in the pane definition contain either three or four additional fields
prior to the geometry string field. The optional field, which is the third field, determines whether

a selection is optional. The option selected or fourth field specifies whether the default value is to

be used, and the live or fifth field specifies if the selection is to return immediately when the user
hits <cr>. The I/O lines contain a sixth field called file type that will be used in the future.

A geometry string appears in each line associated with a form, button or selection. The
geometry string, which is of the form [width x height + xoffset + yoffset], specifies the overall

geometry of an item, where the offsets are referenced from the upper left hand corner of the

parent widget. The geometry string determines the size of the master form for the StartForm (-F)
line, the subform for the StartSubform (-M) line, and the pane for the StartPane (-P) line. Default

values for the geometry string are produced for these lines when composer is used to design the
*.pane file. If you decide to design the *.pane file yourself, then it is suggested that you use an

existing *.pane file as a template. Preview can be used to display the GUI described by the

*.pane file and make modifications once it has been created.

The next field specifies the offset for the title. These are generally set to +0+0 for I/O and

other selections within the pane definition. Other fields that are found in the pane definition lines
include selections for the upper and lower bounds of the input, the default value or file, the title,

and the description.

This brief introduction to the common fields associated with the lines of a pane definition is
provided to familiarize the user with a UIS pane file. The reader is urged to consult Section B.5

of Chapter 2 for a detailed description on the use of each field.

There are three other lines that may be used to simplify selections on UIS panes. These

include Logicals, Toggles, and Mutual Excusions. A Logical (-l) line allows the user to specify a

boolean value as a response to a question or selection. An example of a logical selection is
provided below:

-l 1 0 1 1 0 20x1+1+5 +0+0 1 ’Display Grid?’ ’No’ ’Yes’ ’request grid display?’ grid

This line illustrates the use of an optional logical selection. This means that the selection will
appear with an optional box in front of the title. Since the option selected field is set to TRUE,

the optional box will be initially highlighted, indicating that the default action will be to use the
value of the logical. This value, according to the value of the default field, will be 1 (TRUE),

interpreted in this case as a response of "Yes" to the question, "Display Grid?"

A Toggle (-T) line allows the user to specify one of a predefined number of choices. The
choices may be of any type of argument, as long as they are all of the same type. For example, it

is possible to define a toggle of integers, a toggle of floats, or a toggle of strings. The (-T) line
begins the definition of a set of toggles. The following example illustrates the use of a toggle of

logicals:

-T 1 0 0 1 0 20x1+1+5 +0+0 4 ’Plot Type’ ’type of plot’ plot_type

-l 1 0 1 0 0 10x1+0+1 +3+0 0 ’2D’ ’2D plot’ dummy

-l 1 0 1 0 0 10x1+14+1 +3+0 0 ’Discrete’ ’discrete plot’ dummy

-l 1 0 1 0 0 10x1+28+1 +3+0 0 ’Histogram’ ’histogram plot’ dummy

-l 1 0 1 1 0 10x1+7+2 +3+0 0 ’Polymarker’ ’polymarker’ dummy

-l 1 0 1 0 0 10x1+21+2 +3+0 0 ’Linemarker’ ’linemarker’ dummy

-E

KHOROS Release: 1.0 1 - 10

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

This example illustrates one way in which the (-T) line might be used to create a toggle which
yields a value for the plot_type variable. This example demonstrates the use of a required logical

toggle. The toggle (ie. the integer variable "plot_type") will take on values of 1, 2, 3, 4, or 5,
depending on which one of the logicals is selected.

In contrast to integer toggles and string toggles, the defaults of the logicals in a toggle do

not matter - they are all set to 0. In all UIS lines that are members of a toggle, the variable fields
on the logicals will not be used - we call it "dummy" to remind us of this fact. Check to make

sure that the default of the toggle is set correctly - the default field on the (-T) line is set to 4, and
the fourth logical is the only one to have its option selected field set to 1. Thus the default of the

toggle will be the value 4, corresponding to the selection ’Polymarker’. Finally, check the

geometry, to make sure that you have specified the y field relative to the (-T) line; the geometry
of the logicals will specify 2 rows of toggle items, the top row with three selections, and the

bottom row with two selections.

A MutExcl (-C) line defines a group of two or more arguments that need not have

predefined values and may be of different types. The only field on the (-C) line specifies whether

the mutually exclusive group is required or is optional (ie. a value of 0 indicates that the group is
optional). If the selection is required (ie. a value other than 0 is provided), then the user will be

required to select and use a value for one and only one of the selections in the group. Unlike the
toggle (-T) group, which is limited to a single type of selection, the mutually exclusive group

may contain a mixed group of Integer, Float, String, Logical, InputFile, or OutputFile selections.

All selections in a mutually exclusive group MUST be specified as optional. The user will only
be able to "turn on" one of the mutually exclusive selections (by highlighting the optional box) at

any one time; this is the only one of the selections’ values that is guaranteed to be valid at any
one time.

The following example illustrates the use of a mutually exclusive group:

-C 1

-I 1 0 1 1 0 1 45x1+1+13 +0+0 ’./’ ’Input Path’ ’input path selection’ input_path

-O 1 0 1 0 0 1 45x1+1+14 +0+0 ’./’ ’Output Path’ ’output path selection’ output_path

-s 1 0 1 0 0 45x1+1+15 +0+0 ’ ’ ’String Sel’ ’string selection’ string1

-E

This example demonstrates the use of a required argument for a mutually exclusive group. In this

example, the first item is selected as the default. Note that the option selected field (fourth field)
is selected with a 1 in this location.

The operation of a mutually exclusive group in the command line user interface is slightly

different from the operation of a mutually exclusive group in the graphical user interface. Note
that the default values for the input_path and output_path parameters are both set to "./". When

using this mutually exclusive group on the command line, these defaults are unused -- the user
will be forced to specify a value for one of the selections, and if they choose the input_path or

output_path parameters, will still have to explicitly enter a value, even if they want the "./"

directory specified. However, for the graphical user interface, it is good to specify these defaults
- the selections will come up in the order listed, and the input_path and output_path selections’

parameter boxes will have "./" appearing inside them. The optional box in front of the input_path
selection will be highlighted -- if the user wishes to specify the input_path selection as their

choice from the group (the default of the group) and they also wish to have "./" as the value of the

input_path selection (the default of the input_path selection), they need not do anything.

The reader is once again urged to consult the detailed discussions provided in in Chapter 2

of the Khoros Programmer’s Manual for a complete description of the proper syntax and use of
each line in a UIS pane file.

KHOROS Release: 1.0 1 - 11

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

Once the UIS pane file has been created, the next step is to create a driver program for the
routine, using all of the arguments specified in the UIS pane file. This is easily accomplished

using the ghost routines provided for this purpose. The next section describes how to use the
ghost routines to create a driver program and generate the framework for the library routine.

C.2 USING THE GHOST ROUTINES

To help speed up the process of writing a program and to ensure consistency in the code,

Khoros contains code generators that help to automate part of the procedure of programming.
The code generators belong to the ghost routines, which includes ghostwriter and ghostreader.

To get started, create a new directory that can be used as the development directory for the

new routine. Create a UIS (*.pane) file using either composer or a modification of an existing
UIS (*.pane) file, as detailed in Chapters 2-4.

The first tool you will use is ghostwriter. However, keep in mind that ghostwriter

requires a UIS file as input (discussed in the previous sections). Ghostwriter can be run with the

UIS file to create a template PS file, the include file, the source code files for the main driver, the

library file, and the manual pages for the program. Alternatively, you can begin with an empty
template PS file, fill in the appropriate fields, and run ghostwriter to generate the source code

and manual page files. We have found that a hybrid method is most popular with the Khoros
group; however, after writing one or more programs under the Khoros system, you will find your

own preference.

The following example demonstrates the use of ghostwriter to generate a vroutine:

% ghostwriter -name vroutine -toolbox {toolbox name}

If you have not set up a toolbox yet, you may execute the command:

% ghostwriter -name vroutine

Note that if you later decide to create a toolbox for your program, you will need to delete the

Imakefile and Makefile for your program and run ghostwriter with the toolbox flag.

This will generate the files "vroutine.c", "lvroutine.c", "vroutine.1", "lvroutine.3", "vroutine.h".

Note that in order to use ghostwriter, a valid UIS file (in this case, "vroutine.pane") must exist in

the current working directory. Ghostwriter will look for a valid PS file in the current working
directory; if one does not exist, a template PS file ("vroutine.prog") will be created. In addition,

ghostwriter will also look for a configuration file in the current working directory; if one does
not exist, a template configuration file ("vroutine.conf") will be created as well. The configuration

file simply specifies the paths to each of the files associated with the new routine. An example of

a template configuration file is located in KHOROS_HOME/repos/config/src_conf and is called
"TEMPLATE.conf". The use of the configuration file is explained later in this chapter. For more

detailed information about the configuration file, see Chapter 5 of the Khoros Programmer’s
Manual. In general, the configuration file is ignored while writing the new program; it is not

used until the program is to be installed in the appropriate toolbox.

There are several options with ghostwriter which allow use of a configuration file,
formatting, debug statements, and generation of certain files. The various options may be listed

using the [-U 1] option; or, you may wish to run the program with prompts for each command
line option using the [-P 1] option. An answer file, which specifies the desired arguments to

ghostwriter, may be created by using the [-A ghost.ans] and [-P 1] options together, making it

easier to perform successive runs of ghostwriter (a certainty!).

KHOROS Release: 1.0 1 - 12

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

In this example, if we had used the [-A ghost.ans] option to ghostwriter, for the vroutine,
its answer file, "ghost.ans", for future executions of ghostwriter would look like:

-name vroutine

-config f

-lib t
-man3 t

-install f
-format 1

-debug f

-tag t
-force f

-prog t
-type prog

-toolbox {toolbox name}

Now, for successive runs of ghostwriter, we need not provide arguments on the command line,

or interactively with the [-P 1] option. To execute ghostwriter with the exact same arguments as
before, all that is necessary is to run:

% ghostwriter -a ghost.ans

If your code links against FORTRAN (note that the linpack and eispack libraries are in
FORTRAN), you must provide the [-type fprog] flag, or your code will not compile. Notice that

executing ghostwriter -name vroutine generated the files: "vroutine.c", "vroutine.1",

"vroutine.h", "lvroutine.c", and "lvroutine.3". Ghostwriter will also make calls to imkmf and
makemake for you, thus generating (respectively) the appropriate "Imakefile" and "Makefile"

files for this program. The vroutine is now ready to be compiled; of course, lvroutine() will
simply return to the main program (initially, it is generated with only a return(TRUE) statement).

You may wish to compile at this point, checking for any errors in the driver and include files. To

compile, simply type:

% make

No errors should occur, unless you modify these files in some way. However, if compile errors do

occur in any of the source files, you can fix the problems in the source files, but remember to
follow any modifications with a call to ghostreader. Note that ghostreader has a subset of the

complete set of ghostwriter arguments - those arguments that are identical for the two programs
have the same meaning, and neither program checks for invalid arguments, so that you may

provide the same answer file, "ghost.ans" for both programs. To execute ghostreader, then:

% ghostreader -name vroutine

or

% ghostreader -a ghost.ans

The Program Specification (PS) file contains key fields for the insertion of Khoros system
documentation, man page documentation, and source code. A template "vroutine.prog" file is

KHOROS Release: 1.0 1 - 13

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

created when ghostwriter is run for the first time, containing all of the key fields for constructing
a complete PS file. Each key field in the "vroutine.prog" file is delineated by begin and end keys.

All comments, code, and documentation are placed between the appropriate begin and end tags

for a particular field. An example of a template PS file is presented in Chapter 5. Chapter 5

should be consulted for specific descriptions and guidelines concerning the information to be

included in each of the key fields of the PS file. An example illustrating the use and format of
each key field of a *.prog file is included in Chapter 5. This format should be adhered to when

creating a PS file to ensure maintainability of the Khoros System.

Ghostwriter creates the source code, include files, and man pages with pre-defined tags,

that are recognized by ghostreader. Thus, segments of code and/or documentation between

these tags may be modified by the programmer and then reinserted into the PS file by running
ghostreader. Ghostreader takes as input the 5 files: "vroutine.c","vroutine.h", "vroutine.1", and

"lvroutine.3", as well as the old PS file "vroutine.prog". It looks for the tags, and pulls any text
between a pair of begin and end tags into the corresponding place in the PS file. In this way, a

new PS file may be generated containing the new information.

Running ghostreader insures that all modifications are correctly updated in the
"vroutine.prog" PS file; thus, when ghostwriter is run again (perhaps with the [-A 1] flag), the

updates will be written to the appropriate files. BE WARNED that if you modify the source or
man page files, and forget to run ghostreader, all your changes to source code and man pages

will disappear the next time you run ghostwriter!

C.3 WRITING THE NEW PROGRAM

The main driver - The main() generated in "vroutine.c" is often referred to as the main
driver program. It calls the library routine in the "lvroutine.c" file. Usually, not much coding is

done in the main driver, although command line arguments are often checked for accuracy, and

input filenames are read in before the associated structures are passed to the library routine. Note
that it is possible to write a driver that simply makes calls to existing library routines, in which

case there would not be a library routine for this particular program; in this case, run ghostwriter

and ghostreader with the options [-lib 0] and [-man3 0].

The include file - Here is where you declare any #defines, C macros, global variables, and

other include items for your new program. Be sure that all added declarations appear between
the appropriate pairs of ghostwriting keys, so that they are not erased when ghostwriter is re-run.

For example, if you add #include references to any other *.h files, these should appear between
the /*-include_includes */ and /*-include_includes_end */ keys, so that they are preserved.

The library routine - In general, all functionality for your program goes into the library

routine generated in the "lvroutine.c" file. Be sure that you do not add code outside the
library_code and library_code_end tags generated by ghostwriter. All library routines must

return an integer status flag to the calling program - 1 (TRUE) on success, or 0 (FALSE) on
failure. A library routine may NEVER call exit()! When opening a file, you should always call

the vfullpath() routine to expand the file string, except when the filename is to be passed to

readimage() or writeimage(), which will call vfullpath() for you. If you allocate memory in your

library routine, it is your responsibility to free that memory before exiting the library routine. A

library program should not have any side effects.

It is STRONGLY recommended that you read the man pages on the verror, vgparm, vmath,

vrast, and vutils libraries. These are public Khoros libraries, and contain many useful routines

for I/O, math, and reading/writing/checking of images that help the programmer avoid "re-
inventing the wheel".

KHOROS Release: 1.0 1 - 14

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

When the source code for the library routine is completed, you are reminded (again!) to use
ghostreader to update your PS file in preparation for any future runs of ghostwriter. The

program should then be carefully tested for proper operation, using all possible options both
separately and in different combinations.

The man3 page - If your routine has a library file, then you will need to complete the man3

page information for your new library routine. This man3 page is contained in the "lvroutine.3"
file. When the man3 page is installed in {toolbox name}/man/man3, it will be available

for perusal via vman by other Khoros users that have access to that toolbox. The purpose of the
man3 page is to provide a detailed description of the library routine to other programmers who

may find your new routine useful. It should include a discussion of the algorithm used and a

complete description of all parameters that are passed to or from the routine. If the algorithm
was taken from another source, be sure to provide acknowledgment of that source. If there are

restrictions or limitations to the library routine, document them here. It is best to look at existing
man3 files for other library routines to get the feel of how to write one. Man3 files can be found

in KHOROS_HOME/man/man3.

The "lvroutine.3" file may be edited directly. Modifications should be followed by a call to
ghostreader. However, when updating man pages, many people prefer to edit the PS file. If you

like, you may edit the PS file ("lvroutine.prog"), looking for keys that mark the man3 information,
and insert appropriate information there. Remember to include nroff formatting commands when

necessary. WARNING: you should run ghostreader immediately before editing the "lvroutine.3"

file, and run ghostwriter immediately afterwards.

The man1 page - Finally, you will be required to complete the man1 page information for

your new program. The man1 page is contained in the "vroutine.1" file. When the man1 page is
installed in {toolbox name}/man/man3, it will be available for perusal via vman by

other Khoros users that have access to that toolbox. The purpose of the man1 page is to provide

a detailed description of the function of the new program. This should include complete
descriptions of the input files, output files, and other arguments to the program.

The procedure for modification of man1 pages is identical to that for modification of man3
pages. You may want to look at some of the man1 files for other Khoros programs to get the feel

of how to write one. Man1 files can be found in KHOROS_HOME/man/man1.

Formatting man pages with nroff - Formatting for both types of man pages should be
done in nroff format. This is to ensure that the on-line manual pages are generated correctly and

to maintain consistent formatting throughout the documentation. Certain fields found in the PS
file need no formatting since they must consist of only a one line description (notes on the PS file

will follow later). A few of the more common nroff formatting commands that you may find

useful include:

.IP/.LP - for new block paragraphs

.RS/.RE - for indenting

.DS/.DE - for non-formatted sections

.SH - for section headers

.sp # - for adding # blank lines

C.3.1 Conventions used for Image Processing Algorithms

This sub section is specifically for those writing image processing programs, a more

complete list of conventions is in Section E.

KHOROS Release: 1.0 1 - 15

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

It is common to have multiband images in an image processing system, and Khoros has
provisions for handling multiband images. The convention for addressing multiband images

within Khoros is to refer to the first band as band number 0, and the second band as band number
1, etc. Therefore when writing a new routine that works with multiband images, you should

follow this convention. (For details on VIFF see section J of this chapter.)

Classification routines often deal with multiband images, as they frequently work with
multiband cluster and class images. The cluster number and class images should output as data

storage type integer. This is to ensure that there are plenty of available numbers for clusters.
The numbering convention should start with 0 and increase. Cluster number 0 should correspond

with cluster center 0, etc. In most cases the numbering scheme will be from 0 to N-1, where N is

the number of cluster centers. The convention is to make cluster center vectors of data type float.
Also, variances of the centers should be of type float.

During the course of processing an image for classification, a border is often created around
the image due to windowing algorithms. Therefore, all clustering/classification and

labeling/shape algorithms should ignore image borders. The default output pixel value for

borders should be 0, but this should not matter if it is ignored.

Classification routines should not assign NULL to any cluster center. There may be cases

when a cluster number does not have a corresponding center, and in cases like this the cluster
number should be 0, and the corresponding center vector will be 0’s. The program viso2 can

produce a situation like this, and in this case there will be N+1 centers (0 ... N). This will still

actually provide valid input to other algorithms, but will produce strange results. Therefore the
programmer must be aware of cases such as this, and thoroughly document it in the manual page

for the routine.

C.3.2 Conventions used for Digital Signal Processing Algorithms

There are two representations of signals recognized in the DSPL library. The first is vector
signals, which will be called vector oriented. In this data representation, adjacent elements of a

signal can be found in the same location in the previous or next data band. In this way, data is
processed through the bands. The second representation of signals is what is referred to as band

oriented. That is, each band contains a single, complete signal that is arbitrarily related, or not

related at all, to signals occurring on other bands. In this way, data is processed on the bands.

Two constants are defined for use by dspl routines: DSP_BAND and DSP_VECTOR. These

are used when referring to these data types in a program. These representations allow much
flexibility because the band orientation is more common, while the vector representation allows

the band row-column dimensions to encode spatial, time, frequency gradient or other

information. Signals that are organized on a band should generally be 1 column by n rows, where
n is the length of the data sequence. This follows established conventions and simplifies

numerical analysis when implementing linear equations.

Two programs have been written to simplify the use of these two formats. They are

dload_vector() and dunload_vector(). Dload_vector() is used to reorganize the data into an array

of pointers to data vectors, (i.e, float **). This allows a simple for loop to be used to process all
data sets in a VIFF file. dunload_vector() returns the data to its original organization. The UIS

file should have an entry using a logical variable named ’d’ to select which organization the data
is assumed to be organized in. There is no information on data organization inside the VIFF

header structure. For more information on these routines, please refer to the section on the vutils

library in Chapter 8 in the Khoros Programmer’s Manual.

KHOROS Release: 1.0 1 - 16

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

Occasionally there are times when it is desirable to handle the real and imaginary
components of a complex data set separately. In this case, they are treated as independent, real

vectors of data. Where appropriate, dspl programs written for Khoros will have a processing
option referred to in the pane file as ’j’. All programs written for the Khoros dspl library will

handle real and complex data.

C.4 INSTALLATION OF NEW PROGRAM

The installation process of a new routine consists of moving all the associated files of a new
program into their proper places in the Khoros toolbox source tree, and compiling the program.

You first might want to examine the structure of the Khoros home source tree to get a feel for its

organization; the layout of the toolbox in which you will be installing your new routine will
mimic that organization, although it may be considerably simplified. The layout of the Khoros

home source tree is provided in Chapter 9 of the Khoros Programmer’s Manual.

The following sections give detailed explanations on the use of Khoros configuration files,

and the step-by-step process for installing your vroutine.

C.4.1 Configuration Files

Before installing a program, you must ensure that a correct configuration file exists for your
program. The configuration file is simply an ascii file that specifies the location within the

Khoros toolbox source tree for all of the source code files, document files, UIS files and PS files

associated with your program. Once your program is installed, the configuration file is used by by
kinstall to find the appropriate locations for installing files. During maintenance of the installed

program, ghostreader will use the configuration file to locate the appropriate files for input
before updating the PS file file for the program; ghostwriter will use the configuration file to

specify the paths for the various files.

A template configuration file is created automatically for you the first time that ghostwriter

is run; the default locations for files in the template file is the local "." directory. As long as you

have your program in your working directory, this is sufficient; however, once you are to install
your routine, this configuration file must be manually updated to specify the pertinent locations

of the files associated with your program. There are ten file keys in the configuration file that

identify a particular file associated with your program; each file key is followed by the path that
specifies the directory in the Khoros toolbox source tree where that file is to be located. An

example configuration file is presented below for the vroutine, "vfrog", which will be added to the
"amphibian" toolbox. It has each of the 10 file keys filled out with the appropriate path

information. (The $ indicates that AMPHIBIAN is an environment variable.)

cfile: $AMPHIBIAN/src/vfrog

hfile: $AMPHIBIAN/src/vfrog

lfile: $AMPHIBIAN/src/Lib

progfile: $AMPHIBIAN/src/vfrog

man1file: $AMPHIBIAN/man/man1

man3file: $AMPHIBIAN/man/man3

panefile: $AMPHIBIAN/repos/cantata/subforms

helpfile: $AMPHIBIAN/doc/manpages

subhelpfile: $AMPHIBIAN/doc/cantata/subforms

KHOROS Release: 1.0 1 - 17

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

topsrc: $AMPHIBIAN/src

Each file key specifies the path where a specific file will be installed. All of the keys except
"helpfile", "subhelpfile", and "topsrc" are also used by the ghost routines, and are explained in

Chapter 5 of the Khoros Programmer’s Manual. The kinstall program uses all of the keys, the

remainder of which are used as follows:

helpfile -

The man1 pages are formatted slightly differently for use in the cantata online help pages
than the format used by the vman command. Online help pages for Khoros programs are

always located in $KHOROS_HOME/doc/manpages; online help pages for new

programs will be located in {toolbox name}/doc/manpages. The kinstall

program will format your man1 file for online help, and install a copy of it in the

{toolbox name}/doc/manpages directory.

subhelpfile -

This is the path to the Overview.doc file that provides the online help for the subform

of cantata to which the pane associated with your program will be added. You will edit
this file and add a short description of your new program to the short descriptions of other

programs that already exist on the subform in question. If this file does not exist yet, you
will have to start it from a template that will be created for you by kinstall. In any case, the

subhelpfile directory will be located in {toolbox

name}/doc/cantata/subforms.

topsrc - The "cfile", "hfile", "lfile", and "progfile", will be called the source file keys, and can

be specified using either full paths (ie. cfile: $AMPHIBIAN/src/vfrog) or
relative paths (ie. cfile: vfrog). If you decide to use relative paths, then you

MUST have the "topsrc" file key filled in with the path to the top level of the source

tree; that is, $AMPHIBIAN/src.

Further information on the configuration file can be found in Chapter 5 of the Khoros

Programmer’s Manual.

C.4.2 Installing Your Vroutine

There are several tools available to aid the programmer in maintaining and installing new
programs in the Khoros system once a toolbox has been created. In addition, the tools also

include several "low-level" programs that manage the Khoros source tree configuration, which
are designed to be used by managers of the Khoros system. From the programmer’s perspective,

the only tool that is required for installing a new vroutine is kinstall. To use kinstall, you must

be familiar with the configuration file and the ghostwriter and ghostreader programs. The
configuration file was discussed previously in this document, as well as in Chapter 5 of the

Khoros Programmer’s Manual. Chapter 5 also describes the ghostwriter and ghostreader

programs.

One other file that is used by the kinstall program is a machine file. The machine file is

located in {toolbox_name}/repos/config/src_conf/. It MUST be named
{toolbox_name}_mf; in the example above, our machine file would have been named

"amphibian_mf". The machine file specifies your user name for automatic mailing purposes, and
the path to the source directory of the toolbox in question. If you are not supporting multiple

architectures, there are only two fields in the machine file which must be filled out correctly: the

KHOROS_USER and LOCAL_SRC_TOP fields. The other fields MUST be empty. There is a

KHOROS Release: 1.0 1 - 18

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

template machine file in $KHOROS_HOME/repos/config/src_conf/template_mf.

If your site is supporting multiple architectures, the machine file also contains paths to the

corresponding srcmach directories within the srcmach tree. Note that a srcmach tree is only

established if a particular site is supporting different machine architectures. The srcmach tree

consists of symbolic links to files in the original source tree, along with object files compiled for

that particular architecture. The machine file specifies the machine names for a site, as well as
the path for the srcmach directories. You must have one machine file for each machine

architecture, named for the machine itself. For complete details and examples on the use of
machine files with multiple architectures, see Chapter 9, Section C.

The "low-level" tools are called by the installation program which takes care of creating the

Makefiles and establishing any symbolic links to other srcmach directories if they exist.

The syntax for the kinstall program is as follows:

% kinstall -name aaa -conf aaa.conf -toolbox bbb [-force c] [-

type ddd]

where:

aaa is the name of the vroutine that is being installed.

bbb is the name of the toolbox in which the vroutine is to be installed.

c is a boolean that specifies whether to use the force option which bypasses the overwrite
prompts and edit sessions. The default is FALSE, which does not bypass the overwrite

prompts and edit sessions. Note that the force option of TRUE is not allowed if the
vroutine has never been installed, or has been removed from the system.

ddd is the type of program to be installed. If you have a vroutine, use "prog". If you have a

vroutine that links against FORTRAN, use "fprog".

The following scenario is provided to illustrate the installation of a routine into the Khoros
system toolbox amphibian using the kinstall program. It is assumed that you are installing a

vroutine from a directory in your work area, and that all the necessary files for the routine are

present in the work directory and that you have created the toolbox AMPHIBIAN. The
necessary files include: A *.pane file, *.prog file, *.c file, *.h file, *.1 file, and a *.conf file.

Optional files include: l*.c file, l*.h file, and a *.3 file. The optional files would be necessary if a
vroutine includes library source files. It is further assumed that the programmer has run

ghostwriter to generate the necessary files from the *.pane and *.prog file. The step-by-step

procedure for installing the program "vfrog" in the "amphibian" toolbox appears below.

1) From your work directory, initiate the kinstall program as follows:

% kinstall -name vfrog -conf vfrog.conf -toolbox amphibian

2) The kinstall program will prompt you for a destination path to an additional library include
file. This is only necessary if your program requires additional defines and/or includes, as

in the case for many of the file format vroutines. If no path is required, simply respond with

"n" to the prompt.

KHOROS Release: 1.0 1 - 19

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

3) The kinstall program will check to make sure that the supplied paths are correct (ie. that
they exist, and have the correct permissions). Kinstall will also provide you with some

information about the machine file that is being used and will indicate which program is
about to be installed. The paths for the library and driver source will also be provided and

kinstall will prompt you to continue with the install. Answer "y" to continue with the

installation, or "n" to abort the installation. If you continue with the installation, kinstall

will create a lock file in the /tmp directory which will prevent other programmers from

installing vroutines simultaneously. If someone else is installing a vroutine, a message will
be displayed indicating that another user is already installing, and to try again in a few

minutes.

4) Once the installation has begun, you will be provided with some information along the way
to indicate what file is being installed and the location where it will be placed. Do not be

concerned if the information scrolls off the screen, since all of the information will be
mailed to you indicating the status of the installation. Basically, kinstall copies the files

associated with your particular routine to the destinations indicated in the configuration file.

Symbolic links are created in srcmach directories if your site supports multiple machine
architectures. Imakefile & Makefiles are created and updated in each associated directory,

and the source files are compiled for each architecture.

5) The kinstall program will put you into a session with the editor so that the new vroutine

can be added to the appropriate cantata UIS file. This file is located in the directory

specified by the "panefile" entry in the configuration file. In the same directory will be
another file with the extension ".sub". This UIS file contains the specification for the

subform within cantata to which you will be adding the pane that defines the GUI for your
program. Programs with a common theme are grouped together in one subdirectory and are

accessed under the same menu selection within cantata. This step is explained in greater

detail in the section G, "INTEGRATING THE NEW PROGRAM INTO CANTATA".

6) The kinstall program will again put the programmer into an editor so that the cantata help

file can be updated with a short description of the new vroutine.

7) The kinstall program will then update the Makefiles and compiling the program for each

machine architecture. Finally, kinstall will remove the lock file, so that another vroutine

may be installed. The last thing you must do is to read the mail that kinstall sent to you
regarding the status of the installation. The number of mail messages sent to you will

depend on the number of machines for your particular site, and whether library source files
were installed in addition to the driver program.

8) Now, test your program to make sure that all is well. Don’t forget to first execute:

% rehash

Since you are installing your program for the first time, forgetting to run rehash will result

in the operating system error, "Command not found". Extensive testing is usually not

necessary on installation, as you should have already completed the testing and debugging
process in your work area, before installation. However, never neglect to do at least

cursory testing on your installed program! Sometimes a compile looks successful, but in
fact is corrupted due to system problems or corrupted library files. When this is the case,

the result is usually an immediate segmentation violation and/or core dump. If this happens,

repeat step (7).

KHOROS Release: 1.0 1 - 20

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

D. WRITING AN XVROUTINE

The information provided in this section concerns the process of writing an xvroutine. This
is prefaced by an outline of the steps involved in writing an xvroutine, followed by more detailed

information concerning each step in the process.

The first thing that you must do when preparing to create a new program under Khoros is to

decide on a toolbox that the new routine will belong to. If the toolbox does not exist, you

must create one. For example, if you are writing an interactive application for medical
imaging, you might create a "medical_imaging" toolbox; all programs written to address

medical imaging problems would then be added to the "medical_imaging" toolbox. For
complete instructions on creating and using a toolbox, please see Section I.

1) Creating the *.pane file - Create the UIS file (ie, *.pane file) which will contain the

definitions and specifications for the Command Line User Interface (CLUI).

2) Using the ghost routines - The ghost routines help to automate writing of the source
code and ensure consistency throughout the Khoros system. Ghostwriter is a code

generator that generates your main driver, include file, library file, and man pages. Note

that if your program must link against FORTRAN code, you must specify the [-type
fxprog]. The first time ghostwriter is run, a template Program Specification (PS) file is

created for you, which contains key fields for the documentation and source code. DO
NOT DELETE any of the tags that ghostwriter will insert into your source code and man

pages! The ghost routines facilitate the writing and maintenance of new programs via this

PS file, which, once completed, contains all of the necessary information to re-generate the
manual pages and associated source code files at any time, thus making the future addition

or deletion of command line arguments a trivial process.

3) Creating the *.form file - Most xvroutines have a separate UIS file (ie, *.form file) that

describes their Graphical User Interface (GUI). While in theory, the same UIS file can
describe both the CLUI and the GUI of an xvroutine, we have found that the GUI of an

xvroutine is generally much more comprehensive than the CLUI, thus prompting the
creation of two UIS files: one for use with the ghost routines (mentioned in step 1 above),

and this one, for use with conductor.

4) Using conductor- This step involves running conductor, a code generation program.

Conductor should be run using the [-b 1] flag immediately after running ghostwriter for
the first time. Instructions are given in Chapter 6 of the Khoros Programmer’s Manual to

integrate the two drivers. Conductor is driven by a UIS file (ie, the *.form file) which is

usually not the same as the *.pane file that is used by the ghost routines -- more will be
said about this later.

5) Writing the new program - As you add your code and documentation to the files

generated by ghostwriter, run ghostreader occasionally to update your PS file.

Documentation and source code will be inserted into the program specification (PS) file
between the appropriate keys. Several important points are discussed later in this chapter

concerning arguments, error handling, data structures, and memory allocation.

6) Installing the new program & integrating it into cantata- Once the new program is

completed to your satisfaction, you must install it in the Khoros Source Tree, and integrate

KHOROS Release: 1.0 1 - 21

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

it into the cantata visual language. There is currently no program to install xvroutines.
They must be installed and integrated by hand. Details on installing your xvroutine are

provided later in the following sections.

D.1 CREATING THE *.pane FILE FOR YOUR XVROUTINE

The *.pane file for your xvroutine will be used for two purposes: it will be used as input to
ghostwriter to generate the command line user interface for your xvroutine, and it will be used

to integrate your xvroutine into cantata. For the purpose of using ghostwriter, it is important to
make sure that the *.pane file provides a complete description of all desired program arguments.

In addition, for the purpose of using the *.pane file to integrate your xvroutine into cantata, you

must make sure that the *.pane file describes an I/0 pane that will fit into the appropriate subform
of cantata, that it includes a Help Button, and that it has a Routine button so that the user will be

able to access your new xvroutine through cantata. No extraneous UIS lines should appear in
your *.pane file. Furthermore, it should also present a graphical user interface that is visually

pleasing, since the *.pane file is what will be used to integrate your xvroutine into cantata.

There are many different types of UIS lines, some of which are required to appear in every
UIS file, others of which are used only by the command line user interface, and others which are

used only by the graphical user interface.

There are several required lines for all *.pane (and *.form) files. The required lines

include:

• StartForm (-F) - The (-F) line begins the user interface specification. This line

contains several fields which contain information concerning the version number of
the xvforms library, the geometry of the form, and the title of the form among

others (the -F line is required in every UIS file).

• StartSubForm (-M) - The (-M) line contains information describing the size,
position, and title of the subform (the -M line is required in every UIS file).

• StartPane (-P) - The (-P) line describes the graphical user interface pane that
provides a backplane for selections and action buttons to allow input to the

application program (the -P line is required in every UIS file).

• Help (-H) - The (-H) line describes a specialized button on the user interface which
will bring up an on-line help file when selected. A help button is required to appear

on all cantata panes; therefore your *.pane file should contain a -H line that
references the version of the man1 page for your xvroutine that is formatted for

online help. Note that the -H line is ignored by ghostwriter.

• End (-E) - The (-E) line is used to end a set of definitions in a UIS file. The (-E)
line closes a corresponding definition line in the UIS file. For example, a (-F) line

must have a corresponding (-E) line to complete the form definition, a (-M) line
must have a corresponding (-E) line to complete the subform definition, and a (-P)

line must have a (-E) line to complete the pane definition.

Optional lines for structuring the command line user interface in the *.pane file include:

• Toggle (-T) - The (-T) line defines a set of one or more selection items of the same

type. The value of the toggle group will take on the default value of the selected

item (except in the case of a Logical toggle, which takes on the number of the

KHOROS Release: 1.0 1 - 22

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

selected item, where logical members of the toggle are numbered starting at 1 with
the first item).

• MutExcl (-C) - The (-C) line defines a mutually exclusive group of selections.
Members of the mutually exclusive group may be of the same or different types.

The value of the mutually exclusive group will take on the current value of the

selected item.

Other lines that may appear in the UIS pane file pertain to selections, which are used to

identify the inputs, outputs, and program arguments. These include the following:

• InputFile (-I) - The (-I) line specifies an input file selection.

• OutputFile (-O) - The (-O) line specifies an output file selection.

• Integer (-i) - The (-i) line specifies an integer selection.

• Float (-f) - The (-f) line specifies a float selection.

• String (-s) - The (-s) line specifies a string selection.

• Logical (-l) - The (-l) line specifies a logical selection.

• Routine (-R) - The (-R) line describes a specialized action button which must
appear on the pane when it is integrated into cantata. When the user clicks on this

button, the xvroutine will be executed. This line is ignored by ghostwriter.

• Blank (-b) - The (-b) line is used for adding comments and extra titles into the

pane, for extra clarity on the pane when it is integrated into cantata. Note that the

-b line is ignored by ghostwriter.

• Help (-H) - The (-H) line is used to add a "Help" button to the cantata pane that

represents your vroutine. The Khoros convention is to provide a "Help" button that
accesses the man1 page for your vroutine.

A complete description of each of the UIS lines can be found in Chapter 2, section B.3 of the
Khoros Programmer’s Manual.

An example of the *.pane file for the xvroutine warpimage is presented below. This

illustrates the use and placement of the various lines in a UIS pane file.

-F 4.2 1 0 170x7+10+20 +35+1 ’CANTATA Visual Programming Environment for the KHO

ROS System’ cantata

-M 1 0 100x40+10+20 +28+1 ’Warp Images’ gis_warp

-P 1 1 80x38+22+2 +11+0 ’Interactive Image Warp’ warpimage

-I 1 0 1 0 0 1 50x1+1+2 +0+0 ’ ’ ’Input Source Image’ ’input source image’ src

-I 1 0 1 0 0 1 50x1+1+3 +0+0 ’ ’ ’Input Target Image’ ’input target image’ target

-T 1 0 1 1 0 40x1+1+5 +0+0 1 ’Tiepoint Mode’ ’selection type ’ tp_mode

-l 1 0 1 1 0 40x1+2+1 +2+0 0 ’Source & Target’ ’False’ ’True’ ’Select Source & Destination’

-l 1 0 1 0 0 40x1+2+2 +2+0 0 ’Source Only’ ’False’ ’True’ ’Select Source Only’ dummy

-E

-R 1 0 1 13x2+1+13 ’Execute’ ’do operation in foreground’ warpimage

-H 1 13x2+39+13 ’Help’ ’man page for editimage’ KHOROS_HOME/doc/manpages/warpimage.1

-E

-E

-E

KHOROS Release: 1.0 1 - 23

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

As in every *.pane file, there are three required lines for the *.pane file. These include the
StartForm (-F) line for starting a UIS, a StartSubForm (-M) line beginning the definition of a

subform, and a StartPane (-P) line beginning the definition of an I/O pane. Note that each of
these lines has a corresponding End (-E) line to terminate the respective set of definitions. These

lines are all ignored by ghostwriter.

Note that the (-F) line is the standard cantata (-F) line for all *.pane files, and that the (-M)
line is the same as all other *.pane files that will be included in the chosen cantata subform, in

this case, the "Warp Images" subform. If you would like to look up this example, it can be found
in KHOROS_HOME/repos/cantata/subforms/gis_warp.

The reader is once again urged to study the detailed discussions provided in in Chapter 2 of

the Khoros Programmer’s Manual for a complete description of the proper syntax and use of each
line in a *.pane file, as they will not be repeated here. An experienced Khoros programmer

should be able to look at the *.pane file above, and note that it is a *.pane file for a program
named warpimage. A quick glance confirms that warpimage has two optional input files that

will be specified on the command line as [-src {viff image}] and [-target {viff image}],

respectively. There is also an optional [-tp_mode] flag that may be specified as 0 (for "Source &
Target") or 1 (for "Source Only"). The warpimage program will be accessed from the cantata

subform labeled, "Warp Images", on the pane labeled "Interactive Image Warp".

The "warpimage.pane" file also includes a (-H) line describing a help button so that the user

may look at its man1 page when they are using cantata, and a (-R) line so that the user may enter

command line arguments into cantata’s pane for warpimage, before clicking on the Routine
button described by this (-R) line, in order to execute the warpimage program. Other info

contained in the UIS lines may be looked up when necessary in Chapter 2.

Once the UIS pane file has been created, the next step is to create a driver program for the

xvroutine, using all of the arguments specified in the UIS pane file. This is easily accomplished

using the ghost routines provided for this purpose. The next section describes how to use the
ghost routines to create a driver program and generate the framework for the library routine.

D.2 USING THE GHOST ROUTINES

Programming is a difficult task that involves many steps between the analysis of the

problem and its efficient solution. A huge gap must be bridged between a formal (descriptive)
specification of a problem and its accommodation to a given programming environment on a

particular machine. There is widespread agreement that the difficulties involved in constructing
correct programs can only be overcome if the whole task is broken into sufficient small and

formally justified steps following well structured standards. Because of the importance of this,

Khoros contains code generators that help to automate part of the procedure of programming.

To get started, create a new directory that can be used as the development directory for the

new routine. Create a UIS (*.pane) file using either composer or a modification of an existing
UIS (*.pane) file, as detailed in Chapters 2-4.

The first tool you will use is ghostwriter. However, keep in mind that ghostwriter

requires a UIS file as input (discussed in the previous sections). Ghostwriter can be run with the
UIS file to create a template for the PS file, the include file, the source code files for the main

driver, the library file, and the manual pages for the program. Alternatively, you can begin with
an empty template PS file, fill in the appropriate fields, and run ghostwriter to generate the

source code and manual page files. We have found that a hybrid method is most popular with the

Khoros group; however, after writing one or more programs under the Khoros system, you will
find your own preference.

KHOROS Release: 1.0 1 - 24

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

The following example demonstrates the use of ghostwriter to generate an xvroutine:

% ghostwriter -name xvroutine -type xprog -toolbox {toolbox

name}

This will generate the files "xvroutine.c", "lxvroutine.c", "xvroutine.1", "lxvroutine.3",

"xvroutine.h". Note that in order for ghostwriter to run, a valid UIS file (in this case,
"xvroutine.pane") must exist in the current working directory. Ghostwriter will look for a valid

PS file in the current working directory; if one does not exist, a template PS file

("xvroutine.prog") will be created. In addition, ghostwriter will also look for a configuration file
in the current working directory; if one does not exist, a template configuration file

("xvroutine.conf") will be created as well. The use of the configuration file is explained later in
this chapter; for more detailed information about the configuration file, see Chapter 5 of the

Khoros Programmer’s Manual. In general, the configuration file is ignored while writing the new

program; it is not used until the program is to be installed in the appropriate toolbox.

When writing an xvroutine, you must remember to provide the [-type xprog] argument! If

your xvroutine links against FORTRAN (note that the linpack and eispack libraries are in
FORTRAN), you should instead provide the [-type fxprog]. If you do not provide the correct [-

type] flag to ghostwriter for your xvroutine, your code will not compile.

There are several options with ghostwriter which allow use of a configuration file,
formatting, debug statements, and generation of certain files. The various options may be listed

using the [-U 1] option; or, you may wish to run the program with prompts for each command
line option using the [-P 1] option. An answer file, which specifies the desired arguments to

ghostwriter, may be created by using the [-A ghost.ans] and [-P 1] options together, making it

easier to perform successive runs of ghostwriter (a certainty!).

In this example, if we had used the [-A ghost.ans] option to ghostwriter, for the xvroutine,

its answer file, "xvroutine.ans", for future executions of ghostwriter would look like:

-name xvroutine

-config f
-lib t

-man3 t
-install f

-format 1

-debug f
-tag t

-force f
-prog t

-type xprog

-toolbox {toolbox name}

Now, for successive runs of ghostwriter, we need not provide arguments on the command line,
or interactively with the [-P 1] option. To execute ghostwriter with the exact same arguments as

before, all that is necessary is to run:

% ghostwriter -a ghost.ans

KHOROS Release: 1.0 1 - 25

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

In addition to creating the source files and man files for your xvroutine, ghostwriter will also
make calls to imkmf and makemake for you, thus generating (respectively) the appropriate

"Imakefile" and "Makefile" files for this program. The xvroutine is now ready to be compiled; of
course, lxvroutine() will simply return to the main program (initially, it is generated with only a

return(TRUE) statement). You may wish to compile at this point, checking for any errors in the

driver and include files. To compile, simply type:

% make

No errors should occur, unless you modify these files in some way; however, if compile errors do

occur in any of the source files, you can fix the problems in the problem source files, but
remember to follow any modifications with a call to ghostreader. Note that ghostreader has a

subset of the complete set of ghostwriter arguments - those arguments that are identical for the
two programs have the same meaning, and neither program checks for invalid arguments, so that

you may provide the same answer file, "ghost.ans" for both programs. To execute ghostreader,

then:

% ghostreader -name xvroutine

or

% ghostreader -a ghost.ans

The Program Specification (PS) file contains key fields for the insertion of Khoros system

documentation, man page documentation, and source code. A template "xvroutine.prog" file is

created when ghostwriter is run for the first time, containing all of the key fields for constructing
a complete PS file. Each key field in the "xvroutine.prog" file is delineated by begin and end

keys. All comments, code, and documentation is placed between the appropriate begin and end

tags for a particular field. An example of a template PS file is presented in Chapter 5. Chapter 5

should be consulted for specific descriptions and guidelines concerning the information to be

included in each of the key fields of the PS file. An example illustrating the use and format of
each key field of a *.prog file is included in Chapter 5. This format should be adhered to when

creating a PS file to ensure maintainability of the Khoros System.

Ghostwriter creates the source code, include files, and man pages with pre-defined tags,

that are recognized by ghostreader. Thus, segments of code and/or documentation between

these tags may be modified by the programmer and then reinserted into the PS file by running
ghostreader. Ghostreader takes as input the 5 files: "xvroutine.c","xvroutine.h", "xvroutine.1",

and "lxvroutine.3", as well as the old PS file "xvroutine.prog". First it loads in the information
provided in the old "xvroutine.prog" file. It then looks for the tags in the source and man files,

and pulls any text between a pair of begin and end tags into the corresponding place in the new

"xvroutine.prog" file, thus over-writing the old information. In this way, a new PS file may be
generated containing the new information.

Running ghostreader insures that all modifications are correctly updated in the
"xvroutine.prog" PS file; thus, when ghostwriter is run again (perhaps with the [-a ghost.ans]

flag), the updates will be written to the appropriate files. BE WARNED that if you modify source

code or man pages, and forget to run ghostreader, all your changes to source code and man

pages will disappear the next time you run ghostwriter!

KHOROS Release: 1.0 1 - 26

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

D.3 CREATING THE *.form FILE FOR YOUR XVROUTINE

First of all, a short discussion of the use of UIS files is in order. While in theory, the same
UIS file can be used for both the command line user interface (CLUI) and the graphical user

interface (GUI) of an xvroutine (as it ALWAYS is for vroutines), we in the Khoros group have
found that most often, the CLUI requires fewer arguments than the GUI. That is, it is usually

appropriate to offer options to the user in the graphical user interface that would not be

appropriate on the command line. For example, editimage offers only 13 command line
arguments. Anyone that has used the editimage program knows that the graphical user interface

offers dozens more options than that!

To resolve this conflict of interest, xvroutines almost always have two UIS files. The first,

named "xvroutine.pane", is located with the source code of the xvroutine; it is short, and used

with ghostwriter as detailed above; in addition, it is used to integrate the xvroutine into cantata.
The second, named "xvroutine.form", is located in

{toolbox_name}/repos/xvroutine/; it is generally much longer and more
comprehensive, and is used with the code generated by conductor to present the user with a

complete graphical user interface.

If you have not already done so, examine your "xvroutine.pane" file. It should have ONLY
those arguments that will be input to your program from the command line. However, does it

really have everything it needs to make your xvroutine complete? If not, copy your
"xvroutine.pane" file to "xvroutine.form". Use your imagination, future plans for the program,

and preview to extend the "xvroutine.form" UIS file to a point where it offers the user with all the

options they will need (that you are willing to implement)! Don’t worry if you won’t have time
to put in all the functionality right away; portions of the GUI can be de-activated (see Chapter 2

of the Khoros Programmer’s Manual), or simply not used until later.

While we will not detail all the lines you may decide to have in your *.form file to structure

your graphical user interface, some lines you might consider using for the *.form file that you

would not add to a *.pane file include:

• SubMenu (-D) - The (-D) line specifies a pull-down menu.

• StartMaster (-S) - The (-S) line specifies a master form.

• SubFormButton (-d) - The (-d) line specifies a subform button.

• MasterAction (-n) - The (-n) line specifies a master action button.

• StartGuide (-G) - The (-G) line specifies a guide pane.

• GuideButton (-g) - The (-g) line specifies a guide button.

• SubformAction (-m) - The (-m) line specifies a subform action button.

• Workspace (-w) - The (-w) line specifies a workspace.

A complete description of each of the UIS lines can be found in Chapter 2, section B.3 of
the Khoros Programmer’s Manual.

An example of the *.form file for the xvroutine warpimage is presented below. This

illustrates the use and placement of the various lines in a UIS form file.

KHOROS Release: 1.0 1 - 27

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

-F 4.2 1 1 70x3+10+15 +60+1 ’Warp Image’ Master

-M 1 1 70x60+10+5 +60+0 ’WARP IMAGE’ WarpImage

-G 1 20x60+0+0 +1+0 ’ ’

-w 1000x690+0+5 +25+1 ’ ’ ’source image’ workspace

-g 1 1 17x1+1+0 ’Operations’

-g 1 0 17x1+1+1 ’Input’

-g 1 0 17x1+1+2 ’Output’

-m 1 0 17x1+1+3 ’VIEW TIEPOINTS’ ’view tiepoints’ view

-m 1 0 17x1+1+4 ’CLEAR TIEPOINTS’ ’view tiepoints’ clear

-m 1 0 17x1+1+5 ’WARP/VIEW IMAGE’ ’warp image ’ warp

-H 1 10x1+125+0 ’HELP’ ’Master Form Help’ $KHOROS_HOME/doc/warpimage/help

-H 1 10x1+125+2 ’Copyright’ ’Copyright’ $KHOROS_HOME/doc/copyright/copyright

-Q 1 0 10x1+125+4 ’QUIT’

-E

-P 1 1 40x60+19+0 +2+0 ’WARPIMAGE OPERATIONS’ Options

-T 1 0 0 1 1 20x1+2+1 +0+0 1 ’Tiepoint Operation’ ’operation’ operation

-l 1 0 1 1 0 40x1+1+1 +0+0 0 ’Add’ ’False’ ’True’ ’ ’ dummy

-l 1 0 1 0 0 40x1+1+2 +0+0 0 ’Delete’ ’False’ ’True’ ’ ’ dummy

-E

-b +27+1 ’Zoom Type’

-a 1 0 14x1+25+2 ’Rubberband’ ’rubber band zoom’ rb_zoom

-a 1 0 14x1+25+3 ’Point & Click’ ’point & click’ pc_zoom

-b +53+1 ’Zoom Factor’

-f 1 0 0 1 1 20x1+48+2 +0+0 2.0 2.0 2.0 ’Source ’ ’zoom factor’ src_zoom_factor

-f 1 0 0 1 1 20x1+48+3 +0+0 2.0 2.0 2.0 ’Destination:’ ’zoom factor’ dest_zoom_factor

-E

-P 1 0 40x60+19+0 +0+0 ’WARPIMAGE INPUT’ Input

-I 1 0 0 1 1 1 85x1+0+1 +0+0 ’ ’ ’Input Source Image ’ ’input file’ in_src_img

-I 1 0 0 1 1 1 85x1+0+2 +0+0 ’ ’ ’Input Target Image ’ ’output file’ in_dest_img

-O 1 0 0 1 1 1 85x1+0+3 +0+0 ’ ’ ’Input Tiepoints ’ ’input tiepoints file’ in_tp

-E

-P 1 0 40x60+19+0 +0+0 ’WARPIMAGE OUTPUT’ Output

-O 1 0 0 1 1 1 85x1+0+1 +0+0 ’ ’ ’Output Tiepoints ’ ’output file’ out_tp

-O 1 0 0 1 1 1 85x1+0+2 +0+0 ’ ’ ’Output Coefficients ’ ’output file’ out_coeff

-E

-E

-E

Compare the *.form file for warpimage, above, with the *.pane file for warpimage, given
earlier. See how the *.form file is much more complete, and contains UIS lines describing

options not available through the command line. Furthermore, there are many lines in the *.form
file that are used to structure the graphical user interface of warpimage - examination reveals

that the GUI for warpimage has no master form; it has a single subform with three guide buttons

and three subform buttons on the guide pane, which will appear on the upper left hand corner of
the GUI. The guide buttons bring up a "WARPIMAGE OPERATIONS" pane, a "WARPIMAGE

INPUT" pane, and a "WARPIMAGE OUTPUT" pane, thus separating the functionality of
warpimage into obvious categories for the user. These panes will appear to the right of the

guide pane. Below the guide pane and the panes will be a workspace on which the source and

target images can be displayed.

Note that the (-H) lines in the *.form file for warpimage are different than the single (-H)

line in its *.pane file. While every *.pane file has a single (-H) line that references the man1 page
of the program, a *.form file usually has several (-H) lines - one on the master form, if there is

one, one on each subform, and one on each pane. These (-H) lines reference on-line help that is

found in KHOROS_HOME/doc/warpimage/help; in addition, (-H) lines are used to access

KHOROS Release: 1.0 1 - 28

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

the Khoros copyright.

You should have online documentation for your new xvroutine, and you should put it in

{toolbox_name}/doc/xvroutine/help, Warpimage is an exception to the many-
help-button xvroutine rule: since the panes are small and few, a single Help button to the far right

produces an online help page with little buttons across the top that access the entire warpimage

help directory - by selecting the button labeled with the name of the help file they are interested
in, users may read the online help for all aspects of warpimage.

Use preview often when developing your *.form file to make sure that it looks good, and
presents options in a readable fashion. Asking co-workers or other potential users of your

program for feedback is usually a good way to get an idea of how well you are designing your

graphical user interface, and to obtain suggestions and constructive criticism.

D.4 USING CONDUCTOR

When your "xvroutine.form" file is satisfactory, go on to run conductor to generate the files

"form_drv.c", "form_info.h", "form_info.c", and "form_init.c". If you have never used conductor

before, you should read Chapter 6 of the Khoros Programmer’s Manual, if you have not already
done so. The rest of this discussion will assume that you understand the use of conductor, that

you have already used it with the [-b 1] flag, and that you have integrated the "form_drv.c" file
generated by conductor with the "lxvroutine.c" file generated by ghostwriter, according to the

step-by-step instructions that can be found in Chapter 6 of the Khoros Programmer’s Manual, on

conductor.

D.5 WRITING THE NEW XVROUTINE

Writers of xvroutines may want to do some initializations in the "lxvroutine.c" file, but most

of the functionality for the xvroutine will go into other files (created by the programmer with

appropriate names). Calls to the subroutines and/or functions created in these other files should
be made in the "run_xvroutine.c" file, replacing those comments created by conductor that say,

"PUT YOUR CODE HERE".

It is STRONGLY recommended that you read the man pages on the verror, vgparm, vmath,

vrast, and vutils libraries. These are public Khoros libraries, and contain many useful routines

for I/O, math, and reading/writing/checking of images that help the programmer avoid "re-
inventing the wheel". Writers of xvroutines are also referred to the man pages on the xvforms,

xvutils, xvgraphics, and xvdisplay libraries. The man pages on xvforms will augment Chapter 6 in
helping you understand the main user interface loop that was generated by conductor, while the

man pages on xvutils will inform you about utilities for pop-up error messages, warning

messages, and the like. Xvgraphics contains an extensive collection of graphics routines, while
xvdisplay provides routines for displaying VIFF images.

When the source code for library routine is completed, you are reminded (again!) to use
ghostreader to update your PS files in preparation for any future runs of ghostwriter. The

program should then be carefully tested for proper operation, using all possible options both

separately and in different combinations.

Finally, you will be required to complete the man1 page information for your new program.

The purpose of the man1 page is to provide a detailed description of the function of your new
program. This should include descriptions of the input files, output files, and arguments to the

program. Try to be as complete as possible in your descriptions of the inputs, outputs, and

KHOROS Release: 1.0 1 - 29

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

arguments to the program. This information will be of valuable assistance to anyone using your
program. All Khoros programs must have a man1 page (after all, you want to let users know of

your new program)!

Many people prefer to fill in the appropriate fields in the PS file for the man1 page, and then

run ghostwriter to update their man1 page properly. Alternatively, you may fill in the man1

page directly, and run ghostreader when you are done to update the PS file. You may want to
look at some of the man1 files for other Khoros programs to get the feel of how to write one.

Man1 files can be found in KHOROS_HOME/man/man1. They can be accessed by executing:
% vman {program}.

Formatting for man1 pages should be done in nroff format. This is to ensure that the on-line

man page is generated correctly and to maintain consistent formatting throughout the
documentation. Certain fields found in the PS file need no formatting since they must consist of

only a one line description (notes on the PS file will follow later). Some of the more common
nroff formatting commands that you may find useful include:

.IP/.LP - for new block paragraphs

.RS/.RE - for indenting

.DS/.DE - for non-formatted sections

.SH - for section headers

.sp # - for adding # blank lines

For an xvroutine, you need not worry about the man3 file at all - remember that

"lxvroutine.c" does not really contain a "library" routine - however, you should not delete it, as
ghostreader will complain if it doesn’t exist.

Finally, you should read Section D of this document, labeled, "CONVENTIONS &

GUIDELINES FOR ALL KHOROS ROUTINES" for valuable information that may apply to
you. In addition, a table of file naming conventions and a listing of variable naming conventions

are given there.

D.6 JOURNAL RECORD / JOURNAL PLAYBACK

When you write an xvroutine, it will automatically have the ability to have journal record
and journal playback, due to its use of the xvforms library; by the same token, it will also be a

viable target program for the concert distributed user interface collaboration tool. If you would
like to use the journal record / playback capability for demos or other purposes, you must first

make a journal recording of your program. This is done by executing:

% xvroutine -jr xvroutine.jp

If your xvroutine has any required arguments, you must provide them as well on the command

line; optional arguments may be provided as desired. Remember the command line arguments
that you used when recording, as you MUST provide these same arguments when playing back.

The program will start up as usual, with no apparent difference. Go through a normal session
with your xvroutine, remembering that the journal recording mechanism records your XEvents in

real time. That is, if you stop in the middle of your recording session to answer the phone, a

pause of the same length will be played back at the time when you paused. For the same reason,

KHOROS Release: 1.0 1 - 30

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

it is recommended that you make a mental plan of the session and follow it through smoothly
while making the recording, especially when making journal recordings for demo purposes;

errors, typos, mistakes and pauses will all be recorded.

When you have created your journal recording file, you may then play it back whenever

desired. Note that the journal recording/playback mechanism is machine independent, so that

you need not be on the same architecture when playing back a journal session as you were when
you recorded it. To play back the recorded session of your xvroutine, simply execute:

% xvroutine -jp xvroutine.jp

Remember that if you provided any command line arguments (required or optional) when

you recorded the session, you must provide the exact same arguments when playing back the
session. If you forget arguments, or substitute others for the original ones, the actions produced

by journal playback will be unpredictable. In this case, the playback may or may not work; it

may or may not exhibit bizarre behavior, and it may or may not crash your program.

As of Khoros 1.0, when using a window manager that requires interactive placement of

windows, you are unfortunately required to map widgets as they appear during a journal
playback session. That is, you will have to map the widgets during the playback session as you

did when they were recorded. Positioning is irrelevant; however, timing is important. Pay

attention to the journal playback session, and map items of the graphical user interface as soon as
they appear. Failing to map widgets in a short amount of time may result in events piling up

behind you, and happening all at once the moment the widget is mapped. In many instances, this
proves quite confusing to the observer. We will attempt to address this problem before the next

release of Khoros. Note that if your window manager automatically maps windows, this issue

should not be a problem for you.

You may also wish to use the concert collaboration program to "share" the execution of

your program with one or more other people. You may do this by executing:

% concert -command xvroutine -d2 display2 [-d3 display3 ...]

For more information on the concert distributed interface, see the man page on concert, or read

Chapter 9 of the Khoros User’s Manual.

D.7 INSTALLATION OF THE XVROUTINE

The installation process of a new routine is the process of moving all the files involved in
the new program into their proper places in the Khoros source tree, and compiling the program.

The layout of the Khoros source tree is explained in detail in Chapter 9 of the Khoros

Programmer’s Manual - you are encouraged to read this chapter if you have not already done so.
The installation process for an xvroutine is not animated like the process for a vroutine;

unfortunately, there are too many variations to be easily addressed by a high-level installation
program like kinstall to handle. Therefore, it must be done by hand.

KHOROS Release: 1.0 1 - 31

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

1) Go to the location of the toolbox source tree where you want to install the new xvroutine.
Create a new directory with the same name as your program. Move into the new directory.

Copy all source code into the new directory, including the Imakefile, *.c file, *.h file, l*.c
file, *.prog file, *.conf file, files generated by conductor, and any other source files you may

have created to use with your xvroutine.

2) Execute % makemake to create a clean Makefile.

3) Now, if your site supports different computer architectures, you must create a "shadow" of

this directory in the srcmach trees (if your site supports only one architecture, skip this
step). First, make sure that the directory created in Step (1) is free of all extraneous files.

This is important, because once you run ksrcconf, any incorrect symbolic links must be

removed by hand. Once the directory is clean, you run ksrcconf to create the machine-
dependent representation of your program. run:

% ksrcconf -toolbox {toolbox_name}

ksrcconf should respond by listing each location in the srcmach tree that it is making

symbolic links. There will be one message for each architecture that is supported by your
site. If you go to the srcmach tree, to the location that mimics the location in the source tree

where you just copied your source, you should find a matching directory. In this directory

you should find a symbolic link to your Imakefile, a Makefile that is particular to the
specific machine architecture, and symbolic links to all other files that you copied into the

Khoros source tree in Step 1.

4) Now, you are ready to compile your program. If your site supports only one architecture,

you simply execute:

% make install

On the other hand, if your site supports multiple architectures, execute:

% kmakeall -toolbox {toolbox_name} install

Kmakeall will mail you (one mail message for each architecture) with the results of your
compile. If there are any errors, they will appear in the mail.

5) Now, test your program to make sure that all is well. Don’t forget to first execute:

% rehash

Since you are installing your program for the first time, forgetting to run rehash will result

in the operating system error, "Command not found". Extensive testing is usually not

necessary on installation, as you should have already completed the testing and debugging
process in your work area, before installation. However, never neglect to do at least

cursory testing on your installed program! Sometimes a compile looks successful, but in
fact is corrupted due to system problems or corrupted library files. When this is the case,

the result is usually an immediate segmentation violation and/or core dump, even before

your graphical user interface is mapped to the screen. If this happens, repeat step (4).

6) Move your man1 page (*.1 file) into its appropriate location in

{toolbox_name}/man/man1. Make sure that its appearance is correct by executing:

KHOROS Release: 1.0 1 - 32

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

% vman xvroutine

7) Finally, you may want to integrate your new program into cantata. If so, that procedure is
detailed in the next section.

E. CONVENTIONS & GUIDELINES FOR ALL KHOROS
ROUTINES

This section contains information that is common to both vroutines and xvroutines. It

details conventions that must be adhered for the sake of portability and machine independence
when programming in the Khoros environment. Variable naming conventions that should be

followed when creating a UIS file are given here, as are file naming conventions that are

followed throughout the Khoros system.

E.1 GUIDELINES FOR WRITING CODE

There are several rules that you should follow when developing new programs under the

Khoros environment. Following these guidelines will help to ensure that your new program will

function properly and consistently as a new part of the Khoros system.

"Program Structure"

The motivation for breaking the program into a main *.c file and a l*.c library file is mainly

to separate the functionality into its two component phases. The preliminary work is done in the

main *.c file, which includes argument and file checking. The library file includes the source
code for executing the vroutine on the data. This enables the library routine to be called from

different programs as well as from the original.

In xvroutines, the l*.c file is used to integrate the main driver generated by conductor with

the files generated by ghostwriter. It is not truly a "library" file in that it will not become part of

a library, will not be called by any other xvroutines, and will not have a man3 page installed.
However, the library file for an xvroutine should still retain its name and the tags generated by

ghostwriter in order to stay maintainable and consistent under the Khoros system.

"Proper Driver Behavior"

Main drivers of programs must call khoros_init() immediately on start-up; the last
statement should be a call to khoros_close(), and failures due to error should result in a call to

exit(1).

"Proper Library Routine Behavior"

An important point which needs to be stated here is that the library routine should always
be declared to return an integer. Consequently it will return zero (0) upon failure or one (1) upon

success. The library should be very robust; it should not not crash for any reason. In order to
obtain this objective, all the necessary error checking should be done in the libraries as well as

their drivers. The library should always return to the main program, whether it completed its

work successfully or unsuccessfully. That is, the library should never contain an exit() statement
within its instructions.

If the library routine that is being written needs to call any of the already existing ones, the
calling format should be the same as that of the main program; that is, the calling routine should

KHOROS Release: 1.0 1 - 33

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

check if the subordinate routine returns one (1) or zero (0) upon success or failure, respectively.

"Free Memory Properly"

Whenever memory is allocated for one or more pointers, they should be freed as soon as

they no longer needed. This is to minimize the risk of running out of memory. Also, for those

working with VIFF files, the data contained in the memory location starting with the address
given by "image->imagedata", should be released with a call to freeimage() when it is changed or

replaced by another one; for instance, in the following example, "image->imagedata" is replaced
by a new pointer.

free(image->imagedata);

image->imagedata = (char *) fptr;

To free the entire xvimage structure, along with all associated memory, use:

freeimage(image);

"No Interdependancies"

Also, one should make an effort not to introduce inter-dependencies into library routines.

However, you are welcome (and highly encouraged!) to make calls from your vroutine to the

utilities found in the verror, vgparm, vmath, vrast, and vutils libraries. On the other hand, you
are not encouraged to add dspl routines that depend on ipl routines and vice versa.

"Efficiency & Modularity"

Due to the necessity to perform the same operation for different image types, one should try

to use flow control that provides fast performance. For instance, in programs like vconvert, it is
better to have for loops inside the switch statement rather than having the switch inside the for

loops. The reason for this is that the latter requires more time due to the continuous
breaks(jumps).

Also, if the algorithm being implemented requires a large amount of code, modularity is

one of the important issues that one should observe. Some kind of compromise with the efficiency
issues mentioned above should be considered. When writing a vroutine, one should make sure

that all functionality of the program is provided by the code in the library file.

"Ensuring Portability"

If you make a system call to signal(sig, function), you must define function to be of type
vsignal, and you must have the line: #include "vsignal.h" in order for your code to be

portable.

If you make a system call to wait(status) or vwait3(status,options,rusage), you must define

status to be of type vstatus, and you must have the line: #include "vsignal.h" in order

for your code to be portable.

If you make a system call to the directory routine readdir(), or any other system call that

uses the type dirent or direct, you must re-define the routine that you are calling to be of type
vdirect. The vdirect type is defined in KHOROS_HOME/include/vinclude.h. Again, this

is to allow your code to be portable to other architectures.

If you need to use the system call vfork(), then to make your code portable, you must follow
the approach in the example below. This is because not all machines support the vfork() system

call.

KHOROS Release: 1.0 1 - 34

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

#ifdef VFORK

if ((pid = vfork()) == 0)

#else

if ((pid = fork()) == 0)

#endif

{

(void) execl("/bin/csh", "csh", "-cf",

"lpr writing_progs.ps", (char *)0);

exit(1);

}

Some system calls are not portable enough to support all architectures that the Khoros

system has been ported to. To ensure portability of your code to other architectures, please
substitute calls to the Khoros vgparm or vmath libraries for the following system calls:

instead of system call use Khoros routine_______________________________________

putenv() vputenv()
tempnam() ktempnam()

random() vrandom()
srandom() vsrandom()

wait3() vwait3()_______________________________________LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

"String Manipulation"

When doing string manipulations, there are several Khoros macros provided for you that

you should use. All are more robust than their system call counterparts, in that they check for

NULL strings and allocate memory for you.

instead of system call use Khoros macros_______________________________________

strcat() VStrcat()
strcat()+strcat() VStr3cat()

strcmp() VStrcmp()

strncmp() VStrncmp()
strcpy() VStrcpy()

strlen() VStrlen()_______________________________________LL
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L

Note that the routines above are documented as part of the vgparm library, in spite of the fact that

the macros are actually defined in $KHOROS_HOME/include/vdefines.h.

Other routines that you may find useful in various situations include: vlower_string(),

vupper_string(), vreplace_char(), and vreplace_string.

"Filename Expansion"

The vfullpath() routine must ALWAYS be used to expand filenames. This routine will
expand environment variables such as KHOROS_HOME; it also does exhaustive error checking

on input file names. A benefit of using the vfullpath() routine is that your program will
automatically pick up the capability of using the Khoros Keywords shorthand for input file names

(see Chapter 1 of the Khoros User’s Manual for an explanation of the Keywords capability).

"Memory Allocation"

KHOROS Release: 1.0 1 - 35

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

When allocating memory, programs that attempt to allocate zero bytes may crash on some
architectures. For this reason, you may want to take advantage of the Khoros counterparts to

common system allocation routines, found in the vgparm library, which check for attempts to
allocate zero bytes:

instead of system call use Khoros vgparm routine___

alloca() kalloca()
calloc() kcalloc()

malloc() kmalloc()
realloc() krealloc()___LL

L
L
L
L
L

LL
L
L
L
L
L

"Data Transport / Distributed Processing"

The distributed processing / data transport mechanisms of Khoros are implemented via the
vgparm library. If you want your program to be able to take advantage of the distributed

processing / data tranport capabilities, you must make the appropriate calls to routines in the

vgparms library. Most of the routines in question are substitutes for their system counterparts,
and only differ from their system counterparts in that they support data transport and distributed

processing. An important thing to remember is that these routines in the vgparm library may
NOT be mixed with their system counterparts; consistency is the key to success here. To write

programs that will work with distributed processing and data transport, substitute the system calls

below with the Khoros counterparts given:

instead of system call use Khoros vgparm routine___

access() kaccess()
free() kfree()

open() kopen()

close() kclose()
read() kread()

write() kwrite()
unlink() kunlink()

fopen() kfopen

fclose() kfclose()
fputc() kfputc()

fread() kfread()
fwrite() kfwrite()

lseek() klseek()

execvp() kexecvp()
gethostname() kgethostname()

system() ksystem()
tempnam() ktempnam()___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Important Note: In Chapter 7 of the Khoros Programmer’s Manual, there are examples of
short programs that use these utilities to take advantage of the data transport / distributed

processing capabilities of Khoros.

"Write to Stderr"

When coding in the PS file, all fprintf(); error message statements should use the file
descriptor stderr, NOT stdout.

"Vroutines should use check_args()"

KHOROS Release: 1.0 1 - 36

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

The check_args() function exists in the vgparms library. Its purpose is to make sure the
command line did not contain any invalid arguments/options. If the command line did contain

invalid arguments/options, check_args() will print them out and your program will exit. This call
is not mandatory, but it is a good idea to include it in your code.

"Input file error checking"

Input file error checking should be performed in each library routine, with use of routines

available in the verror library. The library routine should completely check all relevant aspects
of the incoming data, and exit gracefully on invalid input.

"Take advantage of Khoros Utilities"

Aside from Khoros routines listed above, there are many other utility routines in the public

Khoros libraries that you may find useful in your programs. For full descriptions of these and
other routines that are available for your convenience, see Chapter 8 of the Khoros Programmer’s

Manual, or use the % vman {library name} when in need of a quick reference.

Especially recommended for your use are those routines available in the vgparm, vutils, and
vmath libraries.

"Summary"

The best approach for writing a new program is often to look at examples. For instance,

there are plenty of vroutines which do image processing in the
KHOROS_HOME/src/vipl/Lib/ directory. Spend some time browsing through existing

programs, looking for one that is similar to the program that you would like to write in order to
get an idea of how to approach the problem at hand. Experience with the C programming

language, of course, will help tremendously, as all Khoros programs are written in C. It is highly

recommended that you become familiar with the contents of the public Khoros libraries, so that
you may take advantage of the utilities that are provided for you. There is a learning curve

associated with use of the Khoros Software Development system; however, increased familiarity
with the procedure can be relied upon to produce a valuable increase in efficiency and

productivity.

Additional information concerning the Program Specification file is provided in Section D
of this chapter. Certain segments of the PS file that elaborate on the programming aspects are

detailed in that section.

E.2 CONVENTIONS FOR VARIABLE NAMES

These are conventions for the most common variable names used in the Khoros system.
Note that the variable field on a particular line of the *.pane file becomes the name of the [-flag]

to the program on the command line, as well as the name of the corresponding field in the C
structure that ghostwriter generates in the *.h file.

i single input viff file
i# multiple input viff files

(NOTE: do not use the word "image" casually -
try to use "viff file" when you mean an image

formatted specifically for the Khoros system,

not "image file".

o single output viff file

KHOROS Release: 1.0 1 - 37

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

o# multiple viff output files
f output ascii file

t data type (string) This flag requires a call to vget_type()

d direction of processing for 1d data

w,h width and height
x,y coordinates of a pixel

r,c row and column

b bands

a, A, P, U, V reserved command line arguments

E.3 KHOROS FILE NAMING CONVENTIONS

The table below is a list of the file naming conventions used in Khoros.

File suffix Description___
*.a library

*.ans Command line answer file.
*.awk awk script files.

*.c C source

*.cmdlog Khoros command execution log file.
*.conf Configuration file used by ghost routines.

*.csh csh script files.
*.doc Documentation files formatted for on line help in X applications.

*.f fortran source

*.form UIS file describing GUI for xvroutines - used with conductor.
*.jp Journal Playback files.

*.l lex source
*.man Files used for preparing documentation for printing.

*.ms Manual files containing ms macros.

*.o object file produced by cc
*.pane UIS file describing CLUI & GUI - used with cantata & ghostwriter.

*.prog PS file for ghostwriter and ghostreader.
*.ps Postscript files ready to be printed.

*.sec Chapters or sections of the printed Khoros Manuals.

*.sh bourne script files.
*.sub UIS file describing subforms for cantata (has ref’s to *.pane files).

*.txt Text file (README(s) are the exception).
*.vec Vector font files.

*.wksp Saved cantata workspaces.

*.xv Files that are in VIFF format.
*.viff Files that are in VIFF format.

*.y yacc source
*.1 Section one manual page.___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

KHOROS Release: 1.0 1 - 38

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

*.3 Section three manual page.___LL LL

F. NOTES ON THE PS FILE

As the Program Specification file is described in Chapter 5 of the Khoros Programmer’s

Manual, we will not repeat it all here. However, a few extra notes may help the reader. The
following notes deal with those segments of the PS file that deal with C programming;

descriptions of all the different segments of the PS file may be found in Chapter 5 of the Khoros
Programmer’s Manual. Note that it is NOT required for you to program in the PS file; it is for

this very reason that ghostreader is provided - so that the *.c, *.h, l*.c, *.1, and *.3 files may be

modified directly, and then ghostreader executed, to update the PS file. However, sometimes
(especially when updating man pages) it is more convenient to modify the PS file, and run

ghostwriter to update the abovementioned files. Therefore, selected segments of the PS file are
explained in detail below. Again, if you have not already read Chapter 5 of the Khoros

Programming Manual as of yet, we urge you to do so now.

-USAGE_ADDITIONS

Ghostwriter will place this code in the *.c file, in the gw_usage() routine. Ghostreader

will take this code from the *.c file, from between the /* -usage_additions */ and /*

-usage_additions_end */ keys. This field may or may not be filled in. It is used when the

programmer wishes to add more comments to the usage statement. For example,
vbandcomb uses this field to describe which integer maps to which color space model. If

the USAGE_ADDITIONS field had not been used, the usage statement generated by
ghostwriter would not contain any information as to the legal values for the option that

specifies the resulting color space model. If it is not clear as to what to add, it can always be

added later. The usage addition statements MUST be in C fprintf statements because these
additions will be added directly to the main *.c file. After the code is compiled, the

programmer can take a look at the usage statement, and modify it if necessary.

-INCLUDE_INCLUDES

Ghostwriter will place this code in the *.h file. Ghostreader will take this code from the
.h file, from between the / -include_include */ and /* -include_include_end */ keys. This

field will contain other #include statements that need to appear in the *.h file that are not
automatically generated. Note that "unmcopyright.h" and "vinclude.h" are automatically

included for vroutines; "unmcopyright.h" and "xvinclude.h" are automatically included for

xvroutines (remember that when you are writing an xvroutine, you must provide the [-xprog
1] flag! If you forget, "vinclude.h" will be included incorrectly, and you will not be able to

compile your program.

-INCLUDE_ADDITIONS

Ghostwriter will place this code in the *.h file. Ghostreader will take this code from the
.h file, from between the / -include_additions */ and /* -include_additions_end */ keys.

This field will contain any additional statements that the programmer may want to insert in
the include file. Any #defines, global declarations, structure definitions, etc. should be

inserted here.

-INCLUDE_MACROS

Ghostwriter will place this code in the *.h file. Ghostreader will take this code from the

KHOROS Release: 1.0 1 - 39

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

.h file, from between the / -include_macros */ and /* -include_macros_end */ keys. All
code inside this field will be within #define statements. In many vroutines, the first step is to

read in the input image. To do this it is necessary to use the function called readimage()

whose synopsis is :

struct xvimage *readimage(filename)

char *filename;

filename is the name of the file; in general, it corresponds to a [-i] flag for the new program,
as specified in the UIS file by a [-I] UIS line. readimage() will return a pointer to the

address where the image is located upon success, or NULL upon failure. Therefore, the
pertinent error checking must be performed by the user. Whenever the program exits, it

should do so with an appropriate comment. Thus, calls to readimage() are a good subject

for a macro to be included in the PS file under -INCLUDE_MACROS. For example:

#define READINPUT(image) -

image = readimage(vroutine->i_file); -

if (image == NULL) { -

(void) fprintf(stderr, "vroutine: cannot read input image"); -

(void) fprintf(stderr, " %s0, vroutine->i_file); -

exit(1) -

}

If there is more than one input image, then each input image should have its own

corresponding READINPUT #define statement.

Other error checking can be also performed via macros. Many error checking routines are

provided in the verror library (the user is encouraged to read the online manual pages for
verror!). For example, the data type of the image can be tested to see if it is one of the

supported by the program. A check for the type of encode scheme may also be needed to

make sure that the program will work properly. Whenever two images are read, often the
size of both images should match. As an example, in the following macro, the image is be

checked to make sure that it has a data storage type of float, only one image is contained in
the file, that the image contains 3 data bands and that the map enable is optional.

#define CHECKINPUT(program, img1) -

propertype(program,img1,VFF_TYP_FLOAT,TRUE); -

proper_num_images(program,img1,1,TRUE); -

proper_num_bands(program,img1,3,TRUE); -

proper_map_enable(program,img1,VFF_MAP_OPTIONAL,TRUE);

All image error checking should be performed in this manner. As many #defines may be

included as necessary.

-MAIN_VARIABLE_LIST

Ghostwriter will place this code in the *.c file, at the beginning of the main() program.

KHOROS Release: 1.0 1 - 40

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

Ghostreader will take this code from the *.c file, from between the /* -main_variable_list

/ and / -main_variable_list_end */ keys. This field will contain the variable declarations

used by the main program. In vroutines that deal with image processing, for example, one
necessary declaration is for all images used in the routine. An example declaration might

look like:

struct xvimage *image;

The xvimage structure is explained elsewhere in this document (it is the internal
representation of a VIFF file). Any other variables that will be used in the main() must also

be defined in this field.

-MAIN_BEFORE_LIB_CALL

Ghostwriter will place this code in the *.c file, in the main() program, after the variable
list, but before the library call. Ghostreader will take this code from the *.c file, from

between the /* -main_before_lib_call */ and /* -main_before_lib_call_end */ keys. This
field should contain the C code to get the all necessary input for the program. In addition,

any other code that the programmer wishes to appear in the main before the call to the

library routine. All vroutines must include a call to check_args() here. The call to
check_args() should have the following syntax.

if (check_args()) exit(1);

The check_args() function exists in the vgparm library. Its purpose is to make sure the
command line did not contain any invalid arguments. If the command line did contain some

invalid arguments, check_args() will print them out and your program will exit.

REMEMBER: xvroutines MUST NOT make this call!

-MAIN_LIBRARY_CALL
Ghostwriter will place this code in the *.c file, in the main() program. Ghostreader will

take this code from the *.c file, from between the /* -main_library_call */ and /*

-main_library_call_end */ keys. This field should contain the C code to get the all
necessary input for It is necessary to pass all the appropriate information to the l*.c file; for

example, in a vroutine that was also an image processing routine, it will probably be
necessary to pass the pointer of the original image as well as any other parameters that the

library might need in order to process the image. In situations where it is not necessary to

preserve the input image, one need not pass to the library a new pointer for the resulting
image, since the resulting image will be returned through the same pointer as the input

image was passed in with. In this scenario, the original image will be lost. The library will
return the resulting image of same data type that was originally specified by the user.

If the input image needs to be preserved, a pointer to the resulting image is necessary. Thus,

according to the type of problem the user is trying to solve, it will be necessary to build the
data structure of a new image. This task should be done prior to making the library call,

and then the library routine should be sent the pointer of the new image with all the header
information set. To create a new image, see the man page on vutils. An example follows:

KHOROS Release: 1.0 1 - 41

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

if(! lvroutine(image, vroutine->w_int, vroutine->h_int)) {

(void) fprintf(stderr, "lvroutine failed");

exit(1); }

When writing xvroutines, the call to the "library" routine will vary somewhat (see Chapter

6 of the Khoros Programmer’s Manual). The main driver that is generated by conductor is
what actually becomes the l*.c file (ie, the user moves the code generated in "form_drv.c"

into the l*.c file). Thus, the library call for an xvroutine might look more like:

if (!(lxvroutine(argv, argc, program, xvroutine->i1,

xvroutine->i2)))

exit(1);

Note the lack of fprintf() statement when the library routine fails. This is because there is

really no need for such a statement in an xvroutine - the appropriate error statement should
already have been printed out by this point.

-MAIN_AFTER_LIB_CALL

Ghostwriter will place this code in the *.c file, in the main() program, after the library call.

Ghostreader will take this code from the *.c file, from between the /* -main_after_lib_call

/ and / -main_after_lib_call_end */ keys. This field should contain the With reference to

image processing vroutines: now that all the data processing has been performed, the
resulting image needs to be written to the specified file. The function writeimage() will

perform this task. Its synopsis is:

writeimage(filename, imageptr)

struct xvimage *imageptr;

char *filename;

where filename is the full pathname of the VIFF file, and imageptr is a pointer to the
structure xvimage of the image.

-LIBRARY_DEF
Ghostwriter will place this code in the l*.c file; Ghostreader will take this code from the

l*.c file, from between the /* -library_def */ and /* -library_def_end */ keys. it is the
definition of your library routine. Depending on whether you are writing a vroutine or an

xvroutine, this segment will vary. In either case, you will need to include all the pertinent

information that was gathered from the command line. A vroutine library definition might
look like:

int lvroutine(image, type)

struct xvimage *image;

int type;

KHOROS Release: 1.0 1 - 42

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

On the other hand, the library definition for an xvroutine will look more like:

int lxvroutine(argc, argv, program, type)

int argc;

char *argv[];

char *program;

int type;

-LIBRARY_INPUT
Ghostwriter will place this code in the header of the l*.c file, and in the *.3 file. This field

should contain a short description of each input to the library routine, with types included.
This field may be formatted for nroff. Remember that library inputs should ALWAYS be

documented in either the PS file or the *.3 file! If you document library modifications

directly into the l*.c file, they will be LOST the next time you run ghostwriter.

-LIBRARY_OUTPUT
Ghostwriter will place this code in the header of the l*.c file, and in the *.3 file. This field

should contain a short description of each output from the library routine, with types

included. This field may be formatted for nroff. Remember that library outputs should
ALWAYS be documented in either the PS file or the *.3 file! If you document library

modifications directly into the l*.c file, they will be LOST the next time you run
ghostwriter.

-LIBRARY_MODS
Ghostwriter will place this code in the header of the l*.c file. This field should contain a

short description of each new modification to the library routine in the form: name(date) -
change. This field may be formatted for nroff. When using the vi editor, it is often

convenient to use !!date to include the current date. Remember that library modifications

should ALWAYS be documented in either the PS file or the *.3 file! If you document
library modifications directly into the l*.c file, they will be LOST the next time you run

ghostwriter.

-LIBRARY_INCLUDES

Ghostwriter will place this code at the very top of the l*.c file. Ghostreader will take this
code from the l*.c file, from between the /* -library_includes */ and /*

-library_includes_end */ keys. This field should contain any #include statements that need
to be included in the l*.c file that are not already included by vinclude.h (for vroutines) or

xvinclude.h (for xvroutines).

-LIBRARY_CODE

Ghostwriter will place this code in the body of the l*.c file. Ghostreader will take this
code from the l*.c file, from between the /* -library_code */ and /* -library_code_end */

keys. This segment contains all the C code for the library routine. If you are like most

programmers, and prefer to modify code directly in the lvroutine.c file, then ghostreader

should be used to pick out the code from the l*.c file and place it in the PS (*.prog) file,

after you have finished editing the library code.

KHOROS Release: 1.0 1 - 43

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

G. USING THE DEBUGGER ON THE NEW PROGRAM

Using a debugger is always highly recommended when developing and debugging code.
Here at UNM we use dbx, xdbx, and saber to debug Khoros programs. Note that when

preparing to use a debugger, one modifies the appropriate fields in the Imakefile in order to
compile properly.

G.1 USE OF DBX AND XDBX

The first step is to compile any libraries you have created for use with the debugger. Skip

this step if there is not a specific library in your toolbox that is used by the new program. In your
library Imakefile, you will see this line near the end:

/* LIBCDEBUGFLAGS = */

Change it to:
LIBCDEBUGFLAGS = -g

If you are using a special include directory in your toolbox needed by your library, you
must also specify that include directory. Relative paths may be used. You must use the syntax,

"-I{path}" with no spaces btwn "I" and "path". Specify as many directories as are applicable. For

example, if you want to look for *.h files in ../../include as well as in . and in
$KHOROS_HOME/include, you would edit the Imakefile like this:

/* STD_INCLUDES = */

Change it to:

STD_INCLUDES = -I. -I../../include

Now, use makemake to recreate your library Makefile:
% makemake

Next, if the library was previously compiled without the debugging flag, you must remove
all library *.o files that were not compiled for the debugger:

% make clean

And recreate all *.o’s & the *.a for use with the debugger:
% make install

The second step is to compile your program for the debugger. In your program Imakefile,

you will see this line near the end:

/* CDEBUGFLAGS = */

Change it to:

CDEBUGFLAGS = -g

Again, if you are using a special include directory in your program, you must also specify

that include directory.

/* INCLUDES = */

Change it to point to the directory you need to include, for example:

INCLUDES = -I. -I../include

Now, use makemake to recreate your Makefile:

% makemake

Next, you must remove all *.o files that were not compiled for the debugger:
% make clean

And recreate all *.o’s & the executable for use with the debugger:
% make

KHOROS Release: 1.0 1 - 44

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

Finally, use the debugger:
% dbx {program_name}

or

% xdbx {program_name}

For more information on dbx or xdbx, use the system man command, as in:

% man dbx.

G.2 USE OF SABER

If you have the saber-C debugging tool, we highly recommend using it. Where dbx may be

more efficient for finding a specific core dump, for example, saber can be used to look for unused

variables, mismatched parameters, memory over-writes, de-allocation of memory, and so on. To
use saber, type:

% saber

Saber-C - Version 3.0.1

Copyright (C) 1986, 1990 by Saber Software, Inc.

Saber-C licensed for: University of New Mexico

For customer service, call 277-0803 or use the ’email’ command.

Attaching: /lib/libc.a

1 -> make saber_{program_name}

See your saber manuals for more information on use of saber-C.

H. INTEGRATING THE NEW PROGRAM INTO CANTATA

The final task that remains after installing the new program is to incorporate the program

into cantata. Prior to doing this, the new program should be tested from both the command line
and from the GUI. Running the new program from the command line or from within composer

using each option will test the functionality of the program. To examine the GUI for the new

program, start up cantata and use the ’Workspace’ pulldown menu to bring up the ’File
Attributes’ pane. On the ’File Attributes’ pane, enter the name of your *.pane file in the "UIS

Filename" parameter box. Once the UIS file is read in, a glyph representing your program will be
created. You may then connect it with other glyphs for testing of your routine. This above

method of bringing your new program into cantata does not put the program name into the

cantata menu. The next paragraph explains how that is done.

Now, you must add a reference to your new program in the UIS file describing the cantata

subform on which you want your new program to be accessible from. First, look through the
existing directories that may be found in

{toolbox_home}/repos/cantata/subforms and decide which one is most

appropriate for your program (if desired, you may create a new subform - see Chapter 2 for more
details). Kinstall will help you do most of the work needed to edit the subform file. Kinstall

moves the program’s UIS file (*.pane file) to the directory that you have chosen and prompts you
to edit the proper subform file in {toolbox_home}/repos/cantata/subforms.

KHOROS Release: 1.0 1 - 45

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

There should only be one of subform file per directory, and it will be named *.sub, where
"*" is the name of the main category of the programs on that subform. To actually incorporate

your program into cantata, you must add two lines to this *.sub file; one (-g) UIS line to put a
button on the subform that will bring up the pane associated with your program, and one

matching (-p) line that will include your *.pane file within the subform definition specified in the

*.sub file. Adding these two lines to the *.sub file will cause cantata to include your installed
and compiled program. The cantata UIS form in {toolbox_home}/repos/cantata

needs to reference the subform file. To execute cantata using your form and not the default form,
use the command:

% cantata -form {toolbox_home}/repos/cantata/example.form.

Chapter 3 provides a complete discussion on the specific requirements for pane files to be
included into cantata.

Following is an example of the modifications that would be made to analysis.sub to
add the routine dostuff. In particular, look at the (-g) and (-p) lines that reference the program,

"DoStuff".

-F 4.2 1 0 170x7+10+20 +35+1 ’CANTATA Visual Programming Environment for the KHOROS System’ cantata

-M 1 0 100x40+10+20 +23+1 ’Data Analysis’ analysis

-G 1 20x38+1+2 +2+0 ’Choose Selection’

-g 1 1 18x1+1+1 ’Remove Interlace’

-g 1 0 18x1+1+2 ’Ring Integral’

-g 1 0 18x1+1+3 ’Total Harmonic Distortion’

-g 1 0 18x1+1+4 ’Row and Col Sums’

-g 1 0 18x1+1+5 ’Boundary Fill’

-g 1 0 18x1+1+6 ’Usound Class’

-g 1 0 18x1+1+7 ’Do Stuff’

-H 1 18x2+1+14 ’HELP’ ’guide help’ $TOOLBOX_NAME/doc/cantata/subforms/analysis/help

-Q 1 0 18x2+1+16 ’QUIT’

-E

-p $TOOLBOX_NAME/repos/cantata/subforms/analysis/vblurlace.pane

-p $TOOLBOX_NAME/repos/cantata/subforms/analysis/vringint.pane

-p $TOOLBOX_NAME/repos/cantata/subforms/analysis/vthd.pane

-p $TOOLBOX_NAME/repos/cantata/subforms/analysis/vrcsum.pane

-p $TOOLBOX_NAME/repos/cantata/subforms/analysis/vfill.pane

-p $TOOLBOX_NAME/repos/cantata/subforms/analysis/vuclass.pane

-p $TOOLBOX_NAME/repos/cantata/subforms/analysis/dostuff.pane

-E

-E

Notice the seventh (-g) line, specifying a new guide button called "Do Stuff", and the
seventh (-p) line, referencing the new "dostuff.pane" UIS file. These are the two lines that must

be added to the analysis.sub UIS file in order to make cantata include the new dostuff

program. Once the (-g) and (-p) lines referencing the new routine have been added to the
appropriate subform, cantata can now access the new routine. It is imperative that you add the

(-g) line and the (-p) lines consistently; that is, if you add a 7th (-g) line to the subform definition,
you take care to add your (-p) line as the 7th (-p) line in the subform definition, and not the 6th or

5th. This is because the xvforms library determines which subform button will map which pane

strictly by order of appearance. Furthermore, make sure that your (-g) line has a geometry string
that is NOT identical to any of the others. Geometry strings that are identical cause subform

buttons to be mapped directly on top of each other, and in this case your subform button will not

KHOROS Release: 1.0 1 - 46

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

appear on the cantata subform; even though it will exist, it will be underneath another button,
and therefore invisible.

The above procedure is the simplest way to add new programs to cantata. As you become
more familiar with the tools in Khoros, you will discover that it is not that difficult to completely

reconfigure cantata for different application areas.

IMPORTANT NOTE: the $TOOLBOX_NAME is not a shell environment variable. YOU
SHOULD NOT USE THE SETENV COMMAND TO SET THE TOOLBOX NAME. Instead,

this variable is determined for you via expansion of the information contained in your Toolbox
File located in the file pointed to by $KHOROS_TOOLBOX. You are still welcome

to use any environment variable you wish in specifying a file

path. If you are extending Khoros without conforming to toolbox

convention, the use of environment variables can help you

organize your development.

I. MAINTENANCE OF NEW PROGRAMS

To fix bugs in new and existing programs, it is wise to create a work directory where bug

fixes may be performed. A tool called kdinstall is available to help copy all the files associated
with a routine to your work directory. The kdinstall routine does not remove files from the

source tree directories, it just copies them to your work directory. The way to use kdinstall is to

change directories to the location of the current config file for the routine to de-install, and
execute the kdinstall program. The syntax for the kdinstall program is as follows:

% kdinstall -name aaa -dest bbb -toolbox ccc [-force d]

where,

aaa is the name of the routine to de-install.

bbb is the destination path for the files. This is typically a directory in your work area. Note

that if the directory does not exist, then the program will prompt you to create the directory.

ccc is the name of the toolbox from which you are de-installing the routine.

d is a boolean that specifies whether to use the force option which bypasses the overwrite
prompts and edit sessions. The default is FALSE, which does not bypass the overwrite

prompts and edit sessions. Note that the force option of TRUE is not allowed if the

vroutine has never been installed, or has been removed from the system.

All bug fixes in new and existing programs can be performed using either the source code
(*.c) files or the program specification (*.prog) file. If modifications are made to the source code

files, then ghostreader should be run to incorporate the changes into the program specification

file. On the other hand, if changes are made to the program specification file, then ghostwriter

should be run to generate new source code files. If you are unsure which of the ghost routines to

run, simply run ghostcheck to provide you with some assistance. Remember to copy the library
source and manual pages to the appropriate directories if you did not use the "-config" option of

ghostwriter.

KHOROS Release: 1.0 1 - 47

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

Once the bug fixes have been made, you must then re-install the program. This is most
easily accomplished by running the kinstall program, which will correctly install the bug fixed

routine over the existing routine in source and recompile the routine. If multiple architectures are
supported, then it will rsh to the other machines and recompile for that architecture. To run

kinstall refer to the instructions given in Section C.4.2 of this chapter.

J. USE OF TOOLBOXES

J.1 INTRODUCTION TO TOOLBOXES

All routines that you develop to extend the Khoros system should be installed and

maintained in a toolbox. A toolbox must exist before you can run kinstall. A toolbox consists of

a specific set of files that make up the toolbox source tree and specify the operation of Imake.
The toolbox directory structure mimics the $KHOROS_HOME directory structure, but can be

created in the location of your choice.

Why are toolboxes a good idea? The programmer can by pass all of the tools in the Khoros

system and just create UIS pane files so that cantata can access their programs. If they choose to

use this method of extending Khoros, they minimizes their initial effort, but the result will be
programs that are not as maintainable or reusable. Thus, the purpose of using kraftsman,

kinstall, and Imake is to create programs that can more easily be maintained and exchanged.
Toolboxes also give the developer a framework in which to easily exchange and or contribute (or

sell) their work.

The toolbox top or home directory is similar to the $KHOROS_HOME directory:

• bin - where all executables will be installed
• data - if desired, for data files that did not come with the Khoros system

• doc - online documentation for programs

• include - for include files that are used by more than one program
• lib - for libraries that you may create to be used by your programs

• man - for manpages about programs
• repos - containing configuration files, UIS files, etc.

• src - containing one subdirectory for each program, may be further divided into application

areas if desired.

For more details on the contents of each of these directories, see the explanation in Chapter 9 on
the contents of the $KHOROS_HOME directory. For an example of a toolbox, see the "Example

Toolbox" found in $KHOROS_HOME/example_toolbox.

J.2 THE TOOLBOX FILE

Toolboxes are managed through a Toolbox File, which specifies the toolboxes to be

accessed by a user. If desired, you may create your own Toolbox File to provide you with access
to your choice of available toolboxes. You specify the location of your own Toolbox File with

the environment variable, KHOROS_TOOLBOX. Otherwise, the default Toolbox File is

$KHOROS_HOME/repos/Toolboxes:
% setenv KHOROS_TOOLBOX $KHOROS_HOME/repos/Toolboxes

The kraftsman program was written to provide a user with an automated method of creating
toolboxes and editing the toolbox file. The Toolbox File is made up of one entry for each

toolbox; each entry must be on one line, and has six fields which are separated by a colon (:).

KHOROS Release: 1.0 1 - 48

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

There may be no blank lines in this file. The toolbox entries are in the following format:

NAME:PATH:TITLE:DESCRIPTION:AUTHOR:INFO_FILE

NAME Toolbox name in upper case

PATH Path to toolbox location

TITLE Title of Toolbox for use by cantata at a later time

DESCRIPTION Short Description of Toolbox

AUTHOR Author(s) of Toolbox

INFO_FILE Specifies a file which contains more extensive detail about contents and use of

toolbox (optional).

An example of a toolbox entry is as follows (it is a single line):

EXAMPLE_TOOLBOX:$KHOROS_HOME/example_toolbox:Example

Toolbox:This is an example toolbox:Tom Sauer:$EXAMPLE_TOOLBOX/

repos/example.info

IMPORTANT NOTE: EXAMPLE_TOOLBOX is NOT a shell environment variable. It is used

internally by the tools - do not make it an environment variable.

J.3 CREATING A TOOLBOX

The interactive Khoros program called kraftsman is designed to create & manage

toolboxes automatically. A toolbox must be created before kinstall can be used.

The recipe that you choose to follow below depends on whether you want to completely

create a toolbox manually or use kraftsman to do it. If you use kraftsman, you are more likely
to have a consistent and maintainable toolbox. The later stages of the toolbox creation process

are the same whether you use kraftsman or do it all manually. If you decide not to use

kraftsman, we have provided a generic toolbox tar file that can be untarred in the desired
toolbox location to get you started. Follow these steps in creating your toolbox:

CREATING A TOOLBOX USING KRAFTSMAN

1. Make a copy of $KHOROS_HOME/repos/Toolboxes, preferably not into the toolbox

directory that you are going to create later. Modify the environment variable that points to
your new Toolbox File. The command

% setenv KHOROS_TOOLBOX {New Toolbox File}

will set the $KHOROS_TOOLBOX environment variable to your own Toolbox File. Note:

you should also add this line to your ".khoros_env" file, so that you do not have to

remember to type this line every time you log in.

2. Execute the kraftsman program, % kraftsman, and then fill out the desired name for

your new toolbox. After entering the name, type a carriage return and the rest of the
Toolbox File fields will be filled out. Edit any of them that you want to change - at a

minimum you will want to change the directory path to the toolbox. Then click on the

CREATE button. You now have a toolbox framework in place.

3. From now on, we will use "{toolbox_name}" to mean the name of your new toolbox, and

{toolbox_home} to mean the path to your toolbox. At this time, go to the "Configuration"
pane to modify the default path names of the bin directory and lib directory. You may also

wish to change library and include search paths, as well as, setting compiler defines and

KHOROS Release: 1.0 1 - 49

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

defining libraries that the toolbox will manage. See the kraftsman on-line help for more
information.

4. A source configuration file has been set up that will work for a basic toolbox. This file is
located in

{toolbox_home}/repos/config/src_conf/{toolbox_name}_mf.

If you wish to customize "{toolbox_name}_mf" by changing khoros user, local src top, etc,
there are comments in the file to help you make these modifications. We are assuming here

that you are not supporting multiple architectures and multiple source trees - if you are, see
Chapter 9 for special instructions.

5. Continue below with the General Toolbox Installation and Maintenance Instructions.

CREATING A TOOLBOX MANUALY

1. Decide on a location for the toolbox; create a directory there with the desired toolbox
name in lower case.

2. Make a copy of $KHOROS_HOME/repos/Toolboxes, preferably not in the toolbox

directory that you just created. Modify the Toolbox File and add an entry describing the
new toolbox as detailed in the section above. Use the command:

% setenv KHOROS_TOOLBOX {New Toolbox File}

to set the $KHOROS_TOOLBOX environment variable to the location of your modified

Toolbox File. Note: you should also add this line to your ".khoros_env" file, so that you do

not have to remember to type this line every time you log in.

3. Go to the toolbox directory, and execute:

% tar -xvf $KHOROS_HOME/repos/config/toolbox/toolbox.tar

This will create a template toolbox directory structure for you, with some template files that

you will have to change to suit your particular needs.

4. From now on, we will use "{toolbox_name}" to mean the name of your new toolbox, and
{toolbox_home} to mean the path to your toolbox. Next, go to

{toolbox_home}/repos/config/imake_conf and move "template.def" to
"{toolbox_name}.def". Modify "{toolbox_name}.def" to specify the toolbox name, the

locations of bin, lib, and include directories, and the libraries to link against. There are

comments in the file to help you make these modifications.

5. Go to {toolbox_home}/repos/config/src_conf, and move "template_mf" to

"{toolbox_name}_mf". Modify "{toolbox_name}_mf" to specify the khoros user, local src
top, etc. There are comments in the file to help you make these modifications. We are

assuming here that you are not supporting multiple architectures and multiple source trees

-- if you are, see Chapter 9 for special instructions.

6. Continue below with the General Toolbox Installation and Maintenance Instructions.

GENERAL TOOLBOX INSTALLATION and MAINTENANCE INSTRUCTIONS.

At this point, it is assumed that you have successfully created the basic toolbox source tree and

configuration files. Please continue:

1. kinstall needs a directory(s) in which it can install a program. In
{toolbox_home}/src, you will need to create any directories that you might need -

we suggest a Lib directory if you will be creating a new library for your new programs to
call, and one directory for each program, named for that program. In the case that you plan

to add programs in different application domains, we recommend that you create a directory

for each application domain, and then have the associated program directories located in
the application domain directories.

KHOROS Release: 1.0 1 - 50

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

It is assumed that you will use kinstall to install the new program into your toolbox.
BEFORE you can use kinstall for the new toolbox, you will need to follow this example

to set up the toolbox source tree.

Suppose the "vfrog" program is the first program to be installed into the new toolbox. And,

you want "lvfrog.c" code to become part of a library. The first thing to do is copy the
"lvfrog.c" code into the library directory in the source tree. Next you must create an

Imakefile and Makefile. The following commands will create the Imakefile and Makefile
for you:

% imkmf -name {library_name} -type lib -toolbox

{toolbox_name}

% makemake

Where {library_name} is the name of the library and {toolbox_name} is the name of your

toolbox. This must be done so that kinstall does not fail during the installation of the first
routine.

The {toolbox_name}.def file must now be modified so that programs can link against this
new library. So, modify {toolbox_home}/repos/config/imake_conf/{toolbox_name}.def and

add the library to the appropriate symbol. This file is fully commented, so just follow the

comments for adding the library definition.

Each vroutine has a *.conf file associated with it. The directories that specify where the

subform help file (subhelpfile:) and the pane file (panefile:) are to be located must exist. If
these directories do not exist, you must create them prior to installing your new routine.

Also, the directory that the pane file will be installed into must contain a subform file. For

information on how to create and customize a subform file, consult Section G of this
chapter.

2. Now, your toolbox is ready for use. Remember that any time you use any of the Khoros
tools, such as imkmf, kinstall, ghostwriter etc, you MUST provide the name of your new

toolbox. To be on the safe side, any time you use a Khoros utility, consult the usage

statement by using the [-U] argument. If any utility lists [-toolbox] as an option - USE IT!

3. Once you have created your toolbox source tree, you must create Imakefiles and Makefiles

for the toolbox source tree. This is done by using imkmf. In {toolbox_home}/src,
and in any application domain directories that you may have, execute:

% imkmf -type dir -toolbox {toolbox_name}

% makemake

Note, makemake may give you the following errors:

sh: syntax error at line 3: ‘;’ unexpected

make: Fatal error: Command failed for target ‘depend’

You can ignore this error for now. It is caused because makemake wants to descend into all

subdirectories, but no Imakefiles and Makefiles have yet been created in the subdirectories.

As you add programs and directories, this error will no longer appear.

The imkmf will update the Imakefile automatically for you. So, if any files change or file
names changes, than imkmf will automatically update the Imakefile. The f(CWmakemake

KHOROS Release: 1.0 1 - 51

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

command will automatically generate a Makefile from the

Imakefile. you should never modify the Makefile since it is

automatically generated.

4. Develop your new programs in your work directory described in the former sections of this

chapter. Don’t forget to use the [-toolbox] option to ghostwriter.

5. If you are writing a vroutine, use kinstall to install your new program in your toolbox.
Don’t forget to use the [-toolbox] option. If you are writing an xvroutine, you must install

your new program by hand. Instructions for this were given earlier in this chapter.

6. Add the {toolbox_home}/bin directory to your path (either in your ".cshrc" file or in

your ".login" file) so that you can access your new routine.

J.4 DON’T FORGET ...

1. After setting up a toolbox and defining the bin directory location, add this path to the
toolbox bin directory to your path. Modify your ".cshrc" or ".login" file and add the toolbox

bin directory to your path.

2. If any other libraries are created in the toolbox and programs need to load against them,
those libraries must be added to the

{toolbox_home}/repos/config/imake_conf/{toolbox_name}.def file
using kraftsman

3. Any time the

{toolbox_home}/repos/config/imake_conf/{toolbox_name}.def file
is modified, you should do:

% make Makefile Makefiles

in the top level source directory of your toolbox to update all the Makefiles to take

advantage of the changes.

4. When using the any of the Khoros tools to manage a toolbox, the [-toolbox] option MUST
be specified.

K. VISUALIZATION/IMAGE FILE FORMAT (VIFF)

The Khoros Visualization/Image File format and internal data structure format (the

xvimage structure - see KHOROS_HOME/include/viff.h) was designed to facilitate the
interchange of data, not only between data processing functions within Khoros, but also between

researchers that want to exchange data and information. VIFF was designed to be
comprehensive; image processing is an extremely diverse field with different applications

requiring different information about an image. The VIFF header includes information necessary

for an application program to properly interpret the data and perform basic error checking. The
VIFF data structure has been applied to both 1D and 2D data processing applications and 3D

visualization. The VIFF format was also designed to be extensible; since new applications and
new methods of processing image data are sure to be developed in the future, the file format can

be extended by adding new fields. There is currently plenty of reserve space in the 1024 byte

header, or the spare fields can be used.

KHOROS Release: 1.0 1 - 52

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

K.1 VIFF FILE ORGANIZATION

The Khoros Image File Format is organized as 1024 bytes of header followed by map(s),
location data and then image data. The header also contains information identifying the header

format used. This file format (while on disk) or data structure (struct *xvimage, while in memory)
has evolved from originally supporting only images to supporting multi-dimensional data. The

data may be an image in the normal sense, or it may be sets of vectors. The difference is

indicated by carefully examining the values of the various fields. Information on an existing file
can be obtained by using vfileinfo.

The fields can be grouped into five categories:

administration - file management information,

data storage - describes how the data is stored but not how it is to be interpreted,

location data - describes the spatial location of the data (this is optional),

data mapping - describes how the stored data should be mapped or interpreted (no mapping

is also valid),

color space - in the case of images, indicates what coordinate space and model is being

used.

Please refer to the table in section J.4 and the examples that follow for specific information about
all fields in the header.

K.2 FILE FORMAT TERMINOLOGY

K.2.1 Image & Imagedata

There are several working terms that must be defined for the context of the VIFF file format

discussion. An image is a two-dimensional, multiband array of data with either implied or
explicit data locations. Note that while the pointer to the image data (imagedata) is a single

dimensional array, conceptually, the image should be thought of as two dimensional. It is
important to remember that the VIFF image is oriented so that (0,0) is at the upper left hand

corner of the image. The column index, X, proceeds across the image to the right; the row index,

Y, proceeds from the top of the image to the bottom.

K.2.2 Pixels, Bands & Vectors

At each location, implied or explicit, there is a pixel that may have one or more values. If

there is more than one value at a pixel location, for example in an RGB image, these data values

are separated into bands. This means that an image can have one or more bands; these bands are
stored sequentially. For instance, in an RGB image, the Red band is followed by the Green band,

which is followed by Blue band. Taken as a group, the three pixel values describe a single color
value.

For multidimensional data, the concept of a vector may be more appropriate. Vectors are

stored exactly like images, except that the number of bands is interpreted to mean the vector

dimension. Vectors can have either implied or explicit location data, just like the pixels of an

image.

KHOROS Release: 1.0 1 - 53

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

K.2.3 Implicit VS. Explicit Locations

When we refer to the implied location of a pixel, we refer to the fact that imagedata[x *
row_size + y] = pixel intensity value, where row_size is the width of the image (ie, number of

columns); here, x is the horizontal index of the pixel, and y is the vertical index of the pixel;
because the x and y values in this image are implied, we call this type of image implicit. When

an image is implicit, there is no need for location data, as this would be redundant. A one

dimensional image with implied locations data can be represented by setting either the column
size or the row size to one (1).

A VIFF image can have explicit location data, where each pixel can have an N dimensional
location in space. This concept can be explained as the imagedata value being an attribute at

some location in N-dimensional space. To specify an attribute in two dimensional space, for

example, we explicitly store the values of x and y, as opposed to allowing their values to be
implied. To access the x value, we look up location[i * row_size + j]; to access the y value, we

would up location[(i * row_size + j) + row_size * col_size]. Here, i is the horizontal index of the
image and location data, j is the vertical index of the image and location data; row_size is again

the width of the image (ie, number of columns) and col_size is the height of the image (ie,

number of rows). As in the implicit image, the imagedata value is located at imagedata[i *
row_size + j]. For an image, the location dimension would be two. A typical use of this

interpretation is digital elevation data, where the image consists of elevation values; the two
dimensional location data provides the X and Y spatial coordinates.

The explicit N dimensional location information is completely independent of the vector

dimension or the number of bands. For multiband data with explicit locations, the concept can be
understood as the multiband imagedata values being a set of attributes at some location in N-

dimensional space.

K.2.4 An Aside on One Dimensional Data

Given the above description, it is unclear how best to represent sets of 1D data. There are
actually two interpretations that make sense and are supported in the digital signal processing

library (dspl). A single one dimensional implicitly located data set can be stored as a single band
with the product of row size and column size giving the number of elements. Alternatively, it

may be represented as a single pixel with the number of bands giving the number of elements

(row size=col size=1 in this case). A group of 1D data sets can then be stored as a set of bands,
where the band number can indicate either the length of the data set or the number of data sets.

Similarly, the row_size times the col_size can indicate the length of the data set or the number of
data sets. These two interpretations lead to the idea of processing down vectors or processing

across bands.

A multiband image may have several spatial organization interpretations while it is being
processed in Khoros. A multiband image may first be processed down 1D vectors and later may

be processed as a multiband 2D image.

K.2.5 Image Maps, Map Types, Map Enable and Map Schemes

Any image may contain maps. A map provides additional information associated with the
imagedata. Most often, the map field is used to provide color information, but is not limited to

the storage of color information only. The size of a map is defined by map_row_size (the number
of columns in the map) and map_col_size (the number of rows in the map). Any pixel value

found in the imagedata serves as an index into one of the map rows. The number of columns in

that map row determines the number of pieces of information that are described by the map, and

KHOROS Release: 1.0 1 - 54

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

accessed via the pixel value. For example, when the map is used to store RGB colors, a pixel
value of 5 found in the imagedata will index row 5 of the map. At row 5, three values will be

found: one each for the red, green, and blue color components of pixel value 5.

There are two different map types that are set with the map_enable field. The first is

optional, and the second is forced. If the map_enable field is set to optional, this indicates that

the imagedata is valid by itself, or is valid after indexing into the map.

If the map_enable field is set to force, the image data is NOT valid until it it indexed into

the map. When the map_enable field is set to forced, this implies that the imagedata itself is not
meaningful; it serves only as an index into the map, where the actual information is stored.

The map scheme defines how the maps are to be used with the image(s). If the map scheme

is one-per-band, then each band in a multiband image will have its own map (images with only
one band should always have a map scheme of one-per-band. If, on the other hand, the map

scheme is shared, then all data bands will share a single map. If the map scheme is cycled, then a
single band image uses multiple maps. This could be used in an animation sequence of a single

scene; for example, it would be appropriate for the animation of a sunset sequence of different

colors in a single band of an image.

K.3 VIFF HEADER POINTERS

When the data is in memory, pointers that are part of the xvimage structure are used to

address the data. The vutils library provides basic utilities to read and initialize the pointers. A

brief description of each of the pointers in the VIFF format is provided below:

char *imagedata

Points to a sequence of images; an image is made up of bands, and the bands are in a
sequence. Alternatively, imagedata can point to vectors, where the vector dimension is the

number of bands and the vector elements are across the bands.

char *maps
Points to a sequence of 2-dimensional maps; a map is organized as stacked columns. A

imagedata data value indexes into a map row.

float *location

Points to bands of coordinate values. For example, if you are using two dimensional explicit

locations, then there would be a band of x’s followed by a band of y’s. The number of
locations or the number of pixels in a band is always the product of row size and column

size. The 1D interpretation mentioned above does not require that either row size or col
size be set to one. The convention is that the length of a 1D signal is the product of the

two.

To convert other types of image files into VIFF format for use in Khoros, use one of the
several file format conversion routines (see the section on File Formats in Chapter 8 of the

Khoros Programmer’s Manual, or the man pages on file_formats).

KHOROS Release: 1.0 1 - 55

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

K.4 VIFF HEADER FIELDS

__

Khoros Image File Format Header Fields

__

Field Description Defines__

char

identifier;

A one byte magic number that identifies a VIFF file XV_FILE_MAGIC_NUM

__

char

file_type;

A one byte code indicating Khoros file type

(currently only VIFF).

XV_FILE_TYPE_XVIFF

__

char

release;

A one byte code indicating the specific release of the

viff.h file (currently 0); this does not have to agree

with the Khoros system release number.

XV_IMAGE_REL_NUM

__

char

version;

A one byte code indicating the specific version of the

viff.h file (currently 3); this does not have to agree

with the Khoros system version number. For

example, version 1 release 0 is referred to as viff 1.0.

XV_IMAGE_VER_NUM

__

char

comment[512];

A 512 byte space available for any use, but currently

is used in Khoros as a comment field to document the

VIFF data file.

none

__

char

machine_dep;

A one byte code indicating how the particular

architecture that the image was last processed on

treats data. Currently supported are DEC order,

IEEE order and NS order. Supported machines

include the VAX, SUN, SONY News, Silicon

Graphics, Motorola, Encore, Sequent, MIPS, DEC,

IBM, Apollo, and NeXT.

VFF_DEP_IEEEORDER

VFF_DEP_DECORDER

VFF_DEP_NSORDER

VFF_DEP_BIGENDIAN

VFF_DEP_LITENDIAN

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

KHOROS Release: 1.0 1 - 56

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

__

Khoros Image File Format Header Fields

__

Field Description Defines__

unsigned long

row_size,

col_size;

These two unsigned long fields indicate data size,

specifically, the number of data items in a band.

row_size indicates the length of a row (the number of

columns, or the image width) in pixels. col_size

indicates the length of a column (the number of rows,

or the image height) in pixels. Images with row and

column sizes of zero are sometimes valid, and

indicate that only the map information is important.

The product of the two values is the total number of

data items present.

none

__

unsigned long

subrow_size;

This unsigned long field specifies the length of any

subrows in the image. This is useful when one wants

pixel vectors to represent 2D objects (images). The

size of each pixel "image" would be subrow_size

(columns) by num_data_bands/subrow_size (rows).

This field may be ignored except by routines that

need the 2D interpretation.

none

__

unsigned long

startx,

starty;

These two long fields indicate the location of a

subimage in a parent image. The image is a sub

image if startx and starty have values greater than

zero. startx and starty locate the upper left hand

corner of where the image was extracted. This

applies to 2D data that has implicit locations.

VFF_NOTSUB

__

float

pixsizx,

pixsizy;

These two floats specify the actual pixel size in

meters at the time of digitization. This information is

needed to do true measurements and calculate true

frequencies. The ratio of these fields will give you

the aspect ratio of the digitized pixel. Most CCD

camera’s are not one-to-one. These values may not

have a meaning if the data is VFF_LOC_EXPLICIT.

none

__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

KHOROS Release: 1.0 1 - 57

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

__

Khoros Image File Format Header Fields

__

Field Description Defines__

unsigned long

location_type;

This unsigned long field indicates whether the image

data has implicit or explicit locations.

If the locations are implicit, the field location_dim

must be set to zero (0), and the location data will be

empty.

If the locations are explicit, the field location_dim

indicates the dimensionality of the space (1D, 2D

and 3D will be most common). The explicit location

data is pointed to by location, and is stored as bands

of coordinates. For example, if (location_dim = 2),

implying 2D locations, the location data would be

stored; x1, x2, . . . , xn; y1, y2, . . . , yn.

VFF_LOC_IMPLICIT

VFF_LOC_EXPLICIT

__

unsigned long

location_dim;

This unsigned long indicates the dimensionality of

the location space of data. Zero-, one-, and two-

dimensionalities will be most common. If the

location_type is implicit, this field must be set to

zero (0). If the location_type is explicit, this field is

set to the dimensionality correctly describing the

data. Remember that 3-dimensional image data is

represented with location_dim = 2 (x & y); the third

dimension (pixel intensity) is stored in the

imagedata.

none

__

unsigned long

num_of_images;

This unsigned long indicates the the number of

images (not bands) pointed to by *imagedata.

none

__

unsigned long

num_data_bands;

This unsigned long indicates the number of bands per

image or the dimensionality of vectors. In some

cases, it may be convenient to think of an image

pixel as a vector (when there is more than one band).

none

__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

KHOROS Release: 1.0 1 - 58

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

__

Khoros Image File Format Header Fields

__

Field Description Defines__

unsigned long

data_storage_type;

This unsigned long field indicates the data storage

type of the pixel or vector data. Currently, bit, byte,

short, integer, float, float complex, double, and

double complex data types are supported. The BIT

storage type stores the bits in packed unsigned chars

and pads to a byte; the order is Least Significant Bit

(LSB) first.

VFF_TYP_BIT

VFF_TYP_1_BYTE

VFF_TYP_2_BYTE

VFF_TYP_4_BYTE

VFF_TYP_FLOAT

VFF_TYP_COMPLEX

VFF_TYP_DOUBLE

VFF_TYP_DCOMPLEX

__

unsigned long

data_encode_scheme;

This unsigned long field contains the information

that specifies the encoding or compression method

used for storage of the data. Only the raw and

compress encoding schemes are supported in Khoros

1.0.

VFF_DES_RAW

VFF_DES_COMPRESS

VFF_DES_RLE

VFF_DES_TRANSFORM

VFF_DES_CCITT

VFF_DES_ADPCM

VFF_DES_GENERIC

__

unsigned long

map_scheme;

This unsigned long field specifies the type of

mapping that should occur. The map is an array,

where the data pointed to by *imagedata is used as

an index into rows of the array.

ONEPERBAND indicates that each data band has a

map. CYCLE is for when a single band is displayed

by cycling through maps. SHARED is for when

there is only one map for all bands to share. The

GROUP mapping scheme is for future Khoros

development, and should not be used as of Khoros

1.0.

VFF_MS_NONE

VFF_MS_ONEPERBAND

VFF_MS_CYCLE

VFF_MS_SHARED

VFF_MS_GROUP

__

unsigned long

map_storage_type;

This unsigned long field indicates the type of data in

the map. Data in the map may be of type char, short,

integer, float, or complex. This is also the resulting

data type after a mapping has been done.

VFF_MAPTYP_NONE

VFF_MAPTYP_1_BYTE

VFF_MAPTYP_2_BYTE

VFF_MAPTYP_4_BYTE

VFF_MAPTYP_FLOAT

VFF_MAPTYP_COMPLEX

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

KHOROS Release: 1.0 1 - 59

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

__

Khoros Image File Format Header Fields

__

Field Description Defines__

unsigned long

map_row_size,

map_col_size;

These two unsigned long fields indicate the number

of rows in the 2D map and the number of columns in

the map. The maps are stored as a sequence of

columns (stacked columns).

none

__

unsigned long

map_subrow_size;

This unsigned long field specifies the number of

subrows in a map. This is useful when using the

output vector from the map is a 2D image, rather

than just a vector. The size of the 2D image would

be: map_subrow_size (columns) by

map_row_size/map_subrow_size (rows). This field

may be ignored except by routines that need the 2D

interpretation.

none

__

unsigned long

map_enable;

This unsigned long field specifies if the image data

will be valid regardless of whether or not it has been

sent through a map. In some cases the mapping is

optional (VFF_MAP_OPTIONAL), while in others,

the data must be mapped in order for it to have a

valid meaning (VFF_MAP_FORCE). See the

previous section on FILE FORMAT

TERMINOLOGY for a more detailed explanation of

the map_enable field.

VFF_MAP_OPTIONAL

VFF_MAP_FORCE

__

unsigned long

maps_per_cycle;

This unsigned long field specifies the number of

maps that would constitute one cycle when the

cycled map scheme type is used. Of course, this field

is only valid when map_scheme is set to

VFF_MS_CYCLE.

none

__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

KHOROS Release: 1.0 1 - 60

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

__

Khoros Image File Format Header Fields

__

Field Description Defines__

unsigned long

color_space_model;

This unsigned long field indicates the color space or

the coordinate system being used to interpret the

image bands.

The color space model defines use the following

convention:

NTSC: National Television Systems Committee

CIE: Commission Internationale de L’Eclairage

UCS: Universal Chromaticity Scale

RGB: Red Component, Green Component, Blue Component

CMY: Cyan Component, Magenta Component, Yellow Component

YIQ: Luminance, I and Q represent chrominance

HSV: Hue, Saturation & Value

IHS: Intensity, Hue & Saturation

Most color map models only make sense when the

map_scheme is set to VFF_MS_ONEPERBAND and

the map_row_size = 3 and the num_data_bands = 1;

alternatively, the map_scheme may be set to

VFF_MS_NONE and the map_row_size = 0, and the

num_data_bands = 3. The exceptions to this are:

VFF_CM_NONE indicates that no color space

model has been assigned, VFF_CM_GENERIC

indicates that a color space is valid, but is being

defined by the user. VFF_CM_genericRGB would

imply that VFF_MS_ONEPERBAND is set with

map_row_size = 3 and num_data_bands = 1.

genericRGB is an RGB image but doesn’t conform to

a standard.

VFF_CM_NONE

VFF_CM_ntscRGB

VFF_CM_ntscCMY

VFF_CM_ntscYIQ

VFF_CM_HSV

VFF_CM_HLS

VFF_CM_IHS

VFF_CM_cieRGB

VFF_CM_cieXYZ

VFF_CM_cieUVW

VFF_CM_cieucsUVW

VFF_CM_cieucsSOW

VFF_CM_cieucsLab

VFF_CM_cieucsLuv

VFF_CM_GENERIC

VFF_CM_genericRGB

__

unsigned long

ispare1,

ispare2;

float

fspare1,

fspare2;

Spare fields available for user defined fields. These

fields are not supported except for reading and

writing correctly with respect to machine

dependencies.

none

__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

KHOROS Release: 1.0 1 - 61

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

__

Khoros Image File Format Header Fields

__

Field Description Defines__

reserve Reserve space is allocated so that the total length of

the header is 1024 bytes and so that more fields can

be added.

none

__

char *maps; This is a pointer to the beginning of the map data.

When it is used, it must be cast to the proper data

type.

none

__

float *location; This is a pointer to the beginning of the location data.

The dimensionality of the location data is given in

the field location_dim. (location_dim specifies the

number of bands of coordinates.) The number of

coordinate values per band is row_size*col_size.

none

__

char *imagedata; This is a pointer to the beginning of the image data.

When it is used in an image processing routine it

must be cast to the proper data type.

none

__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

KHOROS Release: 1.0 1 - 62

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

K.5 EXAMPLES USING THE VIFF FORMAT

The table above succinctly describes each field and its meaning, but it is helpful to have an
example to follow to reinforce the ideas. The following narrative describes the use of the most

difficult fields (location_type, location_dim. num_data_bands, map_scheme, map_row_size,
map_col_size, map_enable and color_space_model) by tracking an image through a typical

Khoros image processing application .

You will probably begin your image processing task by acquiring an image using an eight
bit digital to analog converter. When this image is first brought into the Khoros, it would usually

be declared as:

__

Khoros Image File Format Header Fields

__

Field Defines Description__
location_type VFF_LOC_IMPLICIT a normal digitized image

location_dim don’t care

data_storage_type VFF_TYP_1_BYTE 8 bit data

num_data_bands 1 one band per image

map_scheme VFF_MS_NONE no mapping

map_row_size don’t care

map_col_size don’t care

map_enable VFF_MAP_OPTIONAL don’t need to map

color_space_model VFF_CM_NONE no color model__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Next, you probably will process this image with several of the Khoros programs. As you do this,
you are not likely to change the above fields but may change the data_storage_type field from

VFF_TYPE_BYTE to some other type.

As you view the resulting image with editimage, you may want to enhance the image. This

will change the fields so that the data is interpreted correctly. For instance, if you add "color" to

your grey image and save the result, the header fields should be:

KHOROS Release: 1.0 1 - 63

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

__

Khoros Image File Format Header Fields

__

Field Defines Description__
location_type VFF_LOC_IMPLICIT a normal digitized image

location_dim don’t care

data_storage_type VFF_TYP_1_BYTE 8 bit data

num_data_bands 1 one band per image

map_scheme VFF_MS_ONEPERBAND one map

map_row_size 3 map pixels through

three columns

map_col_size 256 256 rows in the

map

map_storage_type VFF_MAPTYP_1_BYTE 8 bit map result

map_enable VFF_MAP_OPTIONAL don’t have to map

color_space_model VFF_CM_genericRGB pseudo colored__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

The displayed image may be enhanced even further by adding overlays to the image. The

displayed overlay and image are saved by executing getimage (vman getimage). getimage
actually does a screen dump into a VIFF file. If the screen is an eight plane display, then the

resulting fields are:

__

Khoros Image File Format Header Fields

__

Field Defines Description__
location_type VFF_LOC_IMPLICIT a normal digitized image

location_dim don’t care

data_storage_type VFF_TYP_1_BYTE 8 bit data

num_data_bands 1 one band per image

map_scheme VFF_MS_ONEPERBAND one map

map_row_size 3 map pixels through

three columns

map_col_size 256 256 rows in the

map

map_storage_type VFF_MAPTYP_1_BYTE 8 bit map result

map_enable VFF_MAP_FORCE must be mapped!

color_space_model VFF_CM_genericRGB RGB interpretation__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

This means that the image data only has meaning if it is mapped through the three color map
columns.

KHOROS Release: 1.0 1 - 64

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

Let’s return to the image as it was when it was first brought into the Khoros and look at
vector data representations. You may use a Khoros routine that extracts features of an image at

sparse, explicit locations. This is best stored as vector data.

__

Khoros Image File Format Header Fields

__

Field Defines Description__
location_type VFF_LOC_EXPLICIT explicit locations

location_dim 2 x and y locations

data_storage_type VFF_TYP_FLOAT real numbers

num_data_bands 7 each vector has

seven elements

map_scheme VFF_MS_NONE no map

map_row_size don’t care

map_col_size don’t care

map_storage_type don’t care

map_enable VFF_MAP_OPTIONAL don’t have to map

color_space_model VFF_CM_NONE__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

In the case that you want to have a vector for each pixel location in the image and also want a
color map for each vector band (elements), then the fields should be specified as follows:

__

Khoros Image File Format Header Fields

__

Field Defines Description__
location_type VFF_LOC_IMPLICIT a normal digitized image

location_dim don’t care

data_storage_type VFF_TYP_1_BYTE 8 bit data

num_data_bands 3 three bands per image

map_scheme VFF_MS_ONEPERBAND one map per band

map_row_size 1 map vector bands

through one column

map_col_size 256 256 rows in the

map

map_storage_type VFF_MAPTYP_1_BYTE 8 bit map result

map_enable VFF_MAP_OPTIONAL don’t have to map

color_space_model VFF_CM_ntscRGB red, green, blue__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

This is an example of a typical RGB image.

KHOROS Release: 1.0 1 - 65

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

CONTENTS

Chapter 1 - WRITING PROGRAMS / VIFF FORMAT

A. OVERVIEW OF THE KHOROS PROGRAMMER’S MANUAL 1

A.1 CHAPTER SUMMARIES .. 1

A.2 RECIPE FOR USING VOLUME II ... 2

B. WRITING PROGRAMS IN THE KHOROS ENVIRONMENT 3

B.1 INTRODUCTION TO KHOROS VROUTINES & XVROUTINES 3

B.2 OVERVIEW OF PROGRAMMING IN THE KHOROS ENVIRONMENT 6

C. WRITING A VROUTINE ... 6

C.1 CREATING THE UIS FILE ... 7

C.2 USING THE GHOST ROUTINES .. 12

C.3 WRITING THE NEW PROGRAM ... 14

C.3.1 Conventions used for Image Processing Algorithms .. 15

C.3.2 Conventions used for Digital Signal Processing Algorithms 16

C.4 INSTALLATION OF NEW PROGRAM .. 17

C.4.1 Configuration Files .. 17

C.4.2 Installing Your Vroutine .. 18

D. WRITING AN XVROUTINE .. 21

D.1 CREATING THE *.pane FILE FOR YOUR XVROUTINE 22

D.2 USING THE GHOST ROUTINES .. 24

D.3 CREATING THE *.form FILE FOR YOUR XVROUTINE 27

D.4 USING CONDUCTOR .. 29

D.5 WRITING THE NEW XVROUTINE ... 29

D.6 JOURNAL RECORD / JOURNAL PLAYBACK ... 30

D.7 INSTALLATION OF THE XVROUTINE ... 31

E. CONVENTIONS & GUIDELINES FOR ALL KHOROS ROUTINES 33

E.1 GUIDELINES FOR WRITING CODE ... 33

E.2 CONVENTIONS FOR VARIABLE NAMES .. 37

E.3 KHOROS FILE NAMING CONVENTIONS ... 38

F. NOTES ON THE PS FILE ... 39

G. USING THE DEBUGGER ON THE NEW PROGRAM ... 44

G.1 USE OF DBX AND XDBX ... 44

G.2 USE OF SABER ... 45

H. INTEGRATING THE NEW PROGRAM INTO CANTATA 45

I. MAINTENANCE OF NEW PROGRAMS ... 47

J. USE OF TOOLBOXES ... 48

J.1 INTRODUCTION TO TOOLBOXES ... 48

J.2 THE TOOLBOX FILE .. 48

J.3 CREATING A TOOLBOX ... 49

KHOROS Release: 1.0 1 - i

Volume II - Programmer’s Manual Chapter 1 - Writing Programs / VIFF Format

J.4 DON’T FORGET 52

K. VISUALIZATION/IMAGE FILE FORMAT (VIFF) .. 52

K.1 VIFF FILE ORGANIZATION ... 53

K.2 FILE FORMAT TERMINOLOGY ... 53

K.2.1 Image & Imagedata ... 53

K.2.2 Pixels, Bands & Vectors .. 53

K.2.3 Implicit VS. Explicit Locations .. 54

K.2.4 An Aside on One Dimensional Data .. 54

K.2.5 Image Maps, Map Types, Map Enable and Map Schemes 54

K.3 VIFF HEADER POINTERS .. 55

K.4 VIFF HEADER FIELDS .. 56

K.5 EXAMPLES USING THE VIFF FORMAT ... 63

KHOROS Release: 1.0 1 - ii

-- --

