
Parser10 unit 

The PARSER10 unit, together with the P10BUILD unit contain a fully featured mathematical expression 
parser for Delphi 1, Delphi 2, Delphi 3 and C++ Builder 1.0.

TParser parses and evaluates mathematical expressions specified at runtime. Its performance is 
remarkable    only 40-80% slower than similar compiled expression    and it is by far the fastest parser on 
the freeware market.

If you do not have the time to read through all of this help file, the QuickStart section may be interesting.

Components
TCustomParser
TParser

Exceptions
EMathParserError
EBadName
EExpressionHasBlanks
EExpressionTooComplex
EMissMatchingBracket
EParserInternalError
ESyntaxError
ETooManyNestings

Types
ParserFloat
POperation
PParserFloat
TMathProcedure
TOperation
TParserExceptionEvent
TToken



QuickStart

The programming interface for TParser is simple:

specify values for predefined variables in properties 
A,B,C,D,E,X,Y or T;

optionally add new variables or removing existing ones;
specify expression to be evaluated in Expression property;
optionally change value of variables
retrieve computed value in Value property. 

Example
  Parser1.X := 100;
  Parser1.Y := 200;
  Parser1.Variable['z'] := 20;
  Parser1.Expression := 'sin(x)*cos(y)+z';
  Result := Parser1.Value;

If you want to compute several values of the same expression with different sets of variables, specify the
expression once only as this operation is rather time consuming, then assign new values for variables 
and 
retrieve the Value property as many times as you wish. 

Example
  for i := 1 to 100 do
  begin
    Parser1.X := i;
    Result := Parser1.Value;
  end;

You also may add your own variables by specifying their names and values using the SetVariable 
method, accessing them via a property or through direct memory access (as usual variable names are not 
case-sensitive).

Example (the following lines are all equivalent)

  Parser1.Variable['Test'] := 100;
  Test := Parser1.Variable['Test'];

  Parser1.SetVariable('Test', 100);
  Test := Parser1.GetVariable('Test');

var
  PTest : PParserFloat; { pointer to memory }
begin
  PTest := Parser1.SetVariable('Test', 100);
  PTest^ := 200; { set 'Test' = 200 } 
  Test := PTest^;

There is no limit for expression length in the 32bit version, while the 16bit version has a restriction of 255 
characters.

 Predefined constants:
PI

  



 Accepted operators: + , - , * , / , ^ , MOD, DIV
    [ MOD and DIV implicitly perform a trunc() on their operands ]

 The following functions are supported; it doesn't matter if you use lower or upper case:

[ NOTE: to activate some additional functions you need to remove the SpeedCompare conditional define 
in PARSER10.PAS !]

COS, SIN, SINH, COSH, TAN, COTAN, ARCTAN, ARG,

EXP, LN, LOG10, LOG2, LOGN,

SQRT, SQR, POWER, INTPOWER,

MIN, MAX, ABS, TRUNC, INT, CEIL, FLOOR, 

HEAV (heav(x) is =1 for x>0 and =0 for x<=0),
SIGN (sign(x) is 1 for x>1, 0 for x=0, -1 for x<0),
ZERO (zero(x) is 0 for x=0, 1 for x<>0),
PH (ph(x) = x - 2*pi*round(x/2/pi))
RND (rnd(x) = int(x) * Random)
RANDOM (random(X) = Random; the argument X is not used)

  
Adding your own functions is easy, too. Either use…

AddFunctionOneParam or
AddFunctionTwoParam

… if you do not want to create a new class, or create a new class, inheriting from TParser and add your 
functions to the lists, as demonstrated in the source code of TParser.Create in PARSER10.PAS.

Important:
Do not use blanks (#32) in the expression. The parser is unable to handle these and raises an exception 
in response.

You can use bracketing (nestings) up to a level of 20. This can be increased at the expense of stack 
consumption by changing the line
        maxBracketLevels = 20;
in P10BUILD.PAS. This should not be a problem.

If you get an "Expression too complex" exception increase
        maxLevelWidth = 50;
in P10BUILD.PAS. This should never happen.

You can define your own variables at runtime, in code you will use

Parser1.Variable.Add('NAME', 123456)

or simply (but slow)

          Parser1.Variable['ANOTHER'] := 1.23

See the demonstration program for better techniques.



Important:
The used mathematical routines behave exactly like Delphi runtime code in case of errors. Some people 
feel that this is a problem.

This is not a parsing issue, but rather a lack of attention to the actual maths part (which is in a few places 
is sloppy - deliberately)... Most probably you will be using your own mathematical routines which are 
faster, more reliable, and provide more functionality.



EMathParserError Exception

Unit
Parser10

Declaration
EMathParserError = class(Exception);

Description
This is the base exception for all exceptions raised by the parser.



ESyntaxError Exception

Unit
Parser10

Declaration
ESyntaxError = class(EMathParserError);

Description
In case of an expression syntax error this exception will be raised.



EExpressionHasBlanks Exception 

Unit
Parser10

Declaration
EExpressionHasBlanks = class(EMathParserError);

Description
TCustomParser and TParser cannot handle expressions that contain blanks.

If the parsing engine nevertheless gets passed an expression that contains blanks, it will first attempt to 
remove trailing and leading blanks. Only if after this blanks are left in the expression this exception will be 
raised.



EExpressionTooComplex Exception

Unit
Parser10

Declaration
EExpressionTooComplex = class(EMathParserError);

Description
If the expression assigned to the Expression property is too complex, this exception will be raised; if the 
dynamic expression matrix code has been activated this exception will never occur. In case the static 
expression matrix code is used it is highly unlikely that this exception will ever occur (the limits have been 
set very generously).



ETooManyNestings Exception

Unit
Parser10

Declaration
ETooManyNestings = class(EMathParserError);

Description
If compiled with the static expression matrix code, this exception will be raised, when the number of 
bracketing levels exceeds the number defined in P10BUILD.PAS by maxBracketLevels (by default set 
to 20).

There is no limit in the number of bracketing levels used if the component has been compiled with the 
dynamic expression matrix code.



EMissMatchingBracket Exception

Unit
Parser10

Declaration
EMissMatchingBracket = class(EMathParserError);

Description
If a (opening or closing) bracket is missing from the expression, this expression will be raised, indicating 
the number and type of missing brackets.



EBadName Exception

Unit
Parser10

Declaration
EBadName = class(EMathParserError);

Description
This exception will be raised each time a variable or function is added to the parser that does not match 
the Pascal naming convention.    Additionally, functions or variables containing the character sequences 
"MOD" and "DIV" are not allowed, as the parser would not be able to discriminate between these 
operators and the variable / function in an expression.



EParserInternalError Exception

Unit
Parser10

Declaration
EParserInternalError = class(EMathParserError);

Description
You hopefully we will never see this exception, as it indicates that some internal assumptions went wrong.

If you get this exception, please contact Stefan.Hoffmeister@poboxes.com with the expression and the 
exact circumstances that caused the problem.



TCustomParser Component

Properties Methods Events

Unit
Parser10

Description
This is the base class of the parser, defining all of the functionality. Its only child in the Parser10 unit, 
TParser, only adds some access methods to pre-defined variables and supplies some instantly known 
functions to the parsing and evaluation engine.



Properties
 Run-time only

 Key properties
  

A
  

PascalNumberformat
  

B
  

T
  

C
 

 Value
  

D   Variable
  

E
  

X
 

 Expression
  

Y
 

 

LinkedOperationList  

 

ParserError
Methods

 Key methods
  AddFunctionOneParam   ClearVariable   ParseExpression
  AddFunctionTwoParam   ClearVariables   SetVariable
 ClearFunction   FreeExpression   VariableExists
  ClearFunctions   GetVariable  
Events

 Key events
  OnParserError       

A property

Applies to
TCustomParser, TParser

Declaration
property A: ParserFloat;

Description
This is a pre-defined variable that is accessible at design-time. Its only purpose is its presence at design-
time; apart from that it is a normal variable.



B property

Applies to
TCustomParser, TParser

Declaration
property B: ParserFloat;

Description
This is a pre-defined variable that is accessible at design-time. Its only purpose is its presence at design-
time; apart from that it is a normal variable.



C property

Applies to
TCustomParser, TParser

Declaration
property C: ParserFloat;

Description
This is a pre-defined variable that is accessible at design-time. Its only purpose is its presence at design-
time; apart from that it is a normal variable.



D property 

Applies to
TCustomParser, TParser

Declaration
property D: ParserFloat;

Description
This is a pre-defined variable that is accessible at design-time. Its only purpose is its presence at design-
time; apart from that it is a normal variable.



E property

Applies to
TCustomParser, TParser

Declaration
property E: ParserFloat;

Description
This is a pre-defined variable that is accessible at design-time. Its only purpose is its presence at design-
time; apart from that it is a normal variable.



T property

Applies to
TCustomParser, TParser

Declaration
property T: ParserFloat;

Description
This is a pre-defined variable that is accessible at design-time. Its only purpose is its presence at design-
time; apart from that it is a normal variable.



X property

Applies to
TCustomParser, TParser

Declaration
property X: ParserFloat;

Description
This is a pre-defined variable that is accessible at design-time. Its only purpose is its presence at design-
time; apart from that it is a normal variable.



Y property

Applies to
TCustomParser, TParser

Declaration
property Y: ParserFloat;

Description
This is a pre-defined variable that is accessible at design-time. Its only purpose is its presence at design-
time; apart from that it is a normal variable.



ParserError property

Applies to
TCustomParser, TParser

Declaration
property ParserError: boolean;

Description
This property will be set to True if the least recently passed expression (using either ParseExpression 
or the Expression property) was parsed without error. It will be False otherwise.



LinkedOperationList property

Applies to
TCustomParser, TParser

Declaration
property LinkedOperationList: POperation;

Description
The LinkedOperationList property points to the first element of a sequence of mathematical 
operations.

Please do never modify this property or the pointer therein unless you are aware of all the side-effects of 
this action.



Variable property

Applies to
TCustomParser, TParser

Declaration
property Variable[const VarName: string]: extended;

Description
Accessing the Variable property is yet another way to get and set a variable's value. This is the by far 
slowest way to access variable values. It is only provided for completeness and to allow more elegant 
code.

It is strongly recommended that you use the methods GetVariable and SetVariable directly.



Value property

Applies to
TCustomParser, TParser

Declaration
property Value: extended;

Description
To evaluate an expression simply query this property.

Example
Parser1.Variable['theta'] := 2.5;
Parser1.Expression := '100+100+sin(theta)';
Result := Parser1.Value;



Expression property

Applies to
TCustomParser, TParser

Declaration
property Expression: string;

Description
Setting the Expression property will automatically parse the expression.

If an error occurs while the expression is parsed, an exception may be raised. If OnParserError is not 
assigned the exception will fall through to the next exception handler. Otherwise the OnParserError 
event will be triggered.

Example
Parser1.Variable['theta'] := 2.5;
Parser1.Expression := '100+100+sin(theta)';
Result := Parser1.Value;



PascalNumberformat property

Applies to
TCustomParser, TParser

Declaration
property PascalNumberformat: boolean;

Description
This property determines the expected format of numbers in an expression.

If set to True the standard Pascal number format with the '.' being the decimal separator and no thousand 
separator will be used.

If set to False, numbers adhering to the current international country settings will be expected. 
DecimalSeparator and ThousandSeparator as declared in the SysUtils unit will be used.



ParseExpression method

Applies To
TCustomParser, TParser

Declaration
function ParseExpression(const AnExpression: string): boolean;

Description
Use ParseExpression to translate an expression into the internal representation of the component.

Calling this function will automatically assign the passed argument to the Expression property.

The function will return False, if an error occurred while parsing the expression; True otherwise.



FreeExpression method

Applies To
TCustomParser, TParser

Declaration
procedure FreeExpression;

Description
The FreeExpression method will discard the internal structures built by ParseExpression.



SetVariable method

Applies To
TCustomParser, TParser

Declaration
function SetVariable( VarName: string; 
                      const Value: extended): PParserFloat;

Description
Use this method to assign a value to a memory. If the variable does not exist, it will be created.

The PParserFloat returned points to the place in memory where the variable actually is stored; to 
speed up assignment you can directly assign data to the memory area.

Example
var
  APParserFloat: PParserFloat;
begin
  APParserFloat := Parser1.SetVariable('Test', 1.333);
  ShowMessage(FloatToStr(APParserFloat^));



GetVariable method

Applies To
TCustomParser, TParser

Declaration
function GetVariable(const VarName: string): extended;

Description
Call GetVariable with the name of the variable to retrieve the variable's current value. If the variable 
does not exist, 0.0 is returned.

If you happen to know the location of the variable in memory, for instance because you stored the pointer 
returned by SetVariable, it is much faster to read the memory directly.



AddFunctionOneParam method

Applies To
TCustomParser, TParser

Declaration
procedure AddFunctionOneParam( const AFunctionName: string; 
                               const Func: TMathProcedure);

Description
This procedure will add under the name of AFunctionName the code pointed to by Func.

The passed function code is expected to process exactly one argument (arg1^) and write the result of 
this argument into dest^.

procedure MySquareRoot(AnOperation: POperation); far;
begin
  with AnOperation^ do
    dest^ := sqrt(arg1^);
end;

and

Parser1.AddFunctionOneParam('squareroot', @MySquareRoot);

You can add functions dynamically at runtime and discard those too. For the latter operation use either 
ClearFunctions or ClearFunction.



AddFunctionTwoParam method

Applies To
TCustomParser, TParser

Declaration
procedure AddFunctionTwoParam( const AFunctionName: string; 
                               const Func: TMathProcedure);

Description
This procedure will add under the name of AFunctionName the code pointed to by Func, where the 
function is declared as "far", see TMathProcedure.

The passed function code is expected to process exactly two arguments (arg1^ and arg2^) and write 
the result of the arguments into dest^.

procedure MyMaximum(AnOperation: POperation); far;
begin
  with AnOperation^ do
    if arg1^ < arg2^ then
      dest^ := arg2^
    else
      dest^ := arg1^;
end;

and

Parser1.AddFunctionTwoParam('maximumvalue', @MyMaximum);

You can add functions dynamically at runtime and discard those too. For the latter operation use either 
ClearFunctions or ClearFunction.



ClearVariables method

Applies To
TCustomParser, TParser

Declaration
procedure ClearVariables;

Description
All variables are discarded from the parser. The internal representation of the expression is invalidated. 
You need to set the Expression property or call ParseExpression to continue using the parser.



ClearVariable method

Applies To
TCustomParser, TParser

Declaration
procedure ClearVariable(const AVarName: string);

Description
The variable as passed is discarded from the parser. The internal representation of the expression is 
invalidated. You need to set the Expression property or call ParseExpression to continue using the 
parser.



VariableExists method

Applies To
TCustomParser, TParser

Declaration
function VariableExists(const AVarName: string): boolean;

Description
This function tests whether a variable with the passed name exists. It returns True if a variable of the 
name exists, False if not.



ClearFunctions method

Applies To
TCustomParser, TParser

Declaration
procedure ClearFunctions;

Description
All functions are discarded from the parser. The internal representation of the expression is invalidated. 
You need to set the Expression property or call ParseExpression to continue using the parser.



ClearFunction method

Applies To
TCustomParser, TParser

Declaration
procedure ClearFunction(const AFunctionName: string);

Description
The function as passed is discarded from the parser. The internal representation of the expression is 
invalidated. You need to set the Expression property or call ParseExpression to continue using the 
parser.



OnParserError event

Applies To
TCustomParser, TParser

Declaration
property OnParserError: TParserExceptionEvent;

Description
In case the parsing engine hit an error an exception will be raised (see the declared exceptions). If 
OnParserError has been assigned the exception will be passed to the event handler and no further 
action will be taken.

If no event handler has been assigned the exception will fall through to the next exception handler and, if 
it is the application's default exception handler, be displayed in a message box.



TParser Component

Properties Methods Events

Unit
Parser10

Description
The only purpose of TParser is to publish the variable properties declared as protected in 
TCustomParser and to add default functions to the parsing engine.



Properties
 Run-time only

 Key properties
  

A
  

PascalNumberformat
  

B
  

T
  

C
 

 Value
  

D  

 

Variable
  

E
  

X
 

 Expression
  

Y
 

 

LinkedOperationList  

 

ParserError
Methods

 Key methods
  AddFunctionOneParam   ClearVariable   ParseExpression
  AddFunctionTwoParam   ClearVariables   RemoveBlanks

ClearFunction   FreeExpression   SetVariable
  ClearFunctions   GetVariable   VariableExists
Events

 Key events
  OnParserError       

RemoveBlanks method

Applies To
TParser

Declaration
class function RemoveBlanks(const s: string): string;

Description
This function will return the passed string with all blanks removed.



ParserFloat type

Unit
Parser10

Declaration
ParserFloat = double;

Description
ParserFloat is the generic floating point type of the component.

It is used in declarations of the properties and for direct memory access of variable values as well as for 
internal calculations.

Note: never use the old Borland / Turbo Pascal "real" type, only use the true floating point types single, 
double or extended.



PParserFloat type

Unit
Parser10

Declaration
PParserFloat = ^ParserFloat;

Description
PParserFloat is a pointer to a memory location containing a ParserFloat.

This pointer may be returned by SetVariable for very fast, direct variable access in memory.



TToken type

Unit
Parser10

Declaration
TToken = ( variab, constant,
           minus,
           sum, diff, prod, divis, modulo, IntDiv,
           integerpower, realpower,
           square, third, fourth,
           FuncOneVar, FuncTwoVar);

Description
TToken declares all possible tokens the parser understands.

Usually you will not need to use this type.



POperation type

Unit
Parser10

Declaration
POperation = ^TOperation;

Description
POperation is a pointer to a record of TOperation.

Usually there will be no need to ever use this type.



TMathProcedure type

Unit
Parser10

Declaration
TMathProcedure = procedure(AnOperation: POperation);

Description
Functions that are added to the engine must adhere to this declaration, see also the help topic for 
POperation; you also need to make sure that the procedure is declared "far" in Delphi 1. See 
AddFunctionOneParam and AddFunctionTwoParam for adding additional functions to the parsing 
engine.

If the function you are adding has been declared in the interface section of a unit, it implicitly has been 
declared as "far" by the compiler already (see the Delphi 1 compiler documentation).

There is no need to declare these functions "far" in 32bit (Delphi 2 / 3, C++ Builder), as all functions are 
automatically declared far in these systems.



TOperation type

Unit
Parser10

Declaration
TOperation = record
               Arg1, Arg2: PParserFloat; 
               Dest: PParserFloat;
               NextOperation: POperation;
               Operation: TMathProcedure;
               Token: TToken;
             end;

Description
TOperation is used when parsing an expression. It is used internally only.



TParserExceptionEvent type

Unit
Parser10

Declaration
TParserExceptionEvent = procedure ( Sender: TObject; 
                                    E: Exception) of object;

Description
If an error occurs during parsing, the OnParserError will be fired. The method called will be declared 
according to the template defined by TParserExceptionEvent.

We could use the Forms unit here and the TExceptionEvent declared therein, but that would give us 
all the VCL overhead. To avoid this we consequentially just re-declare an appropriate event.




