WEB TOOLS FOR DELPHI

S0 You Want To
Be AWeb Wizard...

Tools for building web apps in Delphi

Reviewed by Brandon Smith

Developing a web application is a
simple three-stage process. First

pick one or more of the following acro-
nyms: HTTP, HTML, PING, POPS3,
SMTP, NNTP, TCP/IP, UDP, ISAPI, CGl,
NSAPI, XML, TELNET, FTP, ASP, DCOM,
CORBA, etc. Next select your language
of choice, such as Visual Basic, Java,
Delphi, JavaScript, VBScript, Perl,
NetRexx, C++, or whatever. Finally, pull
up your favorite internet search tool,
such as WebFerret, type in your selec-
tions from stages one and two, and
press Enter. You will now have a list of
several hundred sites, most of which
use one or more of your selections, and
some of which actually provide what
we’re really looking for: a component
suite that you can mate with your
language of choice to produce a web
application.

This article is not a conventional
review, rather it's a discussion of some
of my experiences with specific pro-
jects using a selection of tools. But,
nevertheless, it should prove useful in
your own decision process.

What’s In The Box...

When | first got the assignment to con-
vert an existing client/server Windows
3.1 application to a web browser client
going against an NT/IIS ISAPI server
application in Delphi 3, 1 did not do any
searching. Delphi Client/Server 3 (and
4) comes with an excellent set of web
application development components
based on a special form, TWebModule.
The Netmaster suite of internet com-
ponents which comes with Delphi 2, 3
and 4 is not excellent in my view,
although the original set, WinShoes, is.

Developers Review

TWebModule is an entirely different
proposition: an HTTP-aware form
which hosts components such as
TPageProducer to make producing
dynamic HTML almost trivial. Within a
week, | had the logon sequence com-
pleted and was translating the
client/server logic behind the initial
search and selection screens to the
new HTML 3.2 client environment.

During my initial burst of work, I'd
also learned the basic secret to devel-
oping ISAPI web server extensions: do
them first as plain CGI, so that you
have an EXE file you can run in the
debugger with ease, and also so that
when you exit the program the web
server doesn’'t have to be stopped
before you can make any changes.
ISAPI applications are actually special-
ized DLLs which are loaded by the web
server when first called, and which
thereafter belong to the server and
cannot be unloaded without unloading
the server itself. Also, an access viola-
tion in your code will probably crash
the server and perhaps even your
whole system. The Delphi TWebModule
requires you specify whether you are
making a CGI or an ISAPI application
when you create one. There are a few
programming differences between
doing CGI or ISAPI, but for the most
part anything you build as a CGI with
Delphi’s TWebModule you can convert
to ISAPI without any changes other
than the include files at the top of the
project file.

There was one aspect of working out
this second chunk of programming
that bothered me. | had to somehow
pass the user name and password back

12 2

and forth between the client and the
server each and every time control
moved between them. This is due to
the fact that HTTP is stateless. When a
web server receives a request, it sends
a response based on the header and
contents of the request and then
promptly forgets the whole thing and
begins waiting patiently for the next
request. HTTP 1.1 is supposed to allow
saving state, but only the latest brows-
ers support this. Out on the bleeding
edge of web technology there are many
more methods of overcoming this
state-saving problem, but even now
one cannot count on the customer
having the appropriate level of web
browser.

Cookies are an easy way to over-
come the problem, being nearly uni-
versally supported by the browsers
one is likely to find. However, cookies
have unjustly earned a less than good
reputation and some people turn off
their cookies. While it was highly
unlikely that any of our customers
would believe that the government
was going to take over their computer
and use it to listen in on their private
dinner conversations, it was entirely
possible that some of them would have
turned their cookies off.

| had worked out a method for
encoding the user name and password
into a hidden form variable, and this
technique would certainly work,
though it also means that anyone who
knows about the View | Source option
on the browser menu could lift the
encoded name and password and use
them (assuming they figured out what
they were) for their own nefarious pur-
poses. By including date and time
information in the encoding scheme,
the danger from that can be minimized,
but the more | worked on it, the more |
realized there must be a better way to
approach the whole ‘web browser
clientwith web server server’ architec-
ture. So | went online and searched for
alternatives.

...And What’s Not

Since Delphi was the language of
choice for this assignment, | found sev-
eral component sets which fell roughly

Issue 8, February 1999

into two basic categories: highly gran-
ular or highly integrated. The granular
component sets generally offer many
components, each customized to one
specific protocol, while the integrated
suites usually offer fewer but more
powerful components. Cutting across
that categorization is another two-way
splitin what is offered to Delphi devel-
opers: socket programming or HTTP
integration. Socket programming is
what you want to use when you need
100% control over the client: you can
have a Delphi executable at both ends,
and in fact you are generally not using
the HTTP protocol. If you want the
client to be an off-the-shelf browser,
however, you need a suite which is
centered on the HTTP protocol. The
decision chart in Figure 1 summarizes
these categories and their relationship
to your upfront design decisions.

Piette’s Internet Component
Suite And MidWare Suite

The highly granular component sets
generally offer a multitude of highly
focused individual components. For
example, Piette’s Internet Component
Suite, or ICS, (freeware, available at
www.rtfm.be/fpiette) contains 22 files
in the DPK file as part of a package (not
counting C++ support) containing
some 250 source code files. Certainly
an excellent place to start if you want
to build specialized web applications.
Much as | wanted to take the time and
effort to learn web programming from
the ground up, my schedule did not
allow me this kind of luxury. To give
you afeel for the kind of detail and flexi-
bility you get with ICS, browse through
the list from the readme.txt file in
Table 1.

In addition to the components he
provides plenty of sample applications
using them. This set of components
also offers both kinds of programming
support for Delphi developers. You
can bypass the whole web business
and work directly with sockets, or you
can work through the web using the
HTTP protocol.

Next | turned to another offering
from Monsieur Piette, his freeware
MidWare suite. This is an extension of

Issue 8, February 1999

WEB TOOLS FOR DELPHI

Java or other plugins will
be accepted; cookies will be
accepted by client

We need to
save state

Yes

\

WebHub

CGI-Expert,
Delphi's TWebModule,
MidWare,
IP*Works, ICS or other
HTTP/HTML suite

the ICS along with the sample applica-
tion programs near and dear to the
heart of anyone venturing out into
n-tier land. Again, a great place to start
from the ground up. But | would be
using the Client/Server version of
Delphi and did not need to build an
object request broker from scratch. If
you do not have the Delphi
Client/Server edition, MidWare would
be an excellent choice.

dbOvernet

dbOvernet, a commercial n-tier devel-
opment tool, falls into the second
category: fewer, but more powerful
components. On the clientside thereis
an AppServerClient, a Dataset
Buffer and a Dataset; on the server
side is an ApplicationServer and a

WSocket.pas
HttpProt.pas
FtpCli.pas
FtpSrv.pas
Ping.pas
Pop3Cli.pas
MimeDec.pas
SmtpCli.pas
NntpCli.pas
TnCnx.pas
TnScript.pas
EmulVT.pas
TnEmulVT.pas
FingCli.pas
Wait.pas

Client will be a
standard browser

Midware, dbOvernet;
Socket level work with ICS,
Winshoes, IP*Works or
other granular suites;
Roll your own ActiveX

Emulator such as Citrix,
or a Java based solution

L] Figure 1: Decisions, decisions...

RequestBroker along with support
components, including a Socket, a
RequestBroker, and some SQL-
specific support stuff. This package is
an excellent alternative to the rather
high cost of the Delphi Client/Server,
but itis a socket solution and does not
address the HTTP actions | needed to
use a browser client. If you are plan-
ning to build your ‘web’ application
without using the web, this one is a
winner.

CGl-Expert
Lars Akerman’s CGl-Expert (www.
cgiexpert.com), despite its name, also

Ll Table 1:
Piette’s Internet Component Suite.

Winsock component: TCP, UDP, DNS,...

HTTP client protocol: used by the web

FTP client protocol: file transfer

FTP server protocol: file transfer

ICMP echo protocol: ping a host

POP3 client protocol: get mail from mail server
MIME component: decode file attach, use with POP3
SMTP client protocol: send mail to server

NNTP client protocol: send/receive newsgroup messages
TELNET client protocol: terminal emulation protocol)
TELNET client protocol: with automation

ANSI terminal emulation in a control

TELNET and ANSI terminal emulation combined
FINGER client protocol: Find information about user

A kind of progress bar

Developers Review

WEB TOOLS FOR DELPHI

does ISAPI quite easily, with nearly the
same flexibility of switching between a
CGI development project to an ISAPI
deployment project as is provided in
the Inprise WebModule. The price is
considerably better, however. He
offers a freeware version that does
only the most basic HTTP request and
response stuff, though it does feature
both THTTPFileFilter and THTTP
MemoFilter components which
behave just as flexibly as, though dif-
ferently to, the PageProducer compo-
nents Inprise offers. | would tend to
categorize this offering as highly gran-
ular and HTTP oriented, though the
degree of integration is higher than |
found in ICS. A friend who owns a small
web farm was looking for a tool to hit
the Internic name registry site and find
out if a name was available. | was able
to build a CGl that did the job for himin
a few hours using CGIl-Expert, though |
did have to buy a license because the
freeware offering was missing the
piece that would let me send off an
HTTP request to somewhere else on
the web while still in the process of
building a response to an immediate
request. The problem of state did not
come up in this little application, and
the only way to save state with this set
of components would be to use
cookies, or the technique | had been
considering earlier.

IP*Works

IP*Works from DevSoft (at www.
dev-soft.com) is another highly granu-
lar offering of components, more
extensive than either ICS or CGI-
Expert, but also costing more. By this
time, | was looking only at HTTP sup-
port and how the state saving issue
was handled. IP*Works seemed to
have the kind of HTTP support | would
need, but offered only cookie manage-
ment for saving state.

WebHub

Then | turned to WebHub from HREF
Tools (www.href.com). This Delphi
Web application development envi-
ronment is highly granular and highly
integrated at the same time. You could
do socket level stuff with what’s

Developers Review

available, but the primary focus is
taking over an HTTP Server and turn-
ing it into an extension of Delphi.

At first glance, especially after
installing it and discovering the huge
number of new components on your
palette, it would seem HREF are follow-
ing the highly granular approach. How-
ever, WebHub does quite a bit more,
and in fact is the only tool I'd recom-
mend for a heavy duty client/server
type of application. However, the
learning curve is somewhat akin to
climbing a mountain, and building a
web application in WebHub requires a
full time concentrated effort.

Before discussing WebHub in more
detail, though, I'd like to touch on three
other areas. One is the actual solution
we used for our project, the conver-
sion ofaWindows 3.1 client/server app
to use an HTML 3.2 browser as the
client. I'd also like to touch on Active
Server Pages and discuss briefly the
design constraints of writing a web
application in Delphi.

Diversion: Citrix And ASP
After downloading and installing trial
versions of most of the above products
and working though the various
approaches to saving state, I'd recom-
mended we go with WebHub. However,
one of the higher-ups was not pleased
with the idea that his code shop would
now be maintaining one set of code for
users directly attached to the network
and an entirely different set of code for
users coming in through the internet.
Enter Citrix and WinFrame. This prod-
uctis essentially an emulator: once the
user is connected to the Citrix server,
what shows up on the user’s screen is
an exact graphical image of the appli-
cation running on Windows, whether
they come in via a network connection
or via an internet connection. In addi-
tion, itdoesn’t matter whether the end-
user’'s machine is Windows or
Maclntosh. The screen, keyboard and
mouse respond as if they were sitting
in front of a Windows machine dedi-
cated to running your app.

The downside is that one has to be
willing to sink rather large amounts of
money into hardware costs and

licensing fees. One would need a dedi-
cated person to handle the Citrix
installation and maintenance, and per-
haps a different person to figure out
the licensing requirements. | didn’t do
the numbers, but | wouldn’t be sur-
prised if it turns out that even with
these huge hardware and licensing
costs, they are still cheaper than soft-
ware maintenance for two sets of code
over something like a ten or twenty
year projection. Visit www.citrix.com
if you are interested in taking it further.

An entirely different approach to
web applications is Active Server
Pages (ASP), which are at present lim-
ited to Microsoft IIS servers and would
appear at first glance to require Java-
Script or Visual Basic and all kinds of
special Microsoft tools (as an aside, |
came across something called
Chilisoft, visit www.chilisoft.com, just
before sending in this article: they
promise ASP support for HTTP servers
other than IIS).

The only requirement is that
JavaScript or a related dialect is
required to activate an ASP object, but
the object itself can be written in
Delphi and, from within the object, one
has access to all of IIS through COM
interfaces. In addition, Microsoft is
building (and probably will be building
for several years yet) support struc-
tures to support web applications: the
Global.asa file, for example, can be
used to set up both application and
session specific objects and common
functions, although the session con-
trol at this time is still cookie based. All
this supportinfrastructure is visible to
the Delphi ASP object through COM
interfaces. Best of all, one does not
need to require the user to have a
browser that understands JavaScript,
one can instead use server-side Java
script to activate your Delphi written
ASP objects. Once one has imported
the appropriate type libraries, one’s
Delphi program can take over a
website and control nearly 100 percent
of what goes on, from within the Delphi
code. But not 100 percent, because
what must arrive at the user’s browser
is a text file with appropriate HTML
tags.

Issue 8, February 1999

WEB TOOLS FOR DELPHI

Which leads to the constraints of
designing a web application powered
by Delphi (or Visual Basic, or C++, for
that matter). The central constraint is
that the user input has to be controlled
from the browser, an interface which is
not under the control of Delphi. All
user input will come in through input
fields within the HTML <FORM> tag.
There are some other ways to get user
input; for example, the user can type a
URL with arguments, but in any case,
one does not have an event based envi-
ronment and one does not have access
to keystrokes or mouse events. If you
are able to require your users to have
the latest browser, you do have
applets, client side JavaScript,
DHTML, XML and all the other neat
things out on the bleeding edge. How-
ever, you will soon find yourself main-
taining code in several different
languages, several of them confusingly
similar. Plus you get to have the fun
task of writing code to figure out what
kind of browser is currently using your
application, and having at least two
branches of code to handle Netscape
versus MSIE.

Back To WebHub
In practical terms, the most difficult
hurdle to overcome is realizing that
even the simplest logical branching,
such as ‘If user selects A, then show page
23 else show page 24’, cannot be put
into your Delphi code. The first part,
the ‘selects A’, has to be read from the
HTTP Request object when it arrives
from the user. You'll then need some
Delphi code to translate what arrived
from the user into a Boolean expres-
sion before you can get to the point
when you can send page 23 or 24 back.
Object orientation is basically out of
the door and you are back to tedious
and detailed procedural processing.
You will, of course, wrap everything in
neat and orderly classes, but most of
your maintenance work is going to be
very much step-by-step tracing back
and forth between the contents of an
HTTP Request header and your
program logic.

Then you pick up the WebHub man-
uals and start to get excited as you see

Developers Review

they have done most of the wrapping
for you. Your HTML, instead of being
in separate text files, is not only con-
tained within your web app, but you
can change it on the fly. Not only
during design-time, but even while
your web application is live and doing
live transactions over the internet!

On top of that, session tracking is
very neatly handled by a special engine
which WebHub calls a runner. The
runner does much more than act as a
central traffic cop, making sure that
each user is tracked separately with-
out having to bother the user’s
machine with cookies. The runner
mechanism also allows you to have
multiple Delphi applications running
simultaneously, each servicing a differ-
entaspect of your website. | don’t have
enough space to describe even half of
the features of WebHub, but the home
site, www.href.com, has plenty of
resources and the authors are very
responsive in helping users get over
the hurdles. WebHub is a complete
web application development environ-
ment and includes their own special
dialect of HTML that handles server
side manipulations. I'm convinced that
if you are willing to put in the time to
master them, the tools you get when
you buy into WebHub will enable you
to do anything you want, and with a
responsiveness that will make your
customers more than happy.

One aspect of WebHub’s session
tracking mechanism deserves special
mention for those working with a com-
mercial database back end. All of the
heavy duty database back ends charge
licensing fees based on some formula
that means you pay for each connec-
tion to, or transaction between, your
application and the database. It's easy
to open a new connection for each
stateless iteration of a user-server
transaction, but this will drive your
licensing costs sky high in a very short

www.itecuk.co

News, Contacts, Back Issues, What’s Co
and much more, with a full site search capab
so you can find what you need quickly and easi

16 2

time. You need to keep track of who the
current request is coming from, and
you need to have some special Delphi
code in place to link that user with the
same database connection you initi-
ated when the user first signed on.
More than likely, this will involve
threads and other delicate operations
in addition to the functional logic of
your program. WebHub’s runner
engine and session saving mechanism
can be set up so that this linkage is
taken care of by WebHub. There are
other ways of minimizing licensing
costs, such as pooling database con-
nections, but then you lose any audit-
ing mechanism builtinto the database.

Conclusions

Your choice of after market Delphi web
development components depends on
what kind of application you want to
put on the web as well as what kind of
coding you want to do. If you want, for
example, to bypass the entire HTTP/
HTML muddle and use the internet as
your network connection, then you
probably want something based on
socket level code and you will find
MidWare, dbOvernet, or IP*Plus to be
the kind of tool you want. On the other
hand, if you want to take advantage of
the HTTP/HTML magic that has taken
the world by storm, and you have arel-
atively simple application, CGI-Expert
is probably your cup of tea. On the
third hand, if you have a complex data-
base application to ‘webify’, you can
either use the HTTP pieces of some-
thing like MidWare or IP*Plus, or you
can jump in and let WebHub handle
HTTP for you and concentrate on
Delphi code and customized HTML.

Brandon Smith works in Jefferson
City, Missouri for Rose International,
on Delphi object infrastructure build-
ing. Find him at delphi@synature.com

Issue 8, February 1999

	What’s In The Box...
	...And What’s Not
	Piette’s Internet Component Suite And MidWare Suite
	dbOvernet
	CGI-Expert
	IP*Works
	WebHub
	Diversion: Citrix And ASP
	Back To WebHub
	Conclusions

