
TKronos component
Properties  Methods Events
Unit
Kronos

The TKronos component provides easy access to calendaric data based on the Gregorian calendar 
system. Information is divided into four categories:

Year
Month
Week
Day

all of which give you key-data for a spesific time unit within a year. Additionally TKronos lets you subdivide 
a day into daytypes to keep track of any events connected to that day. The Daytype class is e very flexible 
structure that lets you construct any type of event you need to handle. TKronos comes with several 
predefined daytypes, that is the most common Christian churchdays and international notification days. 
Easterdays and churchdays related to Easter are progamatically calculated.
 
You may easily adjust the TKronos component to your needs, that is specify native names and other 
attributes for the standard daytypes as well as adding any new daytype you want. Adjustments might 
imply that you derive a new component from TKronos, but you can also handle country or other spesific 
chronologies by calling methods at runtime - or by loading prewritten definitons from disk.

Obtaining information is simple. By setting one or more of the time unit properties Year, Month, Week, 
Monthday, Weekday or Daynumber, which together form the Current Date (the date in focus), you can 
read back information from the corresponding Ext properties (extended information properties) YearExt, 
MonthExt, WeekExt, and DateExt/Daytypes. There are also numerous methods you can call to retrieve 
information and perform navigation.

Eventhandlers are implemented for each change of a time unit (OnChangeYear, OnChangeMonth, 
OnChangeWeek, etc.).

See the following topics for closer explanations of key aspects of the TKronos component:
Genereal guidelines 
Using daytypes 
Processing daytype classes 



TKronos.Year
TKronos
Year stores the year that currently is in focus.

property Year : Word

Description
Use Year to change the current year. A change of Year will allways update the YearExt property.

If you at runtime attempt to set Year to a value that exceeds the limits of the MinYear or MaxYear 
properties, the exception EKronosError ‘Year out of bounds’ is raised.

Affecting other time unit properties 
No other time unit properties will change, except if you move from a leapyear to a non leapyear or vice 
versa:

If the current year is a leapyear and the current month is February and the monthday is 29, then if you 
move to a non leapyear the Monthday property will be set to 28. The Daynumber, possibly also Week and 
Weekday properties will change accordingly.

Moving between a leapyear and a non leapyear will generally affect the Daynumber property if the current 
date is after February 28.

Affecting other Ext properties 
The MonthExt, WeekExt, DateExt and Daytypes properties are updated.



TKronos.Month
TKronos
Month stores the monthnumber that is currently in focus.

property Month : Word

Description
Use Month to change the current month within the current year. A change of Month will allways update the 
MonthExt property.

If you at runtime attempt to set Month to less than 1 or greater than 12, the exception EKronosError 
‘Month out of bounds’ is raised.

Affecting other time unit properties 
Changing the month allways affects the Daynumber and the Week properties. Most often it also affects 
the Weekday property. The Monthday property will not change, except if the current Monthday does not fit 
the month you are moving to. For instance: If the current Monthday is 31 and you set the new Month 
value to 11 (November) Monthday is reduced to 30.

Affecting other Ext properties 
WeekExt, DateExt and Daytypes are updated.



TKronos.Week
TKronos Example
Week stores the weeknumber that is currently in focus. Weeknumbers are calculated in accordance with 
the FirstWeekday property.

property Week : Word

Description
Use Week to change the current weeknumber within the current year. A change of Week will allways 
update the WeekExt property.

There are some tricky things about weeknumbers as a year never consists of a number of whole weeks. 
The last or first week, or both, are “partial” weeks, that is they contain less than 7 days. On a calendar it 
may look like a year has 53 weeks (in some years even 54!). However, a week less than 7 days, must be 
seen as the other part of    a week in a bounding year. That is, a partial week number 53 in year 1 is the 
same physical week as week number 1 in year 2. Have this in mind when reading the further description.

If you at runtime attempt to set Week to less than 1 or greater than the top weeknumber of the current 
year, the exception EKronosError ‘Week out of bounds’ is raised. (To obtain the top weeknumber, read 
the YearExt.NumWeeks field.)

Affecting other time unit properties 
Changing the Week allways affects the Daynumber property. It might also affect the Monthday and the 
Month property. The Weekday property does never change.

In some occations the Year property will be affected as well. Assume you set Week to 53 and the current 
Weekday is Saturday. However if (the “partial”) week 53 does not contain Saturday, TKronos moves to 
Saturday in week number 1 of next year (the same physical week as 53 in previous year). In addition to 
the change of year, this means that your week-setting will be corrected.

Affecting other Ext properties 
The DateExt and Daytypes properties are updated. MonthExt and YearExt is updated if change of month 
or year take place.



Week example
Assume the current week is the last week (53) of the year. The current weekday is Sunday which is equal 
to FirstWeekday. The last week is a partial week with 3 days: Sunday, Monday and Wednesday. The rest 
of the week belongs to week 1 of next year. You code:

Weekday := Thursday;
Then Year changes to next year. Week changes to 1.

Assume the current week i 15. Current weekday is Thursday. Rest as above. You code:
Week := 53;
Then Year changes to next year. Week changes to 1! 1 and 53 is the same physical week.



TKronos.Weekday
TKronos
Weekday stores the name of the weekday that is currently in focus.

property Weekday : TWeekday

Description
Use Weekday to change the current weekday within the current week. A change of Weekday will allways 
update the DateExt and Daytypes properties.

Affecting other time unit properties 
Changing the Weekday allways affects the Daynumber and Monthday properties. It might also affect the 
Month property.

On some occations even the Week and Year properties are affected too. This happens if the weekday you 
are moving to belongs to the first or last week of a bounding year. See the Week property for further 
explanation of this mechanism.

Affecting other Ext properties 
The MonthExt, YearExt and WeekExt properties are updated if change of month, year or week take place.



TKronos.Monthday
TKronos
Monthday stores the number of the monthday that is currently in focus.

property Monthday : Word

Description
Use Monthday to change the current monthday within the current month. A change of Monthday will 
allways update the DateExt and Daytypes properties.

Do not confuse Monthday and Daynumber - Daynumber is year based (ranges from 1 to 366), Monthday 
is month based (1-31).

If you at runtime attempt to set Monthday to less than 1 or greater than the maximum value for the month, 
the exception EKronosError ‘Monthday out of bounds’ is raised. (To obtain the maximum Monthday 
value, read the MonthExt.NumDays field.)

Affecting other time unit properties 
Changing the Monthday allways affects the Daynumber property. It might also affect the Week or 
Weekday property.

Affecting other Ext properties 
The WeekExt property is updated if change of week takes place.



TKronos.Daynumber
TKronos
Daynumber stores the number of the day that is currently in focus.

property Daynumber : Word

Description
Use Daynumber to change the current daynumber within the current year. A change of Daynumber will 
allways update the DateExt and Daytypes properties.

Do not confuse Daynumber and Monthday . Daynumber is year based (can be a number between 1 and 
366), Monthday is month based (1-31).

If you at runtime attempt to set Daynumber to less than 1 or greater than the maximum value for the year, 
the exception EKronosError ‘Daynumber out of bounds’ is raised. (To obtain the maximum daynumber, 
read the YearExt.NumDays field.)

Affecting other time unit properties 
Changing the daynumber might also affect the Month, Monthday, Week or Weekday properties.

Affecting other Ext properties 
MonthExt and WeekExt is updated if change of month or week take place.



TKronos.Daytypes
TKronos Example See also 
Runtime and read only

Daytypes stores information about the daytypes registered for the date that is currently in focus. 

property Daytypes[AnIndex] : TDaytype

Description
Use Daytypes in connection with DaytypeCount to retrieve the registered daytypes.

Note
Yeartypes are not stored in the Daytypes property. To obtain the yeartypes you must use the 
FetchYeartype function.



Examples using the Daytypes property
This example examines the current date looking for user defined daytypes that meet a certain condition:

var
        i : Integer;
        MyDaytype : TDaytype;
:
:
DecodeDate(Date, Y, M, D);
for i := 1 to DaytypeCount do
begin
              MyDaytype := Daytypes[i];
              if MyDaytype.Id >= FirstUserId then
              {Test userdefined daytypes}
              begin
                          if Y - MyDaytype.FirstShowUp = 100 then

            ShowMessage(‘100 years anniversary for ‘ + MyDaytype.TheName);
              end;
end;

This example lists the daytypes that are relevant for a certain month:

var
      i, j : Integer;
      // Assume your form contains the listbox L.
begin
      Month := 8 // August for example
      for i := 1 to MonthExt.Numdays do // Loop days of month
      begin

Daynumber := i; // Make each monthday the current date
                        if DaytypeCount > 0 then 
                        // If daytypes are registered with the date, make heading
                              L..Items.Add(DateExt.Dayname + ‘ ‘ + IntToStr(Monthday) + ‘.’);

for j := 1 to DaytypeCount do
                                        L.Items.Add(‘        ‘ + Daytypes[i].TheName); // List daytypes for the date
      end;



Relevant topics:
Using daytypes 
Processing daytype classes 



TKronos.DaytypeCount
TKronos
Runtime and read only

property DaytypeCount : Word

DaytypeCount stores the number of Daytypes registered with the date that is currently in focus. 

Description
Use DaytypeCount in connection with Daytypes to retrieve the registered daytypes.

See also:
Daytypes



TKronos.FirstWeekday
TKronos Example
FirstWeekday determines which weekday starts the week.

property FirstWeekday : TWeekday 

Description
The default value is Sunday. Alter it to adjust to other requirements. The value of FirstWeekday influences 
how TKronos computes weeknumbers and how it organizes the MonthImage table.

Affecting time unit properties 
Changing FirstWeekday might affect the Week property.

Affecting Ext properties 
WeekExt is updated if change of week takes place.



First Weekday example
These code fragments show the conncetion between DateExt DayOfWeeknumber (DOW) and 
FirstWeekday.

Weekday := Wednesday;
FirstWeekday := Monday;

// DOW = 3

FirstWeekday := Thursday;

// Now DOW = 7

In the MonthExt.MontImage table the column numbers are DOW-numbers:

FirstWeekday := Monday;
// MonthImage[1,1] is the Monday cell

FirstWeekday := Thursday;
//    MonthImage[1,1] is the Thursday cell



TKronos.MinYear
TKronos See also
MinYear determines which year is the lower year boundary for the calendar.

property MinYear : Word

Description
The default and minimum value is 1. Use MinYear to limit the range of years a user can access.

If you at runtime enter a year that is greater than the value the MaxYear property the exception 
EKronosError ‘MinYear out of bounds’ is raised. Also if you at runtime set MinYear to a value that renders 
the current date illegal the exception EKronosError ‘Cannot set. The value of MinYear conflicts with the 
current date.’ is raised.



Relevant topics:
MaxYear



TKronos.MaxYear
TKronos See also
MaxYear determines which year is the higher year boundary for the calendar.

property MaxYear : Word

Description
The default and maximum value is 9999. Use MaxYear to limit the range of years a user can access.

If you at runtime enter a year that is less than the value the MinYear property the exception EKronosError 
‘MaxYear out of bounds’ is raised. Also if you at runtime set MaxYear to a value that renders the current 
date illegal the exception EKronosError ‘Cannot set. The value of MaxYear conflicts with the current 
date.’ is raised.



Relevant topics:
MinYear



TKronos.DefaultToPresentDay
TKronos
DefaultToPresentDay defines which date TKronos makes the current date on creation.

property DefaultToPresentDay : Boolean

Description
The default value is True, that means the date of today will be the current date on start up. If False the 
designtime date will become the current date.

Note that if you at designtime shift from False to True the time unit properties are not forced to reflect the 
date of today. You are allways free to use the Object Inspector to manipulate all the time unit properties 
regardless of the value of DefaultToPresentDay. However the next time you open your project the Object 
Inspector    will initialize TKronos to the date of today.

Changing the DefaultToPresentDay during runtime has no effect.



TKronos.WeekHolidays
TKronos
WeekHolidays defines standard holidays for all weeks in a year.

property WeekHolidays : TWeekHolidays 

Description
The default value is [Sunday, Saturday]. Alter WeekHolidays if your calendar uses another standard. The 
value of this property will be reflected in the DateExt.Holiday field.

Changing the WeekHolidays is automatically follwed by an update of the DateExt property.



TKronos.AllowUserCalc
TKronos See also
AllowUserCalc permits daytype showups to be calculated from outside the daytype object.

property AllowUserCalc : Boolean

Description
The standard value is False. Set to True to enable user calculation and triggering of the OnCalcDaytype 
event.



Relevant topics:
OnCalcDaytype 
Using daytypes 



TKronos.HidePredefineds
TKronos
HidePredefineds controls whether the predefined daytypes will show up on the calendar.

property HidePredefineds : Boolean

Description
The standard value is False. Set to True if you want to keep clear of predefined daytypes. This has the 
effect that neither of the Churchday, Holiday and Flagday properties will influence the corresponding fields 
in the DateExt property.

Note
Hiding predfined daytypes does not remove them from the daytype list.



TKronos.DateExt
TKronos
Read and runtime only.

DateExt stores extended information about the date that is currently in focus. TKronos updates this 
property whenever the current date changes.

property DateExt : TDateExt

Description
Use DateExt to read details about the current date.

Be sure to understand the connection between the DateExt and the Daytypes property. It works like a one 
to many relationship where DateExt represents the master record and Daytypes the detail records. 
DateExt stores basic data as the dayname, the daynumber and so on, while Daytypes tells which role(s) 
the day plays on the calendar (Christmas Eve, Easter Eve, etc.).

If you look at the DateExt record you might think it contains several redundant fields, as the Year, 
MonthNumber and WeekNumber fieldes also are available through the corresponding up to date 
properties. Have in mind however that you might work with a DateExt record that does not represent the 
current date.

Note how the fields Churchday, Holiday and Flagday work. If the dayname is one of the WeekHolidays, 
Holiday is allways set to True. Generally both Churchday, Holiday and Flagday are set to True if any of 
the daytypes registered for the day have these attributes set to True.



TKronos.MonthExt
TKronos Example
Read and runtime only.

MonthExt stores extended information about the month that is currently in focus. TKronos updates this 
property whenever the current month changes.

property MonthExt : TMonthExt

Description
Use MonthExt to read details about the current month.



MonthExt example
Here is an example of how easily you can create a month calendar by means of the 
MonthExt.MonthImage table:

Assume you have a StringGrid component 7 rows and 8 columns:

// Fill in the daynames in the first row
for i := 1 to 7 do 
Grid.Cells[i,0] := Daynames[DOWToDaynameIndex (i)];
{Get dayname for the Delphi dayname array. The i variable
is the DayOfWeeknumber. The DOWToDaynameIndex 
function returns the index to use with the array}

Month := 3; // Chose a month, March for example.

//Fill in the weeknumbers
for i := 1 to MonthExt.NumWeeks do
if MonthExt.MonthImage[i,0] > 0 then
          Grid.Cells[0,i] := IntToStr(MonthExt[i,0]);
          // Weeknumbers > 0 belong to the current month

// Fill in the monthdays
for i := 1 to MonthExt.NumWeeks do
begin
          for j := 1 to 7 do
          begin
                        if MonthExt.MonthImage[i,j] > 0 then
                        {Numbers > 0 belong to the current month}
                        begin
                                        Daynumber := MonthExt.MonthImage[i,j];
                                        {Make the daynumber in the MonthImage cell the
                                        current date.}
                                        Grid.Cells[j,i] := IntToStr(Monthday); 
                                          // Print the monthday number of the current date.
                        end;
          end;
end;



TKronos.WeekExt
TKronos
Read and runtime only.

WeekExt stores extended information about the week that is currently in focus. TKronos updates this 
property whenever the current week changes.

property WeekExt : TWeekExt

Description
Use WeekExt to read details about the current week.



TKronos.YearExt
TKronos
Read and runtime only.

YearExt stores extended information about the year that is currently in focus. TKronos updates this 
property whenever the current year changes.

property YearExt : TYearExt

Description
Use YearExt to read details about the current year.



TKronos.FirstUserId
TKronos See also
Read and runtime only

property FirstUserId : Word

FirstUserId stores the identifier that is the value next to the last predefined daytype.

Description
Use FirstUserId to keep track of identifiers assigned to daytypes you create in addition to the prefefined 
types. The first new daytype is assigned the value FirstUserId, the next FirstUserId + 1, etc.



Relevant topics:
AddDaytype 



TYearExt type
TKronos
Unit
Kronos

TYearExt defines extended attributes for a year.

Type
TYearExt = record
          Year : Word;
          NumDays : Word;
          NumWeeks : Word;
          LeapYear : Boolean;
          YearTypeCount : Word;
end;

Description

Field Meaning
Year Number of year
NumDays Number of days of the year
NumWeeks Number of weeks of the year
LeapYear True if Year is a leapyear.
YearTypeCount Number of yeartypes registered with the year

Comments
The NumWeeks field stores the top weeknumber of the year, not the number of whole weeks. Normally 
the top weeknumber is 53, somtimes 54. It is never 52.



TMonthExt type
TKronos
Unit
Kronos

TMonthExt defines extended attributes for a month.

Type
TMonthExt = record
          Year : Word;
          MonthNumber : Word;
          MonthName : String;
          FirstDay, LastDay : Word;
          NumDays : Word;
          NumWeeks : Word;
          FirstWeek, LastWeek : Word;
          MonthImage : TMonthImage
end;

Description

Field Meaning
Year The year that the month belongs to
MonthNumber Number of month
MonthName Name of month
FirstDay The year based daynumber that starts the month.
LastDay The year based daynumber that ends the month
NumDays Number of days of the month
NumWeeks Number of weeks that is comprised by the month
FirstWeek The weeknumber that starts the month
LastWeek The weeknumber that ends the month
MonthImage A table that organizes the month in columns and rows.

Comments
NumWeeks counts the weeknumbers that are in touch with the month. It is not (NumDays div 7), but 
(Lastweek - FirstWeek + 1).

FirstDay and LastDay are year based, that is they store numbers between 1 and 366.



TWeekExt type
TKronos
Unit
Kronos

TWeekExt defines extended attributes for a week.

Type
TWeekExt = record
          Year : Word;
          WeekNumber : Word;
          FirstDay, LastDay : Word;
 end;

Description

Field Meaning
Year The year that the week belongs to
WeekNumber Number of week
FirstDay The year based daynumber that starts the week.
LastDay The year based daynumber that ends the week

Comments
FirstDay and LastDay are year based, that is they store numbers between 1 and 366.



TDateExt type
TKronos
Unit
Kronos

TDateExt defines extended attributes for a date.

Type
    TDateExt = record
          Year : Word
          DayName : String;
          DayOfWeekNumber : Word;
          Monthday : Word;
          Daynumber : Word;
          DaytypeCount : Word;
          DaytypeId : TDaytypeID;
          MonthNumber : Word;
          WeekNumber : Word;
          Holiday : Boolean;
          Churchday : Boolean;
          Flagday : Boolean;
    end;

Description

Field Meaning
Year Year part of the date

DayName The name of the day

DayOfWeekNumber The weekday number (1 = the day that starts the week)

Monthday The monthday number (1-31)

Daynumber The year based daynumber (1-366)

DaytypeCount Number of daytypes attatched to the date

DaytypeId An array that stores the identifiers, if any,    of the attached daytypes. 
DaytypeCount tells the number of used indexes.

MonthNumber Month part of the date (1-12)

WeekNumber Number of week to which the date belongs (1-54)

Holiday True if the day is a holiday

Churchday True if the day is a religious day

Flagday True if the dayt is a flagday

TDaytype type
TKronos See also
Unit
Kronos



TDaytype defines the base class for a TKronos daytype.

Type
TDaytype = class(TPersistent)
          property TheDate : Word;
          property TheName : String[50];
          property Id : Word;
          property FirstShowUp : Word;
          property LastShowUp : Word;
          property ShowUpFrequency : Word;
          property RelDaytype : Word;
          property Offset : Integer;
          property Churchday : Boolean;
          property Holiday : Boolean;
          property Flagday : Boolean;
          property UserCalc : Boolean;
          property Tag : Integer;

          constructor Create
          (DaytypeDef : TDaytypeDef);
          procedure Update(DaytypeDef : TDaytypeDef; StartUserId : Word);
          procedure SetId(AnId : Word);
end;

Description

The TDaytype class contains the base structure of a TKronos daytype. You can derive new classes from 
TDaytype to meet special requirements.

All properties are read only.

Property Meaning
TheDate Showup date for the daytype

TheName The name of the daytype

Id The identifier of the daytype

FirstShowUp First year the daytype is shown on the calendar

LastShowUp Last year the daytype is shown on the calendar

ShowUpFrequency The year interval between each showup

RelDaytype Daytype id for a standard church daytype to be used as a starting point 
for an offset calculation of showup date.

Offset Offset value from RelDaytype.

Holiday True if the daytype is a holiday

Churchday True if the daytype is a religious day

Flagday True if the daytype is a flagday

UserCalc True if the showupdate is to be calculated by the OnCalcDaytype event.



Tag General purpose field. Allways 0 for predefined types.

Procedures When to use
Create To add a new daytype, you must first create it. Make your definition by 

setting the daytype attributes in the TDaytypeDef record. Then create the 
object and send it as parameter with the AddDaytype procedure.

Update Update is used internally by TKronos to perform changes to an existing 
daytype definition. Never call this procedure yourself. To change a 
daytype definition call the TKronos.UpdateDaytype procedure.

SetId Used internally by Tkronos to assign an identifier to a daytype. Never call 
it yourself.

Relevant topics:
Using daytypes 
Processing daytype classes 
TDaytypeDef type 



TMonthImage type
TKronos
Unit
Kronos

TMonthImage defines a two dimentional array that corresponds to the columns and rows of a month 
calenadar. 

Type
TMonthImage = array[1..6, 0..7] of Smallint

Description
The first dimention represents the rows, the second the columns, that is the weeknumbers and the 
weekdays. Note the following:

Index [n,0] contains 
either positiv numbers for the weeks that are comprised, totally or partially, by the current month
or negative numbers for weeks that totally belong to a bounding month.

Indexs [n,1..7] contains 
either positiv values for the year based daynumbers in the current month
or negative values for the monthday numbers in bounding months.

A variable of the TMonthImage type could look like this:

Idx 0 1 2 3 4 5 6 7
1 12 -28 -29 -30 91 92 93 94
2 13 95 96 97 98 99 100 101
3 14 102 103 104 105 106 107 108
4 15 109 110 111 112 113 114 115
5 16 116 117 118 119 120 121 -1
6 -17 -2 -3 -4 -5 -6 -7 -8

The weekday column 1 corresponds to the first day of the week, that is the day defined by the 
FirstWeekday property.



TDaytypeId type
TKronos
Unit
Kronos

TDaytypeID stores the identifiers of the daytypes that are attached to a date.

Type
TDaytypeID = array[1..255] of Word

Description
TDaytypeID is a field of the TDateExt type. When TKronos fills a variable of TDateExt the daytypes 
connected to the date, if any, are located and referenced in the TDaytypeId array. You seldom need to 
access the array directly. TKronos make use of it internally when setting the Daytypes property or when 
you call the function FetchDaytype.



TWeekday type
TKronos
Unit
Kronos

TWeekday defines the days of the week. 

Type
TWeekday = (Sunday, Monday, Tuesday, Thursday, Friday, Saturday)



TWeekHolidays type
TKronos
Unit
Kronos

TWeekHolidays defines the standard holidays of a week.

Type
TWeekHolidays = set of TWeekday



Daytype constants
TKronos
Unit
Kronos

The Daytype constants represents predefined daytypes.The ch prefix defines churchdays, the co prefix 
defines common international notification days.

Description

Constant Value Meaning
chAdvent1 1 First Sunday of Advent
chAdvent2 2 Second Sunday of Advent
chAdvent3 3 Third Sunday of Advent
chAdvent4 4 Fourth Sunday of Advent
chChristmasEve 5 Christmas Eve
chChristmasDay 6 Christmas Day
chBoxingDay 7 Boxing Day (the day after Christmas day)
chNewYearEve 8 New Year’s Eve
chNewYearDay 9 New Year’s Day
chAshWednesday 10 Ash Wednesday (Lent)
chShroveTuesday 11 Shrove Tuesday (Lent)
chPalmSunday 12 Palm Sunday (Sunday before Easter Sunday)
chMaundyThursday 13 Maundy Thursday (Thurday before Easter Sunday)
chGoodFriday 14 Good Friday (Friday before Easter Sunday)
chEasterEve 15 Easter Eve
chEasterSunday 16 Easter Sunday
chEasterMonday 17 Easter Monday
chWhitEve 18 Whit Eve
chWhitSunday 19 Whit Sunday
chWhitMonday 20 Whit Monday
chAscensionDay 21 Ascension Day

coUNDay 22 United Nations Day
coWomensDay 23 International Womens Day
coMayDay 24 May Day
coLiteracyDay 25 International Literacy Day

UserDaytype 26 Start of userdefined daytypes

TKronos.SetCountrySpecifics
TKronos
Redefines standard daytypes and adds those of your own.

procedure SetCountrySpecifics; virtual

Description
Override this protected procedure when deriving a new country spesific TKronos component. In 
SetCountrySpecifics you can place calls to AddDaytype and SpecifyStandardDay to give the calendarium 
a stable, reusable profile.

Any new daytype you add wil become part of the basic daytype list, that is the daytypes permanently tied 
to the calendar profile. Such daytypes cannot be deleted, but can be adjusted through the 
SpecifyStandardDay or UpdateDaytype method - or by creating a new definition in an external file to be 
loaded with the LoadFromFile method.



A closer explanation of how to use SetCountrySpecifics is found in the topic Using daytypes.



TKronos.ExistsDaytype
TKronos
Checks if a daytype with the same name as ADaytypeName already exists.

function ExistsDaytype(ADaytypeName : String) : Word

Description
Use ExistsDaytype to prevent the daytype list from containing duplicate names. Duplicate names may be 
problematic as serach functions using the daytypename as key only returns the first found instance of the 
daytype.

The function returns the number of    daytypes with the same name as ADaytypeName.



TKronos.AddDaytype
TKronos See also Example
Adds a user defined daytype to the daytype list.

function AddDaytype(Daytype : TDaytype ) : Word;

Description
Use AddDaytype to add a new daytype object to the daytypelist. The daytype list consists of the 
predefined church and common daytypes plus the types you define yourself. The function returns the 
identifier of the added daytype.

To add a new daytype object you must first create it with the TDaytype.Create method. To delete a 
daytype never destroy it directly, but call the DeleteUserDaytype method. All daytype objects are 
automatically disposed of as part of the destroying process of TKronos itself.

Every new daytype you add is assigned an identifier you may use to reference the daytype. The 
identifiers are incremented by 1 for each new add in. The FirstUserId property holds the identifier of the 
first daytype that is added, the next FirstUserId + 1, and so on.

Identifiers are useful when working with predefined daytypes. You might also use identifiers with daytypes 
added “on the fly”, by loading a calendar defintion from a file for instance or by using definitions stored in 
a library unit. However, if your application deletes and add daytypes dynamically, the identifiers may be of 
less value. Say you add three daytypes which are assigned the id-numbers 26, 27 and 28. Number 27 is 
deleted. If you save this definition to a file and later reload it, the daytype number 28 becomes 27. When 
initializing a calendar profile TKronos allways creates a contigious row if id-numbers.

Note 1
If you set both the ADate field and the ARelDaytype field of the TDaytypeDef object to zero, you create a 
yeartype rather than a daytype.

Note 2
If you set the AUserCalc field of the TDaytypeDef object to True, you create a user calculated daytype. 
Values of ADate and ArelDaytype fields are then ignored.

Note 3
To prevent duplicate daytype names call the ExistsDaytype function before adding the new daytype.



Relevant topics:
DeleteUserDaytype 
ClearUserDaytypes
Daytypes property
DateExt property
FetchYearType 
Using daytypes 
Processing daytype classes 
OnCalcDaytype event 



AddDaytype example
var
        DaytypeDef : TDaytypeDef;
:
with DaytypeDef do
begin
                    AName := ’10 days left to Easter’;
                    ADate = 0;
                    AReldayType = chEasterSunday;
                    AnOffset = -10;
                    AFirstShowUp = 1;
                    ALastShowUp := 9999;
                    AShowUpFrequency = 1;
                    AHoliday := False;
                    AChurchday := False;
                    AFlagDay := False;
                    AUserCalc := False;
                    ATag := 0;
                    AddDaytype(TDaytype.Create(DaytypeDef));
end;
:



TKronos.UpdateDaytype
TKronos See also Example
Updates an exisiting userdefined daytype with a new definition.

procedure UpdateDaytype(AnId : Word; ADaytypeName : String; DaytypeDef : TDaytypeDef)

Description
Use UpdateDaytype to change one or more of the attributes of a userdefined daytype that is currently 
loaded. Pass the id or the name of the daytype you want to change in the AnId/AName parameter. If    the 
daytype is not found the exception EKronosError ‘Daytype not found’ is raised.

AnId/ADaytypeName is mutually exclusive. To search for an ID set ADaytypeName to an empty string. To 
serach for a name, set AnId to 0. If both AnId and ADaytypeName have values, the id value is the 
preferred key.

A call to this procedure also updates the DateExt and Daytypes properties.

To change one of the predefined church or common days use the SpecifyStandardDay procedure.

Note 1
To prevent duplicate daytype names call the ExistsDaytype function before updating the new daytype.

Note 2
You have limited control over predefined daytypes added in TKronos descendents through the 
SetCountrySpecifics method. Setting new values for the fields Date, Reldaytype, Offset, FirstShowUp, 
LastShowUp and ShowUpFrequency will have no effect.



Relevant topics:
AddDaytype 
DeleteUserDaytype 
ClearUserDaytypes 
GetDaytypeDef 



TKronos.GetDaytypeDef
TKronos See also Example
Retrieves a user daytype definition.

function GetDaytypeDef(AnId : Word; ADaytypeName : String) : TDaytypeDef 

Description
Use GetDaytypeDef to obtain the definition of a daytype. If the daytype is not found the exception 
EKronosError ‘Daytype not found’ is raised. This function is useful when you want to make changes to an 
existing user daytype definition.

AnId/ADaytypeName is mutually exclusive. To search for an ID set ADaytypeName to an empty string. To 
serach for a name, set AnId to 0. If both AnId and ADaytypeName have values, the id value is the 
preferred key.



GetDaytypeDef example
To alter the definition av an exisiting user defined daytype:

var
      MyDaytype : TDaytypeDef;
:
:
    MyDaytype := GetDaytypeDef(0,‘My daytype’);
    MayDaytype.AName := ‘Your daytype’;
    MayDaytype.ADate := 1030;
    UpdateDaytype(0, ‘May daytype’, MyDaytype);
:
:



Relevant topics:
AddDaytype 
DeleteUserDaytype 
ClearUserDaytypes 
UpdateDaytype 



TDaytypeDef type
TKronos
Unit
Kronos

TDaytypeDef contains the base definition of a daytype.

Type
TDayTypeDef = record
      AName : String[50];
      ADate : Word;
      ARelDaytype : Word;
      AnOffset : Integer;
      AFirstShowUp : Word;
      ALastShowUp : Word;
      AShowUpFrequency : Word;
      AChurchday : Boolean;
      AHoliday : Boolean;
      AFlagday : Boolean;
      AUserCalc : Boolean;
      ATag : Integer;
end;

Description

Field Meaning
AName The name of the daytype. Max 50 characters

ADate The showup date. It must be formatted as Monthnumber * 100 + 
Monthday. March 15 is for example equal to 315. You may also pass 0 in 
this parameter. See below.

ARelDaytype Use a daytype constant in connection with an offset value to make the 
showup date relative to any of the prefefined church daytypes. In that 
case set Date to 0. Set RelDaytype to 0 if you use a fixed date.
If you set both Date and RelDaytype to 0 you create a yeartype.

AnOffset Use in connection with RelDaytype to position the showup date relative 
the chosen daytype. Positive numbers move forwards, negative numbers 
backwards. Example: RelDaytype = chChristmasEve. Offset = -1. 
Resulting date wil be the day before Christmas Eve. Set to 0 if you use a 
fixed date.

AFirstShowUp First year the daytype is shown on the calendar

ALastShowUp Last year the daytype is shown on the calendar

AShowUpFrequency The year interval between each showup

AHoliday True if the daytype is a holiday

AChurchday True if the daytype is a religious day

AFlagday True if the daytype is a flagday



AUserCalc True if the if the showup date of the daytype is calculatetd through the 
OnCalcDaytype event.

Tag General purpose field. Allways 0 for predefined types.

TKronos.ClearUserDaytypes
TKronos See also
Clears all the user defined daytypes from the daytype list.

procedure ClearUserDaytypes

Description
Use ClearUserDaytypes to remove all the user defined daytypes from the list. A call to this procedure also 
updates the DateExt and Daytypes properties.

Note
ClearUserDaytypes does not affect the predefined daytypes which cannot be deleted.



Relevant topics:
DeleteUserDaytype 
AddDaytype



TKronos.DeleteUserDaytype
TKronos See also
Deletes a user defined daytype from the daytype list.

procedure DeleteUserDaytype(AnId: Word; ADaytypeName : String)

Description
Use this procedure to delete a user defined daytype matching AnId/ADaytypeName from the daytype list.

AnId/ADaytypeName is mutually exclusive. To search for an ID set ADaytypeName to an empty string. To 
serach for a name, set AnId to 0. If both AnId and ADaytypeName have values, the id value is the 
preferred key.

A call to this procedure also updates the DateExt and Daytypes properties.

Note 
Predefined daytypes cannot be deleted.

If ADaytypeName is not found the exception EKronosError ‘Daytype <ADaytypeName> not found’ is 
raised.



Relevant topics:
ClearUserDaytypes 
AddDaytype 



TKronos.SpecifyStandardDay
TKronos See also
Specifies the name and the staus attributes for a standard TKronos daytype.

procedure SpecifyStandardDay(AnId : Word; AName : String;
IsHoliday, IsFlagday : Boolean);

Description
Uses SpecifyStandardDay to redefine the name and the status attributes for a standard TKronos daytype. 
The standard daytypes come with English names and False for the Holiday and Flagday attributes. To set 
country spesifc attributes you must call this procedure for every relevant daytype. If you don’t, TKronos 
will use the standard values.

Parameters
AnId : Word;
The identifier for the daytype you want to redefine, e.g. chChristmasDay.

AName  : String
The new name of the daytype.

IsHoliday : Boolean
Set to True if you wish to mark the day as a holiday

IsFlagday : Boolean
Set to True if you wish to mark the day as a flagday.

Note
To check for duplicate daytype names call the ExistsDaytype function.



Relevant topics:
Daytype constants
SetCountrySpecifics 



TKronos.FetchYearExt
TKronos Example
Fetches extended information about a year.

function FetchYearExt(AYear : Word) : TYearExt

Description
Use FetchYearExt to obtain extended information about a year wihout changing the current year.

Note
You should use FetchYearExt instead of temporarily making the target year the current one. The Fetch 
functions are faster and more to the point when you want to obtain information about time units outside 
the current date.



TKronos.FetchMonthExt
TKronos Example
Fetches extended information about a month.

function FetchMonthExt(AYear, AMonth : Word) : TMonthExt

Description
Use FetchMonthExt to obtain extended information about a month in a specified year without changing 
the current year/month.

You should use FetchMonthExt instead of temporarily making the target month the current one. The Fetch 
functions are faster and more to the point when you want to obtain information about time units outside 
the current date.



TKronos.FetchWeekExt
TKronos Example
Fetches extended information about a week.

function FetchWeekExt(AYear, AWeek : Word) : TWeekExt

Description
Use FetchWeekExt to obtain extended information about a week in a specified year without changing the 
current year/week.

Note
You should use FetchWeekExt instead of temporarily making the target week the current one. The Fetch 
functions are faster and more to the point when you want to obtain information about time units outside 
the current date.



TKronos.FetchDaytype
TKronos See also Example
Fetches one of the daytypes attched to a date.

function FetchDaytype(ADateExt : TDateExt; AnIndex : Word) : TDaytype 

Description
Use FetchDaytype to extract the daytypes registered with the date held in ADateExt. To fill ADateExt use 
one of the FetchDateExt functions.

Note
You should use FetchDateExt/FetchDaytype instead of temporarily making the target date the current 
one. The Fetch functions are faster and more to the point when you want to obtain information about 
dates outside the current date.



Relevant topics:
FetchDateExt 



TKronos.FetchYeartype
TKronos See also Example
Fetches one of the yeartypes attached to the year.

function FetchYeartype(AYearExt : TYearExt; AnIndex : Word) : TDaytype 

Description
Use FetchYeartype to extract the yeartypes registered with the year held in AYearExt. To fill AYearExt use 
the FetchYearExt function. The YeartypeCount field of the TYearExt record tells you how many yeartypes 
there are.

Note
FetchYearExt is somewhat of a specialty as it returns a TDaytype object, of which the Churchday, Holiday 
and Flagday fields are irrelevant. Moreover there is no Yeartypes property you can investigate as you can 
with the Daytypes property. In fact, a yeartype is a daytype that is not attached to a spesific date. You 
register a yeartype with the AddDaytype method as you would do with a normal daytype, but set both the 
Date field and the RelDaytype field to zero.

Instead of linking such daytypes to each an every day in a year, they are excluded from the Daytypes 
property and stored for themselves. This prevents duplicating information, thereby speeding up 
performance.

Because there is no Yeartypes property, you also have to use FetchYeartype to obtain the yeartypes of 
the current year. Pass the YearExt property as the AYearExt parameter.



Relevant topics:
AddDaytype 
Using daytypes 
Daytypes property



FetchYeartype example
This example shows how to make a list of year events.

var
      L : TListbox;
      I : Integer;
      YExt : TYearExt;
        DType : TDaytype;
begin
        If IsThisYear(2000) then
                YExt := YearExt 
        else
                YExt := FetchYearExt(2000);
 {Retrieve information about year 2000. If this is the current year the information is already at hand}
        for I := 1 to YExt.YeartypeCount do
        begin
                DType := FetchYeartype(YExt, I);
                L.Items.Add(DType.Name);
        end;
end;



Fetch example
This example demonstrates two ways to retrieve information from dates outside the current date:

var
        i : Word;
        DateInf : TDateExt;
        Daytype : TDaytype;
        YearInf : TYearExt;
:
:
SaveCD; {Save current date}
DisableEvents(True) ;
{Disable event triggering when performing operations on dates that are not the real current date}
try
    GotoDate(2000, 1, 1); {Put focus on target date}
    for i := 1 to YearExt.Numdays do
    begin
                  Daynumber := i; {New current date}
                  for j := 1 to DaytypeCount do
                  begin
                                  Daytype := Daytypes[j];
                                  {Do some action}
                  end;
    end;
finally
      RestoreCD; {Back to the real current date}
      DisableEvents(False);
end;

Note that every time a new date becomes the current date all the Ext properties are laoded with 
information. This is waste of time as long as you only need information on a spesific time unit level. This is 
a much more efficient way to loop days:

YearInfo := FetchYearExt(2000);
for i := 1 to YearInfo.Numdays do
begin
                DateInf := FetchDateExtDn(2000, i);
                for j := 1 to DateInfo.DaytypeCount do
                begin
                                  Daytype := FetchDaytype(DateInfo, j);
                                  {Do some action}
                end;
end;

This code runs faster and there is no need for saving and restoring the current date. It might of course be 
cases when you have good reasons for using the first method, but most of the time you probably will 
manage well with the Fetch functions.



TKronos.FetchDateExt
TKronos See also Example
Fetches extended information about a date.

function FetchDateExt(AYear, AMonth, AMonthday : Word) : TDateExt

Description
Use FetchDateExt to obtain extended information about a date wihout changing the current date.

Note
You should use FetchDateExt instead of temporarily making the target date the current one. The Fetch 
functions are faster and more to the point when you want to obtain information about dates outside the 
current date.



Relevant topics:
FetchDaytype
FetchDateExtDt
FetchDateExtDn



TKronos.FetchDateExtDt
TKronos See also Example
Fetches extended information about a date.

function FetchDateExtDt(ADate : TDateTime) : TDateExt

Description
The same function as FetchDateExt, except you pass a single TDateTime parameter instead of year, 
month and monthday.



Relevant topics:
FetchDateExt
FetchDateDn



TKronos.FetchDateExtDn
TKronos See also Example
Fetches extended information about a date.

function FetchDateExtDn(AYear, ADaynumber : Word) : TDateExt

Description
The same function as FetchDateExt, except you pass Daynumber as parameter instead of month and 
monthday.



Relevant topics:
FetchDateExt
FetchDateExtDt



TKronos.IsLeapyear
TKronos
Determines if a year is a leapyear.

function IsLeapYear(AYear : Word) : Boolean

Description
Use IsLeapyear to find out if a year is a leapyear without changing the current year. Returns True if 
leapyear.



TKronos.IsLastDayOfMonth
TKronos See also
Determines if a monthday is the last day of a month

function IsLastDayOfMonth(AYear, AMonth, AMonthday : Word) : Boolean

Description
Use IsLastDayOfMonth to find out if AMonthday in AYear is the last day of AMonth without changing the 
current year/month. Returns True if last day.



Relevant topic:
IsLastWeekOfYear 



TKronos.IsLastWeekOfYear
TKronos See also
Determines if a weeknumber is the last weeknumber of a year

function IsLastWeekOfYear(AYear, AWeek : Word) : Boolean

Description
Use IsLastWeekOfYear to find out if AWeek in AYear is the last weeknumber without changing the current 
year/week. Returns True if last week.



Relevant topics:
IsLastDayOfMonth 



TKronos.MonthsInInterval
TKronos
Calculates the number of months in a specified interval.

function MonthsInInterval(Year1, Month1, Year2, Month2: Word) : Integer

Description
Use MonthsInInterval to get the number of months between Month1 in Year1 and Month2 in Year2. If 
Year1/Month1 is greater than Year2/Month2 the function will return a negative number else 0 or a positiv 
number.



TKronos.WeeksInInterval
TKronos
Calculates the number of weeks in a specified interval.

function WeeksInInterval(Year1, Week1, Year2, Week2: Word) : Integer

Description
Use WeeksInInterval to get the number of weeks between Week1 in Year1 and Week2 in Year2. If 
Year1/Week1 is greater than Year2/Week2 the function will return a negative number else 0 or a positiv 
number.



TKronos.DaysInInterval
TKronos See also
Calculates the number of days in a specified interval

function DaysInInterval(Year1, Month1, Monthday1, 
Year2, Month2, Monthday2 : Word; WorkdaysOnly : Boolean) : Integer

Description
Use DaysInInterval to get the number of days between Monthday1 in Month1/Year1 and Monthday2 in 
Month2/Year2. If date 1 is greater than date 2 the function will return a negative number else 0 or a 
positive number.

If you set the WorkdaysOnly parameter to True, holidays are not counted. Assume the weekday of date 1 
is Friday. Saturday and Sunday are week holidays. Date 2 is the following Monday. If WorkdaysOnly the 
function will return 1 (Saturday and Sunday are skipped) else 3. 

Note: Setting WorkdaysOnly to True may slow down performance (notably with big intervals) as each day 
in the interval has to be examined.



Relevant topics
DaysInIntervalDt



TKronos.DaysInIntervalDt
TKronos
Calculates the number of days in a specified interval

function DaysInIntervalDt(ADate1, ADate2 : TDateTime; WorkdaysOnly : Boolean) : Integer

Description
The same function as DaysInInterval, except you pass TDateTime parameters instead of year, month and 
monthday parameteres.



TKronos.DaynumberByTypeName
TKronos See also Example
Returns the year based daynumber that results from a successful search for a daytype name in a 
specified year.

function DaynumberByTypeName(AYear : Word; DaytypeName : String) : Word

Description
Use DaynumberByTypeName to retrieve the year based daynumber of a date that is registered with 
<DaytypeName>. If no match the function returns 0.



DaynymberByTypeName example
if DaynumberByTypeName(2000, ‘Cristmas Day’) = 0 then
          ShowMessage(‘No presents for those who misspell Christmas!’);



Relevant topics:
DaynumberByTypeId



TKronos.DaynumberByTypeId
TKronos See also Example
Returns the year based daynumber that results from a successful search for a daytype id in a specified 
year.

function DaynumberByTypeId(AYear : Word; ADaytypeID : Word) : Word

Description
Use DaynumberByTypeId to retrieve the year based daynumber of a date that is registered with 
<ADaytypeId>. If no match the function returns 0.



DaynumberByTypeId example
if DaynumberByTypeId(2000, chChristmasDay) = 0 then
          ShowMessage(‘No Christmas this year!’);



Relevant topics:
DaynumberByTypeName



TKronos.DateByDayOffset
TKronos See also
Returns the year and the year based daynumber that result from counting a specified number of days 
from the current date.

procedure DateByDayOffset(var AYear : Word; var ADaynumber : Word; OffsetValue : Integer;
SkipHolidays : Boolean);

Description
Use DateByDayOffset to retrieve the year and the year based daynumber of the date that is positioned 
<OffsetValue> days from the date that currently is in focus. Use a negative offset value to count 
backwards, a positiv value to count forwards.

If you set the SkipHolidays parameter to True, holidays are not counted. Assume the weekday of current 
date is Friday. Offsetvalue is 3. Saturday and Sunday are week holidays. If SkipHolidays the procedure 
will return ADaynumber as the current daynumber + 5 (Saturday and Sunday are skipped) else 
daynumber + 3.

Note: Setting SkipHolidays to True may slow down performance (notably with big offset values) as each 
and every day in the interval has to be examined.



Relevant topics:
DateByWeekOffset
DateByMonthOffset



TKronos.DateByWeekOffset
TKronos See also
Returns the year and the year based daynumber that result from counting a specified number of weeks 
from the current date.

procedure DateByWeekOffset(var AYear : Word; var ADaynumber : Word; OffsetValue : Integer);

Description
Use DateByWeekOffset to retrieve the year and the year based daynumber of the date that is positioned 
<OffsetValue> weeks from the date that currently is in focus. Use a negative offset value to count 
backwards, a positiv value to count forwards.

Calling DateByWeekOffset is the same as calling the DateByDayOffset procedure with the OffsetValue 
parameter set to number of offset weeks * 7.



Relevant topics:
DateByDayOffset
DateByMonthOffset



TKronos.DateByMonthOffset
TKronos See also Example
Returns the year and the year based daynumber that result from counting a specified number of months 
from the current date.

procedure DateByMonthOffset(var AYear : Word; var ADaynumber : Word; OffsetValue : Integer);

Description
Use DateByMonthOffset to retrieve the year and the year based daynumber of the date that is positioned 
<OffsetValue> months from the date that currently is in focus. Use a negative offset value to count 
backwards, a positiv value to count forwards.

When calculating the daynumber the current monthday will be preserved if possible.



DateByMonthOffset example
Assume the current date is January 1. 2000:
DateByMonthOffset(AYear, ADaynumber, 1);
Result:
AYear = 2000
ADaynumber = 32 (February 1.)

Assume the current date is January 31. 2000:
DateByMonthOffset(AYear, ADaynumber, 1);
Result:
AYear = 2000
Daynumber = 60 (Februar 29. Cannot preserve monthday).



Relevant topics:
DateByDayOffset
DateByWeekOffset



TKronos.IsToday
TKronos See also
Checks to see if the date that is currently in focus is the date of today.

function IsToday(var AYear, ADaynumber : Word) : Boolean

Description
Use IsToday to determine if the current date is the date of today or to obtain the year and the year based 
daynumber of today. Returns True if AYear and ADaynumber match the current date.



Relevant topics:
IsTomorrow
IsYesterday



TKronos.IsTomorrow
TKronos See also
Checks to see if the date that is currently in focus is the date of tomorrow.

function IsTomorrow(var AYear, ADaynumber : Word) : Boolean

Description
Use IsToMorrow to determine if the current date is the date of tomorrow or to obtain the year and the year 
based daynumber of tomorrow. Returns True if AYear and ADaynumber match the current date.



Relevant topics:
IsToday
IsYesterday



TKronos.IsYesterday
TKronos See also
Checks to see if the date that is currently in focus is the date of yesterday.

function IsYesterday(var AYear, ADayNumber : Word) : Boolean

Description
Use IsYesterday to determine if the current date is the date of yesterday or to obtain the year and the year 
based daynumber of tomorrow. Returns True if AYear and ADaynumber match the current date.



Relevant topics:
IsToday
IsTomorrow



TKronos.IsThisWeek
TKronos See also
Checks to see if the week that is currently in focus is the week that contains the date of today.

function IsThisWeek(var AYear, AWeeknumber : Word) : Boolean

Description
Use IsThisWeek to determine if the current week is the week of today or to obtain the year and the 
weeknumber of today. Returns True if AYear and AWeeknumber match the values of the current date.



Relevant topics:
IsNextWeek
IsLastWeek



TKronos.IsNextWeek
TKronos See also
Checks to see if the week that is currently in focus is the week following the week of today.

function IsNextWeek(var AYear, AWeeknumber : Word) : Boolean

Description
Use IsNextWeek to determine if the current week is next week or to obtain the year and the weeknumber 
of next week. Returns True if AYear and AWeeknumber match the values of the current date.



Relevant topics:
IsThisWeek
IsLastWeek



TKronos.IsLastWeek
TKronos See also
Checks to see if the week that is currently in focus is the week previous to the week of today.

function IsLastWeek(var AYear, AWeeknumber : Word) : Boolean

Description
Use IsLastWeek to determine if the current week is last week or to obtain the year and the weeknumber 
og last week. Returns True if AYear and AWeeknumber match the values of the current date.



Relevant topics:
IsThisWeek
IsNextWeek



TKronos.IsThisMonth
TKronos See also
Checks to see if the month that is currently in focus is the month that contains the date of today.

function IsThisMonth(var AYear, AMonthnumber : Word) : Boolean

Description
Use IsThisMonth to determine if the current month is the month of today or to obtian the year and the 
monthnumber of today. Returns True if AYear and AMonthnumber match the values of the current date.



Relevant topics:
IsNextMonth
IsLastMonth



TKronos.IsNextMonth
TKronos See also
Checks to see if the month that is currently in focus is the month following the month of today.

function IsNextMonth(var AYear, AMonthnumber : Word) : Boolean

Description
Use IsNextMonth to determine if the current month is next month or to obtain the year and the 
monthnumber of next month. Returns True if AYear and AMonthnumber match the values of the current 
date.



Relevant topics:
IsThisMonth
IsLastMonth



TKronos.IsLastMonth
TKronos See also
Checks to see if the month that is currently in focus is the month pervious to the month of today.

function IsLastMonth(var AYear, AMonthnumber : Word) : Boolean

Description
Use IsLastMonth to determine if the current month is last month or to obtain the year and the 
monthnumber of last month. Returns True if AYear and AMonthnumber match the values of the current 
date.



Relevant topics:
IsThisMonth
IsNextMonth



TKronos.IsThisYear
TKronos See also
Checks to see if the year that is currently in focus is the year that contains the date of today.

function IsThisYear(var AYear : Word) : Boolean

Description
Use IsThisYear to determine if the current year is the year of today or to obtain the year of today. Returns 
True if AYear matches the year of the current date.



Relevant topics:
IsNextYear
IsLastYear



TKronos.IsNextYear
TKronos See also
Checks to see if the year that is currently in focus is the year following the year of today.

function IsNextYear(var AYear : Word) : Boolean

Description
Use IsNextYear to determine if the current year is next year or to obtain next year. Returns True if AYear 
matches the year of the current date.



Relevant topics:
IsThisYear
IsLastYear



TKronos.IsLastYear
TKronos See also
Checks to see if the year that is currently in focus is the year previous to the year of today.

function IsLastYear(var AYear : Word) : Boolean

Description
Use IsLastYear to determine if the current year is last year or to obtain last year. Returns True if AYear 
matches the year of the current date.



Relevant topics:
IsThisYear
IsNextYear



TKronos.GetNextDaytype
TKronos Example
Retrieves a daytype object from the daytype list.

function GetNextDaytype(var NextIndex : Word) : TDaytype

Description
GetNextDaytype provides a way to iterate over the daytype list. The NextIndex paramter represents the 
position in the list from where the next daytype is to be retrieved. The function increments this value for 
every time a daytype is returned.

This function is useful if you implement your own save procedure instead of or in addition to the    
SaveToFile procedure.

GetNextDaytype will return nil if NextIndex is outside the list boundaries. Note that the first index is 1, not 
zero.

The daytype list is sorted by identifier. Start with the value of FirstUserID to skip the predefined daytypes.



GetNextDaytype example
This example shows a skeleton procedure for saving a descendent object of TDaytype, here named 
TSpecialDaytype. The TSpecialDaytype is expanded with two extra fields, F1, and F2. The type 
TSpecialDef is declared to hold the daytype definiton:

Type
          TSpecialDef = record
                    DaytypeDef : TDaytypeDef;
                    F1, F2 : Integer;
          end;

procedure SaveSpecial;
      var
              i : integer;
              DT : TDaytype;
              DD : TDaytypeDef;
              SD : TSpecialDef;
              Index : Word;
              SpeciaDefs : File of TSpecialDef;
begin
                AssignFile(SpecialDefs,’Special.day’);
                Rewrite(SpecialDefs);
                Index := FirstUserId;
                DT := GetNextDaytype(Index);
                while DT <> nil do
                begin
                                DD := GetDaytypeDef(DT.Id, ‘’);

        if DT is TSpecialDaytype then
                                with DT as TSpecialDaytype do
                                begin
                                                  SD.DaytypeDef := DD;
                                                  SD.F1 := F1;
                                                  SD.F2 := F2;
                                                  Write(SpecialDefs, SD);
                                end;
                                DT := GetNextDaytype(Index);
                  end;
                  CloseFile(SpecialDefs);
end; 



TKronos.GotoDate
TKronos See also
Changes the current date to a date specified.

procedure GotoDate(AYear, AMonth, AMonthday : Word)

Description
Use GotoDate to change the current date to AYear, AMonth, AMonthday. This is similar to set the time uit 
properties directly:

BeginChange;
try
    Year := AYear;
    Month := AMonth;
    Monthday := AMonthday;
finally
    EndChange;
end;



Relevant topics
GotoDateDt
GotoDateDn



TKronos.GotoDateDt
TKronos See also
Changes the current date to a date specified.

procedure GotoDate(ADate : TDateTime)

Description
Use GotoDateDt to change the current date to ADate. This is the same procedure as GotoDate, except 
you pass a single TDateTime parameters instead of a year, month and monthday parameter.



Relevant topics:
GotoDate
GotoDateDn



TKronos.GotoDateDn
TKronos See also
Changes the current date to a date specified.

procedure GotoDateDn(AYear, ADaynumber : Word)

Description
Use GotoDateDn to change the current date to AYear, ADaynumber. This is the same procedure as 
GotoDate, except you pass a daynumber as parameter instead of month and monthday.



Relevant topics
GotoDate
GotoDateDt



TKronos.GotoToday
TKronos See also
Changes the current to the date of today.

procedure GotoToday

Description
Use GotoToday to change the current to the date of today



Relevant topics:
GotoTomorrow
GotoYesterday



TKronos.GotoYesterday
TKronos See also
Changes the current date to the date of yesterday.

procedure GotoYesterday

Description
Use GotoYesterday to change the current date to the date of yesterday.



Relevant topics:
GotoTomorrow
GotoToday



TKronos.GotoTomorrow
TKronos See also
Changes the current date to the date of tomorrow

procedure GotoTomorrow

Description
Use GotoTomorrow to change the current date to the date of tomorrow.



Relevant topics
GotoYesterday
GotoToday



TKronos.GotoThisWeek
TKronos See also
Changes the current week to the week that contains today .

procedure GotoThisWeek

Description
Use GotoThisWeek to change the current week to the week that contains today. The current weekday will 
not change.



Relevant topics:
GotoNextWeek
GotoLastWeek



TKronos.GotoNextWeek
TKronos See also
Changes the current week to the week following the one that contains today .

procedure GotoNextWeek

Description
Use GotoNextWeek to change the current week to the week following the one that contains today. The 
current weekday will not change.



Relevant topics:
GotoThisWeek
GotoLastWeek



TKronos.GotoLastWeek
TKronos See also
Changes the current week to the week previous the one that contains today .

procedure GotoLastWeek

Description
Use GotoLastWeek to change the current week to the week previous to the week one that contains today. 
The current weekday will not change.



Relevant topics:
GotoThisWeek
GotoNextWeek



TKronos.GotoThisMonth
TKronos See also
Changes the current month to the month that contains today .

procedure GotoThisMonth

Description
Use GotoThisMonth to change the current month to the month that contains today. The current monthday 
will not change, except if it does not fit the target month. In that case the monthday is set to the last day of 
the target month.



Relevant topics:
GotoNextMonth
GotoLastMonth



TKronos.GotoNextMonth
TKronos See also
Changes the current month to the month following the one that contains today .

procedure GotoNextMonth

Description
Use GotoNextMonth to change the current month to the month following the one that contains today. The 
current monthday will not change, except if it does not fit the target month. In that case the monthday is 
set to the last day of the target month.



Relevant topics:
GotoThisMonth
GotoLastMonth



TKronos.GotoLastMonth
TKronos See also
Changes the current month to the month previous the one that contains today .

procedure GotoLastMonth

Description
Use GotoLastMonth to change the current month to the month pervious to the one that contains today. 
The current monthday will not change, except if it does not fit the target month. In that case the monthday 
is set to the last day of the target month.



Relevant topics:
GotoThisMonth
GotoNextMonth



TKronos.GotoDaytype
TKronos
Changes the current date to a date that results from a successful search for a daytype in a specified year.

procedure GotoDaytype(AYear : Word; AnId : Word; ADaytypeName : String)

Description
Use GotoDaytype to change the current date to a date that matches the criterias in AYear and 
AnId/ADaytypeName. If no match the Exception EKronosError ‘Daytype not found’ is raised and the 
current date is not changed.

AnId/ADaytypeName is mutually exclusive. To search for an ID set ADaytypeName to an empty string. To 
serach for a name, set AnId to 0. If both AnId and ADaytypeName have values, the id value is the 
preferred key.



TKronos.GotoOffsetDay
TKronos See also
Changes the current date to a date that is <OffsetValue> days from the current date.

procedure GoToOffsetDay(OffsetValue : Integer; SkipHolidays : Boolean)

Description
Use GotoOffsetDay to change the current date to a date that is <OffsetValue> days from the current date. 
Negative values move backwards, positive forwards.

If you set the SkipHolidays parameter to True, holidays are not counted. Assume the current weekday is 
Friday. Saturday and Sunday are week holidays . GotoOffsetDay(1, False) will move to Saturday, while 
GotoOffsetDay(1, True) will move to Monday (Saturday and Sunday are skipped).

Note: Setting the SkipHolidays parameter to True may slow down performace (notably with big offset 
values) as each and every day in the offset interval has to be examined.



Relevant topics:
GotoOffsetWeek
GotoOffsetMonth



TKronos.GotoOffsetWeek
TKronos See also
Changes the current date to a date that is <OffsetValue> weeks from the current week.

procedure GoToOffsetWeek(OffsetValue : Integer)

Description
Use GotoOffsetWeek to change the current date to a date that is <OffsetValue> weeks from the current 
week. Negative values move backwards, positive forwards. The current weekday is not changed.



Relevant topics
GotoOffsetWeek
GotoOffsetMonth



TKronos.GotoOffsetMonth
TKronos See also
Changes the current date to a date that is <OffsetValue> months from the current month.

procedure GoToOffsetMonth(OffsetValue : Integer)

Description
Use GotoOffsetMonth to change the current date to a date that is <OffsetValue> months from the current 
month. Negative values move backwards, positive forwards. The current monthday will not change, 
except if it does not fit the target month. In that case the monthday is set to the last day of the target 
month.



Relevant topics:
GotoOffsetWeek
GotoOffsetDay



TKronos.DOWToWeekday
TKronos See also
Converts a day of week number to a TWeekday value.

function DOWtoWeekday(ADayOfWeekNumber : Word) : TWeekday

Description
Use DOWtoWeekday to obtain the corresponding Weekday. The result is calculated in connection with 
the value of the FirstWeekday property.



Relevant topics
DOWToDayNameIndex



TKronos.DOWToDayNameIndex
TKronos See also
Converts a day of week number to an number that can be used to access the Dayname array.

function DOWtoDayNameIndex(ADayOfWeekNumber:Word) : Word

Description
You might find it convinient to use the dayname array, even if you can extract daynames from the DateExt 
property. Use DOWtoWeekday to obtain the index to use with the array. The result is calculated in 
connection with the value of the FirstWeekday property.



Relevant topics
DOWToWeekday



TKronos.CDToDateTime
TKronos
Converts the date that currently is in focus to a TDateTime value.

function CDtoDateTime : TDateTime

Description
Merely a short hand way to DT := EncodeDate(Year, Month, Monthday );



TKronos.GetMIDayCell
TKronos See also Example
Returns the coordinates to a cell in a TMonthImage-table that contains a specified year based 
daynumber.

procedure GetMIDayCell(ADaynumber : Word; var ARow, ACol : Longint)

Description
Use this procedure to spot a cell that contains ADaynumber. This is especially useful when working with 
onscreen calendars. If ADaynumber is not found ARow and ACol is set to 0. Note that you cannot search 
for days that do not belong to the month.



GetMIDayCell example
Assume that your TKronos component initializes to today. You want to find the today-cell on the onscreen 
grid:
GetMIDayCell(Daynumber, ARow, ACol);
MyGrid.Cells[ACol, ARow] := ‘This is today.’;



Relevant topics:
GetFirstMIDayCell
GetMIWeekRow
TMonthImage



TKronos.GetMIWeekRow
TKronos See also
Returns the rownumber in a TMonthImage-table that contains a specified weeknumber.

function GetMIWeekRow(AWeekNumber : Word) : Word

Description
Use this procedure to spot a row that contains AWeekNumber in a TMonthImage table. If AWeekNumber 
is not found the function returns 0. Note that you cannot search for weeks that not at all belong to the 
month.



Relevant topics:
GetMiDayCell



TKronos.GetFirstMIDaycell
TKronos See also
Returns the coordinates to a cell in a TMonthImage-table that contains the first day of the month.

procedure GetFirstMIDayCell(var ARow, ACol : Longint)

Description
Use this procedure to spot the cell that starts the month.



Relevant topics:
GetLastMIDayCell
GetMiDayCell



TKronos.GetLastMIDaycell
TKronos See also
Returns the coordinates to a cell in a TMonthImage-table that contains the last day of the month.

procedure GetLastMIDayCell(var ARow, ACol : Longint)

Description
Use this procedure to spot the cell that ends the month.



Relevant topics:
GetFirstMIDayCell
GetMiDayCell



TKronos.DisableEvents
TKronos Example
Turns on/off event triggering for a TKronos component

procedure DisableEvents(Disable : Boolean)

Description
Use this procedure to protect against unwanted triggering of events during temporary changing of the 
current date. Passing True in the Disable parameter turns triggering off, False turns it on.

Note
DisableEvents only has effect for the OnChangeXXX events.



DisableEvents example
Although TKronos offers many ways to retrieve information from dates outside the current date, there 
might be situations when you temporarily want to switch to another date to perform some investigation. 
Then you possibly don’t wish any eventhandlers to fire. Assume you want to look at the daytypes for a 
certain date:

DisableEvents(True) //Turn off event triggering
SaveCD // Save the current date
GotoDate (2000, 10, 5) //Make temporarily antother date the current date
for i := 1 to DaytypeCount do
begin
              //Perform some action
              :
              :
end;
RestoreCD // Back to the real current date
DisableEvents(False) // Ready to handle events again



TKronos.SaveCD
TKronos See also
Saves the current date.

procedure SaveCD

Description
Use this procedure to save the current date for later to restore it with RestoreCD. The current date is 
saved in an internal variable that will be overwritten each time you make the call.



Relevant topics:
RestoreCD



TKronos.RestoreCD
TKronos See also
Restores the date previously saved by SaveCD

procedure RestoreCD

Description
Use this procedure to restore the current date that was previously saved with SaveCD. When RestoreCD 
is called the internal variable that holds the saved date is invalidated. Any subsequent call to RestoreCD 
will have no effect unless you first call the SaveCD procedure.



Relevant topics:
SaveCD



TKronos.BeginChange
TKronos See also Example
Starts a change transaction.

procedure BeginChange

Description
Use BeginChange in connection with EndChange to safely alter a date that involves setting more than 
one of the time unit properties. The change transaction mechanism enacpsulates several property 
settings into one logical operation. If one of the individual settings fails, the change is canceled and the 
original date is restored.

While a transaction is active there will be no event triggering. Event-handling is postponed until you call 
EndChange. Then only one of each event-kinds involved is triggered. If you don’t use the transaction 
mechanism, one and the same event might be triggered several times.

Whenever possible use one of the Goto-procedures to change the date. The Goto-procedures handle 
change transaction internally, so you don’t have to think about writing protected blocks of code.

A call to BeginChange when a transaction is active has no effects.



BeginChange example
Assume you want to put focus on the first weekday of the last week in a certain month. There are no 
Goto-procedures that perform this kind of navigation, so you must set the relevant time unit properties 
directly. You should do it like this.

Assume current date to be January 1.

BeginChange;
try
          Month := 2; // Go to february
          Week := MonthExt.LastWeek; // Move to last week
          Weekday := FirstWeekday 
        // Move to first day of week
finally
          EndChange; 
{If an exception were raised, say you attempted to set week to 55, the EndChange statement would have 
restored the current date to the original January 1.}
end;



Relevant topics
EndChange
General guidelines
GotoDate



TKronos.EndChange
TKronos See also
Ends a change transaction.

procedure EndChange

Description
Use EndChange to end a running change transaction. EndChange processes any events that might have 
occured during the change process. If an error was encountered during the process the orginal current 
date is restored and no events are triggered. 

Calling EndChange when no transaction is active has no effect.



Relevant topics:
BeginChange
General guidelines 



TKronos.UpdateInfo
TKronos See also Example
Manually updates the MonthExt and DateExt properties to reflect changes in the daytype list.

procedure UpdateInfo

Description
Normally UpdateInfo is called internally whenever needed. There are however a few exceptions.
After calls to AddDaytype and SpecifyStandardDay you should do a manual update to be sure that the 
current date reflects the changes. You only need to call UpdateInfo once in a configuiring sequence, not 
after each call to the mentioned procedures.



UpdateInfo example
var
        DaytypeDef : TDaytypeDef;
:
:
with DaytypeDef do
begin
                    AName := ’10 days left to Easter’
                    ADate = 0;
                    AReldayType = chEasterSunday;
                    AnOffset = -10;
                    AFirstShowUp = 1;
                    ALastShowUp := 9999;
                    AShowUpFrequency = 1;
                    AHoliday := False;
                    AChurchday := False;
                    AFlagDay := False;
                    AUserCalc := False;
                    ATag := 0;
                    AddDaytype(TDaytype.Create(DaytypeDef));

                    AName = ‘9 days left to Easter’;
                    AnOffset := -9;
                    AddDaytype(TDaytype.Create(DaytypeDef));

                    AName := '’8 days left to Easter’;
                    AnOffset := -8;
                    AddDaytype(TDaytype.Create(DaytypeDef));
      end;
UpdateInfo;
:
:



Relevant topics:
Rechange 



TKronos.Rechange
TKronos
Triggers all OnChange - eventhandlers.

procedure Rechange

Description
Use Rechange to force all the OnChange... eventhandlers to fire: OnChangeYear, OnChangeMonth, 
OnChangeMonthNumber, OnChangeWeek, OnChangeWeekNumber, OnChangeDate, 
OnChangeMonthDay and OnChangeWeekday.

This procedure is useful to when you want initial OnChange... events to take place after TKronos is 
loaded.



TKronos.LoadFromFile
TKronos See also
Loads a calendar profile from a disk file.

procedure LoadFromFile(AFileName : String; LoadAll : Boolean)

Description
Use LoadFromFile to load a set of daytypes and daynames/monthnames from an external disk file and 
make them the current daytype definitions. A daytype file may store any of the three daytype categories: 
Churchdays, common days and userdefined types.

To load the definition file from a directory different from the current directory qualify AFilename with a full 
directory path.

To use the LoadAll parameter see the paragraph “Predefined usertypes” below.

File format
A file that stores daytypes must be a textfile following these conventions:

Daynames
You define the daynames by means of a header section enclosed in brackets followed by a dayname list. 
The text of the header section must be ‘Daynames’. The list consists of keywords and values for each 
dayname. The keydwords are:

Sun
Mon
Tue
Wed
Thu
Fri
Sat

This is how a Daynames section could look like:

[Daynames]
Sun=Sunday
Mon=Monday
Tue =Tuesday
etc.

If you ommit the Daynames section the daynames in the Daynames array will be unchanged.

Monthnames
You define the monthnames by means of a header section enclosed in brackets followed by a 
monthname list. The text of the header section must be ‘Monthnames’. The list consists of keywords and 
values for each monthname. The keydwords are:

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug



Sep
Oct
Nov
Dec

If you ommit the Monthnames section the monthnames in the Monthnames array  will be unchanged.

This is how the Monthnames section could look like:

[Monthnames]
Jan=January
Feb=February
Mar =March
etc.

Week specifications
You define week specifications by means of a header section enclosed in brackets followed by a 
specification list. The text of the header section must be ‘Week’. The list consists of keywords and values 
for each specification. The keydwords are:

WeekHolidays
FirstWeekday

You specify the week holidays as numeric string where each digit corresponds to a weekday holiday. 0 is 
Sunday, 1 is Monday, etc. You specify FirstWeekday as a single digit.

This is how the week section could look like:

[Week]
WeekHolidays=067
;Sunday; Friday and Saturday
FirstWeekday= 1
;Monday

To make the calendar contain no week holidays, simply set the WeekHolidays value to blank.

If you ommit the Week section, WeekHoldidays will be set to Sunday and Saturday, FirstWeekday to 
Sunday.

Predefined church- and common days
Every predefined churchday and common day included in the file must have an entry consisting of a 
header section enclosed in brackets and a key section describing the fields and the field values. The text 
of the header section identifies the daytype by a daytype constant prefix and a daytype constant value (to 
see a listing of the daytype constants go to the Daytype constants topic). 

The key-list, that follows immidiately after the header, describes the fields by 
<Field name> = <Value>.
For Boolean values use 1 for True and 0 for False.

The fieldnames for churchdays and common days are:
Name
Holiday
Flagday

This example defines the Easter Sunday daytype:



[ch16]
Name=Easter Sunday
Holiday=1
Flagday=1

Ch is the constant prefix for churchdays. 16 is the constant value for Easter Sunday.

Predefined usertypes
If you work with a descendent of TKronos, and there are daytypes added through the SetCountrySpecifics 
method, these daytypes are part of the basic calendar profile. You may include those daytypes in the file 
to redefine names and other attributes. However, you have not the option to delete them from the 
caleandar, so ommitting them i the file will have no destructive effect.

You decribe theese predefined usertypes using “cs” as the daytype constant prefix. The constant value 
must correspond to the daytype you wish to redefine. These values should be documented by the 
component writer, but you can also see them by dumping the calendar definition to a file with the 
SaveToFile procedure.

Note! You can prevent the predefined usertypes from being modified, by setting the LoadAll parameter to 
False. This have the effect that daytypes with the cs header prefix are ignored. If no predefined usertypes 
exists in the file LoadAll has no effect.

Note also that you cannot change all the fields. Setting new values for the fields Date, Reldaytype, Offset, 
FirstShow, LastShow and ShowUpFreq will go unnoticed.

The fieldnames and values to use whith predefined usertypes are the same as for regular user defined 
daytypes. See the next paragraph.

This is how a predefined usertype could look like:

[cs27]
Name=Independence Day
Date=704 
;Cannot be changed
FirstShow=1776 
;Cannot be changed
Flagday=1

User defined daytypes
The list of userdefined daytypes is made up of the daytypes you want to include in addition to the 
predefined types. Every entry in the list must have “ud” as the daytype constant prefix. Start with 1 as the 
constant value and increment by 1. The field names to use with userdefined types are:

Name
Date
RelDaytype
Offset
FirstShow
LastShow
ShowUpFreq
Holiday
Flagday
Churchday
Calc
Tag



This is how a userdefined type could look like:

[ud1]
Name=My day
Date=610
;June 10
FirstShow=1990
LastShow=2000
Flagday=1

Default values
If you ommit fields from the definiton, standard values are used. The standard values are:
Name = ‘’
Date = 0
RelDaytype = 0
Offset = 0
FirstShow = 1
LastShow = 9999
ShowUpFreq = 1
Holiday = False
Flagday = False
Churchday = False
Calc = False
Tag = 0

Note
Before loading a calendar profile from disk the current daytype definitions, except the predefined, will be 
deleted.

The sequence in which the fieldnames are listed is not significant. If you ommit (or misspell) fieldnames, 
the standard values will be used.

If any of the section headers in the file contains illegal constant prefixes or values TKronos raises the 
exception EKronosError ‘Illegal section (<section>) in inputfile’ and the load process is terminated. There 
is no checking for logical errors (like you specify FirstShow to be later than LastShow).

Tip
To create a skelton daytype file to work with save the current definitions with SaveToFile.



Relevant topics
SaveToFile 
SpecifyStandardDay 
AddDaytype 
Using daytypes 
SetCountrySpecifics 



TKronos.SaveToFile
TKronos
Saves the current daytype definitions to an external disk file.

procedure SaveToFile(AFilename : String);

Description
Use SaveTo file to save the current daytype definitions to an external diskfile. Alle the daytype categories 
are saved, that is chuchdays, common days and user defined types if any. 

If a file with the same name as AFilename already exists it is overwritten.

To save the definitions to a directory different from the current directory qualify AFilename with a full 
directory path.

For a complete discussion of daytype files see LoadFromFile.



TKronos.OnChangeDate
TKronos
OnChangeDate occurs every time the current date changes.

property OnChangeDate: TNotifyEvent;

Description
Use the OnChangeDate event to write code that responds to the change-date event. In your code you 
can safely read the time unit and Ext properties as the event is not triggered until all updates are 
performed.

Caution
If you within the OnChange event handler change the current date you must first disable event triggering 
with DisableEvents else the event handler will recursively call itself.



TKronos.OnChangeMonth
TKronos See also Example
OnChangeMonth occurs every time the current month changes. That is whenever the monthnumber or 
the year changes.

property OnChangeMonth: TNotifyEvent

Description
Use the OnChangeMonth event to write code that responds to the change-month event. In your code you 
can safely read the time unit and Ext properties as the event is not triggered until all updates are 
performed.

Caution
If you within the OnChange event handler write code that might change the current month you must first 
disable event triggering with DisableEvents else the event handler will recursively call itself.



OnChangeMonth example
procedure MyForm.AlterMonth;
begin
 //Asume current month = 1. Both statements trigger the OnChangeMonth event
              with Kronos1 do
              begin
                            GotoDate (1999,2,1); // Monthnumber changes
                            Year := Year + 1; // Monthnumber is the same, but the year changes.
              end;
end;

procedure MyForm.Kronos1ChangeMonth(Sender : TObject);
begin
              with Kronos1 do
              if YearExt.LeapYear and (Month = 2) then
                      ShowMessage(MonthExt.Monthname + ‘ has 29 days this year.’)
                      // Relevant after Year := Year + 1
              else if (Month = 2) then
                      // Relevant after GotoDate(1999,2,1)
                      ShowMessage(MonthExt.Monthname + ‘ has 28 days this year.’)
end;



Relevant topics:
OnChangeMonthNumber



TKronos.OnChangeMonthNumber
TKronos See also
OnChangeMonthNumber occurs every time the current monthnumber changes.

property OnChangeMonthNumber: TNotifyEvent

Description
Use the OnChangeMonthNumber event to write code that responds to the change-monthnumber event. 
In your code you can safely read the time unit and Ext properties as the event is not triggered until all 
updates are performed.

Caution
If you within the OnChange event handler write code that might change the current monthnumber you 
must first disable event triggering with DisableEvents else the event handler will recursively call itself.



Relevant topics:
OnChangeMonth



TKronos.OnChangeMonthday
TKronos
OnChangeMonthday occurs every time the current monthday changes.

property OnChangeMonthday: TNotifyEvent;

Description
Use the OnChangeMonthday event to write code that responds to the change-monthday event. In your 
code you can safely read the time unit and  Ext properties as the event is not triggered until all updates 
are performed.

Caution
If you within the OnChange event handler write code that might change the current monthday you must 
first disable event triggering with DisableEvents else the event handler will recursively call itself.



TKronos.OnChangeWeek
TKronos See also
OnChangeWeek occurs every time the current week changes. That is whenever the weeknumber or the 
year changes.

property OnChangeWeek: TNotifyEvent;

Description
Use the OnChangeWeek event to write code that responds to the change-week event. In your code you 
can safely read the time unit and Ext properties as the event is not triggered until all updates are 
performed.

Caution
If you within the OnChange event handler write code that might change the current week you must first 
disable event triggering with DisableEvents else the event handler will recursively call itself.



Relevant topics:
OnChangeWeeknumber



TKronos.OnChangeWeeknumber
TKronos See also
OnChangeWeekNumber occurs every time the current weeknumber changes.

property OnChangeWeeknumber: TNotifyEvent

Description
Use the OnChangeWeeknumber event to write code that responds to the change-weeknumber event. In 
your code you can safely read the time unit and Ext properties as the event is not triggered until all 
updates are performed.

Caution
If you within the OnChange event handler write code that might change the current weeknumber you 
must first disable event triggering with DisableEvents else the event handler will recursively call itself.



Relevant topics:
OnChangeWeek



TKronos.OnChangeWeekday
TKronos
OnChangeWeekday occurs every time the current weekday changes.

property OnChangeWeekday: TNotifyEvent

Description
Use the OnChangeWeekday event to write code that responds to the change-weekday event. In your 
code you can safely read the time unit and Ext properties as the event is not triggered until all updates 
are performed.

Caution
If you within the OnChange event handler write code that might change the current weekday you must 
first disable event triggering with DisableEvents else the event handler will recursively call itself.



TKronos.OnChangeYear
TKronos
OnChangeYear occurs every time the current year changes.

property OnChangeYear: TNotifyEvent;

Description
Use the OnChangeYear event to write code that responds to the change-year event. In your code you can 
safely read the time unit and Ext properties as the event is not triggered until all updates are performed.

Caution
If you within the OnChange event handler write code that might change the current year you must first 
disable event triggering with DisableEvents else the event handler will recursively call itself.



TKronos.OnToday
TKronos
OnToday occurs every time the current date changes to today.

property OnToday: TNotifyEvent;

Description
Use the OnToday event to write code that responds to the today event. In your code you can safely read 
the time unit and Ext properties as the event is not triggered until all updates are performed.

Caution
If you within the OnChange event handler write code that might change the current date to today you 
must first disable event triggering with DisableEvents else the event handler will recursively call itself.



TKronos.OnCalcDaytype
TKronos See also Example
OnCalcDaype occurs every time a daytype with the UserCalc property set to True is to be evaluated. This 
happens when the current date changes or when date information is retrieved with the FetchDateExt 
function.

property OnCalcDaytype : TCalcDaytypeEvent;

TCalcDaytypeEvent = procedure(Sender : TObject; Daytype : TDaytype ;
ADateExt : TDateExt; IsCurrentDate : Boolean;
var Accept : Boolean) of Object;

Description
Use OnCalcDaytype to write code that responds to the CalcDaytype event. Instead of letting the show up 
pattern be controlled by hard coded attributes of the daytype itself (that is the Date and the RelDaytype 
fields), you can obtain great flexibility by writing your own algorithms. These might be simple or complex 
calculations - anything you need to direct the showups the way you want.

To make a user calculated daytype show up several times within a year, you only need to add one 
instance of it to the daytype list. Not so with a “static” daytype, which is bound to show up only once in a 
year.

For eventhandling to take place, besides setting the Daytype’s UserCalc field to True, you also must set 
the AllowUserCalc property to True.

Parameters
Daytype The daytype object that is to be evaluated. This might a TDaytype object or 

an object derived from TDaytype.

AdateExt Detailed information about the date that you might attach to the daytype

IsCurrentDate True if information held by ADateExt corresponds to the date that actually is 
in focus. If OnCalDaytype is triggered as a result from changing the current 
date, IsCurrentDate is allways True. If triggering comes from retrieving 
information without changing the current date, the value will be False. For 
instance: If the current date is March 1. 1999 and the user calls 
FetchDateExt(2000,1,1) then AdateExt will contain information about 
January 1. 2000 while the properties of TKronos itself will reflect March 1. 
1999.

The point of reading this parameter is that you will know the effect of calling 
TKronos methods from within the event handler. If you for instance call the 
IsToday function and IsCurrentDate is False, then you actually checks the 
state of the current date and not the date held in AdateExt.

Accept Set to True if you decide to attach Daytype to the date held in ADateExt

How it works
Every time you change the current date or retrieve information about it, TKronos queries the daytype list 
to find daytypes that matches the show up criterias in the daytype definition. For instance, if the current 
date changes to January 1, TKronos spots the daytypes with the value 101 in the date field and binds 
them to the current date. However, if TKronos finds a daytype in the list with the UserCalc field set to 
True, rather than looking into the date fields, it asks you wether to create a bind. You send your answer 
with the Accept parameter.



When to use the OnCalcDaytype event
Use this feature only when needed. If your daytype does well with a “static” declaration, declare it as not 
user calculated. Such daytypes do not carry the overhead of the user calc model and run somewhat 
faster. If you decide upon user calculation then be aware of a possible slowdown as your code is called 
every time the current date changes. If your calculations are lengthy and complex, then you might expect 
a sigificant loss of speed.

Note!
You might, and possibly will, make calls to other TKronos procedures or functions from inside the 
OnCalcDaytype event handler. To avoid deadlock situations, where the handler endlessly triggers itself, 
TKronos protects the handler from beeing called while code executes. This has the effect that user 
calulated daytypes will not be processed by any methods as long as they are originated from the    
handler itself.

Caution
Although possible you should within the event handler avoid operations that change the current date. As 
this might lead to conflicting date transactions, TKronos will prevent any date trasanction from starting 
while OnCalcDaytype executes.



Relevant topics:
AllowUserCalc property
Using daytypes 
Processing daytype classes 



TKronos.OnLoadDaytype
TKronos See also
OnLoadDaytype occurs every time when a daytype is about to be loaded from a standard TKronos 
calendar file using the LoadFromFile method.

property OnLoadDaytype: TLoadDaytypeEvent;

TLoadDaytypeEvent = procedure(Sender : TObject; DaytypeDef : TDaytypeDef; var LoadIt : Boolean) of 
Object;

Description
Use the OnLoadDaytype event to control loading of userdefined (not predefined) daytypes. This event i 
useful when working with descendents of the TDaytype object and you wish to implement your own 
loading procedure, but still want the basic daytype definition to be stored in the standard file.

Parameters
DaytypeDef The basic definition of the daytype which is ready to be loaded.

LoadIt Set to True (standard value) if you want the daytype to be created and 
added to the list as a standard TDaytype object. Set to False if you don’t 
want the LoadFromFile procedure to add it to the list, but wish to create it 
yourself.

Note
You cannot prevent predefined daytypes from beeing added to the daytype list, but you can force them 
never to show up by setting the HidePredefineds propertry to True.

Tip
To find out if DaytypeDef is the basic definition of a descandant of TDaytype, it might be an idea to use 
the tag field to classify it.



Relevant topics:
OnSaveDaytype 
Processing daytype classes 



TKronos.OnSaveDaytype
TKronos See also
OnSaveDaytype occurs every time a daytype is about to be saved to a standard TKronos calendar file 
using the SaveToFile method.

property OnSaveDaytype: TSaveDaytypeEvent;

TSaveDaytypeEvent = procedure(Sender : TObject; Daytype : TDaytype; var SaveIt : Boolean) of Object;

Description
Use the OnSaveDaytype event to control saving of userdefined (not predefined) daytypes. This event i 
useful when working with descendents of the TDaytype object and you wish to implement your own 
storing procedure, instead of or in addition to storing the basic daytype definition in a standard file.

Parameters
Daytype The daytype object which is ready to be saved.

SaveIt Set to True (standard value) if you want the daytype defintion to be stored in 
the standard file. Set to False if you don’t want the SaveToFile procedure to 
store it in the file..

Note
You cannot prevent predefined daytypes from beeing stored in the standard file, as the event is not 
triggered for predefined types.

Tip
If you store a descendent of TDaytype in a standard file, it might be an idea to use the tag field to classify 
it.



TKronos properties
Events Methods
AllowUserCalc 
DateExt
Daynumber
DaytypeCount
Daytypes 
DefaultToPresentDay
FirstUserId 
FirstWeekday
HidePredefineds 
MaxYear 
MinYear
Monthday
MonthExt
Month
Weekday
WeekExt
WeekHolidays
Week
YearExt
Year



TKronos methods
Properties Events
Daytype definiton methods
AddDaytype 
ClearUserDaytypes 
DeleteUserDaytype 
UpdateDaytype 
GetDaytypeDef 
GetNextDaytype
SpecifyStandardDay 
SetCountrySpecifics 
LoadFromFile
SaveToFile
ExistsDaytype 

Methods that retireve information about time units
FetchYearExt 
FetchMonthExt 
FetchWeekExt 
FetchDateExt 
FetchDateExtDt 
FetchDateExtDn 
FetchDaytpe 
FetchYeartype 
DaynumberByTypeName 
DaynumberByTypeId 
IsLeapYear 
IsLastDayOfMonth 
IsLastWeekOfYear 

Methods that perform calculation
DaysInInterval 
DaysInIntervalDt 
WeeksInInterval 
MonthsInInterval 
DateByDayOffset 
DateByWeekOffset 
DateByMonthOffset 

Methods that return the status of the current date
IsToday 
IsTomorrow 
IsYesterday 
IsThisWeek 
IsNextWeek 
IsLastWeek 
IsThisMonth 
IsNextMonth 
IsLastMonth 
IsThisYear 
IsNextYear 
IsLastYear 

Methods that changes the current date
GotoDate 
GotoDateDt 



GotoDateDn 
GotoToday 
GotoTomorrow 
GotoYesterday 
GotoThisWeek 
GotoNextWeek 
GotoLastWeek 
GotoThisMonth 
GotoNextMonth 
GotoLastMonth 
GotoDaytype 
GoToOffsetDay 
GoToOffsetWeek 
GoToOffsetMonth 

Converting methods
DOWtoWeekday 
DOWtoDayNameIndex 
CDtoDateTime 

Methods operating on the MonthImage-table 
GetMIDayCell 
GetMIWeekRow 
GetFirstMIDayCell 
GetLastMIDayCell 

Other methods
DisableEvents 
SaveCD 
RestoreCD 
BeginChange 
EndChange 
Rechange 



TKronos events
Properties Methods
OnChangeYear 
OnChangeMonth 
OnChangeMonthNumber 
OnChangeWeek 
OnChangeWeekNumber 
OnChangeMonthday 
OnChangeWeekday 
OnChangeDate 
OnCalcDaytype 
OnLoadDaytype 
OnSaveDaytype 
OnToday 



TKronos - using daytypes
TKronos See also
Most calendars are not just listings of months and days, they also imform about what happens during a 
year. National and religious events are most often printed on calendars, aditionally calendars can devote 
themselves to certain themes, like litterature for instance. On a such a calendar you will know about birth 
and death of writers and when their most famous books were published.

Predefined and user defined
The Daytype feature of TKronos makes it easy to keep track of such annual events. TKronos comes with 
several predefined daytypes that conform to the most common Christian churchdays and international 
notification days. Furthermore you can define new daytypes, as many as you like. You    attach daytypes 
to dates - or more generally to years - in a one to many releationship. Daytypes with no date reference 
are called yeartypes. Yeartypes are allways user defined (see FetchYeartype and AddDaytype to learn 
how to create and retrieve yeartypes).

The standard daytypes have different status, and of course, different names in different countries. So to 
use them you have to adjust them to your environment. If you don’t make any adjustments you will see    
English names by default. The status atrributes Holiday and Flagday are both set to False.

You may choose between two strategies when redefining or creating daytypes. If you want a stable and 
easily reusable calendar component you ought to derive a new component from TKronos. If you often 
change between different sets of daytypes, it might be an idea to maintain libraries of daytypes to load 
and unload at runtime. Of course you might ride both horses.

Adjusting TKronos by deriving a new component
When TKronos initializes it calls a protected procedure named SetCountrySpecifics. This does nothing at 
all, but is there for you to override the standard names and attributes of the predefined daytypes or add 
your own. (To see a listing of the predefined types go to the Daytype Constants topic).

In the SetCountrySpesifcs procedure call two other procedures:
SpecifyStandardDay to adjust a prefefined church or    international notification day
AddDaytype to add a daytype of your own.

Yous must make one call for each daytype you process. Here is a code fragment:

procedure TKronosNor.SetCountrySpecifics;
var
        DaytypeDef : TDaytypeDef;
begin

      inherited SetCountrySpecifics;
      SpecifyStandardDay(chNewYearEve,'Nyttaarsaften', False, False);
      SpecifyStandardDay(chNewYearDay, 'Nyttaarsdag', True, True);
      SpecifyStandardDay(chShroveTuesday, 'Fetetirsdag', False, False);
      SpecifyStandardDay(chAshWednesday, 'Askeonsdag', False, False);
      SpecifyStandardDay(chPalmSunday, 'Palmesoendag', True, False);
      SpecifyStandardDay(chMaundyThursday, 'Skjaertorsdag', True, False);
      SpecifyStandardDay(chGoodFriday, 'Langfredag', True, False);
      SpecifyStandardDay(chEasterEve, 'Paaskeaften', False, False);
      SpecifyStandardDay(chEasterSunday, '1. paaskedag', True, True);
      SpecifyStandardDay(chEasterMonday, '2. paaskedag', True, False);
      :
      :
      SpecifyStandardDay(coMayDay,'1. mai',    True, True);
      SpecifyStandardDay(coUNDay, 'FN-dagen',    False, False);



      SpecifyStandardDay(coWomensDay, 'Kvinnedagen',
      False, False);

      with DaytypeDef do
      begin
                    AName := 'Frigjoeringsdag'; //Liberation day
                    ADate := 508;
                    AReldayType := 0;
                    AnOffset := 0;
                    AFirstShowUp := 1945;
                    ALastShowUp := 9999;
                    AShowUpFrequency := 1;
                    AHoliday := False;
                    AChurchday := False;
                    AFlagDay := True;
                    AUserCalc := False;
                    ATag := 0;
                    AddDaytype(TDaytype.Create(DaytypeDef));

                    AName := 'Grunnlovsdag'; // National day
                    ADate := 517;
                    AFirstShowUp := 1814;
                    AHoliday := True;
                    AddDaytype(TDaytype.Create(DaytypeDef));

                    AName := 'Olsok'; // Local religious day
                    ADate := 729;
                    AFirstShowUp := 1000;
                    AChurchday := True;
                    AFlagDay := True;
                    AddDaytype(TDaytype.Create(DaytypeDef));

                    AName := 'Election year'; // Year type. Election every 4. year
                    ADate := 0;
                    AFirstShowUp := 1900;
                    AddDaytype(TDaytype.Create(DaytypeDef));
    end;
end; 

These are Norwegian daytypes, don’t mind the mysterious names.

Changing daynames and monthnames
Besides manipulating daytypes, you can also override the standard TKronos day- and monthnames. 
TKronos maintains two array variables, Daynames and Monthnames which are the sources of the names 
presented to you through the DateExt and MonthExt properties. When TKronos initializes the Delphi 
LongDaynames and LongMonthNames-arrays are copied into the corresponding TKronos arrays. The 
names are country spesific, so in most cases you don’t need to change them, but if you want you can do 
it. Simply fill in the names like this:

Daynames[1] := ‘Sunday’;
Daynames[2] := ‘Monday’
:
Monthnames[1] := ‘January’
:

Adjusting at runtime



If you don’t whish to derive a new component, you might obtain the same result by calling the two 
procedures upon creation of the form that contains TKronos. You can also save different daytype sets on 
disk and load them by calling the LoadFromFile procedure.

procedure MyForm.FormCreate;
begin
              //Call the above mentioned procedures or:
                KronosNor.LoadFromFile(‘c:\MyDir\Norway.kdt’, True);
              :
              :
end;

User calculated daytypes
A TKronos standard daytype permits only fixed date definitions or simple offset calculation. Such 
daytypes will only show up once i a year and mostly have their mission in a traditional calendaric 
scheeme. But probably you will sometimes need to mark up days in a more sophisticated manner. 
Possibly you’ll need to figure out an event by means of caculations far beyond the capabilities of a 
standard daytype. Through the OnCalcDaytype event TKronos provides a mechanism that puts you in 
total control over the show up pattern. Simply declare a daytype as user calculated, then every time the 
current date changes you are notified to deciede if this is the date for the daytype to show up.

This flexibility, may be in connection with derived daytype classes, render you a powerful tool to process 
almost any kind of chronological events you might think of.



Relevant topics:
Processing daytype classes 



TKronos.Daynames array
TKronos See also
The Daynames array stores the names of the weekdays.

Daynames : array[1..7] of String

Description
The daynames must start with Sunday, then Monday and so on.

Daynames is the sources of the names presented to you through the DateExt propertiy. When TKronos 
initializes the Delphi LongDaynames array is copied into the Daynames array. The names are by default 
country spesific, so in most cases you don’t need to change them, but if you want you can do so. Simply 
fill in the names like this:

Daynames[1] := ‘Sunday’;
Daynames[2] := ‘Monday’

By manipulating the Daynames array you can override the country dayname definitions of the user’s 
machine.



Relevant topics:
Monthnames array 
Using daytypes
LoadFromFile 



TKronos.Monthnames array
TKronos See also
The Monthnames array stores the names of the months.

Monthnames : array[1..12] of String

Description
The monthnames must start with January, then February and so on.

Monthnames is the source of the monthnames presented to you through the    MonthExt property. When 
TKronos initializes the Delphi LongMonthnames-array is copied into the Monthnames array. The names 
are by default country spesific, so in most cases you don’t need to change them, but if you want you can 
do so. Simply fill in the names like this:

Monthnames[1] := ‘January’;
Monthnames[2] := ‘February’

By manipulating the Monthnames array you can override the country monthname definitions of the user’s 
machine.



Relevant topics:
Daynames array 
Using daytypes
LoadFromFile 



TKronos - general guidelines
TKronos
The current date
TKronos offers three ways to define the current date (the date that currently is in focus).

The current date may bee defined as a comibination of
either
Year and Daynumber 
or
Year, Month and Monthday 
or 
Year, Week and Weekday.

The properties Year, Month, Monthday, Week, Weekday and Daynumber ar referred to as time unit 
properties.

Changing the date
Altering one of the time unit properties will cause an imidiate cascading update of any other time unit 
properties affected. If you, for instace, change the weekday from Wednesday to Thursday then the 
daynumber and monthday, possibly also the month and year, will change too. 

The rule is that TKronos avoids updates if it is not necessary. Say the current monthday is 31. Changing 
the month will not alter the monthday, unless it does not fit the month moved to. Moving from January to 
March will leave monthday 31 intact; moving to February would change it to 28 (or 29).

Extended information
The time unit properties let you see basic aspects of the current date. There are however other properties 
you can read to obtain a lot more information. These are the YearExt, MonthExt, WeekExt and DateExt-
properties. These are referred to as Ext properties. As with the time unit properties the values of the Ext 
properties keep in pace with changes of the current date.

A chapter of itself is the Daytypes property. To learn about daytypes go to the topic Using daytypes.

Applying the correct sequence
When manipulating more than one time unit property to form a new date you should allways set the 
“topmost” property first. For instance, to change the date to a new year, a new month and a new 
monthday this is the recommended sequence:

Yaer := ANewYear; // Year first
Month := ANewMonth; // Month second
Monthday := ANewMonthday; // Monthday third

Change Transactions
As you will notice in the example above, one logical operation is broken down into three different tasks. If 
one of them fails the current date might be left invalid. Whenever you perform a date change by means of 
two or more time unit properties you should make it a change transaction:

BeginChange;
try
            // Change properties as needed
finally
          EndChange;
end;

This ensures that if any error occurs the current date will be left intact. Furthermore transaction control 



optimizes the flow of events so that event triggering only takes place when strictly necessary. Observe the 
difference between:

Yaer := ANewYear;
{As a minimum OnChangeYear, OnChangeWeek, OnChangeMonth, OnChangeDate fires}
Month := ANewMonth;
{As a minimum OnChangeMonth, OnChangeMonthNumber, OnChangeDate fires }
Monthday := ANewMonthday;
{As a minimum OnChangeMonthday,    OnChangeDate fires}

BeginChange;
try
        Year := ANewYear;
        Month := ANewMonth;
        Monthday := ANewMonthday;
finally
          EndChange;
{OnChangeYear, OnChangeMonth,    OnChangeWeek, OnChangeDate... fires -only one of each kind}
end;

To simplify change of the current date even more use whenever possible one of the Goto... procedures. 
The Goto...procedures handle change transactions internally, so you don’t have to write protected blocks 
of code. To change the date simply type:

GotoDate (ANewYear, ANewMonth, ANewMonthday);

Looping the calendar
When working with Tkronos you will undoubtly face the need for iterating over days, weeks, months or 
years. You might perform repetitive actions by changing the current date for each turn of a loop, thereby 
reloading all or a lot of the Ext properties. However, this is waste of time when you only need information 
about one or a few of the time units. TKronos offers a set of functions you can use to make loops as 
effecient and fast as possible - only generating the kind of information relevant to the task. These are the 
Fetch functions, one for each time unit: FetchDateExt, FetchWeekExt, FetchMonthExt, etc. Use them 
whenever possible, they are fast and direct methods to access time units that are not in focus.

See the Fetch example to get a brief demonstration of how to perform loops.



TKronos - processing daytype classes
TKronos
The standard TDaytype class defines basic calendar information. But suppose you want to put more into 
a daytype than the standard attributes can tell? Then you have to create a new class of daytype to use 
with TKronos. The following is a practical discussion of how to use daytype classes, thereby 
demonstrating different useful TKronos features.

Our task is to create an application that keeps track of some popular astronomic events, that is the 
phases of moon and earth. To do that we need a new daytype class, we name it TAstro:

Defining the class
Type
      TMoonPhase = (mpNew, mpHalfUp, mpHalfDown, mpFull, mpNeither);
      TEarthPhase = (epSpringEquinox, epMidsummer, epAutumnEquinox, epMidwinter, epNeither);

TAstro = class(TDaytype)
    private
        FMoonPhase : TMoonPhase;
        FEarthPhase : TEarthPhase;
    public
        function GetMoonPhase(ADate : TDateTime) : TMoonPhase;
        function GetEarthPhase(ADate : TDateTime) : TEarthPhase;
        constructor Create(DaytypeDef : TDaytypeDef);
    published
        property MonPhase : TMoonPhase read FMoonPhase;
        property EarhPhase : TEarthPhase read FMoonPhase;
end;

This is our new class, including some useful types. Note that new daytype classes must descend from 
TUserDaytype. The Moon- and EarthPhase are implemented as read only properties to prevent the user 
from accidentally changing them. The two functions GetMoonPhase and GetEarthPhase will do the 
calculations to decide if a particular date is qualified:

(Note: Theese method of calculating moon and earth phases are inexact (+/- a day or so))

function TAstro.GetMoonPhase;
var
        Y, M, D: word;
        TempResult : Integer;
        MoonAge : Integer;
begin
                DecodeDate(ADate, Y, M, D);
                TempResult := (Y mod 100) mod 19;
                if TempResult > 9 then
                        TempResult := TempResult - 19;
                TempResult := (TempResult * 11) mod 30 + D;
                if M = 1 then
                        inc(TempResult, 3)
                else if M = 2 then
                      inc(TempResult, 4)
                else inc(TempResult, M);
                TempResult := TempResult * 10; 
                if Y < 2000 then
                      dec(TempResult, 40)
                else
                      dec(TempResult, 83);



                MoonAge := Round((TempResult mod 300) / 10);
                  {This is the age of the moon}
  
                case TempResult of
                0 : FMoonPhase := mpNew;
                7 : FMoonPhase := mpHalfUp;
                14 : FMoonPhase := mpFull;
                21 : FMoonPhase := mpHalfDown;
                else FMoonPhase := mpNeither;
                end;
                Result := FMoonPhase;
end;

function TAstro.GetEarthPhase;
var
        Y, M, D: word;
        TempResult : Integer;
        MoonAge : Integer;
begin
          DecodeDate(ADate, Y, M, D);
          if (M=3) and (D=21) then
              FEarthPhase := epSpringEquinox
          else if (M=9) and (D=23) then
              FEarthPhase := epAutumnEquinox
          else if (M=12) and (D=22) then
              FEarthPhase := epMidwinter;
          else if (M=6) and (D=22) then
              FEarthPhase := epMidsummer
          else
              FEarthPhase := epNeither;
          Result := FEarthPhase;
end;

Creating an instance
Now, in our application’s FormCreate handler, create and add the astro daytype object. As Astro is a user 
calculated daytype, the Kronos1 component must have its AllowUserCalc property set to True.

procedure AstroApp.FormCreate;
var
        Astro : TAstro;
        DaytypeDef : TDaytypeDef;
begin
        with DaytypeDef do
        begin
                    AName := 'Astro’
                    ADate := 0;
                    AReldayType := 0;
                    AnOffset := 0;
                    AFirstShowUp := 1;
                    ALastShowUp := 9999;
                    AShowUpFrequency := 1;
                    AHoliday := False;
                    AChurchday := False;
                    AFlagDay := False;
                    AUserCalc := True;
                    ATag := 0;



      end;
      AddDaytype(TAstro.Create(DaytypeDef));
      :
      :
end;

Calculating
To decide the show up dates we attach code to the OnCalcDaytype event handler:

procedure AstroApp.Kronos1CalcDaytype(Sender: TObject; Daytype: TDaytype;
ADateExt: TDateExt; IsCurrentDate: Boolean; var Accept: Boolean);
var
          Mp : TMoonPhase;
          Ep : TEarthPhase;
          D : TDateTime;
begin
          if Daytype is TAstro then
          with Daytype as TAstro do
          begin
                        with ADateExt do
                                D := EncodeDate(Year, Monthnumber, Monthday);
                          Mp := GetMoonPhase(D);
                          Ep := GetEarthPhase(D);
          end;
          Accept := (Mp <> mpNeither) or (Ep <> epNeither);
end;

Reading it back
This procedure tracks the astro events in a spesific month:

procedure AstroApp.MakeMonthCalendar;
var
      i, j : Integer;
      DayType : TDaytype;
      ADateExt : TDateExt;
begin
        with Kronos1 do
        begin
                        GotoDate(Year, 3, 1); //March for example
                        for i := 1 to MonthExt.Numdays do
                        begin
                                        ADateExt := FetchDateExt(Year, Month, i);
                                        for j := 1 to ADateExt.DaytypeCount do
                                        begin
                                                        Daytype := FetchDaytype(ADateExt, j);
                                                        if Daytype is TAstro then
                                                        with Daytype as TAstro do
                                                        begin
                                                                          case MoonPhase of
                                                                            mpNew : // Draw new moon
                                                                            mpHalfUp: /Draw rising moon
                                                                            //etc
                                                                            end;

                                                                            case EarthPhase of
                                                                            epSpringEquniox : //Draw symbol



                                                                            epMidsummer : //Draw anoth symbol
                                                                            //etc
                                                                            end;
                                                          end; 
                                        end;
                          end;
        end;
end; 

Saving and loading
You can use the SaveToFile and LoadFromFile methods with descendent daytype classes. Alas, TKronos 
will treat them as regular TDaytypes, so you will not be able to save the extended part of the objects. 
Descendents must be saved in other kinds of files than the standarized textfile used by TKronos.

The load and save procedures, however, have some features that faciliates your own laoding and saving 
methods. If you write code for the OnSaveDaytype and OnLoadDaytype events you will be notified every 
time TKronos is about to save and load a daytype from file. At saving point you can choose to write the 
daytype to your own file or not write it at all, likewise at loading point you can read the daytype from your 
own file or create it another way:

procedure AstroApp.Save;
{You would probably never choose to save the astro object as you create it at runtime. But suppose you 
deal with other daytypes you want to save, then you must prevent the object beeing written to the 
standard file along with the other daytypes:}
begin
        Kronos1.SaveToFile(‘Astro.kdt’);
end;

procedure AstroApp.Kronos1SaveDaytype(Sender : TObject; Daytype : TDaytype; 
var SaveIt : Boolean);
begin
        SaveIt := (Daytype is not TAstro);
        {Prevents the Astro daytype from beeing saved}
end;

Suppose you of some kind of reason wish to save Astro to the standard file. Then you had to prevent it 
from beeing loaded, else it would be created twice:

procedure AstroApp.FormCreate;
begin
        Kronos1.LoadFromFile(‘Astro.Kdt’, True);
end;

procedure AstroApp.Kronos1LoadDaytype(Sender : TObject; DaytypeDef : TDaytypeDef; 
var LoadIt : Boolean)
var
        Astro : TAstro;
        DaytypeDef : TDaytypeDef;
begin
        LoadIt := (DaytypeDef.AName <> ‘Astro’);
        if not LoadIt then

 {Load from file if object is not a TAstro object, else create the astro object. Note that you cannot at this 
point test for type of object as all daytypes loaded from a standard file are created as regular TDaytype 
objects. Here we test the name field, but probably you should use the tag field to classify daytypes}



            AddDaytype(TAstro.Create(DaytypeDef));
end;



Time Unit Properties

Time unit properties are the properties that make up the current date. These are

Year 
Month 
Week 
Monthday 
Weekday 
Daynumber 

Changing one of the time unit properties will immedeatly cause the other TUPs (and Ext properties ) to 
synchronize.



Ext Properties

Ext properties are properties that provide extended information about the current year, month, week or 
date. These are

YearExt 
MonthExt 
WeekExt 
DateExt 
Daytypes 

The values of the Ext properties are allways synchronized with the current date.



Daytype list

The daytype list holds the current daytype definitions for the TKronos calendarium. It is made up of the 
predefined (possibly redefined) daytypes, plus any daytypes you might have added.

You access the list by the Daytypes property.



Daytype

A TKronos daytype is a description of which “role” a date plays on the calendar. Daytypes can be 
anything from churchdays to birthdays. TKronos comes with numerous predefined daytypes, that is the 
most common Christian churchdays and international notification days. You can also add your own 
daytypes, as many as you want. One single date can be attched to as many as 255 daytypes.

All the defined daytypes make up the daytype list.



Yeartype
A TKronos yeartype is a daytype that is not attached to a particaluar date, but works as a notification for 
the year as a whole. See FetchYeartype and Using daytypes for more information.



Predefined daytypes
Predefined daytypes are those which form the stable part of a TKronos calendar. The standard 
churchdays and common days are part of the predefined definition as well as any new daytypes added in 
descendent TKronos components through the SetCountrySpecifics method.

Predefined daytypes cannot be deleted, but some of their attributes might be redefined.




