
dbSoft - TSyntaxMemo collection
(c) 1997 David Brock

The TSyntaxMemo collection consists of the following components

TSyntaxMemo A TMemo compatible text editor with interfaces for syntax highlighting. Emulates
TMemo methods, properties and message support. Extends TMemo by providing unlimited undo/redo
support, support for large text files (limited only by available memory).

TSyntaxMemoParser A lexical analyser non-visual component used by TSyntaxMemo to
provide dynamic analysis of text within the TSyntaxMemo control. Fully configurable for a wide variety of
text highlighting environments

TDBSyntaxMemo Data aware version of TSyntaxMemo.

Installing TSyntaxMemo

Ordering TSyntaxMemo and contacting the author

Please note: This help file is under construction at present. Some topics may be empty and some may contain
incomplete information.
Last update to help file was on November 27 1997.

Parser1
Parser2
Parser3
Parser4
Parser5
Parser6

ActiveParser property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property ActiveParser: longint;

Description
ActiveParser is used to determine which of the Parsern TSyntaxMemoParser components will be used to
provide syntax highlighting effects to the text of the control. ActiveParser must be in the range 1 to 6
(inclusive). If no parser component is attached to the specified Parsern property then TSyntaxMemo will
behave as a plain text editor with no highlighting applied.

Remarks

LineHasGlyph
RemoveLineGlyph
LineGlyphs
TGlyphIndex

AddLineGlyph method

See also Example

Applies to
TSyntaxMemo controls

Declaration
procedure AddLineGlyph(G: byte; L: longint);

Description
AddLineGlyph is used to add a specific glyph to a line. When the line is displayed in TSyntaxMemo, the
gutter will show the new glyph. The image index being added should be passed as the G parameter with
the line number in the L parameter (Lines are numbered starting from 1).

Remarks
Lines can only display one glyph. If a line has more than one glyph assigned, it will be the glyph with the
highest index value that will be displayed.

TSyntaxMemo custom messages index

See also

Message ID Summary of function
SEM_SELECTION Get / Set current selection extents
SEM_OPTIONS Get / Set current options
SEM_REPLACESEL Replace current selection by given text
SEM_IMPORTSEL Import text into current selection from a TStream instance
SEM_EXPORTSEL Export currently selected text to a TStream instance
SEM_MODIFIED Set / Get modified status of control
SEM_TOPLINEINDEX Set / Get current index of top line of display
SEM_LEFTINDENT Set / Get current value of left line indent
SEM_FINDTEXT Find text in document
SEM_REPLACETEXT Find and replace text in document
SEM_GETTEXT Copy text to memory buffer
SEM_CANREDO Can we redo an action ?
SEM_REDO ReDo last undo action
SEM_INDENT Indent selected line(s)
SEM_UNDENT Undent selected line(s)
SEM_REPARSE Re-parse text

AttachEditor method

See also Example

Applies to
TSyntaxMemoParser controls

Declaration
procedure AttachEditor(Ed: TSyntaxMemo);

Description
TSyntaxMemoParser components can be used to provide syntax highlighting to more than one
TSyntaxMemo editor control. At design time it is only necessary to assign the Parsern property of the
TSyntaxMemo controls to attach an editor to a parser.
At run-time, an editor may be attached to an editor either by explicit assignment to the Parsern property,
or by use of the AttachEditor method.
AttachEditor ensures that an editor is updated when the parser settings change. If the editor is
subsequently removed or destroyed TSyntaxMemoParser will take care of the removal of the editor from
the UpdateList.

Remarks

CaretPos property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property CaretPos: TPoint;

Description
CaretPos given the line and column of the current insertion point. To set a new caret position, assign a
new value to CaretPos.

Remarks
CaretPos will limit the Line/Column values to the limits of the text in the control. Any attempt to set a
column beyond the end of the line will place the caret at the end of the line. Any attempt to refer to a line
beyond the last line will result in the last line being used.
The property is declared as a record type TPoint, thus assignments must be made using variables of
type TPoint. Attempts to use CaretPos.Y := Z will cause a compile-time error, however Z :=
CaretPos.Y will compile without error.

Clear method

See also Example

Applies to
TSyntaxMemo controls

Declaration
procedure Clear;

Description
Clear deletes all text in the TSyntaxMemo control. The current undo stack will be emptied and the
Modified property will be false after Clear returns.

Remarks

SetBookmark
IsBookmarkSet

ClearBookmark method

See also Example

Applies to
TSyntaxMemo controls

Declaration
procedure ClearBookmark(n: byte);

Description
ClearBookmark is used to remove a bookmark from the file being edited. The bookmarks are number 0 to
9 and should be passed as the parameter n. An exception will be raised if a value greater than 9 is
passed.

Remarks
If the passed bookmark has not been set, no action will taken place. If it has been set it will be cleared
and the display updated.

CompileFromStream
CompileScript
Script

Compile property

See also Example

Applies to
TSyntaxMemoParser controls

Declaration
Not applicable

Description
Compile is displayed in the Delphi IDE property inspector. It displays a single ellipsis (...) which, when
pressed, will cause the text of the file specified by the Script property to be compiled.

Remarks
Compile is a design time only property. Use CompileScript at run-time.

Compile
CompileScript
Script

CompileFromStream method

See also Example

Applies to
TSyntaxMemoParser controls

Declaration
procedure CompileFromStream(aStream: TStream);

Description
CompileFromStream allows scripts to be compiled at run-time from a supplied TStream instance.

Remarks
See CompileScript for details of the compilation process.

Compile
CompileFromStream
Script

CompileScript method

See also Example

Applies to
TSyntaxMemoParser controls

Declaration
procedure CompileScript;

Description
CompileScript, at run-time, compiles the text in the file specified by the Script property. If compilation is
successful then the syntax highlight specification given in the script will be applied to all attached editors
(see UpdateEditors method).

Remarks
If, during the compilation process, an error is detected, the TSyntaxMemoParser will be left in its default
state. This state applies no syntax highlighting to attached editors.
See script reference for details of errors reported by the script compiler

CursorTokenText
Script overview
OnHyperlinkHover event
OnHyperlinkClick event

CursorToken property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property CursorToken: byte;

Description
CursorToken returns the token value of the syntax elemnet underneath the mouse cursor.

Remarks
The byte value returned is the token value before translation by the %%map section in the current parser's
script. See script reference for details.

CursorToken
Script overview
OnHyperlinkHover event
OnHyperlinkClick event

CursorTokenText property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property CursorTokenText: string;

Description
CursorTokenText returns the actual text of the syntax element in which the mouse cursor is positioned.

Remarks
The text of the current syntax element can be any length, from a few characters to many lines of text. If
the text of the syntax element is long then there may be a noticeable speed performance degredation if
this property is read often. A check for the CursorToken should be made for relevance before requesting
the actual text of the syntax element.

def_BackColor property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property def_BackColor: TColor;

Description
def_BackColor allows the reading and setting of the default text color for a TSyntaxMemo control The
default text color is used to fill in the background of the default sections of the file being edited in a
TSyntaxMemo.

Remarks
def_BackColor is language dependent. For each possible value of the Language property a possibly
different def_BackColor value may be stored.

def_FontStyle property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property def_FontStyle: TFontStyles

Description
def_FontStyle is applied to syntax elements that are unrecognised by the TSyntaxMemoParser
component specified by the ActiveParser property.

Remarks
Setting def_FontStyle should be done by assignment of a TFontStyles variable.

def_TextColor property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property def_TextColor: TColor;

Description
def_TextColor allows the reading and setting of the default text color for a TSyntaxMemo control The
default text color is used to fill in default text sections of the file being edited in a TSyntaxMemo.

Remarks
def_TextColor is language dependent. For each possible value of the Language property a possibly
different def_TextColor value may be stored.

DocTitle property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property DocTitle: string;

Description
DocTitle is used in the header of printed output when the Print method is invoked. By default it is assigned
to the filename when LoadFromFile or SaveToFile is used to fill/save the control text. Prior to calling the
Print method, the DocTitle property can be changed to show a different header text.

Remarks
DocTitle defaults to the empty string if LoadFromFile/ SaveToFile is never called.

EBNF syntax specification

EBNF (Extended Backaus-Naur Form) is a style of specification used for formal syntax descriptions.
Within the syntax description the following metacharacters are used:

a ::= b Construct a is defined by construct b
[a] Indicates that construct a is optional
(abc) Indicates that constructs a, b and c are taken as a single construct
a|b Indicates either construct a or construct b
'abc' The literal characters 'a' followed by 'b' followed by 'c'
<a> Single syntax construct a defined in the specification

Effect property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property Effect[E: byte]: TFormatEntry;

Description
The Effect[] array gives access to the actual colors and font effects applied to each syntax token.
Accessing the Effects[] property of TSyntaxMemo will not cause the changes to be preserved in the
registry or when the current parser is changed via the ActiveParser property.
Effect[] is designed to give quick access to the styles currently being applied.

Remarks
To set new properties use the methods of TSyntaxMemoParser.

TSyntaxMemoParser events index

See also: Properties Methods Tasks

Event Type Summary
OnCustomParse TCustomParseEvent Perform custom parsing functions in
response to match(n) script statements
OnModifyProperties TNotifyEvent Property editor about to be displayed.

TSyntaxMemo events index

See also: Properties Methods Tasks

Event Type Summary
OnGutterClick TGutterClick Mouse has been clicked in the left hand
gutter area
OnHyperlinkClick THyperEvent Mouse has been clicked on a hotspot within
the control
OnHyperlinkHover TNotifyEvent Mouse is over a hotspot within the control
fn_CharIsInWord TCharTest Test if a character can be in a word
fn_CharStartsWord TCharTest Test if a character can start a word

fn_CharIsInWord event

See also Example

Applies to
TSyntaxMemo controls

Declaration
property fn_CharIsInWord: TCharTest;

Description
TSyntaxMemo will generate TCharTest events whenever it is required to test a character.
fn_CharIsInWord and fn_CharStartsWord are two events that TSyntaxMemo generates to allow
applications to override the definition of characters that make up 'words'. TCharTest event handlers will be
passed a single character to test and should return true if the condition is met, false otherwise.

Remarks
At present TSyntaxMemo will only generate events when selecting words (double click), moving to word
boundaries (Ctrl+Left Arrow / Ctrl+Right Arrow). TSyntaxMemo may be upgraded in the future to allow
further processing of words within files. These upgrades will use any attached event handlers to carry out
the required checks.

fn_CharStartsWord event

See also Example

Applies to
TSyntaxMemo controls

Declaration
property fn_CharStartsWord: TCharTest;

Description
TSyntaxMemo will generate TCharTest events whenever it is required to test a character.
fn_CharIsInWord and fn_CharStartsWord are two events that TSyntaxMemo generates to allow
applications to override the definition of characters that make up 'words'. TCharTest event handlers will be
passed a single character to test and should return true if the condition is met, false otherwise.

Remarks
At present TSyntaxMemo will only generate events when selecting words (double click), moving to word
boundaries (Ctrl+Left Arrow / Ctrl+Right Arrow). TSyntaxMemo may be upgraded in the future to allow
further processing of words within files. These upgrades will use any attached event handlers to carry out
the required checks.

Gutter property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property Gutter: longint;

Description
The Gutter property describes the width, in pixels, of the gray gutter at the left edge of the control display.
The minimum, non-zero, width that Gutter can be set to is 34 pixels, the maximum is 20% of the width of
the control. Setting Gutter to zero will cause the gray area not to be displayed.

Remarks
Gutter defaults to a value of 34 pixels.

GutterGlyphs property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property GutterGlyphs: TImageList;

Description
GutterGlyphs are user defined 16x16 images that are displayed in the left gray gutter area of the control.
Each 16x16 image in the supplied TImageList will be used by the AddLineGlyph, RemoveLineGlyph and
the LineHasGlyph methods.

Remarks
Up to 16 images may be contained in each GutterImage.

HyperCursor property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property HyperCursor: TCursor;

Description
HyperCursor is used when the mouse is over a syntax element that is declared as a 'hotspot'. The mouse
cursor will change to the shape specified in the HyperCursor property.

Remarks
HyperCursor defaults to crIBeam, the normal mouse cursor within text in the TSyntaxMemo control.

IndentStep property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property IndentStep: longint;

Description
IndentStep defines how many spaces will be inserted at the start of lines when the SEM_INDENT
message is used.

Remarks
IndentStep defaults to a value of 1, indiacting that each selected line will be indented by one space by the
SEM_INDENT message.

InsertMode property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property InsertMode: Boolean;

Description
InsertMode returns the value of the insert status of the control. A value of TRUE indicates that new text
will be inserted into the control, a value of FALSE indicates that new text will overrwrite existing text.
Setting InsertMode to TRUE or FALSE will update the InsertMode appropriately.

Remarks

ClearBookmark
SetBookmark

IsBookmarkSet method

See also Example

Applies to
TSyntaxMemo controls

Declaration
function IsBookmarkSet(n: byte; var Line, Col: longint): Boolean;

Description
IsBookmarkSet is used to determine if a given bookmark n has been set. If it has been set, the method
returns TRUE and the Line and Col parameters will be set to the Line and Column respectivley of the
bookmark. If the bookmark has not been set then the method will return FALSE and the values of Line
and Col will be invalid.
Passing a bookmark number n outside the range 0 to 9 will cause an exception to be raised.

Remarks
The returned Line and Column values are one based. That is, the first line of a document is line number
one and the leftmost column is column one. When a bookmark is set the Line and Column are stored.
IsBookmarkSet will return the highest legal column value for the bookmark, if the bookmarked line has
less that the original bookmarked columns then the parameter Col will be set to the length of the line.
Should the line exceed the bookmarked column width then the bookmarked column value will be
returned.

JumpToBookmark method

See also Example

Applies to
TSyntaxMemo controls

Declaration
procedure JumpToBookmark(n: byte);

Description
JumpToBookmark will move the caret to the stored location of the given bookmark n.
Passing a bookmark number n outside the range 0 to 9 will cause an exception to be raised.

Remarks
When a bookmark is set the Line and Column are stored. JumpToBookmark will move to the highest legal
column value for the bookmark, if the bookmarked line has less that the original bookmarked columns
then the caret will be placed at the end of the line. Should the line exceed the bookmarked column width
then the caret will be placed at the original bookmarked column position.

Supported keyboard commands

TSyntaxMemo supports a default keyboard interface. This can be enabled or disabled by use of the Options property,
the default is for all options to be enabled. The keyboard commands are grouped by function and enabling options
below:

Caret movement Enabled when option flag eo_KEYS_MOVE is set
End Moves to the end of a line
Home Moves to the start of a line
Enter Inserts a carriage return
Ins Turns insert mode on/off
Del Deletes the character to the right of the caret
Backspace Deletes the character to the left of the caret
Space Inserts a blank space
Left Arrow Moves the caret left one character
Right Arrow Moves the caret right one character
Up Arrow Moves the caret up one line
Down Arrow Moves the caret down one line
PgUp Moves the display up one page
PgDn Moves the display down one page
Ctrl+Left Arrow Moves one word left
Ctrl+Right Arrow Moves one word right
Ctrl+Home Moves to start of file
Ctrl+End Moves to end of file

Text selection Enabled when option flag eo_KEYS_SELECT is set
Shift+Left Arrow Selects the character to the left of the caret
Shift+Right Arrow Selects the character to the right of the caret
Shift+Up Arrow Moves the caret up one line and selects from the left of the starting caret position
Shift+Down Arrow Moves the caret down one line and selects from the right of the starting caret position
Shift+PgUp Moves the caret up one screen and selects from the left of the starting caret position
Shift+PgDn Moves the caret down one screen and selects from the right of the starting caret

position
Shift+End Selects from the caret position to the end of the current line
Shift+Home Selects from the caret position to the start of the current line
Ctrl+Shift+Left Arrow Selects from the current caret position to the start of the previous word
Ctrl+Shift+Right Arrow Selects from the current caret position to the start of the next word
Ctrl+Shift+Home Selects from the current caret position to the start of the current file
Ctrl+Shift+End Selects from the current caret position to the end of the current file

Clipboard functions Enabled when option flag eo_KEYS_CLIPBOARD is set
CTRL+C Copy selected text to clipboard
CTRL+X Cut selected text to clipboard
CTRL+V Replace selected text with clipboard contents

Miscellaneous functions Enabled when option flag eo_KEYS_FUNCTIONS is set
CTRL+K+0 Sets bookmark 0
CTRL+K+1 Sets bookmark 1
CTRL+K+2 Sets bookmark 2
CTRL+K+3 Sets bookmark 3
CTRL+K+4 Sets bookmark 4
CTRL+K+5 Sets bookmark 5
CTRL+K+6 Sets bookmark 6
CTRL+K+7 Sets bookmark 7
CTRL+K+8 Sets bookmark 8
CTRL+K+9 Sets bookmark 9
CTRL+K+Ctrl+0 Sets bookmark 0

CTRL+K+Ctrl+1 Sets bookmark 1
CTRL+K+Ctrl+2 Sets bookmark 2
CTRL+K+Ctrl+3 Sets bookmark 3
CTRL+K+Ctrl+4 Sets bookmark 4
CTRL+K+Ctrl+5 Sets bookmark 5
CTRL+K+Ctrl+6 Sets bookmark 6
CTRL+K+Ctrl+7 Sets bookmark 7
CTRL+K+Ctrl+8 Sets bookmark 8
CTRL+K+Ctrl+9 Sets bookmark 9

CTRL+Q+0 Jumps to bookmark 0
CTRL+Q+1 Jumps to bookmark 1
CTRL+Q+2 Jumps to bookmark 2
CTRL+Q+3 Jumps to bookmark 3
CTRL+Q+4 Jumps to bookmark 4
CTRL+Q+5 Jumps to bookmark 5
CTRL+Q+6 Jumps to bookmark 6
CTRL+Q+7 Jumps to bookmark 7
CTRL+Q+8 Jumps to bookmark 8
CTRL+Q+9 Jumps to bookmark 9
CTRL+Q+Ctrl+0 Jumps to bookmark 0
CTRL+Q+Ctrl+1 Jumps to bookmark 1
CTRL+Q+Ctrl+2 Jumps to bookmark 2
CTRL+Q+Ctrl+3 Jumps to bookmark 3
CTRL+Q+Ctrl+4 Jumps to bookmark 4
CTRL+Q+Ctrl+5 Jumps to bookmark 5
CTRL+Q+Ctrl+6 Jumps to bookmark 6
CTRL+Q+Ctrl+7 Jumps to bookmark 7
CTRL+Q+Ctrl+8 Jumps to bookmark 8
CTRL+Q+Ctrl+9 Jumps to bookmark 9

CTRL+K+I Indents selected text by one space
CTRL+K+U Unindents selected text by one space

LanguageNames property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property LanguageNames: TStringList;

Description
A read-only property that lists the names of the editing environments provided by the attached
TSyntaxMemoParser controls. The strings in the returned TStringList are taken from the script used by
each parser (%%language Name section).

Remarks

LastFindText property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property LastFindText: string;

Description
LastFindText returns the text used in the last find text operation performed by the control.

Remarks
If no text has been searched for then LastFindText will be the empty string.

LineColor property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property LineColor[aLine: longint]: TColor;

Description
The LineColor property of lines within the control allows the background color of a line to be overriden. In
conjunction with the LineTextColor property lines can be highlighted as a whole rather than just the
syntactic elements within. A common use for these properties is the visual indication of 'special' lines such
as breakpoints, error lines etc.

Remarks
To remove any special display from the line, set the LineColor[] value to -1, any other TColor value will
cause the line to be displayed with the current pallette.
The aLine index value should be a value within the range of lines in the control (use Lines.Count to obtain
the number of lines). If the passed value is in excess of the number of lines then the last line will be
affected.

LineGlyphs property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property LineGlyphs[aLine: longint]: TGlyphIndex;

Description
LineGlyphs allows the glyphs of a line to be set as a whole. Each bit in the value represents the
corresponding bitmap image in the GutterGlyphs TImageList property. Bit zero refers to image zero, bit 1
to image 1 etc. A maximum of 16 glyphs may be specified for a line and the glyph with the highest bit set
will be displayed.
If a bit is on (i.e. a value of one) then the glyph is included in the line, if the bit is off (i.e. a value of zero)
then the relevant glyph is not displayed.

Remarks
The aLine index value should be a value within the range of lines in the control (use Lines.Count to obtain
the number of lines). If the passed value is in excess of the number of lines then the last line will be
affected.

LineHasGlyph method

See also Example

Applies to
TSyntaxMemo controls

Declaration
function LineHasGlyph(G: byte; L: longint): Boolean;

Description
LineHasGlyph is used to test whether a line within a TSyntaxMemo control will display a particular Glyph
image in the gutter. The image index being tested should be passed as the G parameter with the line
number in the L parameter (Lines are numbered starting from 1). If the line is present and it is currently
displaying the passed glyph image then the result will be true otherwise the result will be false.

Remarks
Lines can only display one glyph. If a line has more than one glyph assigned, it will be the glyph with the
highest index value that will be displayed.
The L index value should be a value within the range of lines in the control (use Lines.Count to obtain the
number of lines). If the passed value is in excess of the number of lines then the last line will be affected.

LineTextColor property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property LineTextColor[aLine: longint]: TColor;

Description
The LineTextColor property of lines within the control allows the text color of a line to be overriden. In
conjunction with the LineColor property lines can be highlighted as a whole rather than just the syntactic
elements within. A common use for these properties is the visual indication of 'special' lines such as
breakpoints, error lines etc.

Remarks
To remove any special display from the line, set the LineTextColor[] value to -1, any other TColor value
will cause the line to be displayed with the current pallette.
The aLine index value should be a value within the range of lines in the control (use Lines.Count to obtain
the number of lines). If the passed value is in excess of the number of lines then the last line will be
affected.

LoadFromFile method

See also Example

Applies to
TSyntaxMemo controls

Declaration
procedure LoadFromFile(Filename: string);

Description
The LoadFromFile method sets the components text to the contents of the passed filename. The current
syntax effects of the ActiveParser property will be used to highlight the file once it has been loaded.

Remarks
After a new file has been loaded by the LoadFromFile or LoadFromStream methods, the undo stack will
be cleared and the Modified will be false. The caret will be displayed at the start of the new file.

LoadFromStream method

See also Example

Applies to
TSyntaxMemo controls

Declaration
procedure LoadFromStream(aStream: TStream);

Description
The LoadFromStream method sets the components text to the text obtained from the passed stream
instance. The current syntax effects of the ActiveParser property will be used to highlight the file once it
has been loaded.

Remarks
After a new file has been loaded by the LoadFromFile or LoadFromStream methods, the undo stack will
be cleared and Modified will be false. The caret will be displayed at the start of the new file.

Map property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property Map[E: byte]: byte;

Description
The Map table contains the mapping of syntax token values to the applied syntax effects values. E should
be a syntax token value and the result will be the entry in the %%effects section of the script that will be
applied to the syntax token.

Remarks
The Map[] property of TSyntaxMemo is designed to give quick access the the currently applied styles. To
alter the mapping applied to a syntax token, the TSyntaxMemoParser TokenTable property should be
accessed and the changes reflected to the TSyntaxMemo controls via the UpdateEditors method of
TSyntaxMemoParser. In this way changes made to the mapping table will be preserved when the parser
changes and the settings may be optionally stored in the registry.

Margin property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property Margin: byte;

Description
Margin is used to specify an spacing between the gutter and the left edge of text displayed in the control.
This area will be colored in the default background of the TSyntaxMemoParser component enabled by
the ActiveParser property.

Remarks
The default value for Margin is 2 pixels. Margin may be set to a pixel value up to the width of one
character (in pixels).

TSyntaxMemo methods index

See also: Properties Events Tasks

Method Summary
Clear Clear contents
LoadFromFile(Filename: string) Load a file into control using current parser
LoadFromStream(F: TStream) Load contents of control from a stream
SaveToFile(Filename: string) Save contents of control to a file
SaveToStream(F: TStream) Save contents of control to a stream
Print Print contents of control using current

highlighting and printing options
ModifyProperties Invoke property editor to alter highlighting

effects
AddLineGlyph(G: TGlyphIndex; L: longint) Display glyph with a given line of text
RemoveLineGlyph(G: TGlyphIndex; L: longint) Remove glyph from a given line of text
LineHasGlyph(G: TGlyphIndex; L: longint) Is a line displaying a given glyph ?
JumpToBookmark(n: byte) Move caret to bookmarked line and column
SetBookmark(n: byte; Line, Col: longint) Remember a given line and column as a

bookmark
IsBookmarkSet(n: byte; var Line, Col: longint) Has this bookmark been set before ?
ClearBookmark(n: byte) Remove bookmark setting

TSyntaxMemoParser method index

See also: Properties Events Tasks

Method Summary
AttachEditor(Ed: TSyntaxMemo) Notify parser that a TSyntaxMemo control is

using this parser
CompileScript Compile file in Script property, replacing

current internal parser model
CompileFromStream(aStream: TStream) Compile script in supplied stream, replacing

current internal parser model
StylesAsString Get current settings as a formatted string

value
StylesFromRegistry(UseDefault: Boolean; aKey: string) Set settings from registry entry (=

RegistryKey if UseDefault is true)
StylesFromString(Styles: string) Set settings from a formatted string
StylesToRegistry Save settings in registry using RegistryKey
UpdateEditors Update attached editor(s) with current

settings

ModifyProperties method

See also Example

Applies to
TSyntaxMemo controls

Declaration
procedure ModifyProperties;

Description
Invoke the ModifyProperties method of a TSyntaxMemo control to allow the user to alter the current
syntax effects and styles. By default the TSyntaxMemoParser control currently in use by the
TSyntaxMemo control (see ActiveParser) will display its property editor. This behaviour may be overriden
in the TSyntaxMemoParser by providing an application property editor via the TSyntaxMemoParser's
OnModifyProperties event handler.

Remarks

OnCustomParse event

See also Example

Applies to
TSyntaxMemoParser controls

Declaration
property OnCustomParse: TCustomParseEvent;
type TCustomParseEvent =
 function (Sender : TObject;
 ParseID: longint;
 IStream: TEdStream;
 var kLength, kValue: longint): Boolean of object;

Description
Within scripts of TSyntaxMemoParser controls, the Match(n) script statement causes an OnCustomParse
event to be generated. This event is passed the TSyntaxMemoParser instance (Sender), the value n in
the script (ParseID), a read-only TStream descendant (IStream) that allows access to the text of the
TSyntaxMemo control.
OnCustomParse event handlers should return the length of the syntax element they recognise (kLength)
and the token value for the recognised syntax element (kValue).
If a token is recognised then the event handler should return TRUE, otherwise it should return FALSE.

Remarks

OnGutterClick event

See also Example

Applies to
TSyntaxMemo controls

Declaration
property OnGutterClick: TGutterClick;

Description
The OnGutterClick event occurs when the user clicks in the left gutter of a TSyntaxMemo control.

OnHyperlinkClick event

See also Example

Applies to
TSyntaxMemo controls

Declaration
property OnHyperlinkClick: THyperEvent;
type THyperEvent =
 procedure(Sender : TObject;
 HyperData: string;
 HyperType: longint) of object;

Description
Scripts of a TSyntaxMemoParser control may specify syntax elements as 'hotspots'. When the mouse is
clicked within such a 'hotspot' syntax element a OnHyperlinkClick event is generated. The TSyntaxMemo
instance that generated the event is passed (Sender) along with the text of the 'hotspot' syntax element
(HyperData) and the syntax element token value (HyperType).

Remarks

OnHyperlinkHover event

See also Example

Applies to
TSyntaxMemo controls

Declaration
property OnHyperlinkHover: TNotifyEvent

Description
Scripts of a TSyntaxMemoParser control may specify syntax elements as 'hotspots'. When the mouse is
within such a 'hotspot' syntax element a OnHyperlinkHover event is generated. The CursorToken property
can be used to determine the type of the syntax element.

Remarks

OnModifyProperties event

See also Example

Applies to
TSyntaxMemoParser controls

Declaration
property OnModifyProperties: TNotifyEvent

Description
The OnModifyProperties event is generated when the ModifyProperties method of TSyntaxMemoParser
is invoked. OnModifyProperties event handlers may thus implement their own property editors. If no event
handler is attached then the TSyntaxMemoParser default property editor will be used.

Remarks

Options property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property Options: TSyntaxMemoOptions;

Description
Options allows control of the various settings for a TSyntaxMemo. Each option can be used as below:

smoKeysMove Key assignments relating to caret movement
smoKeysSelect Key assignments relating to text selection
smoKeysClipboard Key assignments relating to clipboard operations
smoKeysFunctions Key assignments relating to micellaneous functions
smoPrintWrap When printing, wrap long lines
smoPrintLineNos When printing, print line numbers
smoPrintFilename When printing, print source filename in header
smoPrintDate When printing, print current date/time in header
smoPrintPageNos When printing, print page numbers in footer
smoWordWrap Word-wrap text display

The default setting is:
[smoKeysMove, smoKeysSelect, smoKeysClipboard, smoKeysFunctions,
 smoPrintWrap, smoPrintLineNos, smoPrintFilename, smoPrintDate,
smoPrintPageNos]

The display will be updated, where relevant, when the options settings are changed.

Ordering TSyntaxMemo

TSyntaxMemo can be purchased from the author. The package includes the following:
Full source code,
e-mail support direct from the author,
Free updates

The purchase price of TSyntaxMemo is 49 UK Pounds. Payment may be by one of the following
methods:

Pre-paid bankers cheque, or
Cash, or
Eurocheque, or
Direct bank to bank transfer

If using any curreny other than UK Pounds, please include a 3 UK Pounds conversion fee. Please contact
the author to arrange bank-to-bank transfers. Orders should be posted to the following address:

David Brock
26 Kemp Avenue
Paisley
Scotland
United Kingdom
PA3 4JS

The author can be contacted via e-mail at:
dbrock@cqm.co.uk

or via the TSyntaxMemo Web site at:
http://users.colloquium.co.uk/~dbrock/synmemo/synmemo.htm

Parser1 property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property Parser1: TSyntaxMemoParser;

Description
Parser1 is the TSyntaxMemoParser control that will be used to analyse the text of the TSyntaxMemo
control and apply the highlighting effects of the script of that parser. To enable Parser1, the TSyntaxMemo
ActiveParser property should be set to a value of 1.

Remarks

Parser2 property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property Parser2: TSyntaxMemoParser;

Description
Parser2 is the TSyntaxMemoParser control that will be used to analyse the text of the TSyntaxMemo
control and apply the highlighting effects of the script of that parser. To enable Parser2, the TSyntaxMemo
ActiveParser property should be set to a value of 2.

Remarks

Parser3 property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property Parser3: TSyntaxMemoParser;

Description
Parser3 is the TSyntaxMemoParser control that will be used to analyse the text of the TSyntaxMemo
control and apply the highlighting effects of the script of that parser. To enable Parser3, the TSyntaxMemo
ActiveParser property should be set to a value of 3.

Remarks

Parser4 property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property Parser4: TSyntaxMemoParser;

Description
Parser4 is the TSyntaxMemoParser control that will be used to analyse the text of the TSyntaxMemo
control and apply the highlighting effects of the script of that parser. To enable Parser1, the TSyntaxMemo
ActiveParser property should be set to a value of 4.

Remarks

Parser5 property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property Parser5: TSyntaxMemoParser;

Description
Parser5 is the TSyntaxMemoParser control that will be used to analyse the text of the TSyntaxMemo
control and apply the highlighting effects of the script of that parser. To enable Parser5, the TSyntaxMemo
ActiveParser property should be set to a value of 5.

Remarks

Parser6 property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property Parser6: TSyntaxMemoParser;

Description
Parser6 is the TSyntaxMemoParser control that will be used to analyse the text of the TSyntaxMemo
control and apply the highlighting effects of the script of that parser. To enable Parser6, the TSyntaxMemo
ActiveParser property should be set to a value of 6.

Remarks

Print method

See also Example

Applies to
TSyntaxMemo controls

Declaration
procedure Print;

Description
Invoking the Print method will cause the contents of the control to be printed with the current printing
options applied. The paper size and printer used will be determined by the current Windows settings.
Syntax highlighting effects will be printed as on-screen.

Remarks

TSyntaxMemoParser property index

See also: Methods Events Tasks

Property Type Access Summary
AutoUpdateScript Boolean read/write Re-compile Script, if

present, at run-time
Compile n/a n/a Force design time

compilation of script
RegistryKey string read/write Registry base key for

storage of editor settings
Script string read/write Get/set script used to define

parser behaviour
UseRegistry Boolean read/write Enable/disable use of

RegistryKey for settings
storage

AutoUpdateScript property

See also Example

Applies to
TSyntaxMemoParser controls

Declaration
property AutoUpdateScript: Boolean;

Description
At run-time, causes the TSyntaxMemoParser to look for the Script file. If located the file will be re-
compiled and installed defining the new properties of the attached editor(s).

Remarks
At design-time, the properties of the TSyntaxMemo parser may be altered using the Delphi object
inspector. These changes will be reflected in the Delphi IDE. At run-time the changes made at design time
will be preserved unless overriden by the AutoUpdateScript property.
Use of AutoUpdateScript set to true is recommended in distributed applications when it allows upgrades
to be shipped by the provision of a new script. In development of applications, AutoUpdateScript should
be set to false to allow the iterative design process to be carried out. Only when the design is complete
should the default script be updated with the desired changes and then the AutoUpdateScript property set
to false.

TSyntaxMemo properties index

See also: Methods Events Tasks

In addition to the properties of TMemo, TSyntaxMemo implements the following properties.
 indicates a run-time only property.

Property Type Access Summary
ActiveParser longint read/write Get/set current parser

index
CaretPos TPoint read/write Get/set current line and column of caret
CursorTokenText string read only Get text of token underneath mouse cursor
CursorToken byte read only Get value of token under mouse cursor
def_TextColor TColor read/write Get/set current default text color
def_FontStyle TFontStyles read/write Get/set current default font effects
def_BackColor TColor read/write Get/set current default background color
DocTitle string read/write Get/set current document title
Effect[E: byte] TformatEntry read/write Get/set effect style for defined syntax token
HyperCursor TCursor read/write Get/set cursor used when mouse over hotspot
Gutter longint read/write Get/set current gutter width in pixels
GutterGlyphs TimageList read/write Get/set images used for line margin
IndentStep byte read/write Get/set block indent/unindent amount in characters
InsertMode Boolean read/write Get/set insert (true) or overwrite (false) mode
LanguageNames TStringList read only Get list of environments implemented by

attached parsers
LastFindText string read only Get last string used as find text parameter
LineGlyphs[L: longint] TGlyphIndex read/write Get/set current glyphs displayed by a

given line
LineColor[L: longint] TColor read/write Get/set line override background color
LineTextColor[L: longint] TColor read/write Get/set line override text color
Margin byte read/write Get/set gap between gutter and text
Map[E: byte] byte read/write Get/set token to effect map table setting
Options TSyntaxMemoOptions read/write Get/set editor options
Parser1 TCustomSyntaxMemoParser read/write Get/set parser of index value 1
Parser2 TCustomSyntaxMemoParser read/write Get/set parser of index value 1

Parser3 TCustomSyntaxMemoParser read/write Get/set parser of index
value 1

Parser4 TCustomSyntaxMemoParser read/write Get/set parser of index
value 1

Parser5 TCustomSyntaxMemoParser read/write Get/set parser of index
value 1

Parser6 TCustomSyntaxMemoParser read/write Get/set parser of index
value 1

SaveFormat TSaveFormat read/write Get/set SaveToFile
format

WrapAtColumn word read/write Get/set column used for
word-wrapping

WrapOverride string read/write Get/set characters that
override word-wrapping
at start of lines

SaveFormat property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property SaveFormat: TSaveFormat;

type TSaveFormat = (sfTEXT, sfRTF);

Description
The SaveFormat property is used to determine in which format the text of the editor control will be saved
by the SaveToFile and SaveToStream methods of TSyntaxMemo. The default is sfTEXT which causes the
text to be saved as plain CR/LF terminated ASCII text. Setting SaveFormat to sfRTF will cause the
contents of the control to be saved as Rich Text Format with all font, color and layout data intact.

Remarks
When copying text to the clipboard, TSyntaxMemo will place a RTF version of the selected text in addition
to a plain text version.

Purpose of TSyntaxMemoParser scripts

Scripts allow users to either customise an existing editing environment at design time or to carry out such
actions at run-time within an application.

Accessing the TSyntaxMemo Web site (or contacting the author) will give access to a set of pre-written
scripts for HTML, C, Object Pascal and an e-mail editing environment. Each of these has been created
through the use of scripts and these scripts offer the best illustration of what can be done and how to
achieve it.

Scripting is assisted by a pre-processor built into the TSyntaxMemoParser compiler, this allows users to
write scripts that have meaning for them and aid in the maintainablity of scripts by different authors. Little
or no restrictions have been placed on the length or complexity of scripts and users should find the
environment capable of achieving most tasks.

The structure of scripts is given in both an informal descriptive manner and formal specification is
provided.

Scripts have limitations and these are detailed and possible solutions presented.

RegistryKey property

See also Example

Applies to
TSyntaxMemoParser controls

Declaration
property RegistryKey: string;

Description
TSyntaxMemoParser controls may save their current style settings to the registry. The exact location in
the registry is formed from the RegistryKey property followed by the Name in the %%language section of
the script used by the TSyntaxMemoParser in its Script property. As an example, if a scripts %%language
section contains:

%%language
Name = 'Object Pascal'

And the RegistryKey property is set to 'MyApp' then the settings for the parser will be stored in the
registry at location:

'MyApp\Highlighting - Object Pascal'

Remarks
Saving to the registry must be enabled by setting the UseRegistry property to TRUE. Once this is set, any
changes made by the default property editor will be automatically stored in the registry as above.
TSyntaxMemoParser will not automatically read settings from the supplied RegistryKey when the
component is created at application start-up. To update a parsers settings from the registry the
StylesFromRegistry method must be explicitly called at application start-up.

TSyntaxMemo REGULAR EXPRESSION SYNTAX AND USAGE

Introduction
Regular expression syntax
Replacement text syntax
Regular expression examples

INTRODUCTION
The demo application allows the searching and replacing of text in the editor via the Edit / Find... and
Edit / Replace.. menu options. The Edit / Use Regular Expressions menu option controls when the
Find... and Replace... dialogs will expect a regular expression or plain text. Plain text specification
allows simple matching and replacing of exact text within the editor and should be familiar to most
users. Regular expressions can be used to specify text by its characteristics rather than by the exact
characters. For example, to find all identifiers in a Pascal program, it is known that the identifier can
only start with certain characters and thereafter can contain only certain other characters. Regular
expressions allow the specifications of such items through the use of a syntax borrowed from tools
such as GREP, LEX and YACC.

The following syntax definition uses EBNF notation.

REGULAR EXPRESSION SYNTAX
The formal description of the syntax supported by TSyntaxMemo is given as:

 <regular expression> ::= ['^'] <expression> ['$']

 <expression> ::= <term> ['|' <expression>]

 <term> ::= <factor> [<factor>]

 <factor> ::= <char atom> [<modifier>]

 <char atom> ::= <char> |
 <string> |
 <charclass> |
 '.' |
 ('(' <expression> ')')

 <string> ::= '"' <charlist> '"'

 <charlist> ::= <char> [<charlist>]

 <charclass> ::= '[' ['^'] <CClist> ']'

 <CClist> ::= <one CChar> [<CClist>]

 <one CChar> ::= <char> ['-' <char>]

 <modifier> ::= '*' |
 '+' |
 '?' |

 <char> ::= <escaped char> |
 <plain char>

 <escaped char> ::= '\' <escape sequence>

 <escape sequence> ::= 'x' <Hex value> |
 '0' <Octal value> |
 'n' |
 't' |
 'r' |
 'b' |
 'f' |
 's' |
 <plain char>

 <Hex value> ::= <Hex digit> [<Hex digit>]

 <Hex digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7'
| '8' | '9' |

 'a' | 'b' | 'c' | 'd' | 'e' | 'f' |
 'A' | 'B' | 'C' | 'D' | 'E' | 'F'

 <Octal value> ::= <Octal digit> [<Octal digit>] [<Octal
digit>]

 <Octal digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7'

 <plain char> ::= Any visible character (See note 1)

NOTES
1. <plain char> specifications of grammar characters such as '*', '?' etc. should be escaped to

prevent mis-interpretation.

2. <octal value> specifications must result in an 8 bit value. At most 3 <octal digit>s will be used to
determine the <octal value>, any more will be parsed as <char atom>s after the <octal value>. If
the <octal value> results in a character value > 255 (i.e. \0377) then an error will be reported.
<hex value> will only accept at most 2 hex digits, any following <hex digit>s will not be used in
the escape value and will be interpreted as <char atom>s. To remove ambiguity, always use a 2
digit hex code such as \x0F etc.

3. The <modifier>s are interpreted as follows:
'*' Zero or more of
'+' One or more of
'?' Zero or one of (i.e. optional)

4. A caret (^) at the beginning of a regular expression matches the start of a line. A dollar ($) at the
end of an expression matches the end of the line. Both do NOT include the line start/end markers
in the recognised text.

5. The <escaped char> letters can be upper or lower case and are interpreted as follows:
\r Carriage return(ASCII code 10)
\n New line (ASCII code 13)
\f Form feed (ASCII code 12)
\t Tab character (ASCII code 9)
\b Backspace (ASCII code 8)
\s Space (ASCII code 32)

REPLACEMENT TEXT SYNTAX
Replacement text is defined by:

 <replacement text> ::= <char specifier list>

 <char specifier list> ::= <char specifier> [<char specifier list>]

 <char specifier> ::= <field value>
|

 <escaped char>
|

 <plain char>

 <field value> ::= '%' <decimal value>

 <decimal value> ::= <decimal digit> [<decimal value>]

 <decimal digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7'
| '8' | '9'

NOTES
1. <escaped char> and <plain char> are as in the regular expression syntax.
2. The <decimal value> should evaluate to a number in the range 1..10. The upper value may be

changed by purchasers of the source code.

EXAMPLES
1. Locate Internet references

                      ("http://"|"mailto:"|"ftp://")[^ \n\r\"\<\\]+

Would allow the detection of internet references that start with 'http://', 'mailto:' or 'ftp://'. The <field
values> will be assigned based upon the syntax element <factor> and devolve to:
 %1.....("http://"|"mailto:"|"ftp://")
 %2.....[^ \n\r\"\<\\]+
In english, the expression reads:

"Find all occurences of text that start with 'http://', 'mailto:' or 'ftp://' and are followed by at least
one character that is not one of a space (\s), a newline(\n), a carriage return(\r), a quote(\"), a

bracket (\<), or a slash (\\)"

2. Locate all compiler directives in an Object Pascal program

 "{$"[a-zA-Z_]+[\s\t\r\n]*[^\}]*"}"

Would create fields as below:
 %1....."{$"
 %2.....[a-zA-Z_]+

 %3.....[\s\t\r\n]*
 %4.....[^\}]*
 %5....."}"
In english, the expression reads:

"Find all occurences of text that starts with a curly brace and a dollar ("{$") and is followed by at
least one letter or underscore ([a-zA-Z_]+) optionally followed by some whitespace ([\s\t\r\n]*)

optionally followed by any number of anything except a close curly brace ([^\}]*) and terminated
by a close curly brace "}"

RemoveLineGlyph method

See also Example

Applies to
TSyntaxMemo controls

Declaration
procedure RemoveLineGlyph(G: TGlyphIndex; L: longint);

Description
RemoveLineGlyph will ensure that a gutter glyph of index G is not present in line number L. G must be in
the range 0..15

Remarks
G and L are both zero based properties.

SaveToFile method

See also Example

Applies to
TSyntaxMemo controls

Declaration
procedure SaveToFile(Filename: string);

Description
The text contents of the control will be saved to the passed filename. If the file already exists it will be
overwritten.

Remarks
The file will be saved with CR/LF pairs terminating lines. Word-wrapping information is not saved with the
text.

SaveToStream method

See also Example

Applies to
TSyntaxMemo controls

Declaration
procedure SaveToStream(aStream: TStream);

Description
The text contents of the control will be saved to the passed TStream instance.

Remarks
The text will be written with CR/LF pairs terminating lines. Word-wrapping information is not saved with
the text.

Strings in TSyntaxMemoParser Scripts

With reference to the formal syntax of scripts, there are two types of <string> instances that are used in
scripts. In both instances the strings are surrounded by single quotes (') and may use the following
escape sequences:

\n The newline character = chr(13)
\r The linefeed character = chr(10)
\s The space character = chr(32)
\t The TAB character = chr(9)
\b The backspace character = chr(8)
\e The ESCAPE character = chr(27)
\xNN A hex character value where N is a hex digit [a-fA-F0-9]
\oNNN An octal character value where N is an octal digit [0-7]
\c The character c without any special significance attributed to c
\<CR> The string is continued on the next line, if the first non-blank character on the next line is a

backslash (\) then the backslash is ignored and the following character is used as the first
character of the next line. No line break is inserted into the string as a result of the
continuation escape sequence.

NB: Escape sequence characters are not case sensitive, i.e. \s and \S both indicate the space character.

Constant value strings
Are strings that specify exact characters that are expected, e.g. in the %%words section. Such strings
follow the standard escape sequence described above and are delimited by single quotes.

Character set specifiers
Are strings that can specify sets of characters that are expected. Within such strings (e.g. %%tokens,
%%handlers etc.) the following characters have significane in addition to the above escape
sequences:
[abc] Indicates the set composed of characters a, b and character c.
[^abc] Indicates the set composed of all characters except a, b or c.
[a-b] Indicates the set of characters from a to b (inclusive). Character a must be of equal or

lower ordinal value than character b

TSyntaxMemoParser Script Reference

The TSyntaxMemoParser component uses a user written script to specify the format of the text to be
syntax highlighted by the TSyntaxMemo component. Scripts are plain text files and consist of a number
of sections. The formal script syntax is provided and should be referred to for exact specification of
syntax used in each of the sections described below.

%%language %%words %%handlers %%tokens %%effects %%map %
%states %%containers

%%language section
Describes the general characteristics of the format of the text to be highlighted. Within the %%language
section, the following items may be given:
Name A short textual description of the source text, e.g. 'Object Pascal', 'HTML' etc.

Case Indicates whether the source text is case sensitive or not. A value of zero
indicates that the source is not case sensitive, any other value indicates that
the sourec should be processed with character case valid. Predefined values
of _SENSITIVE_ and _INSENSITIVE_ should be used.

Options The default TSyntaxMemo options used at start-up. The value specified is
composed of the summation of one or more of the following values:
Script value TSyntaxMemo equivalent
__DEFAULT_OPTIONS Default options
__OPT_KEYS_MOVE smoKEYSMOVE
__OPT_KEYS_SELECT smoKEYSSELECT
__OPT_KEYS_CLIPBOARD smoKEYSCLIPBOARD
__OPT_KEYS_FUNCTIONS smoKEYSFUNCTIONS
__OPT_PRINT_WRAP smoPRINTWRAP
__OPT_PRINT_LINENOS smoPRINTLINENOS
__OPT_PRINT_FILENAME smoPRINTFILENAME
__OPT_PRINT_DATE smoPRINTDATE
__OPT_PRINT_PAGENOS smoPRINTPAGENOS
__OPT_WORDWRAP smoWORDWRAP
__OPT_AUTOINDENT smoAUTOINDENT
__OPT_TABCOLUMN smoTABCOLUMN
__OPT_WRAP_OVERRIDE smoWRAPOVERRIDE
__WORD_SELECT smoWORD_SELECT

WordWrapColumn When the word-wrapping option of TSyntaxMemo is enabled, indicates the
character column at which word-wrapping should occur. A value of zero
indicates that wrapping occurs at the edge of the display window. The pre-
defined value of _EDGE may be used to specify wrapping at the width of the
window.

Gutter Specifies the width of the gutter at the left of the text display area in pixels.
The default can be specified as _DEFAULT_GUTTER, or any numeric value
given.

Anchor Specifies which token value should be used as a reference point when
commencing analysis of the source text. This provides a known condition in
the source text and if not specified, then the start of any token will be used
as a reference point.
For sources containing such items as comments or other 'block' syntax
elements, the start of these items should be specified as the anchor token so
that the contents are not mis-interpreted.

ExampleText A few lines of text illustrating the syntax elements of the source text. These
lines will be displayed in the default property editor and it is suggested that
the lines be a legal example of the source text.

EditableStyles A list of descriptions and their token values that can be altered via the default
property editor.

%%words section
Is used to specify syntax elements that start with a fixed set of characters. Common examples are
keywords in languages (for, while etc.)
Entries in the %%words section consist of sets of specifications for each syntax 'word'. The possible
entries are:
Fixed text Sequence of characters that must be present in the order given. Case

sensitivity is applied, as specified in the %%language section above.

Follow characters Character set specifying the characters that can legally follow the fixed text.
If any other character is present then the 'word' is not recognised.

Token value A value for the 'word' when recognised.

Valid states A optional state set that describes in which states the 'word' can be
recognised. If no state set is given then the 'word' will be recognised in the
initial default state only.

%%handlers section
When an entry in the %%words section has been recognised it is possible to specify more precisely what
can follow the fixed text. An example of this situation is comments where a comment may start with fixed
characters (e.g. '/*') but can be followed by anything up to some other point (e.g. '*/').
Entries in the %%handlers section consist of sets of specifications in the order below:
Token value The recognised Token value from the %%words section that is to be

processed

Contains specifier The set of characters that can follow the fixed text in the %%words section.
In cases where the characters specified can optionally follow the fixed text,
the character set should be specified with a question mark immediately
afterwards, e.g. '[a-zA-Z]'? indicates that a letter may optionally follow the
fixed text. If the contains specifier is marked as being optional then
recognition will commence with the End sequence.

End sequence Specifies what is used to recognise the end of the syntax element. Up to 3
character specifiers may be given. For example 'ing' specifies a fixed ending,
'[\n\s\t\r]' specifies one whitespace character.

Retain end Specifies whether the sequence of character(s) that were used to recognise
the end of the syntax element should be considered as part of the syntax
element. The pre-defined values _discard_ may be used to specify that the
character(s) are not part of the syntax element, or _use_ may be used to
specify that the character(s) are part of the syntax element.

NB: The Contains specifier may be given as a pre-defined token class or the external Match(n)

specifier. In these cases the End sequence and Retain End specifiers may both be omitted since
the token class or Match(n) may inherently define both. The pre-defined token classes are:
_PASCAL_CHAR A character within a Pascal style quoted string
_WEB_CHAR A character that forms part of an internet URL
_ORIGINAL_CHAR An entire line of characters
__STD_IDENTIFIER An identifier that starts with [_a-zA-Z], contains [_a-zA-

Z0-9] and terminates with [^_a-zA-Z0-9]
__STD_NUMBER_OR_FP An unsigned integer or floating point numeric constant.

The number is of form <Digits> ['.' <Digits>] ['e' ['+' |
'-'] <Digits>]

__STD_PASCALSTRING A Pascal style quoted string, uses single quotes (') to
delimit the string.

__STD_C_STRING A C style quoted string, uses double quotes (") to delimit
the string

__STD_C_CHAR A C style character within a quoted string. Supports the
following escape sequences:

__STD_C_NUMBER_OR_FP_SIGNED A signed integer or floating point numeric constant of
form ['+' | '-'] <Digits> ['.' <Digits>] ['e' ['+' | '-']
<Digits>]

__STD_NUMBER A decimal integer
__STD_MAIL_URL An internet mail address

%%tokens section
When attempting to identify a syntax element, TSyntaxMemoParser will initially try the %%words entries
(and any associated %%handlers entries). If a match is located then the syntax element has been
identified and the parser will be able to update the editor. However if no match is made by the %%words
entries then the %%tokens section is used to match more general syntax elements.
Entries in the %%tokens section consist of sets of specifications in the order below:
Token value The Token value for the syntax element described by the following

specification set.

Start specifier A single character specifier that indicates the set of characters that can start
this token. This entry is required and must not overlap with any other entry in
the %%tokens section.

Contains specifier The set of characters that can follow the start character. In cases where the
characters specified can optionally follow the start character, the character
set should be specified with a question mark immediately afterwards, e.g. '[a-
zA-Z]'? indicates that a letter may optionally follow the start character. If the
contains specifier is marked as being optional then recognition will
commence with the End sequence.

End sequence Specifies what is used to recognise the end of the syntax element. Up to 3
character specifiers may be given. For example 'ing' specifies a fixed ending,
'[\n\s\t\r]' specifies one whitespace character.

Retain end Specifies whether the sequence of character(s) that were used to recognise
the end of the syntax element should be considered as part of the syntax
element. The pre-defined values _discard_ may be used to specify that the
character(s) are not part of the syntax element, or _use_ may be used to
specify that the character(s) are part of the syntax element.

Valid states A optional state set that describes in which states the syntax element can be
recognised. If no state set is given then the syntax element will be

recognised in the initial default state only.

NB: The Contains specifier may be given as a pre-defined token class or the external Match(n)
specifier. In these cases the End sequence and Retain End specifiers may both be omitted since
the token class or Match(n) may inherently define both. The pre-defined token classes are as
described above in the %%handlers section.

%%effects section
Once a syntax element has been identified, TSyntaxMemo will apply syntax highlighting effects to the text
of the element as per the effects described in this section.
Entries in the %%effects section consist of sets of sepecifications in the order below:
Token value The Token value for the syntax element described by the following

specification set.

Font attributes Specification of the Bold, Italic and Underline status of the text. The following
pre-defined values should be used to indicate font effects:
fsBold Text is bold
fsItalic Text is italicised
fsUnderline Text is underlined

Foreground color Foreground color used by the syntax element

Background color Background color used by the syntax element

Hotspot marker Identifies the syntax element as a 'hotspot' (See OnHyperlinkHover and
OnHyperlinkClick events of TSyntaxMemo)

NB: The foreground and background colors may use any 32 bit value, however the following pre-
defined values may be used for convenience:
clBlue, clAqua, clBlack, clDkGray, clFuchsia, clGray, clGreen, clLime, clLtGray, clMaroon,
clNavy, clOlive, clPurple, clRed, clSilver, clTeal,    clWhite, clYellow

%%map section
In the above %%words and %%tokens section the definition of the token value applied to each syntax
element can result in a large number of possible token values. These token values can be grouped
together to show all common elements as the same highlight effect through the %%map section.
By default each token value maps onto token value zero which should be defined as the default %%effect
above. To override this mapping each entry in the %%map section should consist of pairs of entries thus:
Recognised token value The token value given in the %%words and %%tokens sections above
Desired %%effect value Highlighting effect to be applied to the recognised token value

Remember to override the %%effect value by mapping it to itself.

%%states section
In the specification of source text formats and syntax, it is often the case that syntax elements should only
be recognised under certain context conditions, e.g. between two syntax elements. The %%states section
allows the recognition of certain syntax elements to change the set of valid states that the parser operates
in. In the %%words and %%tokens sections above, it is possible to specify which states the syntax
element is recognised in. By default all syntax elements are recognised in the initial start state.
Each entry in the %%states section consists of the following entries:
Recognised token value The token value given in the %%words and %%tokens sections above that

cause the state to change AFTER recognition.
State change list A list of states that are turned on (+[...]) or off (-[...]) when the state starts

Note that after a token has caused a state change the new state settings will remain until turned off by
another token with an entry in the state table.

%%container section
Provides a facility to allow syntax elements to act as containers of other syntax elements. The entries in
this section are identical to the %%states section above although the state changes are only valid within
the textual limits of the %%container token. Examples are quoted strings that contain relevant syntactic
elements (e.g. Names, URLs etc.).
When parsing a %%container lexeme, the highlight effect for the %%container token will be applied to
any unrecognised syntactic element located.

Script property

See also Example

Applies to
TSyntaxMemoParser controls

Declaration
property Script: string;

Description
Script specifies the filename of the text file containing the script for syntax element identification is
located. See script reference for details of the script format.

Remarks
At design-time, assigning to the Script property will cause the specified script in the file to be compiled
and the compiled version of the script saved with the application. At run-time assigning to the Script
property will not cause an auto-compile to be performed, the CompileScript method must be explicitly
invoked to compile a script at run-time.
A recompilation of a script, either at design time or run-time, will cause the previous parser model to be
replaced by the new one detailed in the new script. After a successful compilation any editors using the
TSyntaxMemoParser component will be updated with the new syntax effects.

SEM_CANREDO message

Group See also Example

An application sends an SEM_CANREDO message to determine if an action can be redone by a
TSyntaxMemo control.

wParam = <Not used>
lParam = <Not used>

Parameters

SEM_CANREDO does not take any parameters

Return Value
Returns true if an action can be redone by the SEM_REDO message, otherwise returns false.

SEM_EXPORTSEL message

Group See also Example

An application sends an SEM_EXPORTSEL message to export the currently selected text of a
TSyntaxMemo control to a TStream instance.

wParam = Formats // Emit format flags
lParam = TStream(aStream) // TStream instance

Parameters

Formats
Is a bit field with the following bit constants of relevance:

exp_NOLF Export as plain text with lines delimited by a single CR (#13)
exp_WITHLF Export as plain text with lines delimited by a CR/LF pair (#13#10)
exp_RTF Export as Rich Text Format

When exporting as rich text format, the exp_NOLF / exp_WITHLF settings will have no effect.

aStream
A TStream instance. TSyntaxMemo will export the current selection to aStream.Position.

Return Value
Does not return a value.

Remarks
aStream must be initialised prior to sending a SEM_EXPORTSEL message. TSyntaxMemo will export
the currently selected text to the stream. The actual number of characters emitted depends upon the
number of characters selected, the number of line breaks within these characters and the state of the
flags of Formats when the message is sent.

SEM_FINDTEXT message

Group See also Example

An application sends an SEM_FINDTEXT message to find text within a TSyntaxMemo control.

wParam = actions; // Find text control flags
lParam = PChar(pText); // Text to be found

Parameters

actions
Value of wParam. Specifies the actions to be performed. Uses bit fields as below:

ft_SILENT Locate text without displaying Find dialog
ft_MATCHCASE Do not perform a case-insensitive search for text in pText
ft_REGEXPR pText is a regular expression describing the text to be found

pText
Points to the text used to locate the next occurence of text in the control.

Return Value
When ft_SILENT is set in actions, will return -1 for text not located, or if the text is located will return a
value that is dependant upon the ft_REGEXPR flag in actions. If ft_REGEXPR is set in actions and
the regular expression in pText matches text in the control the return value will be a TREParser
instance that can be used to extract the field information from the recognised text. If ft_REGEXPR is
not set in actions and pText is located then the return value will be the character index of the first
character in the document that matches pText.

Remarks
pText must be initialised if ft_SILENT is set in actions, otherwise it can be nil.

SEM_FINDTEXT starts looking from the current insertion point. This is always the location of the
flashing caret in a TSyntaxMemo. Each time a TSyntaxMemo control receives a SEM_FINDTEXT
message it will re-commence looking from the current insertion point.

If ft_SILENT is not present in actions then the control will display the standard Windows Find dialog.
Users will then be able to press the 'Find Next' button to locate the next occurence of text. ft_SILENT
allows applications to automate the process of locating text within a control. When the Find Dialog is
displayed the currently selected text will be displayed in the 'Find What' edit box. If no text is selected
then the 'Find what' box will be empty.

ft_MATCHCASE is only used by TSyntaxMemo when ft_REGEXPR is not present in actions.

SEM_GETTEXT message

Group See also Example

An application sends an SEM_GETTEXT message to export the currently selected text of a
TSyntaxMemo control to a memory buffer.

wParam = UseLF; // Emit CR/LF pairs
lParam = PChar(pText); // TStream instance

Parameters

UseLF
When TRUE, text will be exported with CR/LF pairs as line terminators. When FALSE lines will be
terminated by a single CR.

pText
A pointer to a memory buffer to receive the text.

Return Value
If on entry pText is nil then will return the number of characters that will be exported (including
terminating null). If pText is not nil on entry then does not return a value.

Remarks
pText must be initialised to a size of at least the number of chararacters that will be exported.
TSyntaxMemo will export the currently selected text to the buffer pointed to by pText. The actual
number of characters emitted depends upon the number of characters selected, the number of line
breaks within these characters and the state of the UseLF value when the message is sent. Normally
SEM_GETTEXT is called twice, once with a nil value for pText and the return value used to allocate a
buffer for pText before SEM_GETTEXT is called again.
Use SEM_EXPORTSEL to export to a TStream instance.

SEM_IMPORTSEL message

Group See also Example

An application sends an SEM_IMPORTSEL message to import text from a TStream instance to a
TSyntaxMemo control.

wParam = action; // action to be performed
lParam = TStream(aStream); // TStream instance

Parameters

action
Value of wParam. Specifies the actions to be performed. Uses bit fields as below:

sKNOWNLEN Read in all data in aStream. When present TSyntaxMemo will ignore end of
text stream markers (NULL or #0) and read all of the data in aStream until
the stream is exhausted. Used when reading binary files.

euDRAW Redraw control after new text has been imported.
euNODRAW Do not redraw control after new text has been imported.

aStream
A TStream instance. TSyntaxMemo will commence reading from the aStream.Position.

Return Value
Does not return a value.

Remarks
aStream must be initialised prior to sending a SEM_IMPORTSEL message. TSyntaxMemo will read
the stream primarily as as a text source and will force newlines for lines in excess of 2048 characters.
TSyntaxMemo will recognise embedded line breaks by the presence of a single CR, a single LF or
CR followed by LF.

SEM_INDENT message

Group See also Example

An application sends an SEM_INDENT message to indent the selected lines of a TSyntaxMemo control.

wParam = <Not used>
lParam = <Not used>

Parameters

Does not take any parameters.

Return Value
Does not return a value.

Remarks
The currently selected lines will be indented by inserting a space as the first character of each line.
The current selection will change relative to the inserted spaces.

If WordWrap is on then lines that have been wrapped will not be indented, only the original start of the
line will be indented.

SEM_LEFTINDENT message

Group See also Example

An application sends an SEM_LEFTINDENT message to retrieve or set the current start column of the left
edge of the display in a TSyntaxMemo control.

wParam = action; // action to be performed
lParam = leftedge; // left edge value

Parameters

action
Value of wParam. Specifies the actions to be performed. Uses bit fields as below:

eaSET Set the new left edge column number leftedge . The euDRAW / euNODRAW
bits determine whether the control is repainted after the new left edge value
is set.

eaGET Return the current left edge value as a result
euDRAW Only applicable for eaSET. Redraw control after new left edge is set.
euNODRAW Only applicable for eaSET. Do not redraw control after new left edge is set.

leftedge
For eaSET, is the new value of the left edge of the control. For eaGET leftedge is not used.
leftedge is a zero based column number.

Return Value
For action = eaGET returns the 32 bit, zero based left edge column number of the current display
state . For action = eaSET the return value is undefined.

Remarks
If setting a new left edge value (action = eaSET), then the new left edge value may result in no text
being displayed if the lines in view do not extend to the new left edge value.

SEM_MODIFIED message

Group See also Example

An application sends an SEM_MODIFIED message to get or set the modified state of a TSyntaxMemo
control.

wParam = action; // action to be performed
lParam = Boolean(nModified); // new Modified state values

Parameters

action
Value of wParam. Specifies the actions to be performed. Uses bit fields as below:

eaSET Set the new option flags to value of nOptions in lParam.
eaGET Return the current options flags as a result

nModified
When eaSET is set in action then nModified is the new state of the Modified property of the

TSyntaxMemo control.

Return Value
When eaGET is set in action the return value is TRUE if the contents of the control have been
modified, otherwise it is FALSE.

Remarks
TSyntaxMemo normally takes care of the modified state of a control by tracking the undo / redo
actions. As a default action TSyntaxMemo will reset the Modified property if text is entered into the
control via the LoadFromFile, LoadFromStream or via the Windows WM_SETTEXT message.
Applications may process saving the text on their own and should send a SEM_MODIFIED message
to reset the state of the control. If the effect is to reset the Modified state then TSyntaxMemo will
dump all saved undo / redo actions.
The TSyntaxMemo.Modified public property is translated to SEM_MODIFIED messages and acts in
the same manner as described here.

SEM_OPTIONS message

Group See also Example

An application sends an SEM_OPTIONS message to retrieve or set the current options of a
TSyntaxMemo control.

wParam = action; // action to be performed
lParam = nOptions; // new options values

Parameters
action

Value of wParam. Specifies the actions to be performed. Uses bit fields as below:
eaSET Set the new option flags to value of nOptions in lParam.
eaGET Return the current options flags as a result
euDRAW Only applicable for eaSET. Redraw control after new options are installed.

Control will auto scroll to ensure the end of the new selection is in view.
euNODRAW Only applicable for eaSET. Do not redraw control after new options are

installed.

nOptions
A 32 bit value that is interpreted as a bit field with the following bit masks applicable (default
states indicated):

eo_KEYS_MOVE Use default movement    keys (ON)
eo_KEYS_SELECT Use default selection keys (ON)
eo_KEYS_CLIPBOARD Use default clipboard keys (ON)
eo_KEYS_FUNCTIONS Use default functions (ON)
eo_PRINT_WRAP Wrap lines when printing (ON)
eo_PRINT_LINENOS Print line numbers (ON)
eo_PRINT_FILENAME Print filename in header (ON)
eo_PRINT_DATE Print date in header (ON)
eo_PRINT_PAGENOS Print page numbers (ON)
eo_WORDWRAP Word-wrap lines at right margin (OFF)
eo_DEFAULT Default options (as above)

Return Value
For eaGET set in actions, returns the current options flags, otherwise does not return a value.

Remarks
The key assignments affected by the eo_KEYS_xxx flags are given in the keyboard interface
section.

eo_TELL_ERRORS when present will cause a dialog to be displayed should TSyntaxMemo detect
any form of error. If the flag is not set then TSyntaxMemo will raise an exception for errors it detects
allowing applications to deal with errors.

Printing flags are detailed in the Print method topic.

SEM_REDO message

Group See also Example

An application sends an SEM_REDO message to re-do an action in a TSyntaxMemo control.

wParam = <Not used>
lParam = <Not used>

Parameters

SEM_REDO does not take any parameters

Return Value
Does not return a value

Remarks
If there is no action that can be re-done when the SEM_REDO message is received by a
TSyntaxMemo control then no action will be performed. Use SEM_CANREDO to determine if there is
at least one re-do action available.

SEM_REPARSE message

Group See also Example

An application sends an SEM_REPARSE message to update the display style of a TSyntaxMemo control
from its current TSyntaxMemoParser control.

wParam = <Not used>
lParam = <Not used>

Parameters

SEM_REPARSE does not take any parameters

Return Value
SEM_REPARSE does not return a result.

Remarks
SEM_REPARSE is sent to a TSyntaxMemo control to refresh its display of text. The entire contents
are re-scanned and the settings of the active TSyntaxMemoParser component are used to both
parse the text and display syntax highlighting. When the settings of a TSyntaxMemoParser control
are changed, the attached editors can be refreshed either by invoking the UpdateEditors method or
by sending a SEM_REPARSE message to each of the TSyntaxMemo controls using the
TSyntaxMemoParser component. Use of UpdateEditors is the preferred method.

SEM_REPLACESEL message

Group See also Example

An application sends an SEM_REPLACESEL message to replace the current selection of text in a
TSyntaxMemo control by new text in a memory buffer.

wParam = action; // action to be performed
lParam = PChar(pText); // text to be inserted

Parameters

action
Value of wParam. Specifies the actions to be performed. Uses bit fields as below:

euDRAW Redraw control after new text has been imported.
euNODRAW Do not redraw control after new text has been imported.

pText
A PChar instance that is used as the source of the text to replace the currently selected text.

Return Value
Does not return a value.

Remarks
pText can be nil on entry, in which case the current selection will be deleted. TSyntaxMemo will read
the text pointed to by pText until a NULL is encountered. TSyntaxMemo will read the stream primarily
as as a text source and will force newlines for lines in excess of 2048 characters. TSyntaxMemo will
recognise embedded line breaks by the presence of a single CR, a single LF or CR followed by LF.

SEM_REPLACETEXT message

Group See also Example

An application sends an SEM_REPLACETEXT message to replace text within a TSyntaxMemo control.

wParam = actions; // Find text control flags
lParam = <Not used>

Parameters

actions
Value of wParam. Specifies the actions to be performed. Uses bit fields as below:

ft_MATCHCASE Do not perform a case-insensitive search for text in pText
ft_REGEXPR pText is a regular expression describing the text to be found

Return Value
Does not return a value.

Remarks
SEM_REPLACETEXT starts looking from the current insertion point. This is always the location of the
flashing caret in a TSyntaxMemo. Each time a TSyntaxMemo control receives a
SEM_REPLACETEXT message it will re-commence looking from the current insertion point.

ft_MATCHCASE is only used by TSyntaxMemo when ft_REGEXPR is not present in actions.

SEM_SELECTION message

Group See also Example

An application sends an SEM_SELECTION message to retrieve or set the current selection of text in a
TSyntaxMemo control.

wParam = action; // action to be performed
lParam = pChRange(range); // pointer to range of characters structure

Parameters
action

Value of wParam. Specifies the actions to be performed. Uses bit fields as below:
eaSET Set the new selection from values pointed to by range. The euDRAW /

euNODRAW bits determine whether the control is repainted after the new
selection is set.

eaGET Return the current selection in the structure pointed to by range
euDRAW Only applicable for eaSET. Redraw control after new selection is set. Control

will auto scroll to ensure the end of the new selection is in view.
euNODRAW Only applicable for eaSET. Do not redraw control after new selection is set.

range
Points to a TChRange structure used to either receive the current selection (action = eaGET) or
to set the new selection (action = eaSET).

Return Value
Does not return a value.

Remarks
If setting a new selection (action = eaSET), then the new selection range will be restricted to the
extent of text in the control. To select all text in the control set the chStart field of range to -1.

SEM_TOPLINEINDEX message

Group See also Example

An application sends an SEM_TOPLINEINDEX message to retrieve or set the current top line of the
display in a TSyntaxMemo control.

wParam = action; // action to be performed
lParam = topline; // pointer to range of characters structure

Parameters

action
Value of wParam. Specifies the actions to be performed. Uses bit fields as below:

eaSET Set the new top line of the control to the value in topline . The euDRAW /
euNODRAW bits determine whether the control is repainted after the new
topline is set.

eaGET Return the current top line index as a result
euDRAW Only applicable for eaSET. Redraw control after new top line is set.
euNODRAW Only applicable for eaSET. Do not redraw control after new top line is set.

topline
For eaSET, is the new value of the top line of the control. For eaGET topline is not used. topline
is a zero based line number.

Return Value
For action = eaGET returns the 32 bit, zero based line number of the current line at the top of the
display. For action = eaSET the return value is undefined.

Remarks
If setting a new top line value (action = eaSET), then the new top line value will be restricted extent of
text in the control.

SEM_UNDENT message

Group See also Example

An application sends an SEM_UNDENT message to un-indent the selected lines of a TSyntaxMemo
control.

wParam = <Not used>
lParam = <Not used>

Parameters

Does not take any parameters.

Return Value
Does not return a value.

Remarks
The currently selected lines will be un-indented by deleting any space at the start of each line in the
selection. If a line does not have a space as its first character then it will be unaffected. The current
selection will change relative to the deleted spaces.

If WordWrap is on then lines that have been wrapped will not be unindented, only the original start of
the line will be unindented.

IsBookmarkSet
ClearBookmark

SetBookmark method

See also Example

Applies to
TSyntaxMemo controls

Declaration
procedure SetBookmark(n: byte; Line, Col: longint);

Description
Sets a bookmark number from zero to nine (n) to the specified Line (Line) and Column (Col) within the
text of the control. If Line is beyond the last line of text then no action will be taken. If Col is beyond the
last character on the line then the bookmark will be set to the last character on the line (but will remember
the desired column should the line extend later).

Remarks

StylesAsString method

See also Example

Applies to
TSyntaxMemoParser controls

Declaration
function StylesAsString: string;

Description
StylesAsString retrieves the current settings of the control and returns them as a formatted string. The
items stored within the formatting of the string are:

Options,
Gutter width,
Word-wrap column,
Indent step amount,
Word-wrap override marks,
%%effects settings

The string value returned can be stored as desired. To set the styles from a formatted string, as returned
by the StylesAsString method of the same parser, using the same script, use the StylesFromString
method.

Remarks

StylesFromRegistry method

See also Example

Applies to
TSyntaxMemoParser controls

Declaration
procedure StylesFromRegistry(UseDefault: Boolean; aKey: string);

Description
StylesFromRegistry allows the restoration of the parser and TSyntaxMemo settings defined in a registry
entry. If UseDefault is TRUE then the RegistryKey value will be used as the registry base, otherwise the
aKey value will be used as the registry base from which the entries should be restored.
The exact registry key from which settings will be restored is detailed in RegistryKey.

Remarks
See StylesAsString for details of the settings that can be restored from the registry using
StylesFromRegistry.

StylesFromString method

See also Example

Applies to
TSyntaxMemoParser controls

Declaration
procedure StylesFromString(Styles: string);

Description
StylesFromString allows the restoration of the parser and TSyntaxMemo settings defined in a formatted
string. The string must have been returned as the result of the StylesAsString method or must have been
saved in the registry by the component.

Remarks
See StylesAsString for details of the settings that can be restored from the registry using
StylesFromString.

StylesToRegistry method

See also Example

Applies to
TSyntaxMemoParser controls

Declaration
procedure StylesToRegistry;

Description
StylesToRegistry will force the component to save its current settings using the RegistryKey property.
UseRegistry MUST be true before StylesToRegistry is invoked otherwise an exception will be raised.

Remarks

TCharTest type

Unit
SyntaxEd

Declaration
TCharTest = function(c: char): Boolean of object;

Description
TSyntaxMemo will generate TCharTest events whenever it is required to test a character.
fn_CharIsInWord and fn_CharStartsWord are two events that TSyntaxMemo generates to allow
applications to override the definition of characters that make up 'words'. TCharTest event handlers will be
passed a single character to test and should return true if the condition is met, false otherwise.

Remarks
At present TSyntaxMemo will only generate events when selecting words (double click), moving to word
boundaries (Ctrl+Left Arrow / Ctrl+Right Arrow). TSyntaxMemo may be upgraded in the future to allow
further processing of words within files. These upgrades will use any attached event handlers to carry out
the required checks.

TChRange type

A range of characters within a TSyntaxMemo document

TChRange = record
chStart,
chEnd : longint;

end;

TChRange is used by many of the API messages to specify which characters are to be affected during an
operation.

TFormatEntry type

Declaration
TFormatEntry = record

fme_style: TFontStyles;
fme_color: TColor;
fme_background: TColor;
fme_IsHotspot: Boolean;
fme_FontValid: longint;

 end;

Description
TFormatEffect describes the syntax highlighting applied to individual syntax token values. The fields are
used as below:

fme_style Bold, Italic, Underline style of text
fme_color Color of text
fme_background Background color of text
fme_IsHotspot = true if syntax token is a hotspot
fme_FontValid <> 0 if effect is valid

TGlyphIndex type

Declaration
TGlyphIndex = word;

Description
TGlyphIndex is used as a bit field to describe the glyphs that are currently displayed for a line within
TSyntaxMemo. At present up to 16 different glyphs may be used. If a bit is set in a TGlyphIndex value
then it indicates that the corresponding ordinal glyph image in the GutterGlyphs property will be
displayed.

TREParser class

See also

Unit
ReClass

Declaration
TREParser = class
 public
 property Sections[I: longint]: longint read;
 property NumSections : longint read;
 end;

Description
TREParser is a general purpsose regular expression parser and recognition engine. It is used by
TSyntaxMemo to deal with regular expression specifications for text to be located in the Find / Replace
functions of TSyntaxMemo.

TSyntaxMemo deals with the SEM_FINDTEXT and SEM_REPLACETEXT messages that specify a
regular expression as the source and return an instance of TREParser. The returned value can be cast to
an instance of TREParser and the above public properties examined for recognised text extents.

Public properties
Sections[I: longint]: longint read;

A read only property that holds character indexes of the start of each <factor> of the regular
expression.

NumSections : longint read;
A read only property that indicates the maximum number of sections contained in the regular
expression last used by TREParser.

Other properties and methods of TREParser are not documented.

Installing TSyntaxMemo
Extract the files in the supplied ZIP file to a new directory. Then:
Delphi 2 1. Select Install component from the main menu component menu item

2. Select SyntaxEd.pas in the directory created above
3. Press OK

Delphi 3 1. Select Install component from the main menu component menu item
2. In the dialog that appears select the Into new package tab
3. For the Unit file name, select SyntaxEd.pas in the directory created above
4. For the package name, enter dbSoft
5. Enter a description of the package
6. Press OK

TSyntaxMemo and TSyntaxMemoParser will now be installed in the dbSoft component tab

Installing the help file
Delphi 2 1. Copy the TSynMemo.hlp and TSynMemo.kwf into the HELP\ directory of your Delphi

2 installation
2. Run HelpInst from the \HELP directory and open the Delphi.kwf file in your \BIN

directory
3. Click the '+' button and open the TSynMemo.kwf as copied in step 1
4. Click the Save button to re-generate the Delphi.kwf keyword file

Delphi 3 1. In the \HELP directory of the Delphi 3 installation edit the Delphi3.cfg file and add the
following line at the end:

:link TSynmemo.hlp
2. Save the modified Delphi3.cfg
3. Delete the Delphi3.GID file in the \HELP directory
4. When Delphi 3 is started press F1 to re-build the on-line help. After this normal F1

style help will be available for the TSyntaxMemo and TSyntaxMemoParser
components, their methods, properties and other types / constants.

TSyntaxMemo screenshot

 TSyntaxMemo

See also Properties Methods Events Tasks

TSyntaxMemo is a multiline edit control that can display and edit syntax highlighted text.

Unit
SyntaxEd

Description
TSyntaxMemo is a syntax highlighting editor component. TSyntaxMemo implements all properties,
methods, events and messages of TMemo and can be used as a direct replacement for TMemo.
TSyntaxMemo interfaces with TSyntaxMemoParser components to provide the analysis phase of syntax
highlighting. Up to 6 different TSyntaxMemoParser components may be used by each TSyntaxMemo
conmponent, each TSyntaxMemoParser component defining a different source code format to be
highlighted. The selected TSyntaxMemoParser component is controlled through the ActiveParser
property of TSyntaxMemo.

In addition to the functionality of TMemo, TSyntaxMemo also provides facilities as below:
Unlimited undo/redo of editing actions
Gutter area for display of user defined glyphs
Bookmark support
Regular expression searching and replacing

Remarks

 TDBSyntaxMemo

See also Properties Methods Events Tasks

TDBSyntaxMemo is a multiline edit control that can display and edit a syntax highlighted field in a dataset.

Unit
SyntaxEd

Description
Use TDBSyntaxMemo to let users edit a field that may contain lengthy textual data or to simply display
the contents of such a field with syntax highlighting applied to the contents. TDBSyntaxMemo uses the
Text property to represent the contents of the field.

TDBSyntaxMemo permits multiple lines of text. Thus, TDBSyntaxMemo is appropriate for long
alphanumeric fields or text binary large objects (BLOBs). For short alphanumeric fields, consider using a
TDBEdit component instead.

If the application doesnt require the data-aware capabilities of TDBSyntaxMemo, use a memo control
(TMemo or TSyntaxMemo) instead, to conserve system resources.

TSyntaxMemoParser - formal script syntax definition

Uses EBNF syntax specification format

<Script> ::= [<Language section>]
[<Word section>]
[<Handlers section>]
[<Tokens section>]
[<Effects section>]
[<Map section>]
[<States section>]
[<Containers section>]

<Language section> ::= '%%language' [<Language item list>]
<Language item list> ::= <One language item> [<Language item list>]
<One language item> ::= <Name item>

| <Case item>
| <Options item>
| <WordWrapColumn item>
| <Anchor item>
| <Gutter item>
| <ExampleText item>
| <EditableStyles item>
| <Wrapoverride item>

<Name item> ::= 'Name' '=' <string>
<Options item> ::= 'Options' '=' <Expression>
<WordWrapColumn item> ::= 'WordWrapColumn' '=' <Expression>
<Anchor item> ::= 'Anchor' '=' <ByteExpression>
<Gutter item> ::= 'Gutter' '=' <Expression>
<ExampleText item> ::= 'ExampleText' '=' <string>
<EditableStyles item> ::= <One editable style> [',' <EditableStyles

item>]
<One editable style> ::= '(' <string> ',' <Expression> ')'
<Wrapoverride item> ::= 'WrapOverride' '=' <string>

<Word section> ::= '%%words' [<Word list>]
<Word list> ::= <One word> [<Word list>]
<One word> ::= <string> <EndcharStyle> <ByteExpression>

[<State specifier>]
<EndCharStyle> ::= <string>
<State specifier> ::= '[' <Byte Expression list> ']'
<Expression list> ::= <ByteExpression> [<ByteExpression list>]

<Handlers section> ::= '%%handlers' [<Handler list>]
<Handler list> ::= <One handler> [<Handler list>]
<One handler> ::= <ByteExpression> <Remainder specifier>
<Remainder specifier> ::= <Contains specifier> [<Ends specifier>

<Ends action>]
<Contains specifier> ::= (<Token function ID> | <string>) ['?']
<Ends specifier> ::= <string>
<Ends action> ::= <Expression>

<Tokens section> ::= '%%tokens' [<Token list>]
<Token list> ::= <One token> [<Token list>]
<One token> ::= <ByteExpression> (<Token Function> | <Token

specifier>) [<State specifier>]
<Token function> ::= <Expression>
<Token specifier> ::= <Start set sepecifier> <Contains specifier>

<Ends specifier> <Ends action>

<Effects section> ::= '%%effects' [<Effects list>]
<Effects list> ::= <One effect> [<Effects list>]
<One effect> ::= <ByteExpression> <Text color>

<Background color> <Hotspot specifier>
 ::= '[' [] ']'
 ::=
<Expression list ::= []
<Text color> ::= <Expression>
<Background color> ::= <Expression>
<Hotspot specifier> ::= ['hotspot']

<Map section> ::= '%%map' [<Map list>]
<Map list> ::= <One map item> [<Map list>]
<One map item> ::= <Script token value> <Applied affect value>
<Script token value> ::= <ByteExpression>
<Applied effect value> ::= <ByteExpression>

<States section> ::= '%%states' [<State list>]
<State list> ::= <One state transition> [<State list>]
<One state transition> ::= <ByteExpression> '(' [<State changes>] ')'
<State changes> ::= ('+' | '-') <State specifier>

<Containers section> ::= '%%containers' [<State list>]

<Expression> ::= <Factor> [<Add op> <Expression>]
<Factor> ::= <Integer>

| '(' <Expression> ')'
<Add op> ::= '+' | '-'

NOTES: <ByteExpression> evaluates to the range 0..255
 should evaluates to one of:

ord(fsBold)
ord(fsUnderline)
ord(fsItalic)

Any other value may have undesired side-effects.

See string syntax for details of character sets, constant strings and escape sequences.

TSyntaxMemoParser tasks index

SCRIPTS
The purpose of scripts
Informal description of script structure
Formal script definition
The script pre-processor
How do I...

 TSyntaxMemoParser

See also Properties Methods Events Tasks

Description
A non-visual VCL component that provides parsing functionality to TSyntaxMemo editor components.
TSyntaxMemoParser uses a script file to specify the method used in parsing the text contents of
TSyntaxMemo. The script syntax is described in detail in the Tasks section.
TSyntaxMemoParser can be used with more than one TSyntaxMemo control, in this manner, each
TSyntaxMemo control that uses the same TSyntaxMemoParser will display its text using the same
highlighting effects. Changing the highlighting effects of one TSyntaxMemo control at run-time or design
time will cause all other TSyntaxMemo controls using the same TSyntaxMemoParser to be automatically
updated with the new effect styles.

Although TSyntaxMemoParser uses a text file script to specify the parsing methods, this script is
compiled by the control at design time and the compiled format is saved with the application. There is no
need to supply a script with applications that use TSyntaxMemoParser controls since
TSyntaxMemoParser will read the compiled data if the original script cannot be found.

Run-time modification of the parsing methods can be achieved by forcing the TSyntaxMemoParser to
compile another script via the CompileScript or CompileFromStream methods. Both cause the associated
TSyntaxMemo control(s) to be updated with the changes.

Remarks
Script creation is covered in the tasks section of this help file. However pre-written scripts can be
downloaded from the TSyntaxMemo Web site. The author will provide full support and advice on the
creation of scripts.

UpdateEditors method

See also Example

Applies to
TSyntaxMemoParser controls

Declaration
procedure UpdateEditors;

Description
UpdateEditor is used to reflect changes to the parser settings in attached TSyntaxMemo editors. Invoking
the UpdateEditors method will cause attached editor components to be re-drawn using the current
TSyntaxMemoParser settings.

Remarks

UseRegistry property

See also Example

Applies to
TSyntaxMemoParser controls

Declaration
property UseRegistry: Boolean;

Description
UseRegistry controls the behaviour of the components interface with the Windows Registry via the
RegistryKey property.

Remarks
See RegistryKey for full details of the Windows Registry interface.

WrapAtColumn property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property WrapAtColumn: word;

Description
In word-wrap mode the text in the control will be wrapped at the WrapAtColumn character column.

Remarks
Setting WrapAtColumn to zero will cause the text to be wrapped at the width of the display area. The
WrapOverride property allows word-wrapping to be overriden for certain lines within the control.

WrapOverride property

See also Example

Applies to
TSyntaxMemo controls

Declaration
property WrapOverride: string;

Description
WrapOverride specifies the start character of lines that will not be word-wrapped. Each character in the
property indicates a possible line start character.

Remarks
In order for WrapOverride to be operational, Options must contain the smoWrapOverride and
smoWordWrap flags. WrapOverride defaults to the empty string (i.e. no lines are overriden in word-wrap
mode).

