
Plasmatech Shell Control Pack - Introduction

Give your Delphi and C++Builder applications Windows Explorer functionality with the Shell Control Pack. Simply
place four components on a form set two properties and you have a working Explorer! These powerful shell
components include tree view, list view and combo box. Full access is available to drag and drop (into, out of and
within your application), context menus including "Send To", renaming/deleting, copy/paste, namespace extensions
and much more.

Add features to any application with the two-way splitter, image/indent combo box and enhanced panels. Enhanced
list view and tree view controls support custom drawing, different fonts, colours and context menus for individual
items.

Every application can benefit by replacing the limited and inflexible Windows common file dialogs. Microsoft did just
that with Office 95 and 97. Now you too can liberate your program from the constraints of the common dialogs with
100% Delphi forms that look and act just like the system ones, only better! With extra functionality such as a resizable
frame, tree view, and no three-character limit on file extensions, these components are useful in any application. And
because they are Delphi forms, you can customise them directly or with visual form inheritance to add custom
features like file previewing.

Internationalisation is fully supported, with translations provided for 16 languages – Czech, Danish, Dutch, English,
Finnish, French, German, Hungarian, Italian, Japanese, Norwegian, Polish, Portuguese (Brazil), Russian, Spanish
and Swedish.

The powerful components contained in the Shell Control Pack will give your software product distinguishing features
and the standard interface your users are comfortable with. Stand out from the crowd. Order the Shell Control Pack
today!

See Also
Installation | Component Summary | Unit Summary | Ordering Information | Latest Changes | Internationalisation

Installation
Delphi 2 | C++Builder 1 | All Other Environments

Users of versions prior to v1.3h should completely remove the earlier version, including help integration and library
path entry, before installing the new version.

All Other Environments
(Delphi 3 or higher and C++Builder 3 or higher)

The Setup utility will make all the adjustments necessary to install the Shell Control Pack design-time package and
online help into your chosen environments.

Source code customers should read about The problem with OLE2.

Delphi 2

Registering Components
1. From the Delphi IDE select Component | Install.
2. Select the Add button.
3. Browse for the Reg_PTShellControls.pas file and select OK.
4. Select OK again.

The component library will now be rebuilt, and should include the Shell Control Pack.

Integrating Keywords
1. Copy the PTShCtrl.hlp, PTShCtrl.cnt and PTShCtrl.kwf files into the Delphi HELP directory.
2. Start the help file installer located in the Delphi HELP\TOOLS directory called HELPINST.EXE.
3. Select File | Open.
4. Locate the DELPHI.HDX file located in the Delphi BIN directory.
5. Select Keywords | Add keyword file…
6. Locate the PTShCtrl.kwf file.
7. Select File | Save.

The Shell Control Pack help should now be integrated into the Delphi help system.

C++ Builder 1

Registering Components
1. From the Delphi IDE select Component | Install.
2. Select the Add button.
3. Browse for the Reg_PTShellControls.pas file and select OK.
4. Select OK again.

NOTE: C++Builder users must #include the PTShConsts.h file in one of their project .cpp files. If you don't do this the
Shell Control Pack components will have no strings.

The component library will now be rebuilt, and should include the Shell Control Pack components.

Installing Help
Use the OpenHelp tool to install the PTShCtrl.hlp file into the C++ Builder help system. Read the OpenHelp.hlp file
that comes with C++ Builder for more information on using OpenHelp.

Component Summary

Shell Components

    TPTShellTree Shell tree view - the left-hand pane of Explorer.

    TPTShellList Shell list view - the right hand pane of Explorer.

    TPTShellCombo Shell Combo box - as seen in Explorer and common dialogs.

    TPTOpenDlg
Enhanced file open dialog - supports resizing, customisation and
treeview.

    TPTSaveDlg
Enhanced file save dialog - supports resizing, customisation and
treeview.

   
TPTFolderBrowseDlg

Enhanced folder browse dialog - support resizing, customisation and
create/delete folder buttons.

 Support and Bonus Components

    TPTTreeView Adds OnPTCustomDraw and OnPTCustomDrawEx events to
TTreeView.

    TPTListView Adds OnCustomPTDraw and OnPTCustomDrawEx events to
TListView.

    TPTSplitter General-purpose splitter panel.

    TPTImageCombo Image combo box - associates an image with each item.

    TPTFrame Non-windowed frame - more styles than TBevil.

    TPTGroup Windowed container frame - more styles than TPanel.

 TPTCombobox
Adds OnSelEndOk, OnSelEndCancel, OnCloseUp and
OnDeleteItem events to TCombobox.

    TPTSysFolderDlg
System folder browse dialog - accesses the system folder browser
via SHBrowserForFolder.

See Also
Installation | Unit Summary

Unit Summary

Unit Contains

FPTFolderBrowseDlg Browse for folders dialog component and form.

FPTOpenDlg Open/save dialog components and form.

UPTFrame Group box and bevel replacement.

UPTImageCombo Combo box supporting items with images and indentation.

UPTShell95 Declarations for SHELL32.DLL.

UPTShellControls TPTShellTree, TPTShellList and TPTShellCombo components.
TPTShTreeData, TPTShListData and TPTShComboData classes.

UPTShellUtils Implements low-level utilities useful for dealing with shell interfaces and
structures. Also includes utilities for creating and resolving shortcuts.

UPTSplitter TPTSplitter, two-way splitter panel.

UPTSysFolderDlg TPTSysFolderDlg, browse for folders using the system dialog.

UPTTreeList TPTTreeView and TPTListView components .

Reg_PTShellControls Registration unit for the components.

See Also
Component Summary | Installation

Latest Changes

Version Date Changes

v1.6 3-Jul-01 ADDED Delphi 6 support.

ADDED ShellGetSpecialFolderIconIndex function.

FIXED popup menu for root-nodes. If the root node is not the Desktop, then the
right-click popup menu is now correctly handled.

FIXED 'access denied' error displayed on certain Windows 2000 systems due
to the "System Volume Information" folder.

See Also
Revision History

Revision History

Version Date Changes

v1.6 See Latest Changes.

v1.5c 30-Mar-01 FIXED a memory leak in ShellFindCSIDLFromIdList.

FIXED a problem that was causing system shutdown to not complete if a
TPTShellTree or TPTShellList control was used.

FIXED Access Violation which sometimes occurred in TPTShellTree on
Windows 98 when folders were created and deleted.

FIXED TPTShListData so extra columns can be added to TPTShellList.

v1.5b 12-Dec-00 FIXED a potential memory leak under Windows 2000.

FIXED potential Access Violation when performing multiple drag-drop
operations with the TPTShellTree.

FIXED. Certain types of images would show with a black border on some
Windows/IE/comctl.dll combinations.

FIXED. Refreshes of TPTShellTree could cause the currently selected node to
jump up one or two levels.

v1.5a 14-May-00 ADDED. Support for Windows 2000 - correct column information is now used
for non-filesystem folders when available.

CHANGED. Removed support for CF_TEXT format in drag/drop operations.
This more closely matches Windows Explorer and prevents issues with some
drop-target applications (such as Wordperfect).

FIXED. Improved handling of the case where a background refresh occurs,
while a popup menu or edit mode is active. Refreshes are deferred until the
operation is complete.

FIXED. Published RightClickSelect property in TPTShellTree.

v1.5 3-Mar-00 ADDED C++Builder 5 support.

ADDED noUI option to TLinkData record. Use this to prevent any error or
search dialogs from displaying when resolving shortcuts.

ADDED OnGetItemData method to TPTImageCombo control. Use of this
property has improved performance of TPTShellCombo by delaying the
retrieval of icon and text information for each item until it is needed.

FIXED C++Builder header problems when using WebBrowser and Shell
Controls in the same form.

FIXED. Reversed the sort direction icon, now up=ascending,
down=descending.

FIXED. Published OnInfoTip event in TPTShellList.

FIXED. TPTShellList.OnItemContextMenu and
TPTShellTree.OnNodeContextMenu are now invoked correctly.

FIXED WM_QUERYENDSESSION handling in hidden window used by
DeviceChangeHandler.

FIXED. TPTShellList Drag/drop now behaves more like Windows Explorer.
Dropping on an item that does not accept dropped files now 'drops-through' to
the owning folder. The effect is like you had dropped in empty white-space.

FIXED. The update in v1.4a to better handle removable and dynamically
mounted drives can cause excessive floppy drive access on some systems. It
seems to happen only on IE5 systems, but only rarely. On those systems on
which it does happen, it is reproducible. With this fix, those systems will only

access the floppy drive after a removable disk is changed, or a drive is
mounted/unmounted.

v1.4a 15-Dec-99 ADDED new property editor for TPTFrameStyle type, with custom drawing.

FIXED update and refresh of drive volume labels for dynamically mounted
drives such as CDROMs and ZIP drives.

FIXED stack-fault (and invalid page fault) which occurred when using the
TPTListView control (and consequently TPTShellList) with version 4.72.3110.1
of comctl32.dll.

FIXED problem where each new CDROM mounted would give a new tree
node, without deleting the previous node for that drive.

FIXED case where folder column widths were sometimes not remembered
between folders.

FIXED OnContextPopup event in Delphi 5, now correctly published.

FIXED occasional AV in Delphi 5 TVN_DELETEITEM handling.

FIXED problem with sort direction icon. When switching to ViewStyle vsReport,
the icon would not show until the header was resized.

FIXED problem with the TPTShellTree control where OnInsertItem was not
called for the root node.

FIXED bug in Delphi 5 tree view where Delete/OnDelete were not called for all
nodes in some situations. Delete/OnDelete are now correctly called in all
cases. This bug has been reported to Borland.

v1.4 14-Sep-99 ADDED Delphi 5 support.

ADDED directional sort icons to TPTListView and TPTShellList. Additional
properties are:

· HeaderCanvas
· HeaderDefaultDrawing
· HeaderHandle
· HeaderSortColumn
· HeaderSortDirection
· HeaderSortDisplayMode

ADDED ShellFindCSIDLFromIdList to UPTShellUtils unit.

IMPROVED support for custom sorting using OnCompare and SortColumn:=0.

FIXED UPTShell95 unit declarations to avoid namespace clashes when used
with C++Builder 4.

FIXED editing of non-filesystem, renamable items like My Computer. It now
works.

FIXED OnGetImageIndex event of TPTShellList, it is now called correctly.

FIXED problem where disconnected, mapped network drives could cause
100% CPU utilisation and general slowness.

FIXED drag-drop error case where dropping from some data sources that don't
support CF_IDLIST format would cause an access violation in the data source.

FIXED handling of DefaultExt property in the case where the user enters an
extension that matches DefaultExt, but that extension is not registered. The
extension would be added again, now it isn't.

FIXED occasional visual glitch with the size-grip control in the TPTOpenDlg,
TPTSaveDlg and TPTFolderBrowseDlg controls.

v1.3h 29-Mar-99 ADDED C++Builder 4 support.

ADDED support for Rename menu item in file system context menus.

ADDED size-grip to bottom right corner of TPTOpenDlg, TPTSaveDlg and
TPTFolderBrowseDlg forms.

ADDED “Show Desktop” button to TPTOpenDlg and TPTSaveDlg.

IMPROVED performance of some loops in TPTShellList by using the
GetNextItem algorithm posted in the FAQ.

IMPROVED robustness of TPTShellLocator ReadData and WriteData
methods. Now less likely to crash with corrupt form data.

CHANGED PTShCreateNewFolder to support drives without long-filename
capability.

CHANGED behaviour when multiple items are selected in the TPTSaveDlg
form. Before 1.3h, all the selected files needed to exist (ptofFileMustExist
option was forced on). This is no longer the case.

CHANGED CreatePanes method in TPTSplitter from private to public, enabling
the run-time construction of TPTSplitter controls.

FIXED key handling of Shift/Delete in TPTShellList and TPTShellTree controls.
This key combo now deletes files immediately, bypassing the Recycle Bin in
the same way as Windows Explorer.

FIXED problem where mouse wheel was unresponsive for TPTShellList
controls in vsList mode.

FIXED OnDblClickOpen event in TPTShellList control. It was not being called
when multiple items were opened simultaneously with a double click or Enter
key.

FIXED problem with EnsureTrailingCharDB function in UPTShellUtils. It didn't
actually work for double-byte character sets.

FIXED problem where assigning the Proportion property of TPTSplitter would
not work if the Proportional property was false.

FIXED problem where TPTImageCombo would always draw its background
using the clWindow color. Now it uses its Color property.

FIXED access violation on large-fonts systems using the TPTFolderBrowseDlg
control.

FIXED setting of current directory in TPTOpenDlg and TPTSaveDlg now sets
the current directory on form exit to the Folder property of the list control.

v1.3g 1-Dec-98 ADDED mouse wheel support to TPTShellTree and TPTShellList (Delphi 4
only).

ADDED TPTShellList.DoCommandForItem method.

ADDED OnSelectItem event to TPTShellList (exposed Delphi 4 event).

ADDED OnFillStart event to TPTShellList and TPTShellTree.

FIXED bug in TPTCustomShellList.SetFileFilter method.

FIXED DefaultExt property in TPTSaveDlg. It now works again.

FIXED bug in TPTSplitter which could cause exceptions when reading splitter
controls with 0 width or height.

FIXED problem with TPTShellList where multiple filters would cause an empty
floppy drive to timeout for each filter.

CHANGED custom draw handling so that if the new Delphi 4 events are used,
then the PTCustomDraw events are disabled.

CHANGED OnFillComplete is now called at the end of Refresh methods as
well as at the end of FillItems methods.

v1.3f 12-Jul-98 CHANGED the name of OnCustomDraw and OnCustomDrawEx events to
OnPTCustomDraw and OnPTCustomDrawEx in order to prevent conflicts with
Delphi 4. If you use these event handlers, you will need reattach them from the
Object Inspector at design time.

FIXED problem with OnAddListItem event of TPTOpenDlg and TPTSaveDlg
not firing.

FIXED problem with positioning of Create/Delete buttons in
TPTFolderBrowseDlg.

FIXED OnAddItem event of TPTFolderBrowseDlg not firing.

CHANGED TPTShellTree.SortNode method from private to public.

CHANGED some method parameter types to better support C++Builder 3. This
should not affect existing code.

CHANGED some expressions and types to better support Delphi 4. This
should not affect existing code.

v1.3e 22-Apr-98 FIXED problem with TPTShellList.RefreshItems under Windows NT.

v1.3d 18-Apr-98 ADDED properties, events and methods to TPTFrmOpenDlg and
TPTFrmFolderBrowseDlg to better support visual inheritance. Reference to the
component object is no longer kept in the form object, making visual
inheritance and customization a lot easier.

ADDED OnCompare event to TPTShellList control. If SortColumn is 0, then the
OnCompare event is called to provide custom sorting.

ADDED OnFolderChanged event to TPTShellList.

ADDED OnInsertItem event to TPTShellTree. This event is called after a node
has been added to the tree.

ADDED public Form property to TPTOpenDlg/TPTSaveDlg and
TPTFolderBrowseDlg.

ADDED new properties to TPTOpenDlg / TPTSaveDlg. OnFormClose,
OnFolderChanged, OnSelectionChanged, OnFormShow and OnTypeChanged
events.

CHANGED algorithm used in TPTShellList.RefreshItems. It is now 10x faster
(or better).

FIXED Delphi drag support in TPTShellTree. If you disable OLE drag in
TPTShellTree or TPTShellList, you can then activate Delphi drag by setting the
DragMode property to dmAutomatic.

FIXED problem with properties of TPTListView and TPTShellList controls.
Checkboxes, Gridlines, HotTrack and RowSelect were not being published in
C++Builder 3.

FIXED problem where TPTSplitter was in non-full drag mode, when the user
dropped the splitter, the OnSplitterDrop event would fire, but the OnChange
event would not.

v1.3c 16-Mar-98 ADDED C++Builder 3 support.

ADDED Proportion property to TPTSplitter.

ADDED ptsloShowHidden to TPTShellList.Options, ptstoShowHidden to
TPTShellTree.Options, ptfbShowHidden to TPTFolderBrowseDlg.Options and
ptofShowHidden to TPTOpenDlg and TPTSaveDlg Options. When true, the
control includes hidden and system files and folders, when false these items
are omitted. If you already have forms that use TPTShellTree, TPTShellList,
TPTFolderBrowseDlg, TPTOpenDlg and/or TPTSaveDlg you should check that
this new option is set appropriately in your forms.

CHANGED default autoscroll delay for TPTShellTree and TPTShellList from

200ms to 100ms.

FIXED memory leak in TPTShellList.RefreshItems.

FIXED a number of cases where changing Options in TPTShellList and
TPTShellTree controls at run-time would have no effect.

FIXED a problem with sizing when a TPTSplitter control was placed inside an
MDI child window.

1.3b 7-Feb-98 ADDED: You can now detect the version of COMCTL32.DLL installed by using
the COMCTL32_VER variable in the UPTShellUtils unit. Also new is the
GetModuleVersion function in the same unit.

ADDED: Support for four new non-ANSI code page languages; Czech,
Hungarian, Polish and Russian.

ADDED: New examples. Check out http://plasmatech.com/scp/examples for
the latest examples.

ADDED: Added OnHelp event to TPTOpenDlg and TPTSaveDlg for Delphi 3
only. The OnHelp event is available in Delphi 2 and C++Builder in order to
keep .dfm files compatible with Delphi 3, but the event is never invoked.

CHANGED: ShellGetSystemImageList now supports link and share overlay
images in Windows NT with Internet Explorer 4. Overlay images with other
versions of Windows NT and Windows 95 still work.

FIXED: TPTSplitter's Position could 'creep' to the left while resizing in
Proportional mode.

FIXED: ptofNoValidate now works in TPTOpenDlg/TPTSaveDlg components.

FIXED: For TPTOpenDlg and TPTSaveDlg Options property, the ptofShowHelp
option now works.

FIXED: A private data member was not being correctly cleared in the
TPTShListData object, causing various, minor, strange behaviours at times,
especially when editing list item names.

FIXED: When a shell tree and list were linked, and the tree control was
recreated it would be empty.

FIXED: When a tree with a non-null BaseFolder was linked to a list, the list
would first show the desktop, then the BaseFolder. It no longer initially shows
the desktop.

1.3a 7-Jan-98 ADDED: New examples. Check out http://plasmatech.com/scp/examples for
the latest examples.

ADDED: Proportional and FullDragMode properties and OnChange event to
TPTSplitter.

ADDED: Extra validity checking for node and item .Data properties. This makes
it possible to add non-shell items to the TPTShellTree and TPTShellList
controls. See the new NonShellNodes example project.

ADDED: ShellGetIconIndexFromExt, ShellGetIconIndexFromPath. functions.

ADDED: EnableAllChildren to TPTGroup.

CHANGED: TPTShellTree and TPTShellList OnEdited event. Now gets fired
after the file/folder is renamed, rather than before.

FIXED: Excessive flicker during repainting of the TPTSplitter and TPTGroup
controls has been minimised (Delphi 3 only). The frame of the TPTGroup
control is now a true non-client area, like the frame for a standard window.
Note that pre v1.3a TPTGroup controls will offset their children by the size of
the non-client frame when upgraded to v1.3a.

FIXED: Right-click on non-desktop base node would cause exception.

FIXED: Fixed ptofNoChangeDir option in TPTOpenDlg and TPTSaveDlg.
When false, the current directory is now changed.

FIXED: Fixed positioning of Help button during form resizing in TPTOpenDlg

and TPTSaveDlg.

1.3 28-Nov-97 CHANGED: Internationalisation support didn't work well with C++Builder. It's
been changed so that all .res files are placed in the same directory as the .pas
files - working around a C++Builder bug that prevents the use of pathed .res
files. C++Builder users should #include "PTShConsts.h" in ONE of their
project's .cpp files. If you don't do this then the shell controls will have no
strings.

ADDED: Internationalisation support.

ADDED: New How To help topic for internationalisation.

ADDED: fix for VCL's TListView.Color property. The background colour of the
control, text and imagelist is now correctly set.

ADDED: fix for VCL's TTreeView.Color and TTreeView.Font.Color properties.
This fix only works with comctl32.dll v4.71(IE4). Other versions behave as they
always did.

ADDED: support in TPTShellList for remembering the widths of file system
folder columns between folder changes.

ADDED: support in TPTShellList for remembering the widths of file system
folder columns between folders.

ADDED: ptfbCreateFolderIcon, ptfbDeleteFolderIcon and ptfbVirtualFolders
options to TPTFolderBrowseDlg.Options.

ADDED: AutoSizeHeight property to TPTImageCombo.

ADDED: Pane1 and Pane2 properties to TPTSplitter.

FIXED: TPTShellCombo.GoUp and TPTShellTree.GoUp methods. The were
ignoring the aLevels parameter and only going up 1 level.

FIXED: problem where TPTFolderBrowseDlg.OnAddItem event was not being
called.

FIXED: inconsistent casing of TPTFolderBrowseDlg.SelectedPathName
method. This change only affects C++Builder users.

FIXED: TPTShellTree.OnExpanding event. Now gets invoked.

FIXED: a problem on NT4 where setting a FileFilter in a TPTShellList would
show an unnecessary error box when attempting to view a removable disk
when no disk was present.

FIXED: a problem under IE4 and Office97 where .htm, .doc, .xls files etc. could
not be opened with a double-click on the shell list control.

FIXED: a problem with TPTShellTree when BaseFolder was set to anything
other than desktop. Any items dropped onto the root node would be dropped
onto the desktop, rather than the actual root node folder.

FIXED: When CreateNewFolder was called for TPTShellTree when the
selected folder had no sub-folders, then the "New Folder" node was not
displayed or editable.

FIXED: non-functional ptstoDefaultKeyHandling and ptstoOleDrag options in
TPTShellTree. They now work.

1.2b 12-Oct-97 ADDED: OnSplitterDrag and OnSplitterDrop events have been added to
TPTSplitter.

FIXED: a problem where changing the parent of a TPTShellCombo caused
access violations. The Windows combobox control was sending multiple
WM_DELETEITEM messages per item. A work-around has been applied.

FIXED: Internet Explorer 4 (IE4) problem where floppy drives were being
redundantly accessed.

FIXED: SendTo menu did not work under IE4.

FIXED: GDI leak due to a problem with the placement of
ShareImages:=true.

1.2a 5-Oct-97 ADDED: OnFillComplete event to TPTShellList and TPTShellTree.

FIXED: TPTShellList option ptsloDontChangeFolder now works.

FIXED: problem with accessing node data in TPTShellList OnInsert event.

FIXED: problem where after editing a list item's name, double clicking would
use the previous name.

FIXED: occasional slowdown due to event race condition when using dynamic
update.

FIXED: TPTShellList.DoCommandForAllSelected no longer reports an
"Unspecified Error" if there are no items selected.

FIXED: A bug in the first-release Windows 95 comctl32.dll (version 4.00.950)
was causing an access violation. A work-around has been implemented.

1.2 6-Sep-97 ADDED: OLE drag and drop. ptstoOleDrag and ptstoOleDrop have been
added to TPTShellTree.Options. ptsloOleDrag and ptsloOleDrop have been
added to TPTShellList.Options. ptofOleDrag and ptofOleDrop have been
added to Options for TPTOpenDlg and TPTSaveDlg.

ADDED: C++Builder declarations and examples have been added to the help
everywhere there is a Delphi declaration and/or example.

ADDED: "SendTo" menu in item context menus now supports links other
than .lnk and .pif. "Sending to" a shortcut to a drive now copies the files instead
of opening the drive. You can now "send to" add-on accessories like the
Microsoft Powertoys.

ADDED: Significant performance improvements have been made to
TPTShellList by deferring icon loading.

ADDED: TPTShellList.RefreshItems has been added and is similar to
TPTShellTree.RefreshNodes in that items are refreshed "in place". Only the
changes to the list are effected - deleted items are removed, new items are
added. This effectively maintains the current selection state during refreshes.
Dynamic refresh is now done using this method instead of FillItems.

ADDED: ShellGetIconIndex has been added to the UPTShellUtils unit.

ADDED: Delphi 3's new TListView properties Checkboxes, Gridlines, HotTrack
and RowSelect are now published in TPTShellList.

ADDED: The Delphi 3 TListView property RowSelect is now published
TPTListView.

ADDED: TVN_GETDISPINFO handling of icons to TPTShellTree.

FIXED: A problem that prevented splitters from being used in visual form
inheritance was fixed. A TPTSplitter problem with SwapPanes at design time
has also been fixed, and splitter bar drawing has been slightly improved.

FIXED: DoCommand* methods now work correctly with string based verbs on
all flavours of Windows.

FIXED: TPTOpenDlg.OnInitialized was not being called.

FIXED: The ptofReadOnly flag in TPTOpenDlg.Options was not being set after
Execute returned.

FIXED: The TPTOpenDlg.FilterIndex property was incorrectly zero based. It is
now one based. This change will affect existing code that uses the property.

FIXED: The problem with the OLE2 unit in Delphi 3 has been addressed with
the included fixole2.exe utility (Developer and Client/Server versions of Delphi
3 only - there is no solution for Desktop versions).

FIXED: The TPTShellTree component would remove the '+' symbol when
trying to enumerate the folders for a removable drive when no disk was in the
drive. The '+' is now removed only when a successful expand has taken place.

FIXED: A memory leak in the protected method TPTShellList.FillList has been
fixed.

FIXED: OnClick and OnDblClick properties of TPTFrame and TPTGroup.

FIXED: A problem with TPTShellList.OpenSelectedItems caused exceptions

with large numbers of items.

ADDED/FIXED: The TPTCustomDraw class is much more functional. The
NoDefaultDrawing and Canvas properties now work, allowing full owner-
drawing of individual items. A GDI leak when using the Font property has also
been fixed. The ShellDemo program has been updated to show an example of
drawing a whole item yourself.

CHANGED: The list of items in TPTShellList is no longer refilled when a
column-click is used to sort the items.

CHANGED: All properties and methods containing the term PathName have
been given consistent casing, capitalising the first letter of each word. Delphi
users won't notice any difference. C++Builder users might need to change
some of their code.

1.1a 6-Jul-97 ADDED: C++ Builder support. There is now a separate C++ Builder evaluation
version and C++ Builder DCU, OBJ and HPP files have been added to the
DCU version. The source version now imports directly into C++ Builder so does
not include OBJ or HPP files.

ADDED: Synchronize method to TPTShellTree, TPTShellList and
TPTShellCombo. This method will force any pending updates to be fully
completed before it returns.

ADDED: ptstoIncludeNonFolders to TPTShellTree.Options, allowing non-
folders to be shown as part of the shell tree view.

FIXED: There was a problem where deleting the currently selected folder
would cause exceptions.

FIXED: When assigning the BaseFolder property of TPTShellTree at run time,
the new root node would sometimes fail to initially enumerate its children.

1.1 26-Jun-97 ADDED: TPTTreeView and TPTListView components.

ADDED: OnCustomDrawSh and OnCustomDrawShEx events to TPTShellTree
and TPTShellList. The demo program has been updated to show how these
events can be used to customise the drawing of individual shell items.

ADDED: Improved popup menu handling on TPTShellTree and TPTShellList.
You can now set the PopupMenu property of either control and have that menu
used for the case when no items are selected and a popup is required. The
demo program and TPTOpenDlg component have been enhanced to use this
functionality.

ADDED: OnTvCustomDrawSh and OnTvCustomDrawShEx events to
TPTFolderBrowseDlg.

ADDED: OnTvCustomDrawSh, OnTvCustomDrawShEx, OnLvCustomDrawSh
and OnLvCustomDrawShEx events to TPTOpenDlg and TPTSaveDlg.

ADDED: TPTFolderBrowseDlg.BaseFolder and TPTShellTree.BaseFolder
properties.

MOVED: The PTSH_CMDS_* constants have moved from the
UPTShellControls unit to the UPTShellUtils.

REMOVED: SortType property from TPTShellList. This property has no
meaning for the shell list. Use SortColumn instead.

FIXED: Renaming and deleting items in a TPTShellTree component would
cause a linked TPTShellList to raise exceptions. This has been cleaned up
significantly.

FIXED: Keyboard handling for TPTShellList was intermittent when compiled on
non-English versions of Delphi.

1c 30-May-97 OPTIMIZED: General speed improvements, especially
TPTOpenDlg/TPTSaveDlg and TPTShellList - what took 40 seconds now takes
from 3 to 5 seconds.

ADDED: New option ptsloHideFoldersWhenLinkedToTree to
TPTShellList.Options property. When this option is set true and the list control
is linked to a shell tree control, file system folders are not shown in the list (like

the way the open dialogs in Windows 3.1 worked). Obviously using this feature
will make your interface non-standard, but some have argued why waste space
showing the folders in the list when they are already visible in the tree? A
similar option ptofHideFoldersInListWhenTreeVisible was added to
TPTOpenDlg and TPTSaveDlg.

ADDED: Delphi 3 adds new properties to TListView which have now been
published in TPTShellList. They are Checkboxes, Gridlines and HotTrack.

ADDED: TPTCustomShellTree and TPTCustomShellList components. These
component follow the same pattern as Borland's "custom" components, they
have all the implementation and no public or published properties.
TPTShellTree and TPTShellList now derive from these "custom" components
to promote properties to public or published. If you are deriving your own
components from the shell controls, you should derive from the "custom"
versions.

ADDED: Editor for Filter properties of TPTOpenDlg, TPTSaveDlg and
TPTShellList in both Delphi 2 and 3.

ADDED: Extra properties to the TPTShListData class.

CHANGED: The Columns property of TPTShellList has been promoted from
protected to public. Since the columns are dynamically generated, this property
is not stored and should not be written to.

FIXED: Auto Fill options are now more rigorously applied. Especially
TPTShellList.FileFilter - when auto fill is False you must call FillItems manually
to apply property changes that affect a control's contents.

FIXED: There was a problem with storing TPTShellLocator properties when
using CSIDL values. Occasionally the property would be 'forgotten'. The
DefineProperties method has been changed to fix this problem.

REMOVED: TPTShellTree.OnDeletion and TPTShellList.OnDeletion events
are no longer published. You should use TPTShellTree.OnDeleteItem and
TPTShellList.OnDeleteItem events instead.

1b 17-May-97 ADDED: Support for Delphi 3. This includes some conditional compilation code
and so consequently there are now separate Delphi 2 and Delphi 3 editions of
the evaluation and DCU only versions. The source code version is common for
both Delphi 2 and 3.

FIXED: There is a bug in the Windows tree view control. If a folder has one
child, and that child is deleted and a new child is created then the
TVN_ITEMEXPANDING notification is not sent when the parent is expanded.
This caused the TPTShellTree component to behave incorrectly. A work around
has been implemented.

FIXED: The Text and MaxLen properties of the TPTShellCombo control were
erroneously published. It is invalid to use these properties and so they have
been hidden.

FIXED: There was undesirable design-time behaviour under Windows NT
where execution of the current application would regularly stop if using the
integrated debugger - with no indication of where it stopped or why.

FIXED: There was an $C0000008 exception when running a SCP application
at design-time under Windows NT. This was due to thread shutdown code. The
problem did not manifest if the dynamic refresh option was not set.

1a 1-May-97 ADDED: TPTShellTree.SelectedItem property - similar to
TPTShellList.SelectedItem property.

ADDED: Help topics for TPTShellTree.GetDataFromNode and
TPTShellList.GetDataFromItem.

ADDED: IsWin95, IsWinNT and HasWin95Shell functions to UPTShellUtils.

FIXED: TPTFolderBrowseDlg - when cursoring around the tree if you pressed
Enter quickly, the most recently selected tree node was not returned as the
SelectedPathName property. The problem did not exist if you the mouse was
used or if there was a second or so delay after selecting the tree node with the

keyboard and pressing Enter.

FIXED: TPTShellTree - if a tree node name was edited, the SelectedFolder
property did not reflect the change.

FIXED: TPTShellTree - if a tree node was deleted (or the tree was
automatically refreshed causing the current folder to change) then the
SelectedFolder property did not reflect the change.

FIXED: TPTFolderBrowseDlg - pressing F5 would sometimes cause a GP
fault.

FIXED: TPTOpenDlg or TPTSaveDlg would not start with a Filter other than
"*.*"

1 21-Apr-97 Initial release.

See Also
Latest Changes

The Problem with OLE2.dcu in Delphi 3-5 and C++Builder 3-5

Delphi 3 introduced a new way of dealing with COM/OLE/ActiveX interfaces. However, code that needs to be portable
to Delphi 2 and C++ Builder 1 cannot use the new interface features. Delphi 3+ and C++Builder 3+ still supports the
older class-based interfaces declared in the OLE2 unit, but there is a serious problem.

For all packages installed in the IDE, only one instance of each DCU file is allowed. If there are two packages both
requiring a single DCU then one of them cannot be installed. To get around this problem, Borland introduced the
{$WEAKPACKAGEUNIT} directive. Units declared this way (such as Windows.pas) can be included in multiple
packages - each package having its own private copy. There is no reason for OLE2 to not be weakly packaged, but it
isn't.

There are two workarounds.

Option 1
If you have a Professional or Client/Server version of Delphi 3+ or C++Builder 3+, you can modify the source to
OLE2.pas. This file can be found in the Source\Rtl\Win directory. Copy this file to the Lib\Delphi2 directory, edit the
copy and add the directive {$WEAKPACKAGEUNIT} to the start of the file.

A utility fixole2.exe is included with the DCU and Source versions of the product (*1). This utility automatically locates
the ole2.pas source code, copies it to the Lib\Delphi2 directory and patches it to include the $WEAKPACKAGEUNIT
directive. Fixole2.exe will patch Delphi 3+ and C++Builder 3+.

Option 2
Designate a package that includes OLE2 to be the 'master' OLE2 container, then change every other package that
depends on OLE2 to 'require' the master container.

(*1) fixole2.exe can also be downloaded from http://plasmatech.com/fixole2.exe.

Internationalisation - How To, etc…
Delphi 2/C++Builder 1 | Delphi 3-5 and C++Builder 3-5 | Non-ANSI codepages

Overview
The Shell Control Pack supports full translation of all text for twelve (12) languages using either .res files for Delphi 2
and C++Builder 1, or the resourcestring mechanism for Delphi 3-5 and C++Builder 3-5.

Currently Supported Languages
Czech*, Danish, Dutch, English, Finnish*, French, German, Hungarian*, Italian, Japanese, Norwegian, Polish,
Portuguese (Brazilian), Russian*, Spanish, Swedish.

(*) Not full translation.

Future Language Support
Current plans are to add Korean, Chinese and Greek (no time frame has been set). No other languages are planned.
If you would like another language supported, tell us at support@plasmatech.com.

Delphi 2 / C++Builder 1
In the Lang directory, run the makeres.bat file to generate the .res files. A bunch of PTShConstsD2_??.res files will be
copied into the Lang directory's parent directory. A copy of each .res file will also remain in the individual Lang
subdirectories.

NOTE: C++Builder users must add the PTShConsts.cpp file to their project or #include the PTShConsts.h file in one
of their project .cpp files. Failing to do this will result in the Shell Control Pack components being without strings.

Compile Time Translation
To translate at compile-time, simply declare a compiler definition in your project options from this list.

Run Time Translation
For run-time translation, you should build the appropriate .res file into your resource DLLs. In your application, after
loading your resource DLL you should assign its HINSTANCE to the global variable gptshResourceInstance (declared
in the UPTShConsts.pas unit). Shell Control Pack components will attempt to load their strings from this module
when needed.

Changing String IDs to Avoid Conflicts
You can change the sting-table ID numbers used by adjusting the st_ptshbase constant in the PTShConstsD2.inc file.
C++Builder users should also adjust the UPTShConsts.hpp file or regenerate it if changing this value.

After changing the id base, run the makeres.bat file in the Lang directory to rebuild the ANSI resources. Japanese
and Eastern European (Czech, Hungarian, Polish, Russian) version must be built manually on the appropriate
language version of Windows (see Non-ANSI Codepages below).

Delphi 3-5 and C++Builder 3-5

Compile Time Translation
To use compile-time translation you simply define a compile-time symbol, which changes the .inc file that is included
in the UPTShConsts.pas unit.

Run Time Translation
An example of run-time translation is include in the Shell Control Pack Examples zip file available from
http://plasmatech.com/ptscp_examples.zip and also as part of the Shell Demo application that comes with the
evaluation version.

The MergeDRC Application
This utility merges a CSV format file of translations with a Delphi-generated .drc file. The merging is done on the
string name, which is relatively constant so even if Delphi re-orders the strings, the merging will still be successful.

Run MergeDRC.exe from the command-line with no parameters to get help.

Non-ANSI Codepages
If you are building resources on an ANSI code-page machine (most European languages), you cannot build non-
ANSI code-page resources. "Building" involves translating a .rc to a .res, or compiling a source-code string (.inc) into
an executable. The fundamental operation being performed (that is not supported by the OS in this case) is the
translation of a multi-byte source file (.rc, .inc, .pas) into a Unicode output file (.res, .exe, .dll). Such support must be
built into the operating system.

There are three sets of incompatible code pages supported; Japanese, Eastern European (Czech, Hungarian, Polish,
Russian) and ANSI (all the rest). All Windows versions can build ANSI language resources. Any version of Windows
from the Eastern European set should build all the Eastern European languages (although only Russian Windows
has actually been tested for this). You must use Japanese Windows to build Japanese resources.

For example, to build the Japanese .res files, or include a Japanese .inc into your executable, you must do the
building under Japanese Windows, since that is the only version of Windows capable of translating multi-byte
Japanese into Unicode.

Pre-compiled .res files are provided for all non-ANSI code page languages; Czech, Japanese, Hungarian, Polish and
Russian. Delphi 2 and C++Builder users can use these translations directly. Users of Delphi 3 or later, or C++Builder
3 or later will need to build their translated applications or translation DLLs under the appropriate version of windows.

Language Compiler Defines

Language Symbol

Czech LANG_CS

Danish LANG_DA

Dutch LANG_NL

English LANG_EN (or none)

Finnish LANG_FI

French LANG_FR

German LANG_DE

Hungarian LANG_HU

Italian LANG_IT

Japanese LANG_JP

Norwegian LANG_NO

Polish LANG_PL

Portuguese LANG_PT (Brazilian)

Russian LANG_RU

Spanish LANG_ES

Swedish LANG_SV

Languages Not Fully Translated

All but one of the approximately 100 translated strings are the same strings used by the appropriate language version
of Windows NT 4. The single string that needs manual translation is "Show Tree (F12)". Translations for this string
have been generously donated by Shell Control Pack customers. The languages marked are those for which no
translation has been provided for this single string. The other approx. 100 strings are properly translated in all
supported languages.

If you can provide a translation for "Show Tree" in a language other than those listed and Windows NT 4 is available
in that language, please send your translation to info@plasmatech.com. If you like, your name/company and
homepage can be listed on the Thanks For Translation Assistance page.

Thanks for Translation Assistance Go to…

A number of people were generous enough to donate a translation for the manually translated portions of the Shell
Control Pack. The are presented here listed in alphabetical order:

Contributor Company or Personal HomePage

Manuel Onate http://momsoft.pair.com

Cream Software -
The Internet Software Developer

http://www.creamsoft.com/english/

Only those contributors who specifically requested to be added to this page are listed. If you contributed and would
like to appear here, get in touch at info@plasmatech.com.

FPTOPENDLG UNIT

FPTOpenDlg unit

This unit contains the TPTOpenDlg and TPTSaveDlg components, as well as the TPTFrmOpenDlg form. The open
and save components create instances of the form. You can visually inherit from TPTFrmOpenDlg to add or hide
controls and change or add behaviour.

How to Visually Inherit

Components
TPTOpenDlg
TPTSaveDlg

TPTFrmOpenDlg Form
Both TPTOpenDlg and TPTSaveDlg use this form for their functionality.

 TPTOpenDlg component
Hierarchy Properties Methods Events

Delphi Unit
FPTOpenDlg

C++Builder Header
FPTOpenDlg.hpp

Description
The TPTOpenDlg component is a replacement for the standard TOpenDialog component with many more features.
The purpose of the dialog is still to let a user specify a file to open. Use the Execute method to display the dialog.

When the user clicks OK, the selected filename is stored in the FileName property.

You can let the user decide which files to make visible in the list box of the Open dialog box with the Filter property.
The user can then use the List Files of Type combo box to determine which files display in the list. You set the default
filter using the FilterIndex property.

You can permit the user to choose multiple filenames with the Options property so that the Files property contains a
list of all the selected filenames in the list. You can customise how the Open dialog box appears and behaves with the
Options property.

If you want a file extension automatically appended to the filename typed in the File Name edit box of the Open dialog
box use the DefaultExt property.

Change the appearance of individual tree or list items with the OnLvCustomDrawSh and OnTvCustomDrawSh
events.

You can test the component at design time from its right-click menu.

Hierarchy

TObject

|

TPersistent

|

TComponent

|

TPTDialog

|

TPTFileDlg

|

TPTCustomOpenDlg

TPTOpenDlg properties
TPTOpenDlg Legend

Properties in TPTOpenDlg

DefaultExt

Executing

FileName

Files

Filter

FilterIndex

Form

FormWidth

FormHeight

FormWindowState

FormSplitterPos

HistoryList

InitialDir

Options

Title

TPTOpenDlg methods
TPTOpenDlg Legend

Methods in TPTOpenDlg

Execute

ReadStateFromRegistry

ReadStateFromStream

WriteStateToRegistry

WriteStateToStream

TPTOpenDlg events
TPTOpenDlg Legend

Events derived from TPTCustomOpenDlg

OnAddListItem

OnAddTreeItem

OnAddComboItem

OnFolderChanged

OnFormShow

OnFormClose

OnHelp

OnInitialized

OnLvCustomDrawSh

OnLvCustomDrawShEx

OnSelectionChanged

OnTvCustomDrawSh

OnTvCustomDrawShEx

OnTypeChanged

DefaultExt property

Applies to
TPTOpenDlg, TPTSaveDlg components

Delphi Declaration
property DefaultExt: String;

C++Builder Declaration
__property System::AnsiString DefaultExt;

Description
The DefaultExt property specifies the extension that is added to the file name the user types in the File Name edit box
if the user doesn't include a file-name extension in the filename. If the user specifies an extension for the filename,
the value of the DefaultExt property is ignored. If the DefaultExt value remains blank, no extension is added to the
filename entered in the File Name edit box.

Legal extensions can be greater than 3 characters in length. Don't include the period (.) that divides the filename and
its extension.

Filter property

Applies to
TPTOpenDlg, TPTSaveDlg components

Delphi Declaration
property Filter: String;

C++Builder Declaration
__property System::AnsiString Filter;

Description
The Filter property determines the file masks available to the user for use in determining which files display in the
dialog box's list box.
A file mask or file filter is a file name that usually includes wildcard characters (*.PAS, for example). Only files that
match the selected file filter are displayed in the dialog box's list box, and the selected file filter appears in the File
Name edit box. To specify a file filter, assign a filter string as the value of Filter. To create the string, follow these
steps:

1 Type some meaningful text that indicates the type of file.
2 Type a | character (this is the "pipe" or "or" character).
3 Type the file filter.

Don't put in any spaces around the | character in the string.
Here's an example:

Delphi: OpenDialog1.Filter := 'Text files|*.TXT';

C++Builder: OpenDialog1->Filter = "Text files|*.TXT";

If you entered the preceding example as the Filter of an Open or Save dialog box, the string "Text files" appears in the
List Files of Type drop-down list box when the dialog box appears in your application, the file filter appears in the File
Name edit box, and only .TXT files appear in the list box. You can specify multiple file filters so that a list of filters
appears in the List Files of Type drop-down list box or in the filter combo box. This allows the user to select from a
number of file filters and determine which files are displayed in the list box.

To specify multiple file filters,

1 Create a file filter string as previously shown.
2 Type another file filter in the same way, but separate the second file filter from the first with the | character.
3 Continue adding as many file filters as you like, separating them with the | character. The string can be up to 255
characters.

Here's an example of three file filters specified as the value of the Filter property:

'Text files (*.TXT)|*.TXT|Pascal files (*.PAS)|*.PAS|Quattro Pro files (*.WB1)|*.WB1'

Now when the dialog box appears, the user can choose from three file filters that appear in the List Files of Type
drop-down list box.

Note that the previous example includes the file filters in parentheses in the text parts. This isn't required, but it's a
common convention that helps users understand what to expect when they select a file filter.
You can string multiple wildcard file filters together if you separate them with semicolons:

Delphi: OpenDialog1.Filter := 'All files|*.TXT;*.PAS;*.WB1';

C++ Builder: OpenDialog1->Filter = "All files|*.TXT;*.PAS;*.WBA";

FilterIndex property

Applies to
TPTOpenDlg, TPTSaveDlg components

Delphi Declaration
property FilterIndex: Integer;

C++Builder Declaration
__property int FilterIndex;

Description
The FilterIndex property determines which file filter specified in the Filter property appears as the default file filter in
the List Files of Type drop-down list box. For example, if you set the FilterIndex value to 2, the second file filter listed
in the Filter property becomes the default filter when the dialog box appears. The default FilterIndex value is 1. If you
specify a value greater than the number of file filters in the Filter property, the first filter is chosen.

The default value is 1.

Form property

Applies to
TPTOpenDlg, TPTSaveDlg components

Delphi Declaration
property Form: TPTFrmOpenDlg;

C++Builder Declaration
__property TPTFrmOpenDlg* Form;

Description
Read only. Use this property to gain access to the form itself.

FormWidth property
See Also

Applies to
TPTOpenDlg, TPTSaveDlg, TPTFolderBrowseDlg components

Delphi Declaration
property FormWidth: Integer;

C++Builder Declaration
__property int FormWidth;

Description
The FormWidth property allows you to specify a width for the form. If FormWidth is -1 then a default width is used.
You would typically assign this property before calling Execute. It has no effect while the dialog is executing.

When the dialog is closed (either successfully or cancelled) this property is set to the width the user adjusted the form
to. You can use this feature to implement persistent form sizing. The WriteStateToRegistry, ReadStateFromRegistry
and WriteStateToStream, ReadStateFromStream methods can do the persistence for you.

See Also

FormHeight property

FormWindowState property

FormSplitterPos property

ReadStateFromRegistry method

ReadStateFromStream method

WriteStateToRegistry method

WriteStateToStream method

FormHeight property
See Also

Applies to
TPTOpenDlg, TPTSaveDlg, TPTFolderBrowseDlg components

Delphi Declaration
property FormHeight: Integer;

C++Builder Declaration
__property int FormHeight;

Description
The FormHeight property allows you to specify a height for the form. If FormHeight is -1 then a default height is used.
You would typically assign this property before calling Execute. It has no effect while the dialog is executing.

When the dialog is closed (either successfully or cancelled) this property is set to the height    the user adjusted the
form to. You can use this feature to implement persistent form sizing. The WriteStateToRegistry,
ReadStateFromRegistry and WriteStateToStream, ReadStateFromStream methods can do the persistence for you.

See Also

FormWidth property

FormWindowState property

FormSplitterPos property

ReadStateFromRegistry method

ReadStateFromStream method

WriteStateToRegistry method

WriteStateToStream method

FormWindowState property
See Also

Applies to
TPTOpenDlg, TPTSaveDlg, TPTFolderBrowseDlg components

Declaration
property FormWindowState: TWindowState;

C++Builder Declaration
__property TWindowState FormWindowState;

Description
The FormWindowState property allows you to specify how the form appears on the screen. You would typically
assign this property before calling Execute. It has no effect while the dialog is executing.

FormWindowState can have one of the following TWindowState values:

Value Meaning
wsNormal The form appears in its normal state (that is, its non-minimized, non-maximized state).
wsMinimized The form appears in its minimized state.
wsMaximized The form appears in its maximized state.

When the dialog is closed (either successfully or cancelled) this property is set to current form window state. You can
use this feature to implement persistent form sizing. The WriteStateToRegistry, ReadStateFromRegistry and
WriteStateToStream, ReadStateFromStream methods can do the persistence for you.

See Also

FormHeight property

FormWidth property

FormSplitterPos property

ReadStateFromRegistry method

ReadStateFromStream method

WriteStateToRegistry method

WriteStateToStream method

FormSplitterPos property

Applies to
TPTOpenDlg, TPTSaveDlg components

Delphi Declaration
property FormSplitterPos: Integer;

C++Builder Declaration
__property int FormSplitterPos;

Description
The FormSplitterPos property allows you to specify a starting position for the splitter bar between the tree and list
views. You would typically assign this property before calling Execute. It has no effect while the dialog is executing.

When the dialog is closed (either successfully or cancelled) this property is set to the position of the splitter bar
between the tree and list views. You can use this feature to implement persistent form sizing. The
WriteStateToRegistry, ReadStateFromRegistry and WriteStateToStream, ReadStateFromStream methods can do the
persistence for you.

See Also

FormHeight property

FormWidth property

FormWindowState property

ReadStateFromRegistry method

ReadStateFromStream method

WriteStateToRegistry method

WriteStateToStream method

HistoryList property

Applies to
TPTOpenDlg, TPTSaveDlg components

Delphi Declaration
property HistoryList: TStrings;

C++Builder Declaration
__property Classes::TStrings* HistoryList;

Description
The HistoryList property is provided for compatibility with earlier versions of TOpenDialog. This property might be
implemented in a future revision.

InitialDir property

Applies to
TPTOpenDlg, TPTSaveDlg components

Delphi Declaration
property InitialDir: String;

C++Builder Declaration
__property System::AnsiString InitialDir;

Description
The InitialDir property determines the current directory when the dialog box first appears and value of the InitialDir
property is shown as the current directory in the directory tree. Only files in the current directory appear in the dialog
box's list of filenames. After the dialog box appears, users can then use the directory tree to change to another
directory if they want.

When specifying the initial directory, include the full path name. For example,

C:\WINDOWS\SYSTEM

If no initial directory is specified, the directory that is current when the dialog box appears remains the current
directory. The same is true if you specify a directory that does not exist.

Options property

Applies to
TPTOpenDlg, TPTSaveDlg components

Delphi Declaration
type TPTOpenOption = (ptofAllowMultiselect, ptofCreatePrompt,

ptofExtensionDifferent, ptofFileMustExist, ptofHideReadOnly,
ptofNoChangeDir, ptofNoDereferenceLinks,
ptofNoReadOnlyReturn, ptofNoTestFileCreate, ptofNoValidate,
ptofOverwritePrompt, ptofReadOnly, ptofPathMustExist,
ptofShareAware, ptofShowHelp, ptofAllowTree, ptofShowTree,
ptofShowHints, ptofHideFoldersInListWhenTreeVisible,
ptofOleDrag, ptofOleDrop, ptofShowHidden);

 TPTOpenOptions = set of TPTOpenOption;

property Options: TPTOpenOptions;

C++Builder Declaration
enum TPTOpenOption { ptofAllowMultiselect, ptofCreatePrompt, ptofExtensionDifferent,
ptofFileMustExist, ptofHideReadOnly, ptofNoChangeDir, ptofNoDereferenceLinks,
ptofNoReadOnlyReturn, ptofNoTestFileCreate, ptofNoValidate, ptofOverwritePrompt,
ptofReadOnly, ptofPathMustExist, ptofShareAware, ptofShowHints,
ptofHideFoldersInListWhenTreeVisiblem, ptofOleDrag, ptofOleDrop, ptofShowHidden };

typedef Set<TPTOpenOption, ptofAllowMultiselect, ptofOleDrop> TPTOpenOptions;

__property TPTOpenOptions Options;

Description
These are the possible values that can be included in the Options set for the Open and Save dialog boxes:

Identifier Meaning

ptofAllowMultiselect When True, this option allows users to select more than one file in the
File Name list view. Use the Files property to access the list of files.

ptofCreatePrompt When True, this option displays a dialog box with a message if the
user enters a filename that doesn't exist in the File Name edit box
and chooses OK (Open/Save). The message tells the user the file
doesn't exist and asks if the user wants to create a new file with that
name.

ptofExtensionDifferent This option is set when the filename returned from the dialog box has
an extension that differs from the default file extension, the value in
the DefaultExt property. Your application can then use this
information. Setting a ptofExtensionDifferent value with the Object
Inspector has no meaning.

ptofFileMustExist If True, this option displays a dialog box with a message if the user
enters a file that doesn't exist in the File Name edit box and chooses
OK. The message informs the user the file can't be found and asks
the user to make sure they entered the correct path and filename.

ptofHideReadOnly Hides the read-only checkbox.

ptofNoChangeDir When False, the current directory is changed to the last folder
accessed by the dialog - whether the dialog was accepted or
cancelled.

ptofNoDereferenceLinks If True, directs the dialog box to return the path and filename of the
selected shortcut (.LNK) file. If this value is not given, the dialog box
returns the path and filename of the file referenced by the shortcut.

ptofNoReadOnlyReturn If True, a message box appears informing the user if the selected file
is read-only.

ptofNoTestFileCreate This option applies only when the user wants to save a file on a
create-no-modify network share point, which can't be opened again
once it has been opened. If ptofNoTestFileCreate is True, your
application won't check for write protection, a full disk, an open drive
door, or network protection when saving the file because doing so
creates a test file. Your application will then have to handle file
operations carefully so that a file isn't closed until you really want it to
be. Not implemented 2-January-98.

ptofNoValidate If True, this option doesn't prevent the user from entering invalid
characters in a filename. If pfofNoValidate is False and the user
enters invalid characters for a filename in the File Name edit box, a
message dialog box appears informing the user the filename contains
invalid characters.

ptofOverwritePrompt If True, this option displays a message dialog box if the user attempts
to save a file that already exists. The message informs the user the
file exists and lets the user choose to overwrite the existing file or not.

ptofReadOnly If True, the Read Only check box is checked when the dialog box is
displayed.

ptofPathMustExist If this option is True, the user can type only existing path names as
part of the filename in the File Name edit box. If the user enters a
path name that doesn't exist, a message box appears informing the
user that the path name is invalid. Not implemented.

ptofShareAware If True, the dialog box ignores all sharing errors and returns the name
of the selected file even though a sharing violation occurred. If
ptofShareAware is False, a sharing violation results in a message box
informing the user of the problem. Not implemented 2-January-98.

ptofShowHelp If True, this option displays a Help button in the dialog box.

ptofAllowTree If True then a "Show Tree" button is placed on the button bar.

ptofShowTree If True then shows a tree view to the left of the list view, like a mini-
explorer. This flag also reflects the visibility state of the tree after the
user dismisses the dialog.

ptofHideFoldersInListWhenTreeVisibl
e

When this option is set true and the list control is linked to a shell tree
control, file system folders are not shown in the list (like the way the
open dialogs in Windows 3.1 worked). Obviously using this feature
will make your interface non-standard, but some have argued why
waste space showing the folders in the list when they are already
visible in the tree?

ptofShowHints If True then popup hints are enabled on the button bar.

ptofOleDrag When True items can be dragged out of the tree and list.

ptofOleDrop When True items can be dropped onto the tree and list.

ptofShowHidden When true, hidden and system files and folders are included in the
tree and list, otherwise they are excluded.

The default value is [ptofHideReadOnly, ptofAllowTree, ptofShowHints, ptofOleDrag, ptofOleDrop, ptofShowHidden].

Title property

Applies to
TPTOpenDlg, TPTSaveDlg, TPTFolderBrowseDlg components

Delphi Declaration
property Title: String;

C++Builder Declaration
__property System::AnsiString Title;

Description
This property appears in the caption of the form. If unassigned an appropriate default title is used.

Executing property

Applies to
TPTOpenDlg, TPTSaveDlg, TPTFolderBrowseDlg components

Delphi Declaration
property Executing: Boolean;

C++Builder Declaration
__property bool Executing;

Description
Run time and read only. This property is true while the dialog is active.

FileName property

Applies to
TPTOpenDlg, TPTSaveDlg components

Delphi Declaration
property FileName: String;

C++Builder Declaration
__property System::AnsiString FileName;

Description
The FileName property specifies the file name that appears in the File Name edit box when the dialog box opens.
The user can then select that filename or specify any other. Once the user specifies a filename and chooses OK, the
value of the FileName property becomes the name of the file the user selected.
The path name can include a path. For example, to open the file README.TXT in the directory C:\TEMP, set
FileName to C:\TEMP\README.TXT.

The FileName property can be set to the name of a file that doesn't exist in the current directory. In an Open dialog
box, you can use this capability to let the user open a new file, and in a Save dialog box, the user can save a file that
hasn't been saved before.

Files property

Applies to
TPTOpenDlg, TPTSaveDlg

Delphi Declaration
property Files: TStrings;

C++Builder Declaration
__property Classes::TStrings* Files;

Description
Run-time and read-only. The Files property value contains a list of all the file names selected in the Open or Save
dialog box including the path names.

To let users select multiple file names in the dialog box, include ptofAllowMultiSelect in the Options property set (set
ptofAllowMultiSelect to True).

The first item in the list of names is returned as the value of the FileName property.

OnAddListItem event

Applies to
TPTOpenDlg, TPTSaveDlg

Delphi Declaration
property OnAddListItem: TPTShAddItemEvent;

C++Builder Declaration
__property TPTShAddItemEvent OnAddListItem;

Description
This event is called every time an item is added to the file list. You have the opportunity to filter out unwanted items.
You should respond to this event in the same way you would respond to the OnAddItem event in TPTShellList.

You would typically use the same event handler for all three OnAddTreeItem, OnAddListItem and OnAddComboItem
events. If you use different event handlers you must ensure there are no logical inconsistencies in what you are
filtering. For example, if something appears in the list, it must also appear in the tree and combo. You can safely filter
anything from the list that is still present in the tree and combo. The only things you should really filter from the combo
are first-level items such as My Computer or Network Neighbourhood.

Example
This example filters all folders from the list view (you can already see them on the tree view, why show them on the
list as well?).

Delphi
procedure TMyForm.PTShellTree1AddItem(

aSender: TObject;
aParentIShf: IShellFolder;
aParentAbsIdList: PItemIdList;
aItemRelIdList: PItemIdList;
aAttribs: Integer;
var afAllowAdd: Bool);

begin
afAllowAdd := ((aAttribs and SFGAO_FOLDER)=0);

end;

C++Builder
void __fastcall TMyForm::PTShellTree1AddItem(TObject *aSender,
IShellFolder *aParentIShf, PItemIDList aParentAbsIdList,
PItemIDList aItemRelIdList, int aAttribs, LongBool &afAllowAdd)

{
 afAllowAdd = ((aAttribs & SFGA_FOLDER)==0);
}

OnAddTreeItem event
See Also

Applies to
TPTOpenDlg, TPTSaveDlg

Delphi Declaration
property OnAddTreeItem: TPTShAddItemEvent;

C++Builder Declaration
__property TPTShAddItemEvent OnAddTreeItem;

Description
This event is called every time an item is added to the tree view. You have the opportunity to filter out unwanted
items. You should respond to this event in the same way you would respond to the OnAddItem event in
TPTShellTree.

You would typically use the same event handler for all three OnAddTreeItem, OnAddListItem and OnAddComboItem
events. If you use different event handlers you must ensure there are no logical inconsistencies in what you are
filtering. For example, if something appears in the list, it must also appear in the tree and combo. You can safely filter
anything from the list that is still present in the tree and combo. The only things you should really filter from the combo
are first-level items such as My Computer or Network Neighbourhood.

See Also

OnAddListItem event

OnAddComboItem event

TPTShellTree.OnAddItem event

OnAddComboItem event

Applies to
TPTOpenDlg, TPTSaveDlg components

Delphi Declaration
property OnAddComboItem: TPTShAddItemEvent;

C++Builder Declaration
__property TPTShAddItemEvent OnAddComboItem;

Description
This event Is called every time an item is added to the combo box. You have the opportunity to filter out unwanted
items. You should respond to this event in the same way you would respond to the OnAddItem event in
TPTShellCombo.

You would typically use the same event handler for all three OnAddTreeItem, OnAddListItem and OnAddComboItem
events. If you use different event handlers you must ensure there are no logical inconsistencies in what you are
filtering. For example, if something appears in the list, it must also appear in the tree and combo. You can safely filter
anything from the list that is still present in the tree and combo. The only things you should really filter from the combo
are first-level items such as My Computer or Network Neighbourhood.

OnFolderChanged event

Applies to
TPTOpenDlg, TPTSaveDlg components

Delphi Declaration
type TNotifyEvent = procedure(sender: TObject) of object;

property OnFolderChanged: TNotifyEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject* Sender);

__property TNotifyEvent OnFolderChanged;

Description
The OnFolderChanged event occurs when the user changes the directory that is displayed in the dialog. This can
happen when the user double-clicks on a directory, clicks the Up button, or uses the combo box or tree view to
navigate through the directory structure.

OnFormClose event

Applies to
TPTOpenDlg, TPTSaveDlg, TPTFolderBrowseDlg components

Delphi Declaration
type TNotifyEvent = procedure(sender: TObject) of object;

property OnFormClose: TNotifyEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject* Sender);

__property TNotifyEvent OnFormClose;

Description
Write an OnFormClose event handler to perform special processing when the dialog closes.

OnFormShow event

Applies to
TPTOpenDlg, TPTSaveDlg, TPTFolderBrowseDlg components

Delphi Declaration
type TNotifyEvent = procedure(sender: TObject) of object;

property OnFormShow: TNotifyEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject* Sender);

__property TNotifyEvent OnFormShow;

Description
Write an OnFormShow event handler to perform special processing when the dialog is displayed.

OnHelp event

Applies to
TPTOpenDlg, TPTSaveDlg components

Delphi Declaration
type THelpEvent = function (Command: Word; Data: Longint; var CallHelp: Boolean):

Boolean of object;
property OnHelp: THelpEvent;

C++Builder Declaration
typedef bool __fastcall(__closure *THelpEvent)(unsigned short Command, int Data,

bool& CallHelp);
__property THelpEvent OnHelp;

Description
Use OnHelp to write an event handler to perform special processing when help is requested. Set CallHelp to false if
you don't want the standard help file invoked.

OnInitialized event

Applies to
TPTOpenDlg, TPTSaveDlg, TPTFolderBrowseDlg components

Delphi Declaration
type TNotifyEvent = procedure(sender: TObject) of object;

property OnInitialized: TNotifyEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject* Sender);

__property TNotifyEvent OnInitialized;

Description
This event is called after the form is created and the controls are filled, but before the form is shown.

OnLvCustomDrawSh and OnLvCustomDrawShEx events

Applies to
TPTOpenDlg, TPTSaveDlg components

Delphi Declaration
type TPTShLvCustomDrawEvent = procedure(
 aSender: TObject;
 aCD: TPTCustomDraw;
 aItem: TListItem;
 aData: TPTShListData) of object;

property OnLvCustomDrawSh: TPTShLvCustomDrawEvent;

property OnLvCustomDrawShEx: TPTShLvCustomDrawEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTShLvCustomDrawEvent)(System::TObject* Sender,
TPTCustomDraw* aCD, TListItem* aItem, TPTShListData* aData);

__property TPTShLvCustomDrawEvent OnLvCustomDrawSh;

__property TPTShLvCustomDrawEvent OnLvCustomDrawShEx;

Description
You can change the appearance of individual items in the list by adjusting properties of the given aCD object.

Use the Font property of aCD to change the appearance of aItem.

Access shell-related data about the item with aData.

The OnLvCustomDrawSh event is only called for the ptcdsItemPrePaint draw stage, whereas
OnLvCustomDrawShEx is called for every draw stage.

See TPTListView.OnPTCustomDraw for more information.

OnSelectionChanged event

Applies to
TPTOpenDlg, TPTSaveDlg

Delphi Declaration
type TNotifyEvent = procedure(sender: TObject) of object;

property OnSelectionChanged: TNotifyEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject* Sender);

__property TNotifyEvent OnSelectionChanged;

Description
The OnSelectionChange event occurs when the user does something to change the list displayed in the dialog. This
can include opening the file-selection dialog, highlighting a file or directory, selecting a new filter, selecting a new
directory, or creating a new folder.

OnTvCustomDrawSh and OnTvCustomDrawShEx events

Applies to
TPTOpenDlg, TPTSaveDlg, TPTFolderBrowseDlg components

Delphi Declaration
type TPTShTvCustomDrawEvent = procedure(
 aSender: TObject;
 aCD: TPTCustomDraw;
 aNode: TTreeNode;
 aData: TPTShTreeData) of object;

property OnTvCustomDrawSh: TPTShTvCustomDrawEvent;

property OnTvCustomDrawShEx: TPTShTvCustomDrawEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTShTvCustomDrawEvent)(System::TObject* Sender,
TPTCustomDraw* aCD, Comctrls::TTreeNode* aNode, TPTShTreeData* aData);

__property TPTShTvCustomDrawEvent OnTvCustomDrawSh;

__property TPTShTvCustomDrawEvent OnTvCustomDrawShEx;

Description
You can change the appearance of individual nodes in the tree by adjusting properties of the given aCD object.

Use the Font and Brush properties of aCD to change the appearance of aNode.

Access shell-related data about the node with aData.

The OnTvCustomDrawSh event is only called for the ptcdsItemPrePaint draw stage, whereas
OnTvCustomDrawShEx is called for every draw stage.

See TPTTreeView.OnPTCustomDraw for more information.

OnTypeChanged event

Applies to
TPTOpenDlg, TPTSaveDlg

Delphi Declaration
type TNotifyEvent = procedure(sender: TObject) of object;

property OnTypeChanged: TNotifyEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject* Sender);

__property TNotifyEvent OnTypeChanged;

Description
The OnTypeChanged event occurs when the user selects a new filter from the Files of Type combo box at the bottom
of the dialog.

Execute method

Applies to
TPTOpenDlg, TPTSaveDlg, TPTFolderBrowseDlg components

Delphi Declaration
function Execute: Boolean;

C++Builder Declaration
bool __fastcall Execute(void);

Description
Creates and displays the form modally. Returns true if the user accepted the form, false if they cancelled.

ReadStateFromRegistry method

Applies to
TPTOpenDlg, TPTSaveDlg, TPTFolderBrowseDlg

Delphi Declaration
procedure ReadStateFromRegistry(aBaseKey: HKEY; aSubKeyName, aValueName: String);

C++Builder Declaration
void __fastcall ReadStateFromRegistry(HKEY aBaseKey, System::AnsiString
aSubKeyName, System::AnsiString aValueName);

Description
Reads FormWidth, FormHeight and FormWindowState properties from the given registry key item.

For TPTOpenDlg and TPTSaveDlg this method also reads FormSplitterPos and whether the tree view button was
pressed or not.

ReadStateFromStream method

Applies to
TPTOpenDlg, TPTSaveDlg, TPTFolderBrowseDlg

Delphi Declaration
procedure ReadStateFromStream(aStream: TStream);

C++Builder Declaration
void __fastcall ReadStateFromStream(Classes::TStream* aStream);

Description
Reads the FormWidth, FormHeight and FormWindowState properties from the given registry key item.

For TPTOpenDlg and TPTSaveDlg this method also reads FormSplitterPos and whether the tree view button was
pressed or not.

WriteStateToRegistry method

Applies to
TPTOpenDlg, TPTSaveDlg, TPTFolderBrowseDlg

Delphi Declaration
procedure WriteStateToRegistry(aBaseKey: HKEY; aSubKeyName, aValueName: String);

C++Builder Declaration
void __fastcall WriteStateToRegistry(HKEY aBaseKey, System::AnsiString aSubKeyName,
System::AnsiString aValueName);

Description
Writes FormWidth, FormHeight and FormWindowState properties to the given registry key item.

For TPTOpenDlg and TPTSaveDlg this method also stores FormSplitterPos and whether the tree view button was
pressed or not.

WriteStateToStream method

Applies to
TPTOpenDlg, TPTSaveDlg, TPTFolderBrowseDlg

Delphi Declaration
procedure WriteStateToStream(aStream: TStream);

C++Builder Declaration
void __fastcall WriteStateToStream(Classes::TStream* aStream);

Description
Writes FormWidth, FormHeight and FormWindowState properties to the given stream.

For TPTOpenDlg and TPTSaveDlg this method also stores FormSplitterPos and whether the tree view button was
pressed or not.

 TPTSaveDlg component
Hierarchy Properties Methods Events

Delphi Unit
FPTOpenDlg

C++Builder Header
FPTOpenDlg.hpp

Description
The TPTSaveDlg component makes a Save dialog box available to your application. The purpose of the dialog box is
to allow a user to specify a file to save. Use the Execute method to display the Save dialog box.

When the user chooses OK in the dialog box, the user's filename selection is stored in the dialog box's FileName
property, which you can then use to process as you want.

You can let the user decide which set of files are visible in the list box of the Save dialog box with the Filter property.
The user can then use the List Files of Type combo box to determine which files display in the list box. You set the
default filter using the FilterIndex property.

You can permit the user to choose multiple filenames with the Options property so that the Files property contains a
list of all the selected filenames in the list box. You can customise how the Save dialog box appears and behaves with
the Options property.

If you want a file extension automatically appended to the filename typed in the File Name edit box of the Save dialog
box, use the DefaultExt property.

Change the appearance of individual tree or list items with the OnLvCustomDrawSh and OnTvCustomDrawSh
events.

You can test the component at design time from its right-click menu.

Hierarchy

TObject

|

TPersistent

|

TComponent

|

TPTDialog

|

TPTFileDlg

|

TPTCustomSaveDlg

TPTSaveDlg properties
TPTSaveDlg Legend

Properties in TPTSaveDlg

DefaultExt

Executing

FileName

Files

FilterIndex

Filter

Form

FormWidth

FormHeight

FormWindowState

FormSplitterPos

HistoryList

InitialDir

Options

Title

TPTSaveDlg methods
TPTSaveDlg Legend

Methods in TPTSaveDlg

Execute

ReadStateFromRegistry

ReadStateFromStream

WriteStateToRegistry

WriteStateToStream

TPTSaveDlg events
TPTSaveDlg Legend

Events in TPTSaveDlg

OnAddListItem

OnAddTreeItem

OnAddComboItem

OnFolderChanged

OnFormShow

OnFormClose

OnHelp

OnInitialized

OnLvCustomDrawSh

OnLvCustomDrawShEx

OnSelectionChanged

OnTvCustomDrawSh

OnTvCustomDrawShEx

OnTypeChanged

FPTFOLDERBROWSEDLG UNIT

FPTFolderBrowseDlg unit

This unit contains the TPTFolderBrowseDlg component and the TPTFrmFolderBrowseDlg form. The component
creates an instance of the form. You can visually inherit from TPTFrmFolderBrowseDlg to add or hide controls and
change or add behaviour.

How to Visually Inherit

Components
TPTFolderBrowseDlg

Forms
TPTFrmFolderBrowseDlg

    TPTFolderBrowseDlg component
Hierarchy Properties Methods Events

Delphi Unit
FPTFolderBrowseDlg

C++Builder Header
FPTFolderBrowseDlg.hpp

Description
The TPTFolderBrowseDlg makes an folder browse dialog box available to your application. The purpose of this dialog
is to let the user specify a folder (use TPTOpenDlg or TPTSaveDlg to specify a file).

When the user selects OK, their selection is stored and can be retrieved with the SelectedPathName or
SelectedFolder properties. These properties can also be used to set an initial selected folder before the dialog is
executed.

You can filter items out of the tree by responding to the OnAddItem event.

You can change the caption of the dialog with the Title property.

You can set the initial dimensions of the dialog with the FormWidth, FormHeight and FormWindowState properties.
After the user dismisses the dialog, these properties are adjusted to reflect any changes the user may have made.
You can load and store these properties with the ReadStateFromRegistry, ReadStateFromStream,
WriteStateToRegistry and WriteStateToStream methods.

Change the appearance of individual tree items with the OnTvCustomDrawSh events.

You can test the component at design time from its right-click menu.

Hierarchy

TObject

|

TPersistent

|

TComponent

|

TPTDialog

|

TPTFileDlg

TPTFolderBrowseDlg properties
TPTFolderBrowseDlg Legend

Properties in TPTFolderBrowseDlg

BaseFolder

Executing

FormWidth

FormHeight

FormWindowState

OkEnabled

Options

SelectedPathName

SelectedFolder

Status

Title

TPTFolderBrowseDlg methods
TPTFolderBrowseDlg Legend

Methods in TPTFolderBrowseDlg

Execute

ReadStateFromRegistry

ReadStateFromStream

WriteStateToRegistry

WriteStateToStream

TPTFolderBrowseDlg events
TPTFolderBrowseDlg Legend

Events in TPTFolderBrowseDlg

OnAddItem

OnFormShow

OnFormClose

OnInitialized

OnSelChanged

OnTvCustomDrawSh

OnTvCustomDrawShEx

BaseFolder property

Applies to
TPTFolderBrowseDlg

Declaration
property BaseFolder: TPTShellLocator;

C++Builder Declaration
__property TPTShellLocator* BaseFolder;

Description
Use this property to set the root node of the tree.

Example
This code sets the root node to be 'My Computer'.

Delphi: PTFolderBrowseDlg1.BaseFolder.CSIDL := csidlDrives;

C++Builder: PTFolderBrowseDlg1->BaseFolder->CSIDL = csidlDrives;

This code removes any base folder setting.
Delphi: PTFolderBrowseDlg1.BaseFolder.Clear;

C++Builder: PTFolderBrowseDlg1->BaseFolder->Clear();

Options property

Applies to
TPTFolderBrowseDlg

Delphi Declaration
type TPTFolderBrowseDlgOption = (ptfbCreateDeleteButtons, ptfbContextMenus,

ptfbReadOnly, ptfbIncludeNonFolders, ptfbOleDrag, ptfbOleDrop,
ptfbCreateFolderIcon, ptfbDeleteFolderIcon, ptfbVirtualFolders,
ptfbShowHidden);

 TPTFolderBrowseDlgOptions = set of TPTFolderBrowseDlgOption;

property Options: TPTFolderBrowseDlgOptions;

C++Builder Declaration
enum TPTFolderBrowseDlgOption { ptfbCreateDeleteButtons, ptfbContextMenus,

ptfbReadOnly, ptfbIncludeNonFolders, ptfbOleDrag, ptfbOleDrop,
ptfbCreateFolderIcon, ptfbDeleteFolderIcon, ptfbVirtualFolders,
ptfbShowHidden };

typedef Set<TPTFolderBrowseDlgOption, ptfbCreateDeleteButtons, ptfbVirtualFolders>
TPTFolderBrowseDlgOptions;

__property TPTFolderBrowseDlgOptions Options;

Description
These are the possible values that can be included in the Options set for the Open and Save dialog boxes:

Identifier Meaning

ptfbCreateDeleteButtons When True, Create and Delete buttons are placed at the bottom of the form.

ptfbContextMenus When True, right-click context menus are available in the tree control.

ptfbReadOnly When True, you cannot rename items in the tree.

ptfbIncludeNonFolders When True, non-folders are included in the tree. Such things as files, control
panel applets, printers etc. will be available in the tree. Because of system
limitations (explorer tree views weren't meant to work this way) all folders have
a '+' icon, as there is no way to tell if there are any sub-items until the items
are actually enumerated.

ptfbOleDrag When True, the user can drag items out of the tree into other forms or
applications.

ptfbOleDrop When True, the user can drop items onto the tree.

ptfbCreateFolderIcon When True, a small icon appears in the top-right of the form allowing the user
to create a folder.

ptfbDeleteFolderIcon When True, a small icon appears in the top-right of the form allowing the user
to delete a folder.

ptfbVirtualFolders When True, so-called virtual folders are also included in the list. Such things
as the Control Panel and Printers folders appear in the list.

ptfbShowHidden When true, hidden and system files and folders are included in the tree and
list, otherwise they are excluded.

The default is [ptfbContextMenus, ptfbCreateFolderIcon, ptfbDeleteFolderIcon, ptfbShowHidden].

SelectedPathName property

Applies to
TPTFolderBrowseDlg

Delphi Declaration
property SelectedPathName: String;

C++Builder Declaration
__property System::AnsiString SelectedPathName;

Description
Run time only. This is an input or output property. You can set it to an initial pathname before calling Execute and the
dialog will open with that pathname as the selected item. If the item is not found then a nearby folder is selected, no
exception is raised in this case.

If Execute returns true you can read this property to see which folder the user selected. If the folder is not a filesystem
folder (such as My Computer or Network Neighbourhood), then this property is an empty string.

SelectedFolder property

Applies to
TPTFolderBrowseDlg

Delphi Declaration
property SelectedFolder: TPTShellLocator;

C++Builder Declaration
__property TPTShellLocator SelectedFolder;

Description
Run time only. This is an input and output property. You can set it to an initial id list before calling Execute and the
dialog will open with that folder as the selected item. If the item is not found then a nearby folder is selected, no
exception is raised in this case.

If Execute returns true you can read this property to see which folder the user selected.

You do not need to free the returned item id list. If you need to remember the id list, you should use CopyIdList.

OkEnabled property

Applies to
TPTFolderBrowseDlg

Delphi Declaration
property OkEnabled: Boolean;

C++Builder Declaration
__property unsigned OkEnabled;

Description
Run time only. This property can be set via an event handler to enable and disable the OK button. You would typically
use this property in conjunction with the OnSelChanged event to provide feedback as to which folders were
acceptable.

Status property

Applies to
TPTFolderBrowseDlg

Delphi Declaration
property Status: String;

C++Builder Declaration
__property System::AnsiString Status;

Description
Run time only. This property can be set before the form is executed or via an event handler during executing to a line
of text at the top of the form.

OnAddItem event

Applies to
TPTFolderBrowseDlg

Delphi Declaration
property OnAddItem: TPTShAddItemEvent;

C++Builder Declaration
__property TPTShAddItemEvent OnAddItem;

Description
This event is called every time an item is added to the tree view. You have the opportunity to filter out the unwanted
items. You should respond to this event in the same way as you would respond to the OnAddItem event in
TPTShellTree.

OnSelChanged event

Applies to
TPTFolderBrowseDlg

Delphi Declaration
type TPTFolderBrowseSelChangeEvent =
 procedure(aSender: TObject; aNewSel: PItemIdList)
 of object;

property OnSelChanged: TPTFolderBrowseSelChangeEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTFolderBrowseSelChangeEvent)(System::TObject*
aSender, Uptshell95::PItemIDList aNewSel);

__property TPTFolderBrowseSelChangeEvent OnSelChange;

Description
This event is called after the selected tree item has changed. You should not free aNewSel. If you need to remember
the id list, you should use CopyIdList.

HOW TO VISUALLY INHERIT

How to Visually Inherit from Shell Control Pack Forms

This example applies to Delphi 2, Delphi 3 and C++Builder.

Only the source code version of the Shell Control Pack supports visual inheritance.

You must first add the TPTFrmOpenDlg and TPTFrmFolderBrowseDlg forms to the repository. Once added to the
repository you can Copy, Inherit or Use the forms as you would any repository form.

1. Add the TPTFrmOpenDlg and TPTFrmFolderBrowseDlg forms to the repository.

· Ensure all projects are closed in the Delphi IDE - select File | Close All.
· Locate the FPTFolderBrowseDlg.pas file and open it - File | Open.
· Right-click on the form and select "Add to Repository…"

· Fill out the dialog as above and click OK.

Example

A more comprehensive example can be found at the Plasmatech web site http://plasmatech.com.

Visual Form Inheritance Example
Right-aligning the buttons of the folder browse dialog.

1. Select File|New…
1. Select the "Plasmatools" tab.
1. Select the "Folder Browse Form".
1. Select the "Inherit" radio button.
1. Click OK.
1. Adjust the appearance of the new form:

Alternatively, you can edit the form as text and paste in the following:

inherited PTFrmFolderBrowseDlg2: TPTFrmFolderBrowseDlg2
 Left = 433
 Top = 302
 Caption = 'PTFrmFolderBrowseDlg2'
 ClientHeight = 283
 ClientWidth = 433
 PixelsPerInch = 96
 TextHeight = 13
 inherited PTShellTree1: TPTShellTree
 Width = 329
 end
 inherited ButtonPanel: TPanel
 Left = 336
 Top = 0
 Width = 97
 Height = 283
 Align = alRight
 inherited OkBtn: TButton
 Left = 10
 end
 inherited CancelBtn: TButton
 Left = 10
 Top = 34
 end
 inherited CreateBtn: TButton
 Left = 10
 Top = 66
 end
 inherited DeleteBtn: TButton
 Left = 10
 Top = 94

 end
 end
end

7. Add an event handler for the FormResize event and paste in the following code.

Delphi
procedure TPTFrmFolderBrowseDlg2.FormResize(Sender: TObject);
var r: TRect;
begin
// inherited; deliberately not called
 StatusTxt.Width := ClientWidth - ButtonPanel.Left;
 r := PTShellTree1.BoundsRect;
 PTShellTree1.BoundsRect := Rect(r.left, StatusTxt.BoundsRect.Bottom+8,
ButtonPanel.Left, ClientHeight-8);
end;

C++Builder
void TPTFrmFolderBrowseDlg2::FormResize(TObject* Sender)
{
 // inherited::FormResize(Sender); deliberately not called
 StatusTxt->Width = ClientWidth - ButtonPanel->Left;
 Windows::TRect r = PTShellTree1->BoundsRect;
 r.Top = StatusTxt->BoundsRect.Bottom + 8;
 r.Right = ButtonPanel->Left;
 r.Bottom = ClientHeight-8;
 PTShellTree1.BoundsRect = r;
}

That's it!

You have now successfully used visual inheritance to create a new folder browse form.

HOW TO USE LEAK CHECKING

How to Use Leak Checking

Leak checking notifies you when your application terminates before all instances of the following classes are freed:
· TPTShTreeData
· TPTShListData
· TPTShComboData
· TPTImageComboItem

To enable leak checking for a whole project, define the symbol PTDEBUG in the conditionals section of the Project |
Options dialog, Directories/Conditionals page.

Alternatively, you can enable checking in only the desired units. The following units implement leak checking:
· UPTShellControls
· UPTImageCombo

Search for the line that looks like this:
{ $DEFINE PTDEBUG}

and remove the space before the $ sign:
{$DEFINE PTDEBUG}

Note: Only the source code version of the Shell Control Pack supports leak checking.

UPTFRAME UNIT

UPTFrame unit

This unit implements two components, TPTGroup and TPTFrame. Both provide extended border styles. TPTGroup
can act like a group box, containing other controls. TPTFrame is a lightweight non-windowed component that cannot
contain other controls. If you don’t need to contain children, then TPTFrame is faster, less bulky and provides more
styles the TBevel. If you do need to contain controls, TPTGroup provides more border styles than TGroupbox.

The global procedures used to draw the frames are exposed, allowing you to add the same border styles to your own
components.

Components
TPTFrame
TPTGroup

 

 TPTGroup and TPTFrame components
Hierarchy Properties Methods Events

Delphi Unit
UPTFrame

C++Builder Header
UPTFrame.hpp

Description
TPTGroup is similar to the standard TGroupbox control, but provides many more border styles. Other features
include; use of the ellipsis ‘…’ when the caption extends outside of the bounds of the box, and Windows 95 standard
disabled look..

TPTFrame has the same properties as TPTGroup but is not a windowed control and therefore uses fewer resources
than TPTGroup. TPTFrame cannot own children. To see the difference, drop a component on a TPTGroup and move
the TPTGroup around. The contained component moves with the group. The same operation performed with a
TPTFrame and the contained control doesn't move.

TPTGroup Hierarchy

TObject
|

TPersistent
|

TComponent
|

TControl
|

TWinControl
|

TCustomControl
|

TPTCustomGroup

TPTFrame Hierarchy

TObject
|

TPersistent
|

TComponent
|

TControl
|

TGraphicControl
|

TPTCustomFrame

TPTGroup, TPTFrame properties
TPTGroup, TPTFrame Legend

Alignment

DefaultDrawing

FrameSpace

FrameStyle

TPTGroup, TPTFrame methods
TPTGroup, TPTFrame Legend

EnableAllChildren

TPTGroup, TPTFrame events
TPTGroup, TPTFrame Legend

OnPaint

Alignment property

Applies to
TPTGroup, TPTFrame

Delphi Declaration
type TAlignment = (taLeftJustify, taCenter, taRightJustify);

property Alignment: TAlignment;

C++Builder Declaration
enum TAlignment { taLeftJustify, taRightJustify, taCenter };

__property TAlignment Alignment;

Description
Use this property to adjust the alignment of the caption for a group or frame control.

DefaultDrawing property

Applies to
TPTGroup, TPTFrame

Delphi Declaration
property DefaultDrawing: Boolean;

C++Builder Declaration
__property bool DefaultDrawing;

Description
Use this property to disable default drawing of the interior of the group of frame control. This also affects drawing
done in the WM_ERASEBKGND message. The frame will be drawn normally regardless of the setting of this
property.

This property is usually used in combination with the OnPaint event.

FrameSpace property

Applies to
TPTGroup, TPTFrame

Delphi Declaration
property FrameSpace: Integer;

C++Builder Declaration
__property int FrameSpace;

Description
Use this property to adjust the amount of space added to the border of the frame.

FrameStyle property

Applies to
TPTGroup, TPTFrame

Delphi Declaration
property FrameStyle: TPTFrameStyle;

C++Builder Declaration
__property TPTFrameStyle FrameStyle;

Description
Use this property to select one of the following frame styles.

TPTFrameStyle options

Value Description

ptfsNone No visible border.

ptfsSingle Single black border.

ptfsRaised Double raised border.

ptfsLowered Double sunken border.

ptfsBump Single raised border.

ptfsDint Status line bevel.

ptfsGroup Groupbox groove frame.

ptfsHorzLine Horizontal groove.

ptfsHorzEdge Double horizontal groove.

ptfsVertLine Vertical groove.

ptfsVertEdge Double vertical groove.

EnableAllChildren method

Applies to
TPTGroup

Delphi Declaration
procedure EnableAllChildren(afEnable: Boolean);

C++Builder Declaration
void __fastcall EnableAllChildren(bool afEnable);

Description
Use this method to enable or disable all the children of a group control. If afEnable is true the children are enabled
otherwise they are disabled.

Many controls display themselves differently when disabled. It is common to require a whole group of controls to be
disabled, and it is good interface design if all the controls appear disabled. With this method, you can easily enable or
disable groups of related controls.

OnPaint event

Applies to
TPTGroup, TPTFrame

Delphi Declaration
type TPTFramePaintEvent = procedure(aSender: TObject; aCanvas: TCanvas) of

object;

property OnPaint: TPTFramePaintEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTFramePaintEvent)(System::TObject* aSender,
Graphics::TCanvas* aCanvas);

__property TPTFramePaintEvent OnPaint;

Description
The OnPaint event is called after the frame is painted and after any default drawing is done. If the DefaultDrawing
property is false then your event handler must draw then whole interior of the control.

UPTTREELIST UNIT

UPTTreeList unit

Components
TPTTreeView
TPTListView

Classes
TPTCustomDraw
TPTLvCustomDraw

Types
TPTCustomDrawStage
TPTLvHeaderSortDisplayMode

TPTTREEVIEW

 TPTTreeView component
Hierarchy Properties Methods Events

Delphi Unit
UPTTreeList

C++Builder Header
UPTTreeList.hpp

Description
This component adds per-item custom drawing and per-item popup menu support to the standard TTreeView control.

With the OnPTCustomDraw and OnPTCustomDrawEx events you can modify the appearance of individual nodes.

Use the OnNodeContextMenu event to provide a menu for individual nodes.

Use the InvalidateNode method to repaint individual tree items with minimum flicker.

Limitations
The custom draw features provided by Microsoft with Internet Explorer 3 are not fully implemented. The following
limitations have been verified using comctl32.dll version 4.70.

· Only the Color of the Brush property has any effect. Brush styles are ignored.
· The Rect property is uninitialised.
· If a font is selected that results in a change in the item height, view corruption and repaint problems will occur.

Individual item heights are not selectable. The height of items is fixed and determined by the control's Font
property.

Hierarchy

TObject
|

TPersistent
|

TComponent
|

TControl
|

TWinControl
|

TCustomTreeView

TPTTreeView properties
TPTTreeView Legend

Derived from TCustomTreeView
BorderStyle

DragMode

DropTarget
HideSelection

Images

Indent

Items

ReadOnly

Selected
ShowButtons

ShowLines

ShowRoot

SortType

StateImages

TopItem

TPTTreeView methods
TPTTreeView Legend

Derived from TPTCustomTreeView

InvalidateNode

Derived from TCustomTreeView
AlphaSort
Create
CustomSort
Destroy
FullCollapse
FullExpand
GetHitTestInfoAt
GetNodeAt
IsEditing
LoadFromFile
LoadFromStream
SaveToFile
SaveToStream

TPTTreeView events
TPTTreeView Legend

Derived from TPTCustomTreeView
OnPTCustomDraw

OnPTCustomDrawEx

OnNodeContextMenu

Derived from TCustomTreeView
OnChange

OnChanging

OnCollapsed

OnCollapsing

OnCompare

OnDeletion

OnEdited

OnEditing

OnExpanded

OnExpanding

OnGetImageIndex

OnGetSelectedIndex

InvalidateNode method

Applies to
TPTTreeView component

Delphi Declaration
procedure InvalidateNode(aNode: TTreeNode);

C++Builder Declaration
void __fastcall InvalidateNode(Comctrls::TTreeNode* aNode);

Description
This method tells Windows to repaint the portion of the control contained by aNode after other important Windows
messages are handled. Appropriate use of this method can result in significantly reduced flicker when updating a tree
where only a few nodes have changed.

Follow calls to this method with calls to Update if you want the repaint to happen immediately.

Equivalent functionality can be obtained in any tree view with the following code:
Delphi

var r: TRect;
...
r := aNode.DisplayRect(afTextOnly);
Windows.InvalidateRect(Handle, @r, true);

C++Builder
TRect r = aNode->DisplayRect(afTextOnly);
System::InvalidateRect(Handle, &r, true);

OnPTCustomDraw event

Applies to
TPTTreeView component

Delphi Declaration
type TPTTvCustomDrawEvent = procedure(
 aSender: TObject;
 aCD: TPTCustomDraw;
 aNode: TTreeNode) of object;

property OnPTCustomDraw: TPTTvCustomDrawEvent;

C++Builder
typedef void __fastcall (__closure *TPTTvCustomDrawEvent)(System::TObject* aSender,
TPTCustomDraw* aCD, Comctrls::TTreeNode* aNode);

__property TPTTvCustomDrawEvent OnPTCustomDraw;

Description
Use the Font and Brush property of aCD to change the appearance of aNode.

This event is only called for the ptcdsItemPrePaint draw stage.

Example
This example sets an item bold, with red foreground and yellow background. The colours are not modified if the item
is to be drawn in the selected style - doing so would just confuse the user.

Delphi
procedure TMyForm1.PTTreeView1PTCustomDraw(aSender: TObject; aCD: TPTCustomDraw;
aNode: TTreeNode);
begin
 if SomeFunction(aNode) then
 begin
 aCD.Font.Style := [fsBold];
 if not aNode.Selected and not aNode.DropTarget then
 begin
 aCD.Font.Color := clRed;
 aCD.Brush.Color := clYellow;
 end;
 end;
end;

C++Builder
void __fastcall TForm1::PTTreeView1PTCustomDraw(TObject *aSender, TPTCustomDraw
*aCD, Comctrls::TTreeNode *aNode)
{
 if (SomeFunction(aNode)) {
 aCD->Font->Style.Clear();
 aCD->Font->Style = aCD->Font->Style << fsBold;
 if (! aNode->Selected && ! aNode.DropTarget) {
 aCD->Font->Color = clRed;
 aCD->Brush->Color = clYellow;
 }
 }
}

Advanced Details
This event is only called for the ptcdsItemPrePaint draw stage. This is sufficient for most cases, allowing easy
modification to font, foreground and background colour. If you need to process other draw stages, use the
OnPTCustomDrawEx event instead.

OnPTCustomDrawEx event

Applies to
TPTTreeView component

Delphi Declaration
type TPTTvCustomDrawEvent = procedure(
 aSender: TObject;
 aCD: TPTCustomDraw;
 aNode: TTreeNode) of object;

property OnPTCustomDrawEx: TPTTvCustomDrawEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTTvCustomDrawEvent)(System::TObject* aSender,
TPTCustomDraw* aCD, Comctrls::TTreeNode* aNode);

__property TPTTvCustomDrawEvent OnPTCustomDrawEx;

Description
Use the Font and Brush property of aCD to change the appearance of aItem.

This event is called for every draw stage.

Example
You can fairly easily emulate the OnPTCustomDraw event.

Delphi
procedure TForm1. PTTreeView1PTCustomDrawEx(aSender: TObject; aCD:
TPTCustomDraw; aNode: TTreeNode);
begin
 if aCD.DrawStage = ptcdsItemPrePaint then
 // processing
end;

C++Builder
void __fastcall TForm1::PTTreeView1PTCustomDrawEx(TObject *aSender,
TPTCustomDraw *aCD, Comctrls::TTreeNode *aNode)

{
 if (aCD->DrawStage == ptcdsItemPrePaint)
 // processing
}

However, there is a significant difference. The OnPTCustomDrawEx event is called for every custom-draw
notification, whereas the OnPTCustomDraw event is called only once for each item. During a paint operation,
Windows sends a number of custom draw notifications; 4 for the control as a whole and 4 for each item, at least.
Each of these notifications incurs some setup time when received. To paint 20 items, the OnPTCustomDrawEx event
would be called (4 + 20*4)=84 times, whereas OnPTCustomDraw would be called only 20 times.

Having said that, the difference is barely noticeable on modern systems (Pentium 133 or better).

OnNodeContextMenu event

Applies to
TPTTreeView component

Delphi Declaration
type TPTTvNodeContextMenuEvent = procedure(
 aSender: TObject;
 aNode: TTreeNode;
 var pt: TPoint;
 var aMenu: TPopupMenu) of object;

property OnNodeContextMenu: TPTTvNodeContextMenuEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTTvOnNodeContextMenuEvent)(System::TObject*
aSender, Comctrls::TTreeNode* aNode, tagPOINT &aPos, Menus::TPopupMenu* &aMenu);

__property TPTTvNodeContextMenuEvent OnNodeContextMenu;

Description
This event is invoked immediately before a popup menu is shown for the tree view (in response to a user's right-click,
Shift+F10 or menu-key). aNode is the node for which the popup should be shown. If the PopupMenu property is
assigned, then aMenu is initialised to that value. You can change it by assigning some other menu, leave it
unchanged or assign it nil to prevent any menu processing. When this event returns, the aMenu parameter will be
used as the popup menu.

You can handle the menu display and processing yourself (the demo program demonstrates this) in which case you
should assign aMenu to nil.

You can also reposition the menu by modifying the pt parameter.

TPTLISTVIEW

 TPTListView component
Hierarchy Properties Methods Events

Delphi Unit
UPTTreeList

C++Builder Header
UPTTreeList.hpp

Description
This component adds sort direction icon in the report-view header (show below), per-item custom drawing and per-
item popup menu support.

Change where the sort arrow is placed with the HeaderSortDisplayMode property. Change which column has the sort
arrow and the direction of the arrow with the HeaderSortColumn and HeaderSortDirection properties.

With the OnPTCustomDraw and OnPTCustomDrawEx events you can modify the appearance of individual items.

Use the OnItemContextMenu event to provide a menu for individual nodes.

Limitations
The custom draw features provided by Microsoft with Internet Explorer 3 are not fully implemented. The following
limitations have been verified using comctl32.dll version 4.70.

· The Brush property is ignored, so there is no way to change the background colour of items short of drawing
the whole item yourself.

· The Rect property is uninitialised.
· The Font.Color property has no effect when an item is selected.

Hierarchy

TObject
|

TPersistent
|

TComponent
|

TControl
|

TWinControl
|

TPTCustomListView

TPTListView properties
TPTListView Legend

Derived from TPTCustomListView

HeaderCanvas

HeaderDefaultDrawing

HeaderHandle

HeaderSortColumn

HeaderSortDirection

HeaderSortDisplayMode

Derived from TCustomListView

AllocBy

BorderStyle

BoundingRect

Checkboxes   

Column

ColumnClick

Columns

DropTarget

GridLines   

HideSelection

HotTrack   

IconOptions

ItemFocused

Items

LargeImages

MultiSelect

ReadOnly

RowSelect   

SelCount

Selected

ShowColumnHeaders

SmallImages

SortType

StateImages

TopItem

ViewOrigin

ViewStyle

VisibleRowCount

TPTListView methods
TPTListView Legend

Derived from TCustomListView

TPTListView events
TPTListView Legend

Derived from TPTCustomListView
OnPTCustomDraw

OnPTCustomDrawEx

OnItemContextMenu

HeaderCanvas property

Applies to
TPTListView

Delphi Declaration
property HeaderCanvas: TCanvas;

C++Builder Declaration
__property Graphics::TCanvas* HeaderCanvas;

Description
Returns a TCanvas which can be used for drawing on the listview header. This property is only valid during
processing of the OnDrawHeader event (which is not implemented).

HeaderDefaultDrawing property

Applies to
TPTListView

Delphi Declaration
property HeaderDefaultDrawing: Boolean;

C++Builder Declaration
__property bool HeaderDefaultDrawing;

Description
Not implemented.

When implemented, you will be able to disable default drawing with this property and take total control of drawing the
listview header.

HeaderHandle property

Applies to
TPTListView

Delphi Declaration
property HeaderHandle: HWND;

C++Builder Declaration
__property HWND HeaderHandle;

Description
Returns the window handle of the header control. If the header has not been created, or the control is in vsReport
ViewStyle, the value will be 0.

HeaderSortColumn property

Applies to
TPTListView

Delphi Declaration
property HeaderSortColumn: Integer;

C++Builder Declaration
__property int HeaderSortColumn;

Description
Use this property to set which column will show the sort icon. Columns are counted with a 0-base, i.e. the first column
is column 0.

Set HeaderSortColumn to –1 to hide the sort indicator. Alternatively, use the HeaderSortDirection property to hide the
sort indicator.

This property does not cause the execution of any sorting. It is purely a visual property.

HeaderSortDirection property

Applies to
TPTListView

Delphi Declaration
type TPTLvSortDirection = (ptsdAsc, ptsdDesc);
property HeaderSortDirection: TPTLvSortDirection;

C++Builder Declaration
enum TPTLvSortDirection { ptsdAsc, ptsdDesc };
__property TPTLvSortDirection HeaderSortDirection;

Description
Use this property to change the direction of the sort icon.

HeaderSortDisplayMode property

Applies to
TPTListView

Delphi Declaration
property HeaderSortDisplayMode: TPTLvHeaderSortDisplayMode;

C++Builder Declaration
__property TPTLvHeaderSortDisplayMode HeaderSortDisplayMode;

Description
Use this property to change where the sort icon is placed relative to the text in the header. See the
TPTLvHeaderSortDisplayMode help for options.

OnPTCustomDraw event

Applies to
TPTListView

Delphi Declaration
type TPTLvCustomDrawEvent = procedure(
 aSender: TObject;
 aCD: TPTCustomDraw;
 aItem: TListItem) of object;

property OnPTCustomDraw: TPTLvCustomDrawEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTLvCustomDrawEvent)(System::TObject* aSender,
TPTCustomDraw* aCD, Comctrls::TListItem* aItem);

__property TPTLvCustomDrawEvent OnPTCustomDraw;

Description
Use the Font property of aCD to change the appearance of aItem.

Note that the Brush property has no effect with Internet Explorer 3 list view custom controls.

This event is only called for the ptcdsItemPrePaint draw stage.

OnPTCustomDrawEx event

Applies to
TPTListView

Delphi Declaration
type TPTLvCustomDrawEvent = procedure(
 aSender: TObject;
 aCD: TPTCustomDraw;
 aItem: TListItem) of object;

property OnPTCustomDrawEx: TPTLvCustomDrawEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTLvCustomDrawEvent)(System::TObject* aSender,
TPTCustomDraw* aCD, Comctrls::TListItem* aItem);

__property TPTLvCustomDrawEvent OnPTCustomDrawEx;

Description
Use the Font property during the ptcdsItemPrePaint draw stage to change the appearance of aItem.

Note that the Brush property has no effect with the Internet Explorer 3 list view custom controls.

This event is called for every draw stage.

OnItemContextMenu event

Applies to
TPTListView

Delphi Declaration
type TPTLvOnItemContextMenuEvent = procecure(
 aSender: TObject;
 aItem: TListItem;
 var aPos: TPoint;
 var aMenu: TPopupMenu) of object;

property OnItemContextMenu: TPTLvOnItemContextMenuEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTLvOnItemContextMenuEvent)(System::TObject*
aSender, Comctrls::TListItem* aItem, tagPOINT &aPos, Menus::TPopupMenu* &aMenu);

__property TPTLvOnItemContextMenuEvent OnItemContextMenu;

Description
This event is invoked immediately before a popup menu is shown for the list view (in response to a user's right-click,
Shift+F10 or menu-key). aItem is the item for which the popup should be shown. If the PopupMenu property is
assigned, then aMenu is initialised to that value. You can change it by assigning some other menu, leave it
unchanged or assign it nil to prevent any menu processing. When this event returns, the aMenu paramter will be
used as the popup menu.

You can handle the menu display and processing yourself in which case you should assign aMenu to nil.

You can also reposition the menu by modifying the pt parameter.

TPTCUSTOMDRAW

TPTCustomDraw class
Hierarchy Properties

Delphi Unit
UPTTreeList

C++Builder Header
UPTTreeList.hpp

Description
An instance of the TPTCustomDraw class is passed as a parameter to the custom-draw event handlers of
TPTTreeView, TPTListView, TPTShellTree and TPTShellList.

You can modify the Font property to adjust the colour and appearance of any item text.

You can modify the Brush property to adjust the background of the item.

Notes
Custom draw is only available using the common controls installed by Internet Explorer 3 or later. If you use custom
draw you must ensure that your customers either install Internet Explorer 3, or have already installed it.

Hierarchy

TObject

TPTCustomDraw properties
TPTCustomDraw Legend

Implemented in TPTCustomDraw
Brush
Canvas
DrawStage

Font
Handle

IsItem

NoDefaultDrawing
RawDrawStage
Rect

WantItems

Brush property

Applies to
TPTCustomDraw class

Delphi Declaration
property Brush: TBrush;

C++Builder Declaration
__property Graphics::TBrush* Brush;

Description
Change this property to affect the appearance of the background of items in the control. Not all controls support all
the features of TBrush. Non-solid brushes and dithered colours are not supported with the Internet Explorer 3
controls.

DrawStage property

Applies to
TPTCustomDraw class

Delphi Declaration
property DrawStage: TPTCustomDrawStage;

C++Builder Declaration
__property TPTCustomDrawStage DrawStage;

Description
Use this property to determine the current stage of a custom draw sequence. The order of draw stages in a custom
draw sequence are:

ptcdsPrePaint
ptcdsPreErase

ptcdsItemPreErase
ptcdsItemPostErase
ptcdsItemPrePaint
ptcdsItemPostPaint

ptcdsPostPaint

The 'item' states are repeated for each item that requires painting. ptcdsItemPrePaint is the most useful stage. At this
stage you can change the Brush and Font property to change the appearance of the item. These properties have no
effect at any other stage.

Font property

Applies to
TPTCustomDraw class

Delphi Declaration
property Font: TFont;

C++Builder Declaration
__property Graphics::TFont* Font;

Description
Change this property to affect the appearance of individual items in the control. Be wary in changing the height of the
font. The current edition of the custom control (supplied with Internet Explorer e) are do not support such behaviour.

Handle property

Applies to
TPTCustomDraw class

Delphi Declaration
property Handle: HDC;

C++Builder Declaration
__property DC Handle;

Description
Read only. This property is rarely used.

Returns the handled to the device context given in the original notification message. This will be a device context
suitable for drawing on the control. However, the current common controls (supplied with Internet Explorer 3) do not
support such drawing. This device context is instead used to select a font, text and background colours which are
used by the control itself when it comes to draw. This processing is handled automatically if you use the Brush and/or
Font properties.

IsItem property

Applies to
TPTCustomDraw class

Delphi Declaration
property IsItem: Boolean;

C++Builder Declaration
__property bool IsItem;

Description
Read only. The property is true if the current draw stage indicates and item is being processed.

RawDrawStage property

Applies to
TPTCustomDraw class

Delphi Declaration
property RawDrawStage: DWORD;

C++Builder Declaration
__property unsigned RawDrawStage;

Description
Read only. This property is rarely used. It holds the raw bit-field passed to the control in the NM_CUSTOMDRAW
notification structure.

WantItems property

Applies to
TPTCustomDraw class

Delphi Declaration
property WantItems: Boolean;

C++Builder Declaration
__property bool WantItems;

Description
During the ptcdsPrePaint draw stage you must set this property to True to receive any 'item' draw states. If you leave
WantItems false during ptcdsPrePaint, then no custom draw messages will be sent, received or processed.

This property is only of use in OnPTCustomDrawEx events. The OnPTCustomDraw events are only invoked during
ptcdsItemPrePaint stage, so WantItems is automatically set true internally.

Canvas property

Applies to
TPTCustomDraw class

Delphi Declaration
property Canvas: TCanvas;

C++Builder Declaration
__property Graphics::TCanvas* Canvas;

Description
Use this property to draw to the control's canvas. Use the Rect property to determine the allowable bounds of any
drawing.

NoDefaultDrawing property

Applies to
TPTCustomDraw class

Delphi Declaration
property NoDefaultDrawing: Boolean;

C++Builder Declaration
__property bool NoDefaultDrawing;

Description
Write true to this property during the ptcdsItemPrePaint draw stage to prevent any default drawing of the item.

Rect property

Applies to
TPTCustomDraw class

Delphi Declaration
property Rect: TRect;

C++Builder Declaration
__property Windows::TRect Rect;

Description
Read only. Return the bounding rectangle of the item to be drawn, in units suitable for drawing using the Canvas
property.

NOTE: This property is provided for future support only. It does not work with the common controls installed by
Internet Explorer 3.

TPTCustomDrawStage type

Unit
UPTTreeList

Delphi Declaration
type TPTCustomDrawStage = (ptcdsUnknown, ptcdsPrePaint, ptcdsPostPaint,

ptcdsPreErase, ptcdsItemPrePaint, ptcdsItemPostPaint, ptcdsItemPreErase,
ptcdsItemPostErase);

C++Builder Declaration
enum TPTCustomDrawStage { ptcdsUnknown, ptcdsPrePaint, ptcdsPostPaint,
ptcdsPreErase, ptcdsItemPrePaint, ptcdsItemPostPaint, ptcdsItemPreErase,
ptcdsItemPostErase };

Description
This type enumerates the different stages of a custom-draw sequence. Use the DrawStage property to access this
information.

TPTLvHeaderSortDisplayMode type

Unit
UPTTreeList

Delphi Declaration
type TPTLvHeaderSortDisplayMode = (ptlvNone, ptlvLeftAlign, ptlvRightOfText,
ptlvRightAlign);

C++Builer Declaration
enum TPTLVHeaderSortDisplayMode { ptlvNone, ptlvLeftAlign, ptlvRightOfText,
ptlvRightAlign };

Description
Tyis type enumerates the different placements of the TPTListView control's report-view header sort icon.

TPTLvCustomDraw class

Delphi Unit
UPTTreeList

C++Builder Header
UPTTreeList.hpp

Description
This class is instantiated internally by TPTListView. You should never create an instance of this class directly. At the
public level it is exactly the same as TPTCustomDraw. You can treat instances of this class as if they were
TPTCustomDraw.

UPTSHELLCONTROLS UNIT

UPTShellControls unit

The UPTShellControls unit contains the components, classes and types for the shell controls.

Components

TPTShellTree

TPTShellList

TPTShellCombo

Classes

TPTShTreeData

TPTShListData

TPTShComboData

Routines
PTShCreateNewFolder

Types

TPTShellTreeOptions

TPTShellListOptions

TPTShellComboOptions

Constants

Other constants

PTShCreateNewFolder function

Unit
UPTShellControls

Delphi Declaration
function PTShCreateNewFolder(aPathname: String; var aNewName: String): Boolean;

C++Builder Declaration
extern bool __fastcall PTShCreateNewFolder(System::AnsiString aPathname,
System::AnsiString& aNewName);

Description
Attempts to create a new folder with the name "New Folder". If that folder already exists, an attempt is made to create
"New Folder (2)". This procedure continues until a new folder is successfully created, an error other than folder exists
occurs, or PTSH_MAX_FOLDER_ATTEMPTS failures have occurred.

TPTShellTreeOptions, TPTShellListOptions, TPTShellComboOptions types

Delphi Declaration
type TPTShellTreeOption = (ptstoAutoFill, ptstoVirtualFolders,
 ptstoDesignInteractive, ptstoDefaultKeyHandling, ptstoContextMenus,
 ptstoDynamicRefresh, ptstoOleDrag, ptstoOleDrop, ptstoShowHidden);
 TPTShellTreeOptions = set of TPTShellTreeOption;

type TPTShellListOption = (ptsloAutoFill, ptsloNonFilesystemAncestors,
 ptsloDesignInteractive, ptsloDefaultKeyHandling, ptsloContextMenus,
ptsloDontChangeFolder, ptsloDontGoBelowBase, ptsloDynamicRefresh,
ptsloHideFoldersWhenLinkedToTree, ptsloOleDrag, ptsloOleDrop, ptsloFolderContextMenu,
ptsloShowHidden);

 TPTShellListOptions = set of TPTShellListOption;

type TPTShellComboOption = (ptscoAutofill, ptscoNonFilesystemAncestors);
 TPTShellComboOptions = set of TPTShellComboOption;

C++Builder Declaration
enum TPTShellTreeOption { ptstoAutoFill, ptstoVirtualFolders,
ptstoDesignInteractive, ptstoDefaultKeyHandling, ptstoContextMenus,
ptstoDynamicRefresh, ptstoIncludeNonFolders, ptstoOleDrag, ptstoOleDrop,
ptstoShowHidden };

typedef Set<TPTShellTreeOption, ptstoAutoFill, ptstoOleDrop> TPTShellTreeOptions;

enum TPTShellListOption { ptsloAutoFill, ptsloNonFilesystemAncestors,
ptsloDesignInteractive, ptsloDefaultKeyHandling, ptsloContextMenus,
ptsloDontChangeFolder, ptsloDontGoBelowBase, ptsloDynamicRefresh,
ptsloHideFoldersWhenLinkedToTree, ptsloOldDrag, ptsloOleDrop,
ptsloFolderContextMenu, ptsloShowHidden };

typedef Set<TPTShellListOption, ptsloAutoFill, ptsloFolderContextMenu>
TPTShellListOptions;

enum TPTShellComboOption { ptscoAutofill, ptscoNonFilesystemAncestors };

typedef Set<TPTShellComboOption, ptscoAutofill, ptscoNonFilesystemAncestors>
TPTShellComboOptions;

Description
The shell control options type is a set of the options each control supports. See help for the particular control's
Options property for more information:

TPTShellTree.Options

TPTShellList.Options

TPTShellCombo.Options

Other Constants

Unit
UPTShellControls

Delphi Declaration
var PTSH_CHANGE_NOTIFY_DELAY: Integer = 2000;
 PTSH_CHANGE_NOTIFY_FASTDELAY: Integer = 500;
 PTSH_TREE_KEY_UPDATE_DELAY: Integer = 500;
 PTSH_MAX_FOLDER_ATTEMPTS: Integer = 50;
 PTSH_AUTOSCROLL_THRESHOLD_X: Integer = 26;
 PTSH_AUTOSCROLL_THRESHOLD_Y: Integer = 20;
 PTSH_AUTOSCROLL_MINDELAY_MS: Integer = 100;

C++Builder Declaration
extern int PTSH_CHANGE_NOTIFY_DELAY; // Default 2000
extern int PTSH_CHANGE_NOTIFY_FASTDELAY; // Default 500
extern int PTSH_TREE_KEY_UPDATE_DELAY; // Default 500
extern int PTSH_MAX_FOLDER_ATTEMPTS; // Default 50
extern int PTSH_AUTOSCROLL_THRESHOLD_X; // Default 26
extern int PTSH_AUTOSCROLL_THRESHOLD_Y; // Default 20
extern int PTSH_AUTOSCROLL_MINDELAY_MS; // Default 100

Constant Meaning

PTSH_CHANGE_NOTIFY_DELAY Milliseconds delay between when a change is detected and
when the shell tree or list is updated.

PTSH_CHANGE_NOTIFY_FASTDELAY Milliseconds delay between when a change is detected and
when the shell tree or list is updated when the control is
focused.

PTSH_TREE_KEY_UPDATE_DELAY Milliseconds delay between a keyboard-based move of the tree
selection and when any associated shell list    or combo is
updated.

PTSH_MAX_FOLDER_ATTEMPTS Maximum number of times to try creating a new folder.

PTSH_AUTOSCROLL_THRESHOLD_X Number of pixels from the left or right edge of the control before
autoscrolling starts.

PTSH_AUTOSCROLL_THRESHOLD_Y Number of pixels from the top or bottom edge of the control
before autoscrolling starts.

PTSH_AUTOSCROLL_MINDELAY_MS Milliseconds minimum delay between autoscrolls during OLE
drag/drop in a shell tree or list control.

You can assign different values to these system variables.

TPTSHELLTREE COMPONENT

 TPTShellTree component
Hierarchy Properties Methods Events

Delphi Unit
UPTShellControls

C++Builder Header
UPTShellControls.hpp

Description
Implements a tree-view of the shell name space.

You can control what sorts of items appear in the tree with the Options property or manually with the OnAddItem
event.

The control can operate interactively at design time by setting the ptstoDesignInteractive option in the Options
property to True.

Use the SelectedFolder or SelectedPathName properties to retrieve and set the currently selected folder.

You can limit the part of the namespace shown in the try by setting the BaseFolder property. When set, BaseFolder
determines which node will appear as the root of the tree. Do not use the BaseFolder property when the tree is linked
to a TPTShellCombo control. The TPTShellCombo control does not currently support basing.

You can link a TPTShellList control to the TPTShellTree component by setting the ShellList property. Thereafter the
tree and list will automatically update each other as the user interacts with them. You can also link a TPTShellCombo
with a TPTShellTree.

Hierarchy

TObject
|

TPersistent
|

TComponent
|

TControl
|

TWinControl
|

TCustomTreeView
|

TPTCustomTreeView

TPTShellTree properties
TPTShellTree Legend

Derived from TPTCustomShellTree

BaseFolder

Options

SelectedItem

SelectedPathName

SelectedFolder

ShellList

ShTreeData

TPTShellTree methods
TPTShellTree Legend

Derived from TPTCustomShellTree

DoCommandForNode

CreateNewFolder

FillItems

FindNodeWithIdList

GetDataFromNode

GoUp

RefreshNodes

SortNode

Synchronize

Derived from TPTCustomTreeView

InvalidateNode

TPTShellTree events
TPTShellTree Legend

Derived from TPTCustomShellTree

OnAddItem

OnDeleteItem

OnFillComplete

OnFillStart

OnInsertItem

OnPopupHint

BaseFolder property

Applies to
TPTShellTree

Delphi Declaration
property BaseFolder: TPTShellLocator;

C++Builder Declaration
__property TPTShellLocator BaseFolder;

Description
Use this property to set the root node of the tree.

Options property

Applies to
TPTShellTree

Delphi Declaration
property Options: TPTShellTreeOptions;

C++Builder Declaration
__property TPTShellTreeOptions Options;

Description
These are the possible values that can be included in the Options set for the shell tree control.

Value Meaning

ptstoAutoFill When this option is set, the contents of the tree are automatically
initialised.

ptstoVirtualFolders When true, non-file system nodes such as Control Panel and Printers
are included in the tree. Default is True.

ptstoDesignInteractive This option only has effect at design time. When true, you can
interact with the shell list control at design time. You can select items,
navigate into folders etc. If you set this option true, some of Delphi's
design time keyboard interface might not work.

ptstoDefaultKeyHandling Enables default keyboard processing. This includes such keys as
Ctrl+C (Copy), Ctrl+V (Paste) and F5 (Refresh).

ptstoContextMenus Enables context menu processing. When set a right-click on a
selected item or group of items will display a popup-menu.

ptstoDynamicRefresh When true the tree monitors changes to all local drives (and networks
drives with a mapped drive letter). When a change to a folder is
detected on any drive the tree is updated to reflect the change, if that
folder is visible.

ptstoIncludeNonFolders When true the tree includes non-folders as nodes. Such things as
files, control panel applets, printers etc. will be available in the tree.
Because of system limitations (explorer tree views weren't meant to
work this way) all folders have a '+' icon, as there is no way to tell if
there are any sub-items until the items are actually enumerated.

ptstoOleDrag When true, the user can drag items out of the tree onto other trees or
lists or into other applications.

ptstoOleDrop When true, the user can drop items onto tree nodes.

ptstoShowHidden When true, hidden and system files and folders are included in the
tree, otherwise they are excluded.

ShellList property
See Also

Applies to
TPTShellTree

Delphi Declaration
property ShellList: TPTShellList;

C++Builder Declaration
__property TPTShellList ShellList;

Description
You can set the ShellList property to any TPTShellList control available on the same form. When set, the list and tree
are synchronised.

See Also

TPTShellList component

SelectedItem property

Applies to
TPTShellTree

Delphi Declaration
property SelectedItem: TPTShTreeData;

C++Builder Declaration
__property TPTShTreeData SelectedItem;

Description
Run-time and read only. Returns the data object describing the currently selected node in the tree. If there is no
currently selected node, the property is nil.

This property is a convenient equivalent to either of the following expression:
Delphi: PTShellTree1.ShTreeData[PTShellTree1.Selected.Index]

C++Builder: PTShellTree1->ShTreeData->Item[PTShellTree1->Selected->Index]

or
Delphi: PTShellTree1.GetDataFromNode(PTShellTree1.Selected)

C++Builder: PTShellTree1->GetDataFromNode(PTShellTree1->Selected)

SelectedPathName property

Applies to
TPTShellTree

Delphi Declaration
property SelectedPathName: String;

C++Builder Declaration
__property System::AnsiString SelectedPathName;

Description
Run time only. This property is the pathname of the selected item. If the item is not part of the filesystem, this property
will be an empty string.

When assigning to SelectedPathName, if the folder is not found an exception will be raised.

This property is a shortcut for the following expression:
Delphi: PTShellTree1.SelectedFolder.PathName := myPathname;

C++Builder: PTShellTree1->SelectedFolder->PathName = myPathname;

SelectedFolder property

Applies to
TPTShellTree

Delphi Declaration
property SelectedFolder: TPTShellLocator;

C++Builder Declaration
__property TPTShellLocator* SelectedFolder;

Description
Run time only. This property allows selection and retrieval of the selected shell folder using the convenient
TPTShellLocator class.

If you don't care about item id lists, you can use the SelectedPathName property instead.

Example
To retrieve the selected folder as an item id list:

Delphi: myIdList := PTShellTree1.SelectedFolder.IdList;

 
C++Builder: myIdList = PTShellTree1->SelectedFolder->IdList;

ShTreeData property

Applies to
TPTShellTree

Delphi Declaration
property ShTreeData[idx: Integer]: TPTShTreeData;

C++Builder Declaration
__property TPTShTreeData* ShTreeData[int idx];

Description
Run time and read only.

This property is simply a convenient way of accessing the TPTShTreeData object for a given tree node. The node is
specified by index.

Equivalent code is:
Delphi: data := TObject(PTShellTree1.Items[idx].Data) as TPTShTreeData;

C++Builder: TPTShTreeData* data = dynamic_cast<TPTShTreeData*>(PTShellTree1->Items[idx]->Data);

It's much more convenient to express it this way:
Delphi: data := PTShellTree1.ShTreeData[idx];

C++Builder: TPTShTreeData* data = PTShellTree1->ShTreeData[idx];

DoCommandForNode method

Applies to
TPTShellTree

Delphi Declaration
procedure DoCommandForNode(aNode: TTreeNode; aCmd: PChar);

C++Builder Declaration
void __fastcall DoCommandForNode(Comctrls::TTreeNode* aNode, char* aCmd);

Description
Perform a string-based command for the given tree node. For more information see Folder command strings.

CreateNewFolder method

Applies to
TPTShellTree

Delphi Declaration
function CreateNewFolder(afEditNow: Boolean): Boolean;

C++Builder Declaration
bool __fastcall CreateNewFolder(bool afEditNow)

Description
If possible, creates a new child folder of the currently selected tree node with the name "New Folder".

If afEditNow is true then the new tree node immediately enters edit mode.

Returns true if the new folder was created successfully, otherwise false.

FillItems method

Applies to
TPTShellTree

Delphi Declaration
procedure FillItems;

C++Builder Declaration
void __fastcall FillItems(void);

Description
FillItems adds nodes to the tree. You must call FillItems at least once for the tree to function. If ptstoAutoFill is in the
Options property then FillItems is automatically called once before the tree becomes visible.

You can call FillItems at any time to have all the nodes in the tree cleared and re-added. All open nodes will be
collapsed after a call to FillItems. It is generally preferable to call RefreshNodes to update an already filled tree to
reflect changes.

FindNodeWithIdList method

Applies to
TPTShellTree

Delphi Declaration
function FindNodeWithIdList(baseNode: TTreeNode; idList: PItemIdList): TTreeNode;

C++Builder Declaration
Comctrls::TTreeNode* __fastcall FindNodeWithIdList(Comctrls::TTreeNode* baseNode,
Uptshell95::PItemIDList idList);

Description
Searches the children of baseNode for an element with a relative item id list of idList. If found, the tree node is
returned otherwise nil is returned.

SortNode method

Applies to
TPTShellTree

Delphi Declaration
procedure SortNode(aNode: TTreeNode);

C++Builder Declaration
void __fastcall SortNode(Comctrls::TTreeNode* aNode);

Description
Sorts the given node according to standard shell sorting order.

If aNode is nil then the whole tree is sorted.

GetDataFromNode method

Applies to
TPTShellTree

Delphi Declaration
function GetDataFromNode(aNode: TTreeNode): TPTShTreeData;

C++Builder Declaration
TPTShTreeData* __fastcall GetDataFromNode(Comctrls::TTreeNode* aNode);

Description
Returns the TPTShTreeData object associated with the given tree node. This is simply a convenient wrapper around
the following code:

Delphi: result := TObject(node.Data) as TPTShTreeData;

C++Builder: return dynamic_cast<TPTShTreeData*>(node->Data);

GoUp method

Applies to
TPTShellTree

Delphi Declaration
procedure GoUp(aLevels: Integer);

C++Builder Declaration
void __fastcall GoUp(int aLevels);

Description
Calling this method moves the selected item back aLevels in the hierarchy.

aLevels must be greater than or equal to 1.

You can navigate to the top of the namespace with the following:
Delphi: PTShellTree1.SelectedItem.IdList := nil;

C++Builder: PTShellTree1->SelectedItem->IdList = NULL;

RefreshNodes method

Applies to
TPTShellTree

Delphi Declaration
procedure RefreshNodes;

C++Builder Declaration
void __fastcall RefreshNodes(void);

Description
This method works on an already populated tree. Every node in the tree is checked to see if it still exists (if it doesn't it
is removed from the tree) or if it has new children (added to the tree). This is the preferred method to update the tree
because it does not unnecessarily collapse any tree nodes. Use this method in preference to FillItems which does
collapse the tree.

Synchronize method

Applies to
TPTShellTree, TPTShellList, TPTShellCombo

Delphi Declaration
procedure Synchronize(afApplyToGroup: Boolean);

C++Builder Declaration
void __fastcall Synchronize(bool afApplyToGroup);

Description
Calling this method causes any pending updates to be immediately processed.

If afApplyToGroup is false then this method only synchronises the control for which it is called. If afApplyToGroup is
true then all associated controls are synchronised.

The following situations cause pending updates:
· Using the cursor keys to move around a tree. The update of associated list and combo controls is delayed.
· Detecting file system changes with dynamic refresh options. The update is delayed to improve performance,

effectively batching changes until no additional changes have been made for the allotted time.

OnAddItem event
Example

Applies to
TPTShellTree

Delphi Declaration
TPTShAddItemEvent = procedure(
 aSender: TObject;
 aParentIShf: IShellFolder; // Interface to the parent folder
 aParentAbsIdList: PItemIdList; // Absolute pidl referencing the parent
 aItemRelIdList: PItemIdList; // Relative pidl of this item
 aAttribs: DWORD; // IShellFolder::GetAttributesOf flags
 var aAllowAdd: Bool) of object;

property OnAddItem: TPTShAddItemEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTShAddItemEvent)(System::TObject* aSender,
Uptshell95::IShellFolder* aParentIShf, Uptshell95::PItemIDList aParentAbsIdList,
Uptshell95::PItemIDList aItemRelIdList, int aAttribs, unsigned &afAllowAdd);

__property TPTShAddItemEvent* OnAddItem;

Description
This event is called for each item added to the tree. Your handler can reject an item by setting the aAllowAdd
parameter to false.

TPTShellTree.OnAddItem Example

This example uses the OnAddItem event to remove the Network Neighbourhood folder.

Delphi
var g_netHoodIdList: PItemIdList; // This variable assumed previously initialised

function IsNetHood(absIdList: PItemIdList): Boolean;
begin
 result := (UPTShellUtils.ShellCompareAbsIdLists(absIdList, g_netHoodIdList) =
0);
end;

procedure TMyForm.OnAddItem(aSender: TObject;
 aParentIShf: IShellFolder;
 aParentAbsIdList: PItemIdList;
 aItemRelIdList: PItemIdList;
 aAttribs: DWORD;
 var aAllowAdd: Bool);
var itemAbsIdList: PItemIdList;
begin
 itemAbsIdList := nil;
 try
 itemAbsIdList := ConcatIdLists(aParentAbsIdList, aItemRelIdList);
 afAllowAdd := not IsNetHood(itemAbsIdList);
 finally
 ShellMemFree(itemAbsIdList);
 end;
end;

C++Builder
PItemIdList g_netHoodIdList; // This variable assumed previously initialised

bool __fastcall IsNetHood(PItemIdList absIdList)
{
 return (Uptshellutils::ShellCompareAbsidList(absIdList, g_netHoodIdList)==0);
}

void __fastcall TMyForm::PTShellTree1AddItem(TObject *aSender,
IShellFolder *aParentIShf, PItemIDList aParentAbsIdList,
PItemIDList aItemRelIdList, int aAttribs, LongBool &afAllowAdd)
{
 PItemIdList itemAbsIdList = NULL;
 try {
 itemAbsIdList = Uptshellutils::CopyIdList(NULL, aParentAbsIdList);
 Uptshellutils::ConcatIdLists(itemAbsIdList, aItemRelIdList);
 afAllowAdd = (!IsNetHood(itemAbsIdList));
 }
 catch(...)
 {
 Uptshellutils::ShellMemFree(itemAbsIdList);
 throw;
 }
 Uptshellutils::ShellMemFree(itemAbsIdList);
}

OnDeleteItem event

Applies to
TPTShellTree

Delphi Declaration
type TPTShTreeDeleteItemEvent =
 procedure(aSender: TObject;
 aNode: TTreeNode;
 aShTreeData: TPTShTreeData) of object;

property OnDeleteItem: TPTShTreeDeleteItemEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTShTreeDeleteItemEvent)(System::TObject*
aSender, Comctrls::TTreeNode* aNode, TPTShTreeData* aShTreeData);

__property TPTShTreeDeleteItemEvent* OnDeleteItem;

Description
This event is called immediately before each node of the tree is deleted. If you have stored any data with the node,
this is your last chance to delete it.

Example
Assuming you stored an object of your own with tree node:

Delphi: PTShellTree1.ShTreeData[idx].Data := TMyData.Create;

C++Builder: PTShellTree1->ShTreeData->Item[idx]->Data = new TMyData;

When the idx node is deleted, you should respond:
Delphi

procedure TMyForm.PTShellTree1DeleteItem(aSender: TObject;
aNode: TTreeNode; aShTreeData: TPTShTreeData);

begin
 TObject(aShTreeData.Data).Free;
end;

C++Builder
void __fastcall TForm1::PTShellTree1DeleteItem(TObject *aSender,
TTreeNode *aNode, TPTShTreeData *aShTreeData)

{
 delete (TObject*)(aShTreeData->Data);
}

OnCustomDrawSh and OnCustomDrawShEx events

Applies to
TPTShellTree

Delphi Declaration
type TPTShTvCustomDrawEvent =
 procedure(aSender: TObject;
 aCD: TPTCustomDraw;
 aNode: TTreeNode;
 aData: TPTShTreeData) of object;

property OnCustomDrawSh: TPTShTvCustomDrawEvent;

property OnCustomDrawShEx: TPTShTvCustomDrawEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTShTvCustomDrawEvent)(System::TObject*
aSender, Upttreelist:: TPTCustomDraw* aCD, Comctrls::TTreeNode* aNode,
TPTShTreeData* aData);

__property TPTShTvCustomDrawEvent* OnCustomDrawSh;

__property TPTShTvCustomDrawEvent* OnCustomDrawShEx;

Description
You can change the appearance of individual nodes in the tree by adjusting properties of the given aCD object.

Use the Font and Brush properties of aCD to change the appearance of aNode.

Access shell-related data about the node with aData.

The OnTvCustomDrawSh event is only called for the ptcdsItemPrePaint draw stage, whereas
OnTvCustomDrawShEx is called for every draw stage.

OnFillComplete event
See Also

Applies to
TPTShellTree, TPTShellList

Delphi Declaration
TNotifyEvent = procedure(aSender: TObject) of object;

property OnFillComplete: TNotifyEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject* aSender);

__property TNotifyEvent OnFillComplete;

Description
This event is called after the items in the control have been added (see TPTShellList.FillItems,
TPTShellTree.FillItems, TPTShellList.RefreshItems and TPTShellTree.RefreshNodes). For TPTShellTree controls,
this includes when a node is expanded for the first time. For TPTShellList controls this is normally only when the
control changes to view another folder.

Prior to version 1.3g, this event was not called after the controls were refreshed (see TPTShellTree.RefreshNodes
and TPTShellList.RefreshItems).

See Also

OnFillStart

FillItems

RefreshItems

RefreshNodes

OnFillStart event
See Also

Applies to
TPTShellTree, TPTShellList

Delphi Declaration
TNotifyEvent = procedure(aSender: TObject) of object;

property OnFillStart: TNotifyEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject* aSender);

__property TNotifyEvent OnFillStart;

Description
This event is called before a fill or refresh operation commences. For TPTShellTree controls, this includes when a
node is expanded for the first time. For TPTShellList controls this is normally only when the control changes to view
another folder.

See Also

OnFillComplete

FillItems

RefreshItems

RefreshNodes

OnInsertItem event

Applies to
TPTShellTree

Delphi Declaration
type TPTShTreeInsertItemEvent = procedure(aSender: TObject; aNode: TTreeNode) of

object;

property OnInsertItem: TPTShTreeInsertItemEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTShTreeInsertItemEvent)(System::TObject*

aSender, Comctrls::TTreeNode* aNode);

__property TPTShTreeInsertEvent OnInsertItem;

Description
This event is called after each node is added to the tree.

OnPopupHint event

Applies to
TPTShellTree, TPTShellList

Delphi Declaration
TPTShPopupHintEvent = procedure(aSender: TObject; const hint: String) of object;

property OnPopupHint: TPTShPopupHintEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTShPopupHintEvent)(System::TObject* aSender,
const System::AnsiString hint);

__property TPTShPopupHintEvent OnPopupHint;

Description
Hint text is generated as the user navigates context menus for tree and list items. As each hint is produced, this event
is called.

A typical OnPopupHint event handler would simply assign the hint string to the Application.Hint property. eg.:

Delphi
procedure TMyForm.TreeOnPopupHint(aSender: TObject;
const hint: String);
begin
 Application.Hint := hint;
end;

C++Builder
void __fastcall TMyForm::TreeOnPopupHint(TObject* aSender, const AnsiString hint)
{
 Application->Hint = hint;
}

TPTShTreeData class

Unit
UPTShellControls

Description
This class handles data for each node of the TPTShellTree component. The TPTShellTree component stores one of
these objects with each tree node in the TTreeNode.Data property. This means you should never write to the Data
property of a TTreeNode in a TPTShellTree. You can however read that Data property, cast it to a TPTShTreeData
class and then use the following properties to access information about the node.

You do not need to free any of the item IDs returned by these properties.

Delphi Declaration
property AbsoluteIdList: PItemIdList;

C++Builder Declaration
__property PitemIdList AbsoluteIdList;

Read only. Returns the item id list for the tree node relative to the desktop. This particular id list is used in many
other functions.

You do not need to free the returned id list. If you want to remember it (store it in a non-local variable) you must
copy it — use the CopyIdList function for this purpose.

property Data: Pointer; __property void* Data;
This property allows the user of the tree to store extra data with each node. If you store a heap allocated structure
or object with this pointer, you must ensure that it is freed in all instances by responding to the
TPTShellTree.OnDeleteItem event.

Example
This example associates a new instance of a user-defined object with the currently selected node.

Delphi: ShellTree1.ShTreeData[0].Data := TMyExtraData.Create;
C++Builder: ShellTree1->ShTreeData->Item[0]->Data = new TMyExtraData;

property Editable: Boolean; __property bool Editable;
Read only. This is not the same as the read-only file attribute. If the property is true then this node is potentially
editable. Read-only files are still 'editable'. Examples of nodes that are never editable are Desktop, My Computer,
Network Neighborhood etc.

property ParentIShf: IShellFolder; __property Uptshell95::IShellFolder* ParentIShf;
Read only. The IShellFolder interface for the parent of the tree node. For the desktop node, this property is nil.

property ParentIdList: PItemIdList; __property PitemIdList ParentIdList;
Read only. Returns the absolute item id list of the parent folder of the tree node.

You do not need to free the returned id list. If you want to remember it (store it in a non-local variable) you must
copy it — use the CopyIdList function for this purpose.

property PathName: String; __property System::AnsiString* PathName;
Read only. Returns the pathname of the associated tree node. If the node has no associated pathname (such as
My Computer or Network Neighbourhood) then this property is an empty string.

property RelativeIdList: PItemIdList; __property PItemIdList RelativeIdList;
Read only. This property is the item id list for this tree node relative to its parent.

Many useful functions can only be performed in a item via its parent. To this end, you can use a combination of
ParentIShf and RelativePidl to perform IShellFolder operations on this item.

Example
This example obtains some of the attribute flags for the current item and does an action if the item is a file system
folder, or an ancestor of the filesystem (such as Desktop and My Computer).
Delphi

var nodeData: TPTShTreeData; // assume initialised
...

dwAttr := SFGAO_FILESYSTEM or SFGAO_FILESYSANCESTOR;
nodeData.ParentIShf.GetAttributesOf(1, nodeData.RelativeIdList, dwAttr);
if ((dwAttr and (SFGAO_FILESYSTEM or SFGAO_FILESYSANCESTOR))<>0 then
 DoAction;

C++Builder
TPTShTreeData* nodeData; // assume initialised
 ...
unsigned dwAttr = SFGAO_FILESYSTEM | SFGAO_FILESYSANCESTOR;
nodeData->ParentIShf->GetAttributesOf(1, nodeData->RelativeIdList, dwAttr);
if (dwAttr & (SFGAO_FILESYSTEM | SFGAO_FILESYSANCESTOR))
 DoAction();

property ThisIShf: IShellFolder; __property Uptshell95::IShellFolder* ThisIShf;
Read only. This is the IShellFolder interface for the current item.

TPTIDLISTARRAY CLASS

TPTIdListArray class

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Description
The TPTIdListArray class provides a convenient mechanism for treating an item id list as an array of individual item
ids.

Delphi Declaration
constructor Create(p: PItemIdList);

C++Builder Declaration
__fastcall TPTIdListArray(PItemIdList p);

Use this constructor to create an instance of TPTIdListArray for a given id list.

function GoUp(items: Integer):
PitemIdList;

PItemIdList GoUp(int items);

Removes items ids from then end of the list and returns the new list. You don't need to free the returned list.
Subsequent calls to GoUp or Item[] invalidate previous results from this function.

property ItemCount: Integer; __property int ItemCount;
Read only. Returns the number of ids in the list.

property Item[idx: Integer]:
PitemIdList; default;

__property PItemIdList Item[int idx];

Read only. A copy of the given id is allocated from shell memory and returned. You don't have to free it. If you
want to keep it you should use CopyIdList to make a copy. Each call to Item invalidates the previous return value.

Example
This example takes a given id list and calls a method for each id in the list.

Delphi
procedure ProcessIdlist(idlist: PItemIdList);
var idla: TPTIdListArray;
i: Integer;
begin
 idla := TPTIdListArray.Create(idlist);
 try
 for i := 0 to idla.ItemCount-1 do
 ProcessIndiviualId(idla[i]);
 finally
 idla.Free;
 end;
end;

C++Builder
#include <memory> // for STL auto_ptr
...
void __fastcall ProcessIdList(PItemIDList idlist)
{
 std::auto_ptr <TPTIdListArray> idla(new TPTIdListArray(idlist));
 for(int i=0, i < idla.get()->ItemCount; i++)
 ProcessIndividualId(idla.get()->Item[i]);
}

TPTSHELLLOCATOR CLASS

TPTShellLocator class

Delphi Unit
UPTShellControls

C++Builder Header
UPTShellControls.hpp

Description
The TPTShellLocator class provides an easy to use encapsulation of the different ways a shell folder can be
addressed.

There are three ways a shell folder can be specified. By item id list, pathname or system folder constant (CSIDL).
This class performs automatic conversion between the different types, through its properties. You can use the
TPTShellLocator class in much the same way as Variant variables are used.

For example, if you write a pathname, you can read an id list. If you write a CSIDL you can read a pathname. The
only caveat is if you write an id list or pathname, you cannot meaningfully read CSIDL (it will return csidlNone).

Since TPTShellLocator class is derived from TPersistent it can be used as a published property of components.

Properties

IdList

PathName

CSIDL

Methods

Clear

IsEqual

Events

OnChange

IdList property

Applies to
TPTShellLocator

Delphi Declaration
property IdList: PItemIdList;

C++Builder Declaration
__property PitemIdList IdList;

Description
Returns the item id list of the folder addressed by the TPTShellLocator object.

PathName property

Applies to
TPTShellLocator

Delphi Declaration
property PathName: String;

C++Builder Declaration
__property System::AnsiString* PathName;

Description
Returns the pathname of the folder addressed by the TPTShellLocator object. If the folder is not part of the file
system an empty string is returned.

CSIDL property

Applies to
TPTShellLocator

Delphi Declaration
property CSIDL: TCSIDL;

C++Builder Declaration
__property TCSIDL CSIDL;

Description
When assigned sets the TPTShellLocator object to the specified system folder constant.

When read, the value depends on whether the CSIDL property was used to assign a system folder constant, or the
IdList or PathName properties were used. If CSIDL was used then the returned value is the same as the assigned
value. If IdList or PathName was used then csidlNone is returned.

Clear method

Applies to
TPTShellLocator

Delphi Declaration
procedure Clear;

C++Builder Declaration
void Clear(void);

Description
Clears the folder addressed by the TPTShellLocator class. When cleared, the IdList property returns nil, the
PathName property returns an empty string and the CSIDL property returns csidlNone.

IsEqual method

Applies to
TPTShellLocator

Delphi Declaration
function IsEqual(aToThis: TPTShellLocator): Boolean;

C++Builder Declaration
bool IsEqual(TPTShellLocator* aToThis);

Description
Returns True if the passed in object refers to the same namespace location as this object.

OnChange property

Applies to
TPTShellLocator

Delphi Declaration
property OnChange: TNotifyEvent;

C++Builder Declaration
__property TnotifyEvent OnChange;

Description
The OnChange event specifies which event handler should execute when the contents of the TPTShellLocator class
changes.

TPTSHELLLIST COMPONENT

 TPTShellList component
Hierarchy Properties Methods Events

Delphi Unit
UPTShellControls

C++Builder Header
UPTShellControls.hpp

Description
Implements the list-view of the contents of a shell folder.

Use the Folder property to get and set the current folder. For single selection lists, use the SelectedItem property to
retrieve the selected item data.

Use the FileFilter property and / or the OnAddItem event to specify which files should be included in the list.

Use the OnCustomDrawSh or OnCustomDrawShEx events to change the appearance of individual list items.

The control can act independently or automatically together with TPTShellTree or TPTShellCombo controls. To link to
a TPTShellTree component set the ShellList property of the tree to the desired TPTShellList component. The
components will then automatically work together and present a consistent interface. To link to a TPTShellCombo set
the ShellList property of the combo.

Hierarchy

TObject
|

TPersistent
|

TComponent
|

TControl
|

TWinControl
|

TCustomListView
|

TPTCustomListView
|

TPTCustomShellList

TPTShellList properties
TPTShellList Legend

Derived from TPTCustomShellList

FileFilter

Folder

Options

SelectedItem

SortColumn

ShListData

Derived from TPTCustomListView

HeaderCanvas

HeaderDefaultDrawing

HeaderHandle

HeaderSortColumn

HeaderSortDirection

HeaderSortDisplayMode

TPTShellList methods
TPTShellList Legend

Derived from TPTCustomShellList

CreateNewFolder

DoCommandForAllSelected

DoCommandForFolder

DoCommandForItem

FillItems

GetDataFromItem

GoUp

OpenItem

OpenSelectedItems

ProcessMenu

ProcessMenuForAllSelected

RefreshItems

SelectAll

Synchronize

TPTShellList events
TPTShellList Legend

Derived from TPTCustomShellList

OnAddItem

OnDblClickOpen

OnDeleteItem

OnCustomDrawSh

OnCustomDrawShEx

OnPopupHint

OnFillComplete

OnFolderChanged

FileFilter property
See Also

Applies to
TPTShellList

Delphi Declaration
property FileFilter: String;

C++Builder Declaration
__property System::AnsiString* FileFilter;

Description
The Filter property specifies the file masks used in determining which files are displayed in the shell list control. A file
mask or file filter is a file name that usually includes wildcard characters (*.PAS, for example). Only files that match
the selected file filter are displayed in the list. To specify a file filter, assign a filter string as the value of FileFilter.

Multiple filters can be used by applying semicolon (;) delimiters.

Example
To show only image files, you might use the following filter:

Delphi: PTShellList1.FileFilter := '*.bmp;*.gif;*.jpg';

C++Builder: PTShellList1->FileFilter = "*.bmp;*.gif;*.jpg";

See Also

OnAddItem event

Folder property
See Also

Applies to
TPTShellList

Delphi Declaration
property Folder: TPTShellLocator;

C++Builder Declaration
__property TPTShellLocator Folder;

Description
This property identifies the current folder for the shell list control. Set this property to change the current folder, or
read it to determine the current folder.

Examples
1. Set the current folder to a pathname.

Delphi: PTShellList1.Folder.PathName := 'C:\';

C++Builder: PTShellList1->Folder->PathName = "C:\";

2.. Set the current folder to the control panel folder.
Delphi: PTShellList1.Folder.CSIDL := csidlControls;

C++Builder: PTShellList1->Folder->CSIDL = csidlControls;

3. Display the current folder.
Delphi: ShowMessage('The current folder is '+PTShellList1.Folder.PathName);

C++Builder: ShowMessage(AnsiString("The current folder is") +
 PTShellList1->Folder->PathName);

See Also

TPTShellLocator class

System folder constants

Options property

Applies to
TPTShellList

Delphi Declaration
property Options: TPTShellListOptions;

C++Builder Declaration
__property TPTShellListOptions Options;

Description
These are the possible values that can be included in the Options set for the shell list control.

Value Meaning

ptsloAutoFill When this option is set, the contents of the list are automatically
initialised.

ptsloNonFilesystemAncestors When false, items which are not part of the filesystem, and not
parents of filesystem folders are automatically excluded from the list.
Candidates for exclusion are Control Panel, Printers and Recycle bin
for example. My Computer will not be excluded since it is the
ancestor of filesystem items.

ptsloDesignInteractive This option only has effect at design time. When true, you can
interact with the shell list control at design time. You can select items,
navigate into folders etc. If you set this option true, some of Delphi's
design time keyboard interface might not work.

ptsloDefaultKeyHandling Enables default keyboard processing. This includes such keys as
Backspace, Enter, Ctrl+A (Select All), Ctrl+C (Copy) and Ctrl+X (Cut).

ptsloContextMenus Enables context menu processing. When set a right-click on a
selected item or group of items will display a popup-menu.

ptsloDontChangeFolder When set, navigation is disabled. You cannot go into a folder, or go
back to a parent folder.

ptsloDontGoBelowBase Only valid when the shell list control is used by itself - not linked to a
shell combo and/or shell tree. Prevents the user navigating up past
the folder specified in the BaseFolder property.

ptsloDynamicRefresh When true the list monitors changes to items in it's folder. When a
change is detected the list is refreshed (a deliberate delay of 2
seconds is imposed between the detection of a change and the
update of the list).

ptsloHideFoldersWhenLinkedToTree When this option is set true and the list control is linked to a shell tree
control, file system folders are not shown in the list (like the way the
open dialogs in Windows 3.1 worked). Obviously using this feature
will make your interface non-standard, but some have argued why
waste space showing the folders in the list when they are already
visible in the tree?

ptsloOleDrag When true, the user can drag items out of the list onto other trees or
lists or into other applications.

ptsloOleDrop When true, the user can drop items onto list item.

ptsloFolderContextMenu When this option is true, and the PopupMenu property is unassigned
a default menu similar to Explorer's "no items are selected" menu is
shown. This gives access to New Document functionality. Not
implemented yet 7 Mar 98.

ptsloShowHidden When true, hidden and system files and folders are included in the

list, otherwise they are excluded.

SelectedItem property

Applies to
TPTShellList

Delphi Declaration
property SelectedItem: TPTShListData;

C++Builder Declaration
__property TPTShListData SelectedItem;

Description
Run-time and read only. Returns the data object describing the currently selected item in a single selection list. If
there is no currently selected item, the property is nil.

This property is a convenient equivalent to either of the following to expressions:

Delphi: PTShellList1.ShListData[PTShellList1.Selected.Index]

C++Builder: PTShellList1->ShListData[PTShellList1->Selected->Index]

or

Delphi: PTShellList1.GetDataFromItem(PTShellList1.Selected)

C++Builder: PTShellList1->GetDataFromItem(PTShellList1->Selected)

SortColumn property

Applies to
TPTShellList

Delphi Declaration
property SortColumn: Integer;

C++Builder Declaration
__property int SortColumn;

Description
Run-time only. One based index of the column in details view currently used to sort the items.

Negative values indicate a reverse sort order, so a value of -1 would mean the first column in reverse order for
example.

Zero (0) is used to indicate a custom sort order. When SortColumn = 0, the OnCompare event is called to determine
the sort order. You can use the GetDataFromItem method to convert the TListItem parameters into TPTShListData
objects.

ShListData property

Applies to
TPTShellList

Delphi Declaration
property ShListData[idx: Integer]: TPTShListData;

C++Builder Declaration
__property TPTShListData ShListData[int idx];

Description
Run time and read only.

This property is simply a convenient way of accessing the TPTShListData object for a given list item. The item is
specified by index.

Equivalent code is:
Delphi: data := TObject(PTShellList1.Items[idx].Data) as TPTShListData;

C++Builder: TPTShListData* data = dynamic_cast<TPTShListData*>(PTShellList1->Items[idx]->Data);

It is much more convenient this way:
Delphi: data := PTShellList1.ShListData[idx];

C++Builder: TPTShListData* data = PTShellList1->ShListData[idx];

Example
1. Get the path name for the currently focused item.

Delphi: mystr := PTShellList1.ShListData[PTShellList1.ItemFocused.Index].PathName;

C++Builder: AnsiString mystr = PTShellList->ShListData[PTShellList1->ItemFocused->Index]->PathName;

2. Get the file names of all the selected items.
Delphi

var i: Integer;
 sl: TStringList;
...
for i := 0 to PTShellList1.Items.Count-1 do
begin
 if PTShellList1.Items[i].Selected then
 with PTShellList1.ShListData[i] do
 if FileName <> '' then sl.Add(FileName);
end;

C++Builder
#include <memory> // For STL auto_ptr
...
std::auto_ptr<TStringList> sl(new TStringList);
for(int i=0; i < PTShellList1->Items->Count; i++) {
 if (PTShellList1->Items->Item[i]->Selected) {
 TPTShListData* data = PTShellList1->ShListData[i];
 if (data->FileName.IsEmpty())
 sl.get()->Add(data->FileName);
 }
}

CreateNewFolder method

Applies to
TPTShellList

Delphi Declaration
function CreateNewFolder(afEditNow: Boolean): Boolean;

C++Builder Declaration
bool __fastcall CreateNewFolder(bool afEditNow);

Description
If possible, creates a new child folder of the currently selected tree node with the name "New Folder".

If afEditNow is true then the new tree node immediately enters edit mode.

Returns true if the new folder was created successfully otherwise false.

DoCommandForAllSelected method

Applies to
TPTShellList

Delphi Declaration
procedure DoCommandForAllSelected(aCmd: PChar);

C++Builder Declaration
void __fastcall DoCommandForAllSelected(char* aCmd);

Description
Perform a string-based command for all the selected items.

For more information see Folder command strings.

DoCommandForFolder method

Applies to
TPTShellList

Delphi Declaration
procedure DoCommandForFolder(cmd: PChar);

C++Builder Declaration
void __fastcall DoCommandForFolder(char* cmd);

Description
Perform a string-based command for the current folder. The current folder is the parent of the items in the list control.

For more information see Folder command strings.

DoCommandForItem method

Applies to
TPTShellList

Delphi Declaration
procedure DoCommandForItem(aItem: TListItem; cmd: PChar);

C++Builder Declaration
void __fastcall DoCommandForItem(TListItem* aItem, char* cmd);

Description
Perform a string-based command for the given list item.

For more information see Folder command strings.

FillItems method

Applies to
TPTShellList

Delphi Declaration
procedure FillItems;

C++Builder Declaration
void __fastcall FillItems(void);

Description
FillItems clears the list and then adds items. You must call FillItems at least once for the list to function. If ptsloAutoFill
is in the Options property then FillItems is automatically called once before the list becomes visible.

You can call FillItems at any time to have all the items in the list cleared and re-added. It is generally preferable to call
RefreshNodes to update an already filled list to reflect changes.

GoUp method

Applies to
TPTShellList

Delphi Declaration
procedure GoUp(aLevels: Integer);

C++Builder Declaration
void __fastcall GoUp(int aLevels);

Description
Calling this method moves the list's Folder property up aLevels in the hierarchy.

aLevels must be greater than or equal to 1.

You can navigate to the top of the namespace with the following:
Delphi: PTShellList1.Folder.IdList := nil;

C++Builder: PTShellList1->Folder->IdList = NULL;

GetDataFromItem method

Applies to
TPTShellList

Delphi Declaration
function GetDataFromItem(aItem: TListItem): TPTShListData;

C++Builder Declaration
TPTShListData* __fastcall GetDataFromItem(TListItem* aItem);

Description
Returns the TPTShListData object associated with the given list item. This is simply a convenient wrapper around the
following code:

Delphi: result := TObject(item.Data) as TPTShListData;

C++Builder: return dynamic_cast<TPTShListData*>((TObject*)(item.Data));

OpenItem method

Applies to
TPTShellList

Delphi Declaration
procedure OpenItem(aNode: TListItem);

C++Builder Declaration
void __fastcall OpenItem(TListItem* aNode);

Description
If aNode is a folder then it is assigned to the list's Folder property and the list refilled. If aNode is not a folder then the
default menu item action is performed on that item.

OpenSelectedItems method

Applies to
TPTShellList

Delphi Declaration
procedure OpenSelectedItems;

C++Builder Declaration
void __fastcall OpenSelectedItems(void);

Description
Performs the default menu item action on all the selected items. If no items are selected, nothing happens.

ProcessMenu method

Applies to
TPTShellList

Delphi Declaration
procedure ProcessMenu(aItem: TListItem; at: TPoint);

C++Builder Declaration
void __fastcall ProcessMenu(TListItem* aItem, const TPoint& at);

Description
Creates, displays and processes hints and selection for the context menu of the given item. The menu is placed left
aligned at the screen coordinate specified by the at parameter.

ProcessMenuForAllSelected method
See Also

Applies to
TPTShellList

Delphi Declaration
procedure ProcessMenuForAllSelected(at: TPoint);

C++Builder Declaration
void __fastcall ProcessMenuForAllSelected(const TPoint& at);

Description
Creates, displays and processes the context menu for all the currently selected items. at is the top left pixel
coordinate of the popup menu in screen coordinates.

See Also

ProcessMenu method

RefreshItems method

Applies to
TPTShellList

Delphi Declaration
procedure RefreshItems;

C++Builder Declaration
void __fastcall RefreshItems(void);

Description
This method works on an already populated list. Every item in the list is checked to see if it still exists (if it doesn't it is
removed from the list) or if it new items are present (added to the list). This is the preferred method to update the list
because it does not unnecessarily refresh any items or erase the user's selection state. Use this method in
preference to FillItems which does erase the selection state.

SelectAll method

Applies to
TPTShellList

Delphi Declaration
procedure SelectAll;

C++Builder Declaration
void __fastcall SelectAll(void);

Description
Selects all the list items.

OnAddItem event

Applies to
TPTShellList

Delphi Declaration
TPTShAddItemEvent = procedure(
 aSender: TObject;
 aParentIShf: IShellFolder; // Interface to the parent folder
 aParentAbsIdList: PItemIdList; // Absolute pidl referencing the parent
 aItemRelIdList: PItemIdList; // Relative pidl of this item
 aAttribs: DWORD; // IShellFolder::GetAttributesOf flags
 var aAllowAdd: Bool) of object;

property OnAddItem: TPTShAddItemEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTShAddItemEvent)(System::TObject* aSender,

Uptshell95::IShellFolder* aParentIShf, Uptshell95::PItemIDList aParentAbsIdList,
Uptshell95::PItemIDList aItemRelIdList, int aAttribs, unsigned &afAllowAdd);

__property TPTShAddItemEvent OnAddItem;

Description
This event is called for each item added to the tree. Your handler can reject an item by setting the aAllowAdd
parameter to false.

See the example for TPTShellTree.OnAddItem for more information.

OnDblClickOpen event

Applies to
TPTShellList

Delphi Declaration
type TPTShDblClickOpenEvent = procedure(aSender: TObject;
 var afHandled: Boolean) of object;

procedure OnDblClickOpen: TPTShDblClickOpenEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTShDblClickOpenEvent)(System::TObject*

aSender, bool &afHandled);

__property TPTShDblClickOpenEvent OnDblClickOpen;

Description
This event is called just before double-click (or Enter key) processing is performed on a list item or items. It is not
called when the user double-clicks a folder or a link to a folder.

The default behaviour when a non-folder, non-link to folder item is double-clicked is to perform the default menu item
action on that item (edit for .txt files, execute for .exe files etc.). By responding to this event you can change that
behaviour.

For example, the TPTOpenDlg and TPTSaveDlg components use this event to make double-click select the item and
end the dialog.

To prevent the default action, set afHandled to true. To allow the default action, leave afHandled unchanged or assign
it to false.

OnDeleteItem event

Applies to
TPTShellList

Delphi Declaration
type TPTShListDeleteItemEvent =
 procedure(aSender: TObject;
 aItem: TListItem;
 aData: TPTShListData) of object;

property OnDeleteItem: TPTShListDeleteItemEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTShListDeleteItemEvent)(System::TObject*

aSender, Comctrls::TListItem* aNode, TPTShListData* aShListData);

__property TPTShListDeleteItemEvent OnDeleteItem;

Description
This event is called immediately before each item of the list is deleted. If you have stored any data with the item, this
is your last chance to delete it.

Example
Assuming you stored an object of your own with a list item:

Delphi: PTShellList1.ShListData[idx].Data := TMyData.Create;

C++Builder: PTShellList1->ShListData[idx]->Data = new TMyData;

When the idx node is deleted, you should respond:
Delphi

procedure TMyForm.OnListDeleteItem(aSender: TObject;
 aItem: TListItem;
 aData: TPTShListData);
begin
 TObject(aData.Data).Free;
end;

C++Builder
void __fastcall TMyForm::OnListDeleteItem(System::TObject* aSender,
Comctrls::TListItem* aNode, TPTShListData* aShListData)
{
 delete (TObject*)(aShListData->Data);
}

OnCustomDrawSh and OnCustomDrawShEx events

Applies to
TPTShellList

Delphi Declaration
type TPTShLvCustomDrawEvent =
 procedure(aSender: TObject;
 aCD: TPTCustomDraw;
 aItem: TListItem;
 aData: TPTShListData) of object;

property OnCustomDrawSh: TPTShLvCustomDrawEvent;

property OnCustomDrawShEx: TPTShLvCustomDrawEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTShLvCustomDrawEvent)(System::TObject*

aSender, Upttreelist::TPTCustomDraw* aCD, Comctrls::TListItem* aItem,
TPTShListData* aData);

__property TPTShLvCustomDrawEvent OnCustomDrawSh;

__property TPTShLvCustomDrawEvent OnCustomDrawShEx;

Description
You can change the appearance of individual items in the list by adjusting properties of the given aCD object.

Use the Font property of aCD to change the appearance of aItem.

Access shell-related data about the item with aData.

The OnLvCustomDrawSh event is only called for the ptcdsItemPrePaint draw stage, whereas
OnLvCustomDrawShEx is called for every draw stage.

See TPTListView.OnPTCustomDraw for more information.

OnFolderChanged event

Applies to
TPTShellList component

Delphi Declaration
type TNotifyEvent = procedure(sender: TObject) of object;

property OnFolderChanged: TNotifyEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject* Sender);

__property TNotifyEvent OnFolderChanged;

Description
The OnFolderChanged event occurs when the user changes the directory that is displayed in the list view. This can
happen when the user double-clicks on a directory, clicks the Up button, or uses the combo box or tree view to
navigate through the directory structure.

This event also fires if the folder is changed via code.

TPTShListData class

Unit
UPTShellControls

Description
This class handles data for each node of the TPTShellList component.

Delphi Declaration
property AbsoluteIdList: PItemIdList;

C++Builder Declaration
__property PitemIdList AbsoluteIdList;

Read only. Returns the item id list for the tree node relative to the desktop. This particular id list is used in many
other functions.

You do not need to free the returned id list. If you want to remember it (store it in a non-local variable) you must
copy it — use the CopyIdList function for this purpose.

Delphi Declaration
property Attributes: DWORD;

C++Builder Declaration
__property unsigned Attributes;

Read only. Returns the raw SFGAO_ attributes for the folder. These attributes are cached by the TPTShListData
object.

property ColText[col: Integer]: String; __property System::AnsiString* ColText[int col];
Read only. Returns the item's text for a particular column of the list control. If the column does not apply, it returns
an empty string.

property Data: Pointer; __property void* Data;
This property allows the user of the list to store extra data with each item. If you store a heap allocated structure
or object with this pointer, you must ensure that it is freed in all instances by responding to the
TPTShellList.OnDeleteItem event.

Example
This example associates a new instance of a user-defined object with the first list item.

Delphi: ShellList1.ShListData[0].Data := TMyExtraData.Create;
C++Builder: ShellList1->ShListData->Item[0]->Data = new TMyExtraData;

property DisplayName: String; __property System::AnsiString* DisplayName;
Read only. Returns the name of the item, suitable for displaying to the user. If the user has "hide extensions" on
then the display name will not include extensions. This function can take some time to execute, especially if you
call it for every item in a list of hundreds.

property Editable: Boolean; __property bool Editable;
Read only. This is not the same as the read-only file attribute. If property is true then this node is potentially
editable. Read-only files are still 'editable'. Examples of nodes that are never editable are Desktop, My Computer,
Network Neighborhood etc.

property FileName: String; __property System::AnsiString* FileName;
Read only. Returns the file name of the selected item suitable for use with system functions. To present a name to
the user you should not use the property, use DisplayName instead. Returns an empty string for non-filesystem
items.

property FileType: String; __property System::AnsiString* FileType;
Read only. Returns the description of the item.

function IsFileSystem: Boolean; bool __fastcall IsFileSystem(void);
Returns true if the item is a file system object (such as a file or directory, not including virtual folders), false if
otherwise.

function IsFolder: Boolean; bool __fastcall IsFolder(void);
Returns true if the item is a folder (including virtual folders), false if otherwise.

function IsLnkShortcut: Boolean; bool __fastcall IsLnkShortcut(void);

Returns true if the items is a '.lnk' file shortcut, false if otherwise.

property Modified: String; __property System::AnsiString* Modified;
Read only. Returns an appropriately formatted date/time string of the last modified date/time of the item. If this
property does not apply, it returns an empty string.

property Owner: TPTShellList; __property TPTShellList* Owner;
Read only. Returns the owner of the item.

property PathName: String; __property System::AnsiString* PathName;
Read only. Returns the fully qualified path name of the item. Returns an empty string for non-filesystem items.

property RelativeIdList: PItemIdList; __property PItemIdList RelativeIdList;
Read only. This property returns the item id list of the item, relative to the item's parent folder. You do not need to
free the returned item. If you want to keep it, you should copy it with CopyIdList.

property Size: String; __property System::AnsiString* Size;
Read only. If the item has a size in bytes, this property returns the string as seen in Explorer's list view - such as
"1KB". If this property does not apply, it returns an empty string. Note that Explorer's list view always shows
amounts in KB, whereas other parts of the shell use bytes, KB, MB, GB and TB. This property only shows the KB
amount.

TPTSHELLCOMBO COMPONENT

 TPTShellCombo component
Hierarchy Properties Methods Events

Delphi Unit
UPTShellControls

C++Builder Header
UPTShellControls.hpp

Description
TPTShellCombo is derived from TPTImageCombo and implements an explorer-like combobox.

You can modify the behaviour of the control with the Options property.

Use the SelectedFolder property to get and set the currently selected folder.

Use the GoUp method to navigate back up the namespace.

Use the FillItems method to initialise or refresh the contents of the control.

The control can act independently or automatically together with TPTShellTree or TPTShellList controls. To link to a
TPTShellList control set the ShellList property to the desired list control. To link to a TPTShellTree control set the
ShellTree property to the desired tree control. Only one of ShellList or ShellTree properties can be set at a time.

Hierarchy

TObject
|

TPersistent
|

TComponent
|

TControl
|

TWinControl
|

TPTCustomCombobox
|

TPTCustomImageCombo

TPTShellCombo properties
TPTShellCombo Legend

Derived from TPTCustomShellCombo

IndentPixels

Options

SelectedFolder

ShComboData

ShellList

ShellTree

TPTShellCombo methods
TPTShellCombo Legend

Derived from TPTCustomShellCombo

FillItems

GoUp

Synchronize

IndentPixels property

Applies to
TPTShellCombo

Delphi Declaration
property IndentPixels: Integer;

C++Builder Declaration
__property int IndentPixels;

Description
Number of pixels per level of indentation. Applies to all items.

Options property

Applies to
TPTShellCombo

Delphi Declaration
property Options: TPTShellComboOptions;

C++Builder Declaration
__property TPTShellComboOptions Options;

Description
These are the possible values that can be included in the Options set for the shell combo control.

Identifier Meaning

ptscoAutofill When this option is set, the contents of the combo box are automatically
initialised.

ptscoNonFilesystemAncestors When true items which are not part of the file system, and not parents of
file system folders are automatically excluded from the list. Candidates
for exclusion are Control Panel, Printers and Recycle bin for example. My
Computer will not be excluded since it is the ancestor of file system
items.

ShellList property
See Also

Applies to
TPTShellCombo

Delphi Declaration
property ShellList: TPTShellList;

C++Builder Declaration
__property TPTShellList* ShellList;

Description
You can set the ShellList property to any TPTShellList control available on the same form. When set, the list and
combo are synchronised.

You can set only one of ShellList and ShellTree. After setting ShellList, subsequent attempts to set ShellTree will be
ignored. To clear the setting, set ShellList to nil.

If ShellList is set, the combo and list work together. To make all three controls (combo, tree and list) work together,
you must set the ShellTree property of the combo and the ShellList property of the tree.

See Also

TPTShellList component

TPTShellTree component

ShellTree property
See Also

Applies to
TPTShellCombo

Delphi Declaration
property ShellTree: TPTShellTree;

C++Builder Declaration
__property TPTShellTree* ShellTree;

Description
You can set the ShellTree property to any TPTShellTree control available on the same form. When set, the tree and
combo are synchronised.

You can set only one of ShellList and ShellTree. After setting ShellTree, subsequent attempts to set ShellList will be
ignored. To clear the setting, set ShellTree to nil.

If ShellTree is set, the combo and tree work together. To make all three controls (combo, tree and list) work together,
you must set the ShellTree property of the combo and the ShellList property of the tree.

See Also

TPTShellList component

TPTShellTree component

SelectedFolder property

Applies to
TPTShellCombo

Delphi Declaration
property SelectedFolder: TPTShellLocator;

C++Builder Declaration
__property TPTShellLocator* SelectedFolder;

Description
Run time only. You can set this property to change the currently selected folder, or read it to retrieve the current
selection information.

ShComboData property

Applies to
TPTShellCombo

Delphi Declaration
property ShComboData[idx: Integer]: TPTShComboData;

C++Builder Declaration
__property TPTShComboData* ShComboData[int idx];

Description
Run time and read only.

This property is simply a convenient way of accessing the TPTShComboData object for a given tree node. The node
is specified by index.

Equivalent code is:
Delphi: data := TObject(PTShellCombo1.Items[idx].Data) as TPTShComboData;

C++Builder: TPTShComboData* data = dynamic_cast<TPTShComboData*>(PTShellCombo1->Items[idx]->Data);

It's much more convenient to express it this way:
Delphi: data := PTShellCombo1.ShComboData[idx];

C++Builder: TPTShComboData* data = PTShellCombo1->ShComboData[idx];

FillItems method

Applies to
TPTShellCombo

Delphi Declaration
procedure FillItems;

C++Builder Declaration
void __fastcall FillItems(void);

Description
FillItems adds items to the combobox. You must call FillItems at least once for the combo to function. If ptscoAutoFill
is in the Options property then FillItems is automatically called once before the combo becomes visible.

GoUp method

Applies to
TPTShellCombo

Delphi Declaration
procedure GoUp(aLevels: Integer);

C++Builder Declaration
void __fastcall GoUp(int aLevels);

Description
Calling this method moves the selected item back aLevels in the hierarchy.

aLevels must be greater than or equal to 1.

You can navigate to the top of the namespace with the following:
Delphi: PTShellCombo1.SelectedFolder.IdList := nil;

C++Builder: PTShellCombo1->SelectedFolder->IdList = NULL;

OnAddItem event

Applies to
TPTShellCombo

Delphi Declaration
property OnAddItem: TPTShAddItemEvent;

C++Builder Declaration
__property TPTShAddItemEvent OnAddItem;

Description
This event is called every time an item is added to the combo box. You have the opportunity to filter out the unwanted
items. You should respond to this event in the same way as you would respond to the OnAddItem event in
TPTShellTree.

TPTShComboData class

Delphi Unit
UPTShellControls

C++Builder Header
UPTShellControls.hpp

Description
This class handles data for each item of the TPTShellCombo component.

Delphi Declaration
property AbsoluteIdList: PItemIdList;

C++Builder Declaration
__property PitemIdList AbsoluteIdList;

Read only. Returns the item id list for the item relative to the desktop. This particular id list is used in many other
functions.

You do not need to free the returned id list. If you want to remember it (store it in a non-local variable) you must
copy it — use the CopyIdList function for this purpose.

property ParentIdList: PItemIdList; __property PitemIdList ParentIdList;
Read only. Returns the absolute item id list of the parent folder of the combo item.

You do not need to free the returned id list. If you want to remember it (store it in a non-local variable) you must
copy it — use the CopyIdList function for this purpose.

property ParentIShf: IShellFolder; __property IshellFolder ParentIShf;
Read only. The IShellFolder interface for the parent of this combo item. For the desktop node, this property is nil.

property RelativeIdList: PitemIdList; __property PitemIdList RelativeIdList;
Read only. This property returns the item id list of the item, relative to the item's parent folder. You do not need to
free the returned item. If you want to keep it, you should copy it with CopyIdList.

UPTIMAGECOMBO UNIT

UPTImageCombo unit

The UPTImageCombo unit contains the TPTImageCombo component and related classes.

Components

TPTCustomImageCombo

TPTCustomCombobox

TPTImageCombo

TPTCombobox

Classes

TPTImageComboItem

TPTCustomImageCombo component

Delphi Unit
UPTImageCombo

C++Builder Header
UPTImageCombo.hpp

Description
The TPTCustomImageCombo component is the abstract base type for the TPTImageCombo and TPTShellCombo
components.

All the properties declared in TPTCustomImageCombo are declared protected. The derived components publish
those properties that are relevant in their case.

See the references to the derived components for details.

TPTCustomCombobox component

Delphi Unit
UPTImageCombo

C++Builder Unit
UPTImageCombo

Description
The TPTCustomCombobox component is the abstract base type for the TPTCombobox and TPTImageCombo
components.

The events declared in TPTCustomCombobox are declared protected. The derived components publish those
properties that are relevant in their case.

See the references to the derived components for details.

 TPTImageCombo component
Hierarchy Properties Methods Events

Delphi Unit
UPTImageCombo

C++Builder Header
UPTImageCombo.hpp

Description
TPTImageCombo implements a combobox with an associated image and indentation level for each item. The images
are taken from an associated image list.

Hierarchy

TObject
|

TPersistent
|

TComponent
|

TControl
|

TWinControl
|

TPTCustomCombobox

TPTImageCombo properties
TPTImageCombo Legend

Derived from TPTCustomImageCombo

AutoSizeHeight

ImageList

IndentPixels

ImageComboItem

TPTImageCombo methods
TPTImageCombo Legend

Derived from TPTCustomImageCombo

AddItem

TPTImageCombo events
TPTImageCombo Legend

Derived from TPTCustomImageCombo

OnDeleteItem

OnGetItemData

AutoSizeHeight property

Applies to
TPTImageCombo

Delphi Declaration
property AutoSizeHeight: Boolean;

C++Builder Declaration
__property bool AutoSizeHeight;

Description
When this property is true, any change to the Font or ImageList of the image combo will cause the control to resize
vertically to fit the new Font or ImageList height by automatically setting the ItemHeight. The greater of the Font and
ImageList heights are used for the new item height.

Default value is true.

ImageList property

Applies to
TPTImageCombo

Delphi Declaration
property ImageList: TImageList;

C++Builder Declaration
__property Controls::TImageList* ImageList;

Description
Run-time only. The Images property for an image combo box determines which image list (TImageList) is associated
with the tree view. An image list contains a list of bitmaps that can be displayed to the left of an item's label.

IndentPixels property

Applies to
TPTImageCombo

Delphi Declaration
property IndentPixels: Integer;

C++Builder Declaration
__property int IndentPixels;

Description
Number of pixels per level of indentation. Applies to all items.

ImageComboItem property

Applies to
TPTImageCombo

Delphi Declaration
property ImageComboItem[idx: Integer]: TPTImageComboItem;

C++Builder Declaration
__property TPTImageComboItem* ImageComboItem[int idx];

Description
Run time and read only.

This property is a convenient way of accessing the TPTImageComboItem object for a given list item. The item is
specified by index.

Equivalent code is:
Delphi: data := PTShellCombo1.Items.Objects[idx] as TPTImageComboItem;

C++Builder: TPTImageComboItem* data = dynamic_cast<TPTImageComboItem*)(PTShellCombo1->Items->Objects[idx]);

It is much more convenient this way:
Delphi: data := PTShellCombo1.ImageComboItem[idx];

C++Builder: TPTImageComboItem* data = PTShellCombo1->ImageComboItem[idx];

AddItem method

Applies to
TPTImageCombo

Delphi Declaration
function AddItem(aCaption: String; aIcon: Integer; aIndent: Integer):
TPTImageComboItem;

C++Builder Declaration
TPTImageComboItem* __fastcall AddItem(System::AnsiString* aCaption, int aIcon,
int aIndent);

Description
Use this method to add items in preference to calling members of the Items property.

OnDeleteItem event
See Also

Applies to
TPTImageCombo

Delphi Declaration
TPTDeleteComboItemEvent = procedure(aSender: TObject;
 aItem: TPTImageComboItem) of object;

property OnDeleteItem: TPTDeleteComboItemEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTDeleteComboItemEvent)(System::TObject*

aSender, TPTImageComboItem* aItem);

__property TPTDeleteComboItemEvent OnDeleteItem;

Description
If you associate extra data with each combobox item, you should respond to this event to delete that extra data. If you
do not respond to this event, your extra data will leak unless freed elsewhere.

Example
This example assumes that a user-defined object of type TMyDataItem has been assigned to the Data property of the
TPTImageComboItem for each combobox item. In this situation, you might respond to this OnDeleteItem event by
freeing your object.

Delphi
procedure TMyForm.OnImageCombo1DeleteItem(aSender: TObject; aItem:
TPTImageComboItem);
begin
 TMyDataItem(aItem.Data).Free;
end;

C++Builder
void __TMyForm::OnImageCombo1DeleteItem(System::TObject* aSender,
TPTImageComboItem* aItem)
{
 delete (TMyDataItem*)(aItem->Data);
}

See Also

TPTImageComboItem class
TPTImageCombo.AddItem method

OnGetItemData event
See Also

Applies to
TPTImageCombo

Delphi Declaration

TPTImageComboGetItemDataEvent = procedure(aSender: TObject;
 aItem: TPTImageComboItem) of object;

property OnGetItemData: TPTImageComboGetItemDataEvent;

C++Builder Declaration
typedef void __fastcall (__closure * TPTImageComboGetItemDataEvent)(System::TObject*

aSender, TPTImageComboItem* aItem);

__property TPTImageComboGetItemDataEvent OnGetItemData;

Description
This event is called every time a combo item is drawn. You can use this event to defer supplying, for example,
Caption and mageIndex values for aItem. The TPTShellCombo control uses this feature to improve performance.

See Also

TPTImageComboItem class
TPTImageCombo.AddItem method

TPTImageComboItem class

Unit
UPTImageCombo

Description
This class handles data for each item of the TPTImageCombo component. The TPTImageCombo component stores
one of these objects with each item in the Items.Objects[] property. This means you should never write to the
Items.Objects array of a TPTImageCombo component. You should instead use the ImageComboItem array to access
the TPTImageComboItem objects for each combo item.

Delphi Declaration
property Caption: String;

C++Builder Declaration
__property System::AnsiString* Caption;

The text part of the combo item. The text is drawn to the right of the image.

property Data: Pointer; __property void* Data;
This property allows the user of the image combo to store extra data with each item. If you store a heap allocated
structure or object with this pointer, you must ensure that it is freed in all cases by responding to the
TPTImageCombo.OnDeleteItem event.

Example
This example associates a new instance of a user-defined object with the currently selected node.

Delphi: ImageCombo1.ImageComboItem[0].Data := TMyExtraData.Create;
C++Builder: ImageCombo1->ImageComboItem[0]->Data = new TMyExtraData;

property Indent: Integer; __property int Indent;
Number of levels to indent this item. The number of pixels per level is set by the owning TPTImageCombo
component.

property ImageIndex: Integer; __property int ImageIndex;
Index into TPTImageCombo image list to use for this item.

property OverlayIndex: Integer; __property int OverlayIndex;
Index into the TPTImageCombo image list of the image to use as an overlay. The ImageIndex image is drawn first
and the OverlayIndex is transparently drawn on top.

property Tag: Integer; __property int Tag;
Arbitrary data field available for the storage of information with each combo item.

 TPTCombobox component
Hierarchy Properties Methods Events

Delphi Unit
UPTImageCombo

C++Builder Header
UPTImageCombo.hpp

Description
TPTCombobox enhances the VCL TCombobox by adding four new events.

Hierarchy

TObject
|

TPersistent
|

TComponent
|

TControl
|

TWinControl

TPTCombobox events
TPTCombobox Legend

Derived from TPTCustomCombobox

OnDeleteItem

OnCloseUp

OnSelEndCancel

OnSelEndOk

OnDeleteItem event

Applies to
TPTCombobox

Delphi Declaration
type TPTDeleteComboItemEvent =
 procedure(aSender: TObject; aItem: TObject) of object;

property OnDeleteItem: TPTDeleteComboItemEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTDeleteComboItemEvent)(System::TObject*

aSender, void * aItem);

__property TPTDeleteComboItemEvent OnDeleteItem;

Description
This event gives you an opportunity to delete any data you have stored as an Object associated with an Item.

You can store data with an item by using the Objects property of the Items property. e.g.
Delphi: PTCombobox.Items.Objects[3] := TMyObject.Create;

C++Builder: PTCombobox->Items->Objects[3] = new TMyObject;

When that item is deleted, this OnDeleteItem event will be fired giving you an opportunity to delete the object.

Delphi
procedure TMyForm.OnCombo1DeleteItem(aSender: TObject; aItem: TObject);
begin
 aItem.Free;
end;

C++Builder
void __fastcall TMyForm::OnCombo1DeleteItem(TObject* aSender, TObject* aItem)
{
 delete aItem;
}

This event is fired whenever the combobox receives a CN_DELETEITEM notification message.

OnCloseUp event

Applies to
TPTCombobox

Delphi Declaration
property OnCloseUp: TNotifyEvent;

C++Builder Declaration
__property TNotifyEvent OnCloseUp;

Description
This event is fired when the drop down list box of the combo box has been closed. In the case when both OnChange
and OnCloseUp events are sent at the same time, you cannot predict their order.

OnSelEndCancel event

Applies to
TPTCombobox

Delphi Declaration
property OnSelEndCancel: TNotifyEvent;

C++Builder Declaration
__property TNotifyEvent OnSelEndCancel;

Description
This event is fired when the user selects an item, but then selects another control or closes the form. It indicates the
user's initial selection is to be ignored.

OnSelEndOk event

Applies to
TPTCombobox

Delphi Declaration
property OnSelEndOk: TNotifyEvent;

C++Builder Declaration
__property TNotifyEvent OnSelEndOk;

Description
This event is fired when the user selects a list item, or selects an item and then closes the list. It indicates that the
user's selection is to be processed.

It is generally preferable to process this event instead of OnChange, especially if the action to be performed when the
selection is processed is time consuming.

Consider the user who selects an item from the combo box with the keyboard. They tab to the control, drop down the
list and press the up/down keys until they reach the desired item. Every time they move up or down, an OnChange
event is fired. If you wish to perform processing based on the user selection, it is preferable to wait until they have
finished their selection before doing the processing (in most cases). This is the purpose of this event.

UPTSPLITTER UNIT

UPTSplitter unit

The UPTSpliiter unit contains the TPTSplitter control.

Classes
TPTSplitter

 TPTSplitter component
Hierarchy Properties Methods Events

Delphi Unit
UPTSplitter

C++Builder Header
UPTSplitter.hpp

Description
TPTSplitter implements a two-pane container onto which other components can be placed. At run-time, the user can
adjust the splitter bar by dragging with the left button.

The splitter bar can be dragged at design-time with the right mouse button.

Note: You can construct pane views with more than two panes by placing one TPTSplitter component inside one of
the panes of another TPTSplitter.

The following table shows which is Pane 1 and which is Pane 2 for both splitter orientations.

ptstVertical ptstHorizontal

Pane 1 Left Top

Pane 2 Right Bottom

Use the OnChange event to detect when the Position property changes.

The OnResize event is fired when the bounds of the splitter itself are resized. It is not called when the splitter bar is
positioned – use OnChange for that.

Use OnSplitterDrag and OnSplitterDrop to monitor user interaction with the splitter bar.

Hierarchy

TObject
|

TPersistent
|

TComponent
|

TControl
|

TWinControl
|

TCustomControl

TPTSplitter properties
TPTSplitter Legend

Implemented in TPTSplitter

FullDragMode

Pane1

Pane2

Pane1Color

Pane2Color

Pane1FrameStyle

Pane2FrameStyle

Pane1MinSize

Pane2MinSize

Position

Proportion

Proportional

SplitterWidth

Style

TPTSplitter methods
TPTSplitter Legend

Implemented in TPTSplitter

SwapPanes

TPTSplitter methods
TPTSplitter Legend

Implemented in TPTSplitter

OnChange

OnResize

OnSplitterDrag

OnSplitterDrop

FullDragMode property

Applies to
TPTSplitter

Delphi Declaration
type TPTFullDragMode = (ptfdOff, ptfdOn, ptfdUser);

property FullDragMode: TPTFullDragMode;

C++Builder Declaration
enum TPTFullDragMode { ptfdOff, ptfdOn, ptfdUser };

__property TPTFullDragMode FullDragMode;

Description
When being dragged, the splitter bar can appear as a hatched region with the positioning taking place after the
mouse is released, or as a continuous movement of the bar and the panes with the mouse. This is similar to the Full
Window Drag feature found in Windows.

The FullDragMode property can be one of three values:

Value Meaning

ptfdOff Full drag mode is disabled. The hatched mode of dragging is always used.

ptfdOn Full drag mode is enabled. The splitter bar continuously resizes during the drag operation.

ptfdUser Full drag mode is either enabled or disabled, depending on the user's Full Window Drag
preference as specified in the Windows Display Properties control panel applet.

In most cases, you should leave this property set to ptfdUser to respect the user's wishes.

Pane1 and Pane2 properties

Applies to
TPTSplitter

Delphi Declaration
property Pane1: TPTPane;
property Pane2: TPTPane;

C++Builder Declaration
__property TPTPane* Pane1;
__property TPTPane* Pane2;

Description
Run time and read only. Use these properties to access the components representing the panes of the splitter.

Example
This example shows how to retrieve the count of components in each pane.

Delphi
var leftcount, rightcount: Integer;
begin
 leftcount := PTSplitter1.Pane1.ControlCount;
 rightcount := PTSplitter1.Pane2.ControlCount;
end;

C++Builder
int leftcount = PTSplitter->Pane1->ControlCount;
int rightcount = PTSplitter->Pane2->ControlCount;

Pane1Color and Pane2Color properties

Applies to
TPTSplitter

Delphi Declaration
property Pane1Color: TColor;
property Pane2Color: TColor;

C++Builder Declaration
__property Graphics::TColor Pane1Color;
__property Graphics::TColor Pane2Color;

Description
Selects the color of each of the panes.

Example
This example sets the colour of the second pane to clRed.

Delphi: PTSplitter1.Pane2Color := clRed;

C++Builder: PTSplitter1->Pane2Color = clRed;

Pane1FrameStyle and Pane2FrameStyle properties

Applies to
TPTSplitter

Delphi Declaration
property Pane1FrameStyle: TPTFrameStyle;
property Pane2FrameStyle: TPTFrameStyle;

C++Builder Declaration
__property TPTFrameStyle Pane1FrameStyle;
__property TPTFrameStyle Pane2FrameStyle;

Description
Selects the style of the border of each of the panes.

If a pane will contain a single control aligned to the client area you should set the pane frame style to ptfsNone and
use the border of the contained control.

Pane1MinSize and Pane2MinSize properties

Applies to
TPTSplitter

Delphi Declaration
property Pane1MinSize: Integer;
property Pane2MinSize: Integer;

C++Builder Declaration
__property int Pane1MinSize;
__property int Pane2MinSize;

Description
Determines the minimium size of the first and second panes. This prevents the user dragging the splitter inside these
minimum ranges, however you can still programatically set the Position property to within these minimums.

Position property

Applies to
TPTSplitter

Delphi Declaration
property Position: Integer;

C++Builder Declaration
__property int Position;

Description
This property determines the position of the splitter bar, measured in pixel units.

To change the position at design time, click and drag with the right mouse button.

Proportion property

Applies to
TPTSplitter

Delphi Declaration
property Position: Single;

C++Builder Declaration
__property float Proportion;

Description
Run time only. This property returns or sets the position of the splitter bar as a proportion of the width or height of the
control (depending on horizontal or vertical orientation).

The value is a factor between 0.0 and 1.0 representing the distance from Position 0 where 0.0 = pixel 0 and 1.0 = the
width/height of the control.

A typical use of this value is to position the splitter bar fully left, right or centered. To center the bar, simply set the
Proportion property to 0.5, fully left (or top) is 0.0, fully right (or bottom) is 1.0.

Proportional property

Applies to
TPTSplitter

Delphi Declaration
property Proportional: Boolean;

C++Builder Declaration
__property bool Proportional;

Description
This property only has effect when the splitter control is being resized. When Proportional is true and the splitter
control is resized, the splitter bar is repositioned to maintain the relative percentage of space available to the left and
right panes.

When false, the splitter bar remains in the same place regardless of how big or small the splitter control gets.

SplitterWidth property

Applies to
TPTSplitter

Delphi Declaration
property SplitterWidth: Integer;

C++Builder Declaration
__property int SplitterWidth;

Description
This property determines the width in pixels of the splitter bar.

Style property

Applies to
TPTSplitter

Delphi Declaration
type TPTSplitterStyle = (ptstVertical, ptstHorizontal);

property Style: TPTSplitterStyle;

C++Builder Declaration
enum TPTSplitterStyle { ptstVertical, ptstHorizontal };

__property TPTSplitterStyle Style;

Description
This property determines in which direction the splitter bar is drawn.

ptstVertical Bar is drawn vertically and measured from left to right, left being 0.

ptstHorizontal Bar is drawn horizontally and measured from top to bottom, top begin 0.

SwapPanes method

Applies to
TPTSplitter

Delphi Declaration
procedure SwapPanes(afSwapSplit: Boolean);

C++Builder Declaration
void SwapPanes(bool afSwapSplit);

Description
Swaps the left and right panes. If afSwapSplit is true then the splitter line is also swapped. For example, if the splitter
bar was 100 pixels from the left edge and SwapPanes was called with afSwapSplit true, the bar would be moved to
100 pixels from the right edge. If afSwapSplit were false, the bar would remain 100 pixels from the left.

You can swap the panes at design-time from the right-click menu for the component.

OnChange event

Applies to
TPTSplitter

Delphi Declaration
property OnChange: TNotifyEvent;

C++Builder Declaration
__property TNotifyEvent OnChange;

Description
The OnChange event occurs after the splitter bar is positioned.

OnResize event

Applies to
TPTSplitter

Delphi Declaration
property OnResize: TNotifyEvent;

C++Builder Declaration
__property TNotifyEvent OnResize;

Description
The OnResize event occurs when the splitter control itself is resized. It is not called when the splitter bar is
positioned.

OnSplitterDrag event

Applies to
TPTSplitter

Delphi Declaration
TPTSplitterDragEvent = procedure(aSender: TObject; aPosition: Integer) of object;

property OnSplitterDrag: TPTSplitterDragEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTSplitterDragEvent)(System::TObject* aSender,

int aPosition);

__property TPTSplitterDragEvent OnSplitterDrag;

Description
This event is called while the splitter bar is being dragged. aPosition is the current drag position in pixels.

OnSplitterDrop event

Applies to
TPTSplitter

Delphi Declaration
TPTSplitterDragEvent = procedure(aSender: TObject; aPosition: Integer) of object;

property OnSplitterDrop: TPTSplitterDropEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TPTSplitterDragEvent)(System::TObject* aSender,

int aPosition);

__property TPTSplitterDragEvent OnSplitterDrop;

Description
This event is called after the splitter bar has been successfully repositioned due to mouse action. aPosition is the new
drag position.

Note this event is not called if the splitter bar position is set with code.

UPTSYSFOLDERDLG UNIT

UPTSysFolderDlg unit

The UPTSysFolderDlg unit contains Delphi-friendly component and function wrappers around the
SHBrowseForFolder function.

Classes

TPTSysFolderDlg

Types

TPTSysFolderDlgOption

TPTSysFolderDlgOption type

Delphi Declaration
type TPTSysFolderDlgOption = (fdoComputers, fdoPrinters, fdoDontGoBelowDomain,

fdoReturnFSAncestors, fdoReturnOnlyFSDirs, fdoStatusText);

TPTSysFolderDlgOptions = set of TPTSysFolderDlgOption;

C++Builder Declaration
enum TPTSysFolderDlgOption { fdoComputers, fdoPrinters, fdoDontGoBelowDomain,

fdoReturnFSAncestors, fdoReturnOnlyFSDirs, fdoStatusText };

typedef Set<TPTSysFolderDlgOption, fdoComputers, fdoStatusText>
TPTSysFolderDlgOptions;

Description

Value Description

fdoComputers When set, this flag leaves the OK button disabled until a computer is selected.
This flag is obviously most useful when combined with a domain of
csidlNetwork. See System Folder Constants (TCSIDL type).

fdoPrinters When set, this flag limits what appears in the tree to printers, or intermediate
nodes required to reach a printer. In some cases it causes everything (including
files) to be shown instead. The only case where this flag does anything useful
and works as apparently intended is when combined with the csidlNetwork
domain. In this case, it lets you browse the network and disables the OK button
unless a network printer is selected. See System Folder Constants (TCSIDL
type).

fdoDontGoBelowDomain Prevents the Network Neighbourhood from showing users in your workgroup at
the first level. You still see the “Entire Network” item, from which you can
navigate to your workgroup.

fdoReturnFSAncestors Seems to behave the same as fdoComputers.

fdoReturnOnlyFSDirs Disables the OK button unless the selected item is a file-system folder, or has
an associated file system folder. UNC pathnames are considered part of the file-
system.

fdoStatusText Adds a line of text to the dialog. You can change the text by assigning the
StatusText property during dialog execution.

TPTSysFolderDlg component

 TPTSysFolderDlg component
Properties Methods Events

Delphi Unit
UPTSysFolderDlg

C++Builder Header
UPTSysFolderDlg.hpp

Description
This class wraps the functionality provided by the SHBrowseForFolder function. This functionality is built in to
Windows 95 and Windows NT 4.0, but unfortunately you have very little control over the behaviour of the dialog. It is
certainly not as flexible as the common dialogs - there is no provision to add or position controls. If you wanted to
place a “Create New Folder” button on the SHBrowseForFolder dialog, you’re out of luck. Also, the system dialog
does not detect file-system changes.

Fortunately, the TPTShellTree class makes implementing a replacement SHBrowseForFolder dialog easy. A flexible
replacement is provided in the FPTFolderBrowseDlg unit. If you would rather use the system dialog, you can access
it with this class.

You can test the browse dialog at design time by right-clicking on the component and selecting the “Test” menu item.
This will execute the browse dialog using the current properties. Events will not be called of course.

Properties

Domain

Options

Title

Run time only Properties

Executing

FolderPath

FolderIdList

OkEnabled

StatusText

Methods

Execute

Events

OnInitialized

OnSelChanged

Executing property

Applies to
TPTSysFolderDlg

Delphi Declaration
property Executing: Boolean;

C++Builder Declaration
__property bool Executing;

Description
Read only. This property returns true during a call to the Execute method. When Execute returns, this property again
returns false.

FolderPath property
See Also

Applies to
TPTSysFolderDlg

Delphi Declaration
property FolderPath: String;

C++Builder Declaration
__property System::AnsiString FolderPath;

Description
Run time only. This property can be used as both an input and an output property. Before calling Execute, you can
assign this property to the name of a file-system folder. When Execute is called, the named folder will start selected. If
the folder doesn’t exist, then a folder somewhere along the path in FolderPath will start highlighted. If no FolderPath
Is assigned, selection begins at the Desktop folder.

Note that not all namespace elements can be represented with FolderPath. Only file-system elements - drives and
directories. If the selected item was not a file-system element (like My Computer or Control Panel) FolderPath will be
empty. In this case, you can use FolderIdList to obtain the item id list.

See Also

Execute property

FolderIdList property

Applies to
TPTSysFolderDlg

Delphi Declaration
property FolderIdList: PItemIdList;

C++Builder Declaration
__property PItemIdList FolderIdList;

Description
Run time only. This property can be used as both an input and an output property. Before calling Execute, you can
assign this property to the item id list of a namespace element. When Execute is called, the named folder will start
selected. If the folder doesn’t exist, then a folder somewhere along the path in FolderIdList will start highlighted. If no
FolderIdList Is assigned, selection begins at the Desktop folder.

OkEnabled property
See Also

Applies to
TPTSysFolderDlg

Delphi Declaration
property OkEnabled: Boolean;

C++Builder Declaration
__property bool OkEnabled;

Description
Run time and write only. Use this property from within event callbacks to change the enabled state of the OK button.

See Also

StatusText property

OnInitialized event

OnSelChanged event

StatusText property
See Also

Applies to
TPTSysFolderDlg

Delphi Declaration
property StatusText: String;

C++Builder Declaration
__property System::AnsiString StatusText;

Description
Run time and write only. Use this property from within event callbacks to change the line of status text. You must
have turned on the status line first with the fdoStatusText option.

See Also

OkEnabled property

OnInitialized event

OnSelChanged event

Domain property

Applies to
TPTSysFolderDlg

Delphi Declaration
property Domain: TCSIDL;

C++Builder Declaration
__property TCSIDL Domain;

Description
This property determines where the browse tree starts from.

Options property

Applies to
TPTSysFolderDlg

Delphi Declaration
property Options: TPTSysFolderDlgOptions;

C++Builder Declaration
__property TPTSysFolderDlgOptions Options;

Description
This property modifies the default behaviour of the browse dialog.

Title property

Applies to
TPTSysFolderDlg

Delphi Declaration
property Title: String;

C++Builder Declaration
__property System::AnsiString Title;

Description
This property sets the title text in the browse dialog. The title is not the dialog caption, it is a label just below the
caption. You can only change the dialog caption by responding to the OnInitialized event and calling
Windows.SetWindowText.

OnInitialized event
See Also

Applies to
TPTSysFolderDlg

Delphi Declaration
TFDOnInitializedEvent = procedure(aSender: TPTSysFolderDlg; hwnd: HWND) of
object;

property OnInitialized: TFDOnInitializedEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TFDOnInitializedEvent)(TPTSysFolderDlg* aSender,
int hwnd);

__property TFDOnInitializedEvent OnInitialized;

Description
This event is called after the browse dialog is created, but before it is shown. You have an opportunity to adjust the
initial selection, set the status text or change the enabled state of the Ok button.

See Also

OnSelChanged event

OkEnabled property

StatusText property

OnSelChanged event
See Also

Applies to
TPTSysFolderDlg

Delphi Declaration
TFDOnSelChangedEvent = procedure(aSender: TPTSysFolderDlg; hwnd: HWND; pidl:
PItemIdList) of object;

property OnSelChanged: TPTOnSelChangedEvent;

C++Builder Declaration
typedef void __fastcall (__closure *TFDOnSelChangedEvent)(TPTSysFolderDlg* aSender,
int hwnd, Uptshell95::PItemIDList pidl);

__property TFDOnSelChangedEvent OnSelChanged;

Description
This event is called when a selection is made in the browse tree view. You can adjust the selection, set the status text
or change the enabled state of the OK button. If you adjust the selection, then this event will be called again -
recursively - so you must set some sort of flag to avoid infinite recursion problems.

See Also

OnInitialized event

OkEnabled property

StatusText property

Execute method

Applies to
TPTSysFolderDlg

Delphi Declaration
function Execute: Boolean;

C++Builder Declaration
bool __fastcall Execute(void);

Description
The Execute method displays the dialog box in the application and returns true when the user closes the dialog box
by choosing the OK button. If the user chooses Cancel or closes the dialog box by using the system menu, Execute
returns false.

UPTShell95 Unit

UPTShell95 unit

Delphi 2 provides access to some of the functionality of SHELL32.DLL via the ShellApi unit, but crucial functionality is
not supported. The unit UPTShell95 rectifies this and also provides a set of utilities to simplify access to many of the
features of SHELL32.DLL.

Delphi 2.01 and 3 do provide a much extended ShellApi unit, but to retain compatibility with Delphi 2.0 the Shell
Control Pack units all use the declarations found in UPTShell95 in preference to ShellApi.

The functions implemented in SHELL32.DLL which are declared in UPTShell95 are:

SHAddToRecentDocs

SHBrowseForFolder

SHChangeNotify

SHGetDataFromIDList

SHGetDesktopFolder

SHGetMalloc

SHGetPathFromIDList

SHGetInstanceExplorer

SHGetSpecialFolderLocation

SHLoadInProc

SHAddToRecentDocs function

Unit
UPTShell95

Delphi Declaration
procedure SHAddToRecentDocs(flags: UINT; p: Pointer);

C++Builder Declaration
extern "C" void __stdcall SHAddToRecentDocs(int flags, void* p);

Description
Adds a document to the shell's list of recently used documents or clears all documents from the list. The user gains
access to the list through the Start menu of the Windows taskbar.

Flags can be one of the following:
SHARD_PATH p is the address of a path string.
SHARD_PIDL p is the address of an item identifier list.

If p is nil then all documents are cleared from the list.

SHGetDataFromIDList function

Unit
UPTShell95

Delphi Declaration
function SHGetDataFromIDList(pshf: IShellFolder; // Parent
 pidl: PItemIdList; // Item of Parent to process
 nFormat: Integer; // Specifies a format
 p: Pointer; // Points to output buffer
 cb: Integer // Size of buffer passed in
): HResult;

C++Builder Declaration
Not declared in C++Builder version.

Description

pshf The IshellFolder interface of the parent folder.

pidl The subfolder relative to pshf.

nFormat Can be SHGDFIL_FINDDATA (used for file system objects) or SHGDFIL_NETRESOURCE
(used for network resources).

pv Pointer to a TWin32FindData structured (for SHGDFIL_FINDDATA) or a TNetResource structure
(for SHGDFIL_NETRESOURCE)

cb Should be SizeOf(TWin32FindData) for SHGDFIL_FINDDATA or SizeOf(TNetResource)+1024
for SHGDFIL_NETRESOURCE.

The function succeeds with a return value of NOERROR. If the arguments are not compatible, E_INVALIDARG is
returned.

If nFormat Is SHGDFIL_NETRESOURCE the function will have sufficient buffer space or not. If the buffer is large
enough the string entries for network name, local name, provider and comments are placed into the buffer. If the
buffer is not large enough, only the non-string entries of TNetResource will be valid.

Example

function GetRemoteName(parent: IShellFolder; pidl: PItemIdList): String;
var tmpnres: packed record
 nres: TNetResource;
 buffer: array[0..1023] of Byte;
 end;
begin
 result := '';
 if Succeeded(SHGetDataFromIDList(parent, pidl, SHGDFIL_NETRESOURCE,
 @tmpnres, Sizeof(tmpnres)))
 then
 if Assigned(tmpnres.nres.lpRemoteName) then
 result := String(tmpnres.nres.lpRemoteName);
end;

SHGetDesktopFolder function

Unit
UPTShell95

Delphi Declaration
function SHGetDesktopFolder(var i: IShellFolder): HResult;

C++Builder Declaration
extern "C" long __stdcall SHGetDesktopFolder(IShellFolder* &i);

Description
Retrieves the IShellFolder interface for desktop. The desktop is the root of the namespace.

Returns S_OK if successful, otherwise returns an OLE error code. You can convert the code to a string with the
SysErrorMessage function.

SHGetMalloc function

Unit
UPTShell95

Delphi Declaration
function SHGetMalloc(i: IMalloc): HResult;

C++Builder Declaration
extern "C" long __stdcall SHGetMalloc(Ole2::IMalloc* &p0);

Description
Retrieves a pointer to the shell's IMalloc interface. You must use this interface to allocate and free memory that will be
used by the shell. Typically this interface is used to free item id lists and POLESTR structures returned from many
shell interface methods.

Returns S_OK if successful, otherwise returns an OLE error code. You can convert the code to a string with the
SysErrorMessage function.

SHGetPathFromIDList function

Unit
UPTShell95

Delphi Declaration
function SHGetPathFromIDList(pidl: PItemIdList; pszPath: PChar): Bool;

C++Builder Declaration
extern "C" unsigned __stdcall SHGetPathFromIDList(PItemIDList pidl, char* pszPath);

Description
Converts an item identifier list to a file system path.

pidl is an item identifier list to a file-system element, relative to the root of the shell namespace - the desktop.

Returns true if successful, false otherwise - typically when pidl is invalid or doesn’t reference a namespace object.

You will normally call ShellGetPathFromIdList instead of this function, as it simply returns a Delphi string instead of
PChar.

UPTShellUtils Unit

UPTShellUtils unit

Description
Implements low-level utilities useful for dealing with shell interfaces and structures. Also includes utilities for creating
and resolving shortcuts.

Routines

ShellMemAlloc

ShellMemFree

ShellMemRealloc

GetModuleVersion

ShellFindCSIDLFromIdList

ShellGetDisplayPathName

ShellGetFolderFromIdList

ShellGetFriendlyNameFromIdList

ShellGetIconIndex

ShellGetIconIndexFromExt

ShellGetIconIndexFromPath

ShellGetIdListFromPath

ShellGetPathFromIdList

ShellGetSpecialFolderIconIndex

ShellGetSpecialFolderPath

ShellGetSystemImageList

CreateShortcut

CreateQuickShortcut

ResolveShortcut

CopyIdList

CompareAbsIdLists

ConcatIdLists

IdListLen

IsWin95

IsWinNT

HasWin95Shell

Types

TPTModuleVersion

Constants

Folder command strings

COMCTL32.DLL versions

See Also
UPTShell95

ShellMemAlloc function
See Also

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function ShellMemAlloc(size: Cardinal): Pointer;

C++Builder Declaration
extern void* __fastcall ShellMemAlloc(Cardinal size);

Description
Allocates a block of memory using the shell’s allocator.

See Also

ShellMemFree function

ShellMemRealloc function

SHGetMalloc function

ShellMemFree procedure
See Also

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
procedure ShellMemFree(p: Pointer);

C++Builder Declaration
extern void* __fastcall ShellMemFree(void* p);

Description
Frees a block of memory previously allocated using the shell’s allocator.

See Also

ShellMemAlloc function

ShellMemRealloc function

SHGetMalloc function

ShellMemRealloc function
See Also

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function ShellMemRealloc(p: Pointer; newsize: Cardinal): Pointer;

C++Builder Declaration
extern void* __fastcall ShellMemRealloc(void* p, Cardinal newsize);

Description
Reallocates a block of memory previously allocated using the shell’s allocator.

See Also

ShellMemFree function

ShellMemAlloc function

SHGetMalloc function

GetModuleVersion function

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function GetModuleVersion(const aModuleName: String; var {out} aVersion:

TPTModuleVersion): Boolean;

C++Builder Declaration
extern bool __fastcall GetVersionNumber(const System::AnsiString aModuleName,

TPTModuleVersion& aVersion);

Description
This function retrieves the module version information for the given module. aModuleName can specify a module on
the normal module search path, or a fully qualified pathname.

If the function returns true then aVersion contains the 64-bit version number for the given module. If it returns false
then aVersion is undefined. Use GetLastError to retrieve extended error information.

Example
This example retrieves and displays the version information for COMCTL32.DLL. See the comtctl32.dll versions topic
for more comctl32.dll information.

Delphi
procedure TestGetModule;
var v: TPTModuleVersion;
begin
 if GetModuleVersion('comctl32.dll', v) then
 ShowMessage(Format('%d.%d.%d.%d',[v.w4, v.w3, v.w2, v.w1]))
 else
 ShowMessage('GetModuleVersion failed!');
end;

C++Builder
void __fastcall TestGetModule()
{
 TPTModuleVersion v;
 if (GetModuleVersion("comctl32.dll", v)) {
 char s[80];
 sprintf("%d.%d.%d.%d", v.w4, v.w3, v.w2, v.w1);
 ShowMessage(AnsiString(s));
 }
 else
 ShowMessage("GetModuleVersion failed!");
}

TPTModuleVersion type

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
TPTModuleVersion = packed record
 case Integer of
 0: (w1, w2, w3, w4: Word); // Higher number means more significant -
w4=major, w3=minor etc.
 1: (dw1, dw2: Integer);
 2: (asComp: Comp); // Treat as a single 64-bit integer
 3: (_1, _2, minor, major: Word);
 4: (_3, version: Integer);
 end;

C++Builder Declaration
union TPTModuleVersion {
 struct { WORD w1; WORD w2; WORD w3; WORD w4; };
 struct { DWORD dw1; DWORD dw2 };
 struct { WORD _1; WORD _2; WORD minor; WORD major; };
 struct { DWORD _3; DWORD version);
};

Description
This type is used by the GetModuleVersion function to retrieve the 64-bit version number for a module in such a way
as the important information like version, minor and major are easily accessible.

COMCTL32.DLL versions

Delphi Declaration
const
 COMCTL32_VER580 = (5 shl 16) or 80; // IE5 version
 COMCTL32_VER472 = (4 shl 16) or 72; // IE4.01 version
 COMCTL32_VER471 = (4 shl 16) or 71; // IE4 version
 COMCTL32_VER470 = (4 shl 16) or 70; // IE3 version
 COMCTL32_VER400 = (4 shl 16) or 00; // Win95 first release version

var
 COMCTL32_VER: TPTModuleVersion; // Current version of comctl32

C++Builder Declaration
#define COMCTL32_VER580 (327760) // IE5 version
#define COMCTL32_VER472 (262216) // IE4.01 version
#define COMCTL32_VER471 (262215) // IE4 version
#define COMCTL32_VER470 (262214) // IE3 version
#define COMCTL32_VER400 (262144) // Win95 first release version

extern TPTModuleVersion COMCTL32_VER; // Current ver of comctl32

Description
The COMCTL32_VER variable is assigned in the initialisation part of the UPTShellUtils unit to the version number of
the system comctl32.dll module.

Constants such as COMCTL32_VER471 and COMCTL32_VER470 can be compared against
COMCTL32_VER.version to check the capabilities of the custom controls contained in comctl32.dll. It is also a good
indicator of the installed version of Internet Explorer.

Example
This example shows how to use the TPTModuleVersion type to easily compare comctl32.dll versions.

Delphi
if COMCTL32_VER.version <= COMCTL32_VER470 then
 ShowMessage('Internet Explorer 3 or earlier')
else
 ShowMessage('Internet Explorer 4 or later');

C++Builder
if (COMCTL32_VER.version <= COMCTL32_VER470)
 ShowMessage("Internet Explorer 3 or earlier");
else
 ShowMessage("Internet Explorer 4 or later");

ShellFindCSIDLFromIdList function

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function ShellFindCSIDLFromIdList(aIdList: PItemIdList): TCSIDL;

C++Builder Declaration
extern TCSIDL __fastcall ShellFindCSIDLFromIdList(Uptshell95::PItemIDList aPidl);

Description
Given an item id list, this function will return the TCSIDL constant that matches. If not match is found, then csidlNone
is returned.

Note that this function is very slow. It simply checks aIdList against each TCSIDL until it finds a match, or all TCSIDL
values are processed.

ShellGetDisplayPathName function

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function ShellGetDisplayPathName(const pathname: String): String;

C++Builder Declaration
extern System::AnsiString __fastcall ShellGetDisplayPathname(System::AnsiString

pathname);

Description
Files and directory names are case-insensitive, case-retained in Windows 95 and NT. This presents a programming
problem when the user is allowed to key-in the name of a file system object. As long as that name is used internally,
there is no problem - since case is functionally irrelevant. If the name is displayed to the user however, they expect to
see the proper casing of the pathname.

For example:
· A file exists named “C:\My Documents\Sales Report 1996.xls”
· The user keys in this name somewhere - maybe in an edit field or as a command line parameter.
· They can’t remember the casing, of course, so they type:

“C:\MY DOCUMENTS\SALES REPORT 1996.XLS”
· If we want to display that name back to the user (say in the form caption) it is not obvious how we should

obtain the properly cased name.
· A call to ShellGetDisplayPathName will return the properly cased name.

If the file doesn’t exist or any other error occurs, the result is an empty string.

ShellGetFolderFromIdList function

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function ShellGetFolderFromIdList(p: PItemIdList; var ish: IShellFolder):
HResult;

C++Builder Declaration
extern long __fastcall ShellGetFolderFromIdList(Uptshell95::PItemIDList p,

Uptshell95::IShellFolder* &ish);

Description
Given the item id list p (relative to the desktop) returns the associated IShellFolder interface.

Returns S_OK if successful, otherwise returns an OLE error code. You can convert the code to a string with the
SysErrorMessage function.

ShellGetFriendlyNameFromIdList

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
type TPTFriendlyNameFlags = (ptfnNormal, ptfnInFolder, ptfnForParsing);

function ShellGetFriendlyNameFromIdList(ishf: IShellFolder;
 pidl: PItemIdList;
 flags: TPTFriendlyNameFlags): String;

C++Builder Declaration
enum TPTFriendlyNameFlags { ptfnNormal, ptfnInFolder, ptfnForParsing };

extern System::AnsiString __fastcall
ShellGetFriendlyNameFromIdList(Uptshell95::IShellFolder* ishf,
Uptshell95::PItemIDList pidl, TPTFriendlyNameFlags flags);

Description
Retrieves the display name for the specified file object or subfolder. The pidl parameter specifies the item for which
the name will be retrieved. If ishf is nil then pidl must be an absolute id list, otherwise it must be relative to ishf. The
name can be retrieved in a number of formats using different values in the flags parameter.

Code Usage

ptfnNormal Default display name that is suitable for a file object displayed by itself, as shown in the
following examples.

ptfnInFolder Display name that is suitable for a file object displayed within its respective folder, as
shown in the following examples.

ptfnForParsing Display name that can be passed to the ParseDisplayName method of the parent folder's
IshellFolder object.

Code File system path Display name Notes

ptfnNormal C:\Windows\file.txt file If not showing extensions.

ptfnInFolder C:\Windows\file.txt

\\Computer\Share

C:\

file

Share

My Drive (C)

Where C has the volume name My Drive.

ptfnForParsing C:\Windows\file.txt

\\Computer\Share

C:\

C:\Windows\file.txt

\\Computer\Share

C:\

ShellGetIconIndex function

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function ShellGetIconIndex(absIdList: PItemIdList; uFlags: DWORD): Integer;

C++Builder Declaration
extern int __fastcall ShellGetIconIndex(Uptshell95::PItemIDList, unsigned

uFlags);

Description
Returns the index into the system image list of the icon associated with the absIdList namespace item.

Use this function in conjunction with ShellGetSystemImageList to get the index of the icon for individual shell items.

Flags applicable to uFlags
SHGFI_SMALLICON Use this flag to get the index of icons from the small image list - there is no

difference between the index of icons in the small and large image lists.

SHGFI_LARGEICON Use this flag to get the index of icons from the large image list - there is no
difference between the index of icons in the small and large image lists.

SHGFI_OPENICON Many shell items have the concept of open and closed states (folders for
example). Specify this flag to retrieve the icon for the open state. Leave this flag
out to get the icon for the closed state.

Example
This example retrieves the open and closed icon states for the given item id list.

Delphi
procedure GetOpenCloseIcons(p: PItemIDList; var openicon, closedicon:
Integer);
begin
 openicon := ShellGetIconIndex(p, SHGFI_SMALLICON or SHGFI_OPENICON);
 closedicon := ShellGetIconIndex(p, SHGFI_SMALLICON);
end;

C++Builder
void __fastcall GetOpenCloseIcons(PItemIDList p, int& openicon, int& closedicon)
{
 openicon = Uptshellutils::ShellGetIconIndex(p, SHGFI_SMALLICON | SHGFI_OPENICON);
 closedicon = Uptshellutils::ShellGetIconIndex(p, SHGFI_SMALLICON);
}

ShellGetIconIndexFromExt function

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function ShellGetIconIndexFromExt(const ext: String; uFlags: DWORD): Integer;

C++Builder Declaration
extern int __fastcall ShellGetIconIndexFromExt(const System::AnsiString ext,

unsigned uFlags);

Description
Returns the index into the system image list of the icon associated with the given file extension. Include the leading
period, as in ‘.txt’.

Use this function in conjunction with ShellGetSystemImageList to get the index of the icon for particular file
extensions.

See ShellGetIconIndex for a list of allowable values for the uFlags parameter.

Example
This example retrieves the icon for text files.

Delphi
function GetTextIcon: Integer;
begin
 result := ShellGetIconIndexFromExt('.txt', 0);
end;

C++Builder
int __fastcall GetTextIcon()
{
 return ShellGetIconIndexFromExt(".txt", 0);
}

ShellGetIconIndexFromPath function

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function ShellGetIconIndexFromPath(

const path: String; uFlags: DWORD): Integer;

C++Builder Declaration
extern int __fastcall ShellGetIconIndexFromPath(

const System::AnsiString path, unsigned uFlags);

Description
Returns the index into the system image list of the icon associated with the given file or folder path.

Use this function in conjunction with ShellGetSystemImageList to get the index of the icon for individual folders and
files without first obtaining their item id list.

See ShellGetIconIndex for a list of allowable values for the uFlags parameter.

Example
This example retrieves the open and closed icon states for folders.

Delphi
procedure GetFolderIcons(var openicon, closedicon: Integer);
begin
 openicon := ShellGetIconIndexFromPath('c:\', SHGFI_OPENICON);
 closedicon := ShellGetIconIndexFromPath('c:\', 0);
end;

C++Builder
void __fastcall GetOpenCloseIcons(PitemIDList p, int& openicon, int& closedicon)
{
 openicon = Uptshellutils::ShellGetIconIndexFromPath("c:\\", SHGFI_OPENICON);
 closedicon = Uptshellutils::ShellGetIconIndexFromPath("c:\\", 0);
}

ShellGetIdListFromPath function

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function ShellGetIdListFromPath(const path: String; var p: PItemIdList): HResult;

C++Builder Declaration
extern long __fastcall ShellGetIdListFromPath(const System::AnsiString path,

Uptshell95::PItemIDList & p);

Description
Given the pathname of a filesystem folder or file, returns the item id list p (relative to the desktop).

To convert an item id list to a pathname use ShellGetPathFromIdList.

You must free the returned item id list with ShellMemFree or the shell’s IMalloc interface.

Returns S_OK if successful, otherwise returns an OLE error code. You can convert the code to a string with the
SysErrorMessage function.

ShellGetPathFromIdList function

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function ShellGetPathFromIdList(pidl: PItemIdList): String;

C++Builder Declaration
extern System::AnsiString __fastcall ShellGetPathFromIdList(Uptshell95::PItemIDList
pidl);

Description
Converts an item id list to a pathname. Returns an empty string on error.

To convert a pathname to an item id list use ShellGetIdListFromPath.

ShellGetSpecialFolderIconIndex function

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function ShellGetSpecialFolderIconIndex(csidl: TCSIDL; uFlags: DWORD): String;

C++Builder Declaration
extern int __fastcall ShellGetSpecialFolderIconIndex(TCSIDL csidl, unsigned
uFlags);

Description
Returns the index into the system image list of the icon associated with the special folder specified by csid.

Use this function in conjunction with ShellGetSystemImageList to get the index of the icon for special shell folders.

Flags applicable to uFlags
SHGFI_SMALLICON Use this flag to get the index of icons from the small image list - there is no

difference between the index of icons in the small and large image lists.

SHGFI_LARGEICON Use this flag to get the index of icons from the large image list - there is no
difference between the index of icons in the small and large image lists.

SHGFI_OPENICON Many shell items have the concept of open and closed states (folders for
example). Specify this flag to retrieve the icon for the open state. Leave this flag
out to get the icon for the closed state.

ShellGetSpecialFolderPath function
See Also

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function ShellGetSpecialFolderPath(ahwnd: HWND; csidl: TCSIDL): String;

C++Builder Declaration
extern System::AnsiString __fastcall ShellGetSpecialFolderPath(int ahwnd, TCSIDL
csidl);

Description
Returns the pathname of the special folder.    csidl must be one of the system folder constants.

If acquiring the pathname requires a user interface to be presented (such as a password request dialog) then ahwnd
is used as the parent of the dialog. If ahwnd is 0 then if an interface is required the function will simply fail.

If an error occurs the function returns an empty string.

See Also

SHGetSpecialFolderLocation function

ShellGetSystemImageList function

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
type TPTShellIconSize = (ptsizSmall, ptsizLarge);

function ShellGetSystemImageList(aSize: TPTShellIconSize): THandle;

C++Builder Declaration
enum TPTShellIconSize { ptsizSmall, ptsizLarge };

extern int __fastcall ShellGetSystemImageList(TPTShellIconSize aSize);

Description
Returns the handle of the selected system image list, or 0 on error.

The system maintains two image list caches of every icon used in the shell — one for large icons, one for small.
Many shell oriented functions and interfaces return an index into this list for shell objects. This removes any need for
you to load and cache shell icons yourself, just use an index into the system list and let the system handle it. The
same index can be used for both small and large image lists.

Example
Assume SmallList and LargeList are of members of type TImageList.

Delphi
procedure TMyForm.InitImageLists;
begin
 SmallList.ShareImages := true; // This is ESSENTIAL!
 SmallList.Handle := ShellGetSystemImageList(ptsizSmall);

 LargeList.ShareImages := true;
 LargeList.Handle := ShellGetSystemImageList(ptsizLarge);
end;

C++Builder
void __fastcall TMyForm::InitImageLists()
{
 SmallList->ShareImages = true; // This is ESSENTIAL!
 SmallList->Handle = Uptshellutils::ShellGetSystemImageList(ptsizSmall);
 LargeList->ShareImages = true;
 LargeList->Handle = Uptshellutils::ShellGetSystemImageList(ptsizLarge);
}

You must set your image list component to ShareImages=true, otherwise when the imagelist is deleted it will
take the system image list with it. Explorer looks kinda funny after you have deleted its icon image list!

CreateShortcut function

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function CreateShortcut(const linkPathName: String; const linkData: TLinkData):
HResult;

C++Builder Declaration
extern long __fastcall CreateShortcut(const System::AnsiString linkPathName, const
TLinkData &linkData);

Description
This function provides access to all shortcut features via the TLinkData record. You typically don’t need all this
functionality. Most of the time, CreateQuickShortcut is a better alternative.

LinkPathName is the name of the shortcut file to be created.
LinkData is an input record used to access function options.

Returns S_OK if successful, otherwise returns an OLE error code. You can convert the code to a string with the
SysErrorMessage function.

TLinkData record

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
type TLinkDataOption = (ldoUseDesc, ldoUseArgs, ldoUseIcon,
 ldoUseWorkDir, ldoUseHotKey, ldoUseShowCmd);
 TLinkDataOptions = set of TLinkDataOption;

 TLinkData = record
 // Mandatory members for creating shortcuts
 pathName: String; // Pathname of original object
 options: TLinkDataOptions; // Set of flags indicating optional member usage

 // Optional members
 desc: String; // Description of link file (its filename for example)
 args: String; // Command-line arguments
 iconPath: String; // Pathname of file containing the icon
 iconIndex: Integer; // Index of icon in 'iconPath'. -ve values are
resource ids.
 workingDir: String; // Working directory when process starts
 showCmd: Integer; // How to show the initial window
 hotkey: Word; // Hot key for the link
 noIU: Boolean; // Prevent any error or search dialogs from displaying

 // Members used by ResolveShortcut
 idList: PItemIdList;
 w32fd: TWin32FindData;
 end;

C++Builder Declaration
enum TlinkDataOption { ldoUseDesc, ldoUseArgs, ldoUseIcon, ldoUseWorkDir, ldoUseHotKey,
ldoUseShowCmd };

typedef Set<TlinkDataOption, ldoUseDesc, ldoUseShowCmd> TLinkDataOptions;

struct TlinkData
{
// Mandatory members for creating shortcuts
System::AnsiString pathName; // Pathname of original object
TlinkDataOptions options; // Set of flags indicating optional member usage

// Optional members
System::AnsiString desc; // Description of link file (its filename for example)
System::AnsiString args; // Command-line arguments
System::AnsiString iconPath; // Pathname of file containing the icon
int iconIndex; // Index of icon in 'iconPath'. -ve values are resource ids.
System::AnsiString workingDir; // Working directory when process starts
int showCmd; // How to show the initial window
Word hotkey; // Hot key for the link
bool noUI; // Prevent any error or search dialogs from displaying

// Members used by ResolveShortcut
Uptshell95::TitemIDList *idList;
_WIN32_FIND_DATAA w32fd;
};

Description
To create a shortcut, you must fill in the mandatory members and call CreateShortcut. Use the options member to
specify which optional members you have filled in.

Valid values for showCmd are SW_SHOWNORMAL, SW_SHOWMAXIMIZED and SW_SHOWMINNOACTIVE.

To resolve a shortcut, you can simply call ResolveShortcut and pass an uninitialised TLinkData structure.

CreateQuickShortcut function

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function CreateQuickShortcut(const linkPathName, targetPathName: String): HResult;

C++Builder Declaration
extern long __fastcall CreateQuickShortcut(const System::AnsiString linkPathName,
const System::AnsiString targetPathName);

Description
This is a version of CreateShortcut with reduced flexibility, but easier to use.

LinkPathName is the name of the shortcut file to be created.
TargetPathName is the object to which the new shortcut will point.

Returns S_OK if successful, otherwise returns an OLE error code. You can convert the code to a string with the
SysErrorMessage function.

Example
This example creates a shortcut on the desktop.

Delphi 2
var hr: HResult;
. . .
hr := CreateQuickShortcut(ShellGetSpecialFolderPath(0, csidlDesktop) + '\My
Shortcut.lnk', 'myapp.exe');
if Ole2.Failed(hr) then raise Exception.Create(SysErrorMessage(hr));

Delphi 3
OleCheck(CreateQuickShortcut(ShellGetSpecialFolderPath(0, csidlDesktop) + '\My
Shortcut.lnk', 'myapp.exe'));

C++Builder
HRESULT hr = Uptshellutils::CreateQuickShortcut(ShellGetSpecialFolderPath(0,

csidlDesktop) + "\My Shorcut.lnk", "myapp.exe");
if (Ole2::Failed(hr))
 throw new Exception(SysErrorMessage(hr));

ResolveShortcut function

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function ResolveShortcut(const linkPathName: String; var linkData:
TLinkDataTop_TLinkData; fWantIdList: Boolean): HResult;

C++Builder Declaration
extern long __fastcall ResolveShortcut(const System::AnsiString linkPathName,
TLinkData &linkData, bool fWantIdList);

Description
This functions fills in the passed linkData structure with given shortcut's details.

If the fWantIdList parameter is true then the idList member of the linkData structure is set to the id list of the item
referenced by the shortcut. You must remember to free this item with the ShellMemFree procedure.

Returns S_OK if successful, otherwise returns an OLE error code. You can convert the code to a string with the
SysErrorMessage function.

Example
This example resolves a shortcut and displays a few of its parameters in a message box.

Delphi
procedure ResolveIt;
var dwres: DWORD;
 linkData: TLinkData;
begin
 dwres := ResolveShortcut('c:\mytest.lnk', linkData, true);
 if Failed(dwres) then raise Exception.Create(SysErrorMessage(dwres));
 ShowMessage(Format('Points to: %s'#13'Icon path: %s'#13'Working Dir: %s',
 [linkData.pathName, linkData.iconPath,
linkData.workingDir]));
 ShellMemFree(linkData.idList);
end;

C++Builder
void __fastcall ResolveIt()
{
 TLinkData linkData;
 HRESULT hr = Uptshellutils::ResolveShortcut("C:\mytest.lnk", linkData, true);
 if (Ole2::Failed(hr)) throw new Exception(SysErrorMessage(hr));
 char s[256];
 sprintf(s, "Points to: %s\nIcon path: %s\nWorking Dir:%s", linkData.pathName,

linkData.iconPath, linkData.workingDir);
 ShowMessage(s);
 ShellMemFree(linkData.idList);
}

CopyIdList function
See Also

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function CopyIdList(ishm: IMalloc; pidl: PItemIdList): PItemIdList;

C++Builder Declaration
extern PItemIdList __fastcall CopyIdList(IMalloc* ishm, PItemIdList pidl);

Description
Copies an item id list using the given allocator. The ishm parameter must be the shell allocator interface returned with
the SHGetMalloc function or nil. If nil, then the SHGetMalloc is used internally to aquire the shell’s IMalloc interface.
Performance is reduced if you pass nil.

You must free the returned item id list with the shell allocator, or ShellMemFree.

See Also

ConcatIdLists function

IdListLen function

SHGetMalloc function

ShellMemFree function

Item ID Lists

CompareAbsIdLists function
See Also

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function CompareAbsIdLists(pidl1, pidl2: PItemIdList): Integer;

C++Builder Declaration
extern int __fastcall CompareAbsIdLists(PItemIdList pidl1, PItemIdList pidl2);

Description
Compares to absolute item id lists. Absolute id lists are relative to the desktop folder.

Returns one of four values:

Code Meaning
MAXINT An error occurred.
less than zero The first item should precede the second (pidl1 < pidl2).
greater than zero (not MAXINT) The first item should follow the second (pidl1 > pidl2).
zero The two items are the same (pidl1 = pidl2).

See Also

SHGetDesktopFolder function

Item ID Lists

ConcatIdLists function
See Also

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function ConcatIdLists(ishm: IMalloc; aFirst, aSecond: PItemIdList): PItemIdList;

C++Builder Declaration
extern PItemIdList __fastcall ConcatIdLists(IMalloc* ishm, PItemIdList aFirst,
PItemIdList aSecond);

Description
Concatenates the two item id lists. A new block of memory is allocated using the given ishm allocator. This should be
the shell allocator acquired with SHGetMalloc or nil. If nil, then SHGetMalloc is used internally to aquire the shell’s
IMalloc interface. Performance is reduced if you pass nil.

You must free the returned item id list with the shell allocator, or ShellMemFree.

See Also

CopyIdList function

IdListLen function

SHGetMalloc function

ShellMemFree function

Item ID Lists

IdListLen function
See Also

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function IdListLen(pidl: PItemIdList): Integer;

C++Builder Declaration
extern int __fastcall IdListLen(PItemIdList pidl);

Description
Returns the length of the given item id list in bytes.

pidl can be nil in which case 0 is returned.

See Also

ConcatIdLists function

CopyIdList function

IsWin95 function
See Also

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function IsWin95: Boolean;

C++Builder Declaration
extern bool __fastcall IsWin95(void);

Description
Returns true if running under Windows 95.

See Also

IsWinNT function

HasWin95Shell function

IsWinNT function
See Also

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function IsWinNT: Boolean;

C++Builder Declaration
extern bool __fastcall IsWinNT(void);

Description
Returns true if running under Windows NT.

See Also

IsWin95 function

HasWin95Shell function

HasWin95Shell function
See Also

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Delphi Declaration
function HasWin95Shell: Boolean;

C+Builder Declaration
extern bool __fastcall HasWin95Shell(void);

Description
Returns true if running under the 'new' shell introduced in Windows 95. Currently Windows 95 and Windows NT 4.0+
cause this function to return true. If    this function returns false, you should not use any of the Shell Control Pack
components or functions.

See Also

IsWin95 function

IsWinNT function

Folder Command Strings

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

Description
Most system folders support string-based command execution. If you tell any system folder to execute the
"Properties" command, the folder will display its properties dialog. The UTPShellUtils unit contains some of the most
common command strings. The list is not exhaustive.

To execute one of these commands for a folder in the TPTShellTree component use the DoCommandForNode
method.

To execute a command for an item in the TPTShellList component use the DoCommandForItem,
DoCommandForFolder or DoCommandForAllSelected methods.

Delphi Declarations
// -- These commands are available to most folders --
const PTSH_CMDS_DELETE = 'delete';
 PTSH_CMDS_PASTE = 'paste';
 PTSH_CMDS_CUT = 'cut';
 PTSH_CMDS_COPY = 'copy';
 PTSH_CMDS_PROPERTIES = 'properties';
 PTSH_CMDS_EXPLORE = 'explore'; // Opens a Windows explorer
 PTSH_CMDS_OPEN = 'open'; // Opens a Windows explorer folder-view
 PTSH_CMDS_FIND = 'find'; // Open the find dialog
 PTSH_CMDS_LINK = 'link'; // Same as 'Create Shortcut' menu item

// -- Commands used by Dialup Networking
const PTSH_CMDS_DUN_CREATE = 'create'; // Create new connection wizard
 PTSH_CMDS_DUN_CONNECT = 'connect'; // Make a connection

C++Builder Declarations
#define PTSH_CMDS_DELETE "delete"
#define PTSH_CMDS_PASTE "paste"
#define PTSH_CMDS_CUT "cut"
#define PTSH_CMDS_COPY "copy"
#define PTSH_CMDS_PROPERTIES "properties"
#define PTSH_CMDS_EXPLORE "explore"
#define PTSH_CMDS_OPEN "open"
#define PTSH_CMDS_FIND "find"
#define PTSH_CMDS_LINK "link"
#define PTSH_CMDS_DUN_CREATE "create"
#define PTSH_CMDS_DUN_CONNECT "connect"

Types

License

Copyright
This product in whole or in part, including all files, data, and documentation, from here on referred to as "Product" is
Copyright © 1996-2001 Plasmatech Software Design, all rights reserved, and is protected by the copyright laws of the
State of Victoria and the Commonwealth of Australia, international treaties and all other applicable national or
international laws.

Disclaimer
This product and the accompanying files and documentation are sole "as is" and without warranties as to
performance or merchantability or any other warranties whether expressed or implied. The user and/or licensee
assume the entire risk as to the use of this product. Plasmatech Software Design does not assume liability for the use
of this product beyond the original purchase price. In no event will Plasmatech Software Design be liable for
additional direct or indirect damages including any lost profits, lost savings, or other incidental or consequential
damages arising from any defects, or the use or inability to use this product, even if Plasmatech Software Design has
been advised of the possibility of such damages.

Restrictions
You may not use, copy, modify, translate, or transfer the product or any copy except as expressly defined in this
agreement. You may not remove or modify any copyright notice. This license agreement may not be modified or
supplemented without the written consent of Plasmatech Software Design.

Operating license
You have the non-exclusive right to use the product only by a single person, on a single computer at a time. In group
situations, where multiple persons will use the Product, you must purchase an individual license for each member of
the group. A person is considered using the Product if he or she has any components of the Product installed
on his or her component palette. Use over a network is permitted provided that only individuals possessing a
license use the Product. This means many individuals can use a single copy of the Product, residing on a server only
if each and every user has a license. It is a breach of this agreement to use a networked copy of the Product if you do
not possess a valid license.

Distribution license
You must be registered with Plasmatech Software Design to distribute executable or compiled code in accordance
with this license. You may not reproduce or distribute copies of any part of the Product, or the Product as a whole,
including all source code, help files or code units.

You may not use the Product in any other product that directly or indirectly competes with the Product.
Specifically, you may not include this Product as part of any code library, as source code or in compiled form. You
may not provide any means by which your users could create, modify, or incorporate any part of this Product into their
own products.

Back-up and transfer
You may make one copy of the Product solely for back-up purposes. You may transfer the Product to someone else
only of that person agrees with the terms and conditions detailed in this agreement. If you transfer the product you
must destroy your copy of it, including all documentation and any back-up copy you may have.

Terms
This license is effective until terminated. You may terminate it by destroying the complete product and any backup
copy. This license will also terminate if you fail to comply with any terms or conditions of this agreement. You agree
upon such termination to destroy all copies of the Product.

Rights and restrictions
All other rights and restrictions not specifically granted in this license are reserved worldwide by Plasmatech Software
Design.

Ordering Information

Pricing

Product Price in US dollars

Shell Control Pack with source $149 per user.

Shell Control Pack DCU only $79 per user.

Shell Control Pack DCU
to source upgrade

$70 per user.

Shell Control Pack Site License
(with source)

$1500 unlimited users within a single company.

Every developer in your organisation that has any Shell Control Pack components installed on their component
palette must have a license. All licenses in an organisation must be equivalent, i.e. they must be source code or DCU
only.

Purchase of the "site license" permits any number of users employed by the registered organisation to install and use
the shell control pack within 160 kilometres of the registered address. For worldwide licenses contact Plasmatech
directly.

Payment Options

Secure Online Ordering via Credit Card
This is by far the most popular form of payment, as it avoids all the inconvenience of currency conversion and
snail mail. You can pay with MasterCard, Visa, Amex, Discover or Diners via secure server. Visit the ordering page
on our website at http://plasmatech.com/ordering.htm for details.

Telephone Orders
Phone orders should be made during Californian business hours (GMT -8:00), Monday to Saturday. There is a $5
handling charge for telephone orders. Have your credit card and e-mail address details ready, and ensure you
have the product name correct.

Telephone Order Number +1 (510) 658-5244

Where '+' is your international dialing prefix. Leave the '+1' out if you are ordering from within the USA or Canada.

Offline payments
Visit the ordering page on our website at http://plasmatech.com/ordering.htm for details.

Support
Purchasing entitles you to unlimited support via e-mail, minor upgrades and bug fix releases indefinitely and major
version upgrades for one year.

See Also
Contact Information

Contact Information

E-mail is the preferred way of contacting us - remember that your registration entitles you to unlimited support via e-
mail.

Web: http://plasmatech.com

E-mail: General inquiries:

Product support:

info@plasmatech.com

support@plasmatech.com

Fax: +61 3 9545 1486
Where + is your international dialing prefix (011in the US)

Post: Plasmatech Software Design
69 Remington Drive
Glen Waverley VIC 3150
AUSTRALIA

Glossary Terms

Plasmatech Software Design 2048-bit PGP Public Key

Right-click in this popup and select copy. Paste into a file, such as Plamatk.asc
and add that file to your PGP keyring.

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.6.3i
mQENAzJIkyoAAAEIAMPCwhFrdtKBBpwUf/Tun079j52kWX2fWRlpMpEXkZ1WtX4X
NPhZpzRRBMM5KN/9ln4Rck2wI3uTF3ynG80b0GSmu6Bthcyx9qxPtbilayw/BBAP
C3BMkid4fp/7Dbll3tjqAvEc6KLwMNKKOBqvn2m31buB7TvKj+Xlx3sRd7PQwTsU
mTWUNjrrOeldTPyFHqp5zXHBHAYMaruzgDCJpjeXhVJfBNeUHZCibcwzrmq9JBo0
J4Abibg6dgeBzmPwvd2Fek/6ZVawpD0+XKU4zHDsu6FkkBtuTTI5dGoRSIUCkdJ8
eVUB6DwIW0qfzsst7gWA2xPq543G0Wk5riOPQlUABRG0NlBsYXNtYXRlY2ggU29m
dHdhcmUgRGVzaWduIDxQbGFzbWF0ZWNoQG5lbWVzaXMuY29tLmF1PokBFQMFEDJI
kyrRaTmuI49CVQEBgAsH/ioy+eet7Z0Ko838JhpoRO+8WzD8mKUWiCf65v+yQmXC
nBXmqQQ4EHUNkrpoUcMVztj0pJ3PpvYF7SwFvuShbytB4uQUvKf7sRscru6QkaC0
LlmdyuI6mpTpDhe9PKJx9CPtLNfYPqGDEfAWHiV3g7OVkFOZJW/UVP1t7kuvaYn7
nbkgrowgc9TiSiSpKsi9K7+YjYuiTjNhAFZGljNBTz1PfQSWSX0agtxhROZgkKdg
Gqjncjlmaqyi9GjERMMUa6HG6VTe9gTj2dLczvFNQrblr6KMWaA1vNbyt+q9mP3r
X11xeGss+NMWTMc7UFsxiCfDwrVEJ6wP7b/doy5SB74=
=UQvT
-----END PGP PUBLIC KEY BLOCK-----

Item ID Lists

An item identifier (item ID) is a binary data structure that uniquely identifies an object in the object’s parent folder.
When you need to trace a path to an item from the desktop, you use an item ID list. The user never sees item IDs;
display names are shown instead.

The concept of a binary list of items allows the introduction of non-filesystem name space items. Items such as My
Computer, and Network Neighbourhood have no pathname.

Think of your system. From a filesystem perspective you have an A: drive, maybe a B: drive, a number of hard-disk
partitions C:, D: etc. maybe some mapped network drives and a CD-ROM. If you were using a command line, where
could you go to get a directory of all these things? The answer is you can't. The pathname based filesystem has no
concept of My Computer (a folder that contains all the drives on your computer). Within a drive, directories are stored
hierarchically but the hierarchy stops at the root directory of each drive. You cannot go "up one level" from the root
directory of a drive.

Windows 95 extended the filesystem hierarchy "up" two levels by adding non-filesystem folders, to produce an
abstract name space. The root of the hierarchy is the Desktop folder, which is the only folder that has no parent.

If we have extra levels in our name space hierarchy, how do we uniquely identify them? The well-known pathname is
no longer sufficient.

Consider the following pathname.

C:\Dir1\Dir2\file1.txt

If we represent each item ID brace-delimited, the item ID list would be:

[My Computer] [C:] [Dir1] [Dir2] [file1.txt]

Win95 Disabled Look

When standard controls such as text, group box and buttons are disabled, the caption appears grey on 16 colour
WIn95 displays and bevelled grey at higher colour depths on Win95 or any colour depth on WinNT 4.0. While many
Delphi 2.0 controls don’t follow this standard, all Plasmatech controls do.

Delphi Label Win95 / Plasmatech Label

System Folder Constants (TCSIDL type)

Delphi Unit
UPTShellUtils

C++Builder Header
UPTShellUtils.hpp

The following constants can be used to refer to system folders in various functions and components of the Shell
Control Pack. The system folder constants map to the location of the particular system folder on the current machine.

csidlBitBucket Recycle bin — file system directory containing file objects in the user's
recycle bin. The location of this directory is not in the registry; it is marked
with the hidden and system attributes to prevent the user from moving or
deleting it.

csidlControls Control Panel — virtual folder containing icons for the control panel
applications.

csidlDesktop Windows desktop — virtual folder at the root of the name space.

csidlDesktopDirectory File system directory used to physically store file objects on the desktop
(not to be confused with the desktop folder itself).

csidlDrives My Computer — virtual folder containing everything on the local
computer: storage devices, printers, and Control Panel. The folder may
also contain mapped network drives.

csidlFonts Virtual folder containing fonts.

csidlFavorites File system directory that contains the user's favourites.

csidlNethood File system directory containing objects that appear in the network
neighbourhood.

csidlNetwork Network Neighbourhood — virtual folder representing the top level of the
network hierarchy.

csidlPersonal File system directory that serves as a common repository for documents.
Typically the My Documents folder.

csidlPrinters Printers folder — virtual folder containing installed printers.

csidlPrograms File system directory that contains the user's program groups (which are
also file system directories).

csidlRecent File system directory that contains the user's most recently used
documents.

csidlSendTo File system directory that contains Send To menu items.

csidlStartMenu File system directory containing Start menu items.

csidlStartup File system directory that corresponds to the user's Startup program
group.

csidlTemplates File system directory that serves as a common repository for document
templates.

csidlCommonStartMenu File system directory that contains the programs and folders that appear
on the Start menu for all users.

csidlCommonPrograms File system directory that contains the directories for the common

program groups that appear on the Start menu for all users.

csidlCommonStartup File system directory that contains the programs that appear in the
Startup folder for all users. The system starts these programs whenever
any user logs on to Windows NT or starts up Windows 95.

csidlCommonDesktopDirectory File system directory that contains files and folders that appear on the
desktop for all users.

csidlAppData The meaning of this item is not documented.

csidlPrintHood The meaning of this item is not documented.

Shell Locator Editor

There are three methods of identifying namespace entities, which the Shell Locator Editor allows you to set.

1. CSIDL - Constant System identifiers
Using the CSIDL method, you choose from one of the predefined system constants.

These constants map to commonly referenced system folders. They are the most useful way of referencing shell
folders since they are machine independent. The constant csidlPrograms will reference the user's Programs folder
regardless of where it is located. If you had used one of the other two mechanism of locating namespace entities, the
folder might not exist on another machine.

For example, Machine 1 has Windows installed at C:\WINDOWS so the csidlPrograms identifier will resolve to the
path "C:\WINDOWS\Start Menu\Programs". Machine 2 has Windows installed at E:\WIN95 so the csidlPrograms
identifier will resolve to the path "E:\WIN95\Start Menu\Programs". Non-English languages are also handled correctly.

2. Pathname
You can specify a folder by name in the provided edit field. Only filesystem directories can be specified. This is useful
if you know the pathname will not change and can therefore be fixed at design time.

3. Item id list
You can choose a namespace entity using a popup tree-view. Any namespace entities, such as "Network
Neighbourhood" or "My Computer" are acceptable, as well as file system directories. "Network Neighbourhood" or
"My Computer" are portable across different Windows installations, but file system directories might not be.

Legend

 Read only

 Published

 Delphi 2 specific

 Delphi 3 specific
 C++ Builder 1 specific

 C++ Builder 3 specific

Using shell control automatic interaction

The interactions between TPTShellTree, TPTShellList and TPTShellCombo can be complex. They can work together
to provide a no-code explorer-like interface, or they can be used singly for more specialised requirements.

A common combination is to combine TPTShellCombo and TPTShellList to provide an interface similar to the system
File Open/Save dialog.

The linkage properties are:
TPTShellCombo TPTShellTree TPTShellList
ShellTree
ShellList

ShellList (none)

When all three components are used together, you should set the ShellTree property of TPTShellCombo to your Tree
and the ShellList property of TPTShellTree to your List. Leave the ShellList property of TPTShellCombo blank in this
case.

When using TPTShellCombo together with TPTShellList you should set the ShellList property of TPTShellCombo to
your list. Leave the ShellTree property of TPTShellCombo blank in this case.

TPTShellTree and TPTShellList can be used together in a similar way.

You need not rely on the automatic interactions. You can leave the ShellList and ShellTree properties nil and process
the interactions yourself.

All three controls can stand alone by leaving the above properties blank. The TPTShellCombo is of little use on its
own.

The Shell Control Pack now includes an abstract OLE Data Object infrastructure that makes dealing with drag
sources, drop targets and clipboard transfer much easier.

UPTOleDataTransfer unit

Classes
TPTOleDataObject
TPTOleDataSource
TPTOleDropTarget

Routines
Create_CFTEXT_HGlobal
Create_CFHDROP_HGlobal
Create_CFIDLIST_HGlobal

Convert_CFTEXT_String
DuplicateHGlobal

Constants
CF_IDLIST

TPTOleDataObject class

Delphi Unit
UPTOleDataTransfer

Properties

Methods
AttachClipboard Attaches the data object that is on the Clipboard.

                         
IsDataAvailable

Checks whether data is available in a specified format.

GetData Copies data from the attached OLE data object in a specified format.

GetStreamData Copies data from the attached OLE data object into a CFile pointer in the
specified format.

GetGlobalData Copies data from the attached OLE data object into an HGLOBAL in the
specified format.

BeginEnumFormats Prepares for one or more subsequent GetNextFormat calls.

GetNextFormat Returns the next data format available.

AttachIDataObject Attaches the specified OLE data object to the COleDataObject.

ReleaseIDataObject Detaches and releases the associated IDataObject object.

DetachIDataObject Detaches the associated IDataObject object.

Events

Description
The COleDataObject class is used in data transfers for retrieving data in various formats from the Clipboard, through
drag and drop, or from an embedded OLE item. These kinds of data transfers include a source and a destination. The
data source is implemented as an object of the COleDataSource class. Whenever a destination application has data
dropped in it or is asked to perform a paste operation from the Clipboard, an object of the COleDataObject class must
be created.

This class enables you to determine whether the data exists in a specified format. You can also enumerate the
available data formats or check whether a given format is available and then retrieve the data in the preferred format.
Object retrieval can be accomplished in several different ways, including the use of a CFile, an HGLOBAL, or an
STGMEDIUM structure.

TPTOleDataSource class

Delphi Unit
UPTOleDataTransfer

Properties

Methods
CacheData Offers data in a specified format using a STGMEDIUM structure.

CacheGlobalData Offers data in a specified format using an HGLOBAL.

DoDragDrop Performs drag-and-drop operations with a data source.

SetClipboard Places a COleDataSource object on the Clipboard.

Clear Clears the COleDataSource object of data.

FlushClipboard Renders all data to the Clipboard.

GetClipboardOwner Verifies that the data placed on the Clipboard is still there.

DelayRenderData Offers data in a specified format using delayed rendering.

DelayRenderStreamData Offers data in a specified format in a CFile pointer.

DelaySetData Called for every format that is supported in OnSetData

Events
OnRenderData Retrieves data as part of delayed rendering.

OnRenderStreamData Retrieves data into a CFile as part of delayed rendering.

OnRenderGlobalData Retrieves data into an HGLOBAL as part of delayed rendering.

OnSetData Called to replace the data in the COleDataSource object.

Description
The TPTOleDataSource class acts as a cache into which an application places the data that it will offer during data
transfer operations, such as Clipboard or drag-and-drop operations.

The object supports delayed rendering. (not implemented 30-Jul-97)

Whenever you want to prepare data for a transfer, you should create an object of this class and fill it with your data
using the most appropriate method for your data. The way it is inserted into a data source is directly affected by
whether the data is supplied immediately (immediate rendering) or on demand (delayed rendering). For every
Clipboard format in which you are providing data by passing the Clipboard format to be used (and an optional
FORMATETC structure), call DelayRenderData.

