
TTUtility Component

Properties Methods Events Tasks Support Etc.

Unit
TU

Description

TTUtility is a Delphi component that implements the functionality in Borland's TUtility.DLL, the same DLL
that comes with Paradox for Windows. The primary purpose of this component is to give the Delphi or
Paradox developer an easy to implement tool for validating and fixing corrupt Paradox tables from inside
delivered applications.    The TUtility DLL on which this component is based will work on Paradox tables
up to and including level 5 tables.

Select a table to verify by assigning a value to the TableName property. Assigning a value to TableName
has two side effects.    TheTblInfo property is given value and the header of the table is verified. The
TblInfo structure contains all kinds of valuable information about the table. Check TblInfo.bValidInfo and
TblInfo.iRecords to get hints about the table header integrity.

You can also assign values to the tErrTableName, tBkUpTableName, tKeyVTableName, and
tProbTableName properties. These are all tables that Verify and Rebuild generate as a side effect of
their execution.

Next you would assign a value to the AltStructName property. This is the name of a known good table
that rebuild can borrow the structure from. After assigning the AltStructName It is also a good idea to
check the AltTblInfo.bValidInfo to make sure the alternate table does not have a corrupted header.

Assign a value to the Password property if the table has a master password.

Either drop the Verify Status Dialog and Rebuild Status Dialog Objects into your form or define the
onInfoVerify and onInfoRebuild events to respond to the status messages from the verify and rebuild
processes.

Finally, execute the ExecuteVerify public method. If errors are found, ExecuteVerify will create an error
table with the name specified in the tErrTableName property. Check the iErrorLevel public property to
the highest error level found in the error table. Use iErrorLevel, and the information in the TblInfo
property to determine whether to use the Tables own structure or to borrow the structure from a similar
table. To use the tables own structure run ExecuteRebuild passing it the value of the pCurrentTblDesc
Property . To rebuild the table by borrowing a structure from a different table pass ExecuteRebuild the
value in the pAltTblDesc Property .

You can even execute both the verify and rebuild in one step using the ExecuteVerifyRebuild Method .

See Also TUtility API ,    Strategies for corrupt file recovery and TIdxUtl

Properties
    Run-time only

    Key properties
 

iErrorLevel  
Options

 
TblInfo Pack
AltTblInfo  
Password

 
pCurrentTblDesc
TableName

 
pAltTblDesc Tag
AtStructAlways tBkUpTableName

        AltStructName  
tErrTableName
AlwaysRebuild tKeyVTableName

        CBActive tProbTableName
CBRebuildDialog Table
CBVerifyDialog
Name

Methods

        ExecuteVerify
        ExecuteRebuild
        ExecuteVerifyRebuild

Events

    Run-time only
    Key properties

        OnInfoRebuild
        OnInfoVerify
        OnInfoVerReb

Using TTUtility Component

Here are 3 rules and one consideration you should be aware of when designing an application that
incorporates the TTUtility component.

RULES

1. Any table that will be verified or rebuilt using the TUtility component must be set to inactive (Active =
False) at design time if you want to run the application under Delphi. For a discussion on the reasons
see the TUtility API section later in this doc. If the table is active you will receive a run time error.

2. We highly recommend that you never run ExecuteRebuild on a table without first running
ExecuteVerify. ExecuteVerify discovers things about the table that ExecuteRebuild needs to know for a
safe rebuild of the corrupt table.

3. If the table under consideration has a master password then it must be assigned correctly to the
Password property. The TUtility component has no way of knowing if this password has been assigned
incorrectly. In fact it will rebuild your table without the correct password, however, the resulting table will
have no records in it. THIS DOES NOT RAISE AN ERROR. So... Make sure to assign the password
correctly.

CONSIDERATION

Your application should deal with the side effect tables created by the Verify and Rebuild processes.
These include the Error Table created by ExecuteVerify and the Problems and Key Violation Tables
created by ExecuteRebuild. At some point the tables should be deleted (especially the Error Table). The
first demo project automatically deletes the Error Table when it's done with it.

See Also Strategies for corrupt file recovery

iErrorLevel Property

Example

Applies To - TTUtility Component    Readonly and run time only.

Declaration

property iErrorLevel : Word;

Description
The iErrorLevel property contains the status of the table being worked on. This property gets set
whenever the TableName or AltStructName properties are assigned. This property is also set when the
ExecuteVerify procedure is run. Use the value in iErrorLevel to make decisions on how best to proceed
through the verify/rebuild process. This property along with the bValidInfo field in the TblInfo (or
AltTblInfo) structures are keys to successful table maintenance.

Then possible values are;
0 : No structure problems. Everythings OK.
1 : Table is damaged but verification can continue.
2 : Table is damaged and verification stops.
3 : Table must be rebuilt manually with a user supplied table description.
4 : Table cannot be rebuilt. Use your last backup.

Note that the Table Repair utility in Paradox for Windows will allow for an auto-rebuild (structure is not
specified by
the user) on Level 2 errors. Experience shows that this is often a bad idea. The problem is that since the
verify aborts
with a level 2 before completion, there is no way to tell if there is a level 3 or 4 error beyond the point
where verify
aborts. We suggest that the user always specifies an alternate file structure on level 2 errors, especially
if the bValidInfo
field is false.    (See the descriptions for TblInfo and AltTblInfo.).

TblInfo Property

Applies To - TTUtility Component    Readonly and run time only.

Declaration

property TblInfo: TTableInfo; (ReadOnly)

Description
The TblInfo record contains useful information on the structure of the table being verified and/or rebuilt.
TblInfo is filled with data whenever the TableName property is assigned. Here is a brief description of
the fields that make up the TTableInfo Structure.

sTableType : String[32]; Driver type - Should always be "Paradox"
iFields : Word; Number of fields in Table
iRecSize : Word; Record size in bytes
iKeySize : Word; Key size (Primary key)
iIndexes : Word; Number of indexes on the table
iValChecks : Word; Number of val checks on the table
iRefIntChecks : Word; Number of Ref Integrity constraints on the table
iRestrVersion : Word; Restructure version number
iPasswords : Word; Number of Aux passwords on the table
bProtected : Bool; True if the table is protected by a password
sLangDriver : String[32]; Language driver name
iBlockSize : Word; Physical file blocksize in K
iRecords : Longint; Number of records in table
bValidInfo : Bool; Is the header information reliable.

The last to fields in this data structure need special mention. The bValidInfo field specifies whether
TTUtility was able to read the header information reliably. If this value is False then the chances are
good that the header is corrupt. The safest thing to do in this case is to borrow the table description from
another good table rather than use the corrupt tables description

AltTblInfo Property

Applies To - TTUtility Component    Readonly and run time only.

Declaration

property AltTblInfo: TTableInfo;

Description
The AltTblInfo record contains useful information on the structure of the table being used to borrow a
table description from. AltTblInfo is filled with data whenever the AltStructName property is assigned.
The value of AltTblInfo.bValidInfo should be checked after assigning AltStructName. If the value is False
do not use the AltStructName table to specify the structure used for the rebuild. Here is a brief
description of the fields that make up the TTableInfo Structure.

sTableType : String[32]; Driver type - Should always be "Paradox"
iFields : Word; Number of fields in Table
iRecSize : Word; Record size in bytes
iKeySize : Word; Key size (Primary key)
iIndexes : Word; Number of indexes on the table
iValChecks : Word; Number of val checks on the table
iRefIntChecks : Word; Number of Ref Integrity constraints on the table
iRestrVersion : Word; Restructure version number
iPasswords : Word; Number of Aux passwords on the table
bProtected : Bool; True if the table is protected by a password
sLangDriver : String[32]; Language driver name
iBlockSize : Word; Physical file blocksize in K
iRecords : Longint; Number of records in table
bValidInfo : Bool; Is the header information reliable.

The last to fields in this data structure need special mention. The bValidInfo field specifies whether
TTUtility was able to read the header information reliably. If this value is False then the chances are
good that the header is corrupt and this table should probably not be used as a source for a table
structure.

pCurrentTblDesc Property

Example

Applies To - TTUtility Component    Readonly and run time only.

Declaration

property pCurrentTblDesc: pCRTblDesc

Description
Pass this value to ExecuteRebuild if you want to use the table specified in TableName to determine the
structure of the rebuilt table. You can assign this value with the pointer to a CRTblDesc that you created
yourself (Not Recommended). See the discussions in ExecuteRebuild for more information.

ALSO NOTE - The user should not destroy or modify the Table Desc structure that is passed back by
pCurrentTblDesc it is to be looked at and passed to Rebuild table only.

ADVANCED NOTE - If you create and populate a pCRTblDesc structure yourself (not recommended)
and assign it to TUtility's pCurrentTblDesc property it then becomes owned by the TUtility component.
This means that you must not destroy it yourself. Any existing pCurrentTblDesc structure is destroyed
(the memory is freed) when ever a new value is assigned or when the component itself is destroyed. If
you destroy it yourself you run a good chance of GPFing your app.

ADVANCED    The following describes the pCRTblDesc (Create Table Description) for rebuilding a table.
This structure is also documented in the Borland Database Engine User's Guide. The CRTblDesc
structure defines the general attributes of the table and supplies pointers to arrays of field, index, and
other descriptors.

Field Type Description
szTblName DBITBLNAME Table name, including path.
szTblType DBINAME Driver type.
szErrTblName DBIPATH Name of the Error table created by Execute Verify (including path)
szUserName DBINAME Not currently used.
szPassword DBINAME Master password (if bProtected is TRUE).
bProtected BOOL TRUE if table is encrypted.
bPack BOOL If TRUE, specifies packing for the rebuild. Assigned by the Pack property.
iFldCount UINT16 The number of field descriptors supplied.
pecrFldOp pCROpType Not used by rebuild. Must be zero.
pfldDesc pFLDDesc An array of field descriptors.
iIdxCount UINT16 The number of index descriptors supplied.
pecrIdxOp pCROpType Not used by rebuild. Must be zero.
pidxDesc pIDXDesc An array of index descriptors.
iSecRecCount UINT16 The number of security descriptors given.
pecrSecOp pCROpType Not used by rebuild. Must be zero.
psecDesc pSECDesc An array of security descriptors
iValChkCount UINT16 The number of validity checks
pecrValChkOp pCROpType Not used by rebuild. Must be zero.
pvchkDesc pVCHKDesc An array of validity check descriptors.
iRintCount UINT16 The number of referential integrity specifications.
pecrRintOp pCROpType Not used by rebuild. Must be zero.
printDesc pRINTDesc An array of referential integrity specifications.
iOptParams UINT16 The number of optional parameters.
pfldOptParams pFLDDesc An array of field descriptors for optional parameters.
pOptData pBYTE The values of optional parameters.

In order to populate this structure correctly you must also create pointers to the pfldDesc, pIDXDesc,
pSECDesc, pVCHKDesc and pRINTDesc. For information on these record structures refer to the
DbiTypes.Int file in you Delphi\Doc directory or to the BDE User's guide if you have it.

Also, be advised, that the last three fields of the structure mentioned above (iOptParams,

pfldOptParams, pOptData) must contain information specific to the Paradox table that is to be rebuilt.
The required information is not documented anywhere outside of Borland. We suggest that if you really
must create and populate this structure yourself that you first populate it a few times by borrowing the
structure from a known table and then study the data in the borrowed structure.

The authors of this component can not support technical questions relating the to manual populating of
this structure.

pAltTblDesc Property

Example

Applies To - TTUtility Component    Readonly and run time only.

Declaration

property pAltTblDesc: pCRTblDesc

Description

Pass this value to ExecuteRebuild if you want to use the table specified in AltStructName to determine
the structure of the rebuilt table.    The description returned in the pAltTblDesc represents the complete
description of the table named in the AltStructName property.

This value is readonly. It exists only as a convenient way to specify a table to borrow a structure from for
the rebuild process.

NOTE - The user should not destroy or modify the Table Desc structure that is passed back by
pAltTblDesc it is to be looked at and passed to Rebuild table only. See pCurrentTblDesc for a
description of the pCRTblDesc structure.

AtStructAlways Property

Applies To - TTUtility Component    Read write, and both design and    time only.

Declaration

property AltStructAlways: Boolean

Description

Set this value to true if you always want the table specified in AltStructName to determine the structure
of therebuilt table. This is used only by ExecuteVerifyRebuild.

AltStructName Property

Applies To - TTUtility Component    Read write, and both design and    time only.

Declaration

property AltStructName:    TFileName

Description

Assign this property the name of the table to use as the structure for the rebuild. This should be a
completelyqualified file name including the path. Assigning a value to AltStructName has two side
effects. The AltTblInfo property is given value and the header of the AltStructName table is verified. The
values of in iErrorLevel and AltTblInfo.bValidInfo should be checked after assigning a value to
AltStructName.

AlwaysRebuild Property

Applies To - TTUtility Component    Read write, and both design and    time only.

Declaration

property AlwaysRebuild: Boolean

Description

Used by ExecuteVerifyRebuild. If this property is true then the table mentioned in the TableName
property is always rebuilt even when verify shows that it has no errors.

CBActive Property

Applies To - TTUtility Component    Read write, and both design and    time only.

Declaration

property CBActive : Boolean

Description

Set this value to False if you don't want the installed Callback functions activated. You make completely
define the callbacks using CBVerifyDialog and CBRebuildDialog or OnInfoVerify and OnInfoRebuild and
then choose to not use them at run time by setting this value to false. You would do this for performance
reasons.

Testing has shown that turning the information callbacks on has an adverse effect on performance. The
CBActive can be turned on or off at runtime. This is especially useful for creating programs that do
multiple verifies and rebuilds and where there will be no one around to watch the gauges move anyway.

NOTE : Do not try to change CBActive from True to False from inside any of the onInfoXXXX events.
CBActive must be set prior to ExecuteVerify,    ExecuteRebuild or ExecuteVerifyRebuild.

CBRebuildDialog Property

Applies To - TTUtility Component    Read write, and both design and    time only.

Declaration

property CBRebuildDialog: TRebuildDlg

Description

Assign this the value of the TRebuildDlg component on your form. This is the easiest way to get status
information during ExecuteRebuild. If you do not want to use the canned TRebuildDlg component you
may define your own status dialog by implementing the OnInfoRebuild Event

CBVerifyDialog Property

Applies To - TTUtility Component    Read write, and both design and    time only.

Declaration

property CBVerifyDialog: TVerifyDlg

Description

Assign this the value of the TVerifyDlg component on your form. This is the easiest way to get status
information during ExecuteVerify.

If you do not want to use the canned TVerifyDlg component you may define your own status dialog by
implementing the OnInfoVerify Event .

Options Property

Applies To - TTUtility Component    Read write, and both design and    time only.

Declaration

property Options: TVerifyOptions

Description

This property specifies various behaviors of ExecuteVerify. The default is all options are false. Here are
the available options:

TU_Append_Errors Append errors to an existing error table
TU_No_Secondary Bypass secondary indexes
TU_No_Warnings Prevent warnings of secondary errors
TU_Header_Only Verify table header only
TU_Dialog_Hide Reserved for future expansion. Do not use
TU_No_Lock Do not lock table being verified

If you are going to create an application that verifies a number of files in a batch, then you will want to
set the TU_Append_Errors to TRUE unless you specify a different error table for each table in your
batch.

Pack Property

Applies To - TTUtility Component    Read write, and both design and    time only.

Declaration

property Pack :    Boolean

Description

The way this property is supposed to work is that if the Pack property equals TRUE then
ExecuteRebuild packs the rebuilt table. If Pack is set to FALSE the records are not packed. This is part
of the TUtility API and is exposed in the component for completeness. However, it is not supported by
the current version of the TUtility.DLL. The records are always packed.

Password Property

Applies To - TTUtility Component    Read write, and both design and    time only.

Declaration

property Password :    String

Description

Assign the master password of the table to this property. If the table is password protected then this
property MUST be correctly assigned, otherwise, when ExecuteRebuild is run, the table will appear to
be rebuilt but the resulting table will have no records in it. See the discussion later in this document
under the TUtility API section for more information about passwords.

Passwords and the TUtility API are rather tricky. Since the TUtility does not use a standard BDE session
it has no knowledge of what passwords are available. For this reason you must specify the table's
master password in order for the ExecuteRebuild procedure to work correctly.

Warning, and very important,    there is no way to check if the password entered is valid. If a table has a
password assigned to it, ExecuteRebuild will run with no errors even if the wrong password (or no
password) is entered. When this happens the resulting rebuild table will have no records. Note that this
is even true in the Rebuild performed by Paradox for Windows. PFW will ask for a master password but
if you key in an incorrect one there is no error message. The table is rebuild and the record count is
zero.

The TUtility component offers some ways to insure that the correct password is entered. Heres the
strategy. When the TableName property is assigned, as a side effect,    it checks to see if a password is
required for the table. If a password is required it checks TUtility's password property to see if it has
been assigned. If no password as been assigned a message box asks the user to assign the password.
Now with the password in hand, TUtility attempts to get an extended description of the table without
opening a cursor on the table. If this is successful then TUtility's TblInfo record property will show a
positive value in the iRecords field. It's a good bet that if iRecords is zero than the password is incorrect
but it's still no guarantee since a corrupt table header can also return an iRecords count of zero even
when the password is correct.

Of course you could always try to open the table but if the table is corrupt then this may not be possible.
Remember that the TUtility component never opens a cursor on the table being worked on.

So the bottom line is, make sure the value assigned to the password property is correct.

Table Property

Applies To - TTUtility Component    Read write, and both design and    time only.

Declaration

property Table :    TTable

Description

This property was added as an optional way of specifying the TableName . You can drop a TTable
component into your form and then use this property to select that TTable component. Assigning this
component automatically assigns a value to the TableName property. This may be easier than assigning
the TableName property directly if the path name is very long.

Note that this property is completely optional and is ment only as a way of assisting in the assigning of
the TableName property. Also not that using this method to assign Tablename uses slightly more
resources than assigning TableName directly,

TableName Property

Applies To - TTUtility Component    Read write, and both design and    time only.

Declaration

property TableName : TFileName

Description

Assign this property the name of the table to be verified and/or rebuilt. This should be a completely
qualified file name, including the path. Assigning a value to TableName has two side effects.    The
TblInfo property is given a value and the header of the table is verified. The values in iErrorLevel and
TblInfo.bValidInfo should be checked after assigning a value to TableName.

Assigning a value to the Table property will automatically assign a value to the TableName property. Also
assigning a value to TableName directly will clear the Table property.

tBkUpTableName Property

Applies To - TTUtility Component Read write, and both design and    time only.

Declaration

property tBkUpTableName: TFileName

Description

Assign this property the name of the backup table created by ExecuteRebuild. The default is TableName
+ '_'. For example, if the TableName was CUSTOMER.DB then the backup name would be
CUSTOME_.DB If no path name is specified then the table will be created in the same directory as
TableName .

tErrTableName Property

Applies To - TTUtility Component    Read write, and both design and    time only.

Declaration

property tErrTableName : TFileName

Description

Assign this property the name of the Error Table to be created by ExecuteVerify. The default is
__TUERR.DB. If no path name is specified, the table will be created in whatever directory Delphi
believes is your Private Directory (Session.PrivDirectory).

tKeyVTableName Property

Applies To - TTUtility Component    Read write, and both design and    time only.

Declaration

property tKeyVTableName: TFileName

Description

Assign this property the name of the key violation table created by ExecuteRebuild. The default is
KEYVIOL.DB. If no path name is specified, the table will be created in whatever directory Delphi
believes is your Private Directory (Session.PrivDirectory).

tProbTableName Property

Applies To - TTUtility Component    Read write, and both design and    time only.

Declaration

property tProbTableName: TFileName

Description

Assign this property the name of the problems table created by ExecuteRebuild. The default is
PROBLEMS.DB. If no path name is specified, the table will be created in whatever directory Delphi
believes is your Private Directory (Session.PrivDirectory).

ExecuteVerify Method

Example

Applies To - TTUtility Component

Declaration

procedure ExecuteVerify

Description

ExecuteVerify performs the verify step. At a minimum the TableName property must be set for this
procedure to operate. Depending on how options are set, ExecuteVerify creates or appends to    the
table specified by the tErrTableName property. You can view this table for an in-depth analysis of the
table's problems. On completion ExecuteVerify sets iErrorLevel to the highest error encountered. Use
iErrorLevel and the value in TblInfo.bValidInfo to determine the best way to run ExecuteRebuild.

The structure of the error table created by ExecuteVerify looks like this.

Field Name Type Size Description
Drive A 2 Disk Drive
Directory A 65 Path to the Table
Table Name A 8 Paradox Table Name
Extension A 4 Should always be .DB
Error Code S Code used to get the Error Message (Appendix C)
Error Level S Rating of error severity
Error Message A 150 Textual description of error
Date D The tables file date
Time T The tables file time

The Error Level is the most important field since it rates the importance of the error. See the description
of the iErrorLevel property. ExecuteVerify reports the highest value found in the Error Level field in the
iErrorLevel property.

ExecuteRebuild Method

Example

Applies To - TTUtility Component

Declaration

Procedure ExecuteRebuild(pTableDesc : pCRTblDesc)

Description

ExecuteRebuild attempts to fix the table. It creates a backup of the original table in the table specified by
the tBkUpTableName property. A problem table,tProbTableName, and key violation table
tKeyVTableName may also be created.

ExecuteRebuild's minimum requirement is that the TableName property be specified and that a value be
passed in the method's pTableDesc parameter.

The pTableDesc parameter specifies a complete description of the table to be rebuilt. This table
description can be created in any of three ways;

1. Use the value in the pCurrentTblDesc property which is the description of the table named in the
TableName property.

2. Use the value in the pAltTblDesc property which is the description of the table named in the
AltStructName property. (This is borrowing the structure from another table).

3. (NOT RECOMMENDED) The user can create the table description itself.. If this is what you want to
do you must study and completely understand the CRTTblDesc. This is by far the most complicated
record structure we have ever encountered and we highly recommend that you avoid attempting the
creation of this structure from scratch.

Note, that once you pass this pointer to ExecuteRebuild it becomes "owned" by the TTUtility object. Do
not attempt to destroy it yourself, TTUtility will take care of the destruction of this structure.

Recommendation - For the safest, most successful rebuilds we recommend that you pass
pCurrentTblDesc as the parameter to ExecuteRebuild only when the iErrorLevel is 2 or less (see
iErrorLevel above) and when TblInfo.bValidInfo is True. Otherwise, specify a table to borrow the
structure from in AltStructName and use pAltTblDesc as the parameter for ExecuteRebuild.

ExecuteVerifyRebuild Method

Example

Applies To - TTUtility Component

Declaration

procedure ExecuteVerifyRebuild

Description

ExecuteVerifyRebuild combines the verify and rebuild processes into a single convenient procedure call.
First, the table mentioned in the TableName property is verified. If the header is not damaged
(TblInfo.bValidInfo = True) and the error level is less than 3 then the table's own structure is used for the
rebuild, otherwise the table named in the AltStructName property is used. If AltStructAlways is true than
the table named in the AltStructName property is always used to get the rebuild structure. The
AltStructName property should always be assigned prior to executing this procedure.

If the AlwaysRebuild property is set to true then the table will always be rebuilt even it verify returns an
iErrorLevel of zero. If AlwaysRebuild is false (the default) then the table is not rebuilt if the verify showed
no table errors. Note, it has been reported that the the verify portion of the TUtility.Dll can show
no    when there are errors that rebuild can fix.    We can not prove or disprove this claim. Also Verify
will not report out of date secondary indexes. Use the TIdxUtl component to check and regenerate
secondary indexes.

Use the companion OnInfoVerReb event plus onInfoVerify and onInfoRebuild to monitor and record the
execution of this procedure.

OnInfoRebuild Event

Example

Applies To - TTUtility Component

Declaration

event OnInfoRebuild: TInfoRebuildEvent

Description

Define the OnInfoRebuild event if you want to create your own Rebuild Status Dialog box. The
TInfoRebuildEvent looks like this.

TInfoRebuildEvent = procedure(
Sender: Tobject; {Where the message came from}
RebuildCBRec: TRebuildCBData) { Message to display }
of object;

Where TRebuildCBData is

 TRebuildCBData = record
 iPercentDone : Integer; { Percentage done. }
 sMsg : String[128]; { Message to display }
 end;

If sMsg is blank then use the information in iPercentDone other us the information in sMsg.

NOTE : This is VERY important. DO NOT MAKE ANY DATABASE CALLS FROM THIS METHOD. This
event is actually part of a BDE Callback response. The rules for Callback responses are clear. The BDE
is not re-entrant, that means that you can not do anything here that would call the BDE. So.... No
database calls. Just make pictures.

OnInfoVerify Event

Example

Applies To - TTUtility Component

Declaration

event OnInfoVerify: TInfoVerifyEvent

Description

Define the OnInfoVerify event if you want to create your own Verify Status Dialog box. The
TInfoVerifyEvent looks like this.

 TInfoVerifyEvent = procedure(
Sender: Tobject; {Where the message came from}
VerifyCBRec: TVerifyCBData {The data to be acted on}
) of object;

Where TVerifyCBData is
 TVerifyCBData = record
 PercentDone: word; The Percent Completed
 TableName: String[82]; Passed only with Process =
TUVerifyTableName
 Process: TUVerifyProcess; Changes with the various verify steps
below.
 CurrentIndex: word; Increments with each secondary index
checked.
 TotalIndex: word; Number of Secondary Indexes
 end;

and The TUVerifyProcess is
 TUVerifyProcess = (

TUVerifyHeader, Header is verified, PercentDone increments.
TUVerifyIndex, Primary Index is verified, PercentDone

increments.
TUVerifyData, Primary Index Data is verified, PercentDone

increments.
TUVerifySXHeader, A Secondary Index Header verified, PercentDone

incs.
TUVerifySXIndex, A Secondary Index verified, PercentDone

increments.
TUVerifySXData, A Secondary Index data verified, PercentDone

incs.
TUVerifySXIntegrity, A Secondary Index integrity is verified. Ditto.
TUVerifyTableName Passes the Table Name in

TVerifyCBData.TableName
);

You need to watch the process field to determine which gauge to adjust with the amount delivered in
PercentDone.

NOTE : This is VERY important. DO NOT MAKE ANY DATABASE CALLS FROM THIS METHOD. This
event is actually part of a BDE Callback response. The rules for Callback responses are clear. The BDE
is not re-entrant, that means that you can not do anything here that would call the BDE. So.... No
database calls. Just make pictures.

OnInfoVerReb Event

Example

Applies To - TTUtility Component

Declaration

event OnInfoVerReb: TInfoVerRebEvent;

Description

OninfoVerReb sends textual messages back to your application as ExecuteVerifyRebuild runs. These
messages are in addition to those sent by onInfoVerify and onInfoRebuild. The text messages sent by
ExecuteVerifyRebuild and received in onInfoVerReb are general in nature and allow you to monitor the
VerifiyRebuild sequence. The TInfoVerRebEvent looks like this:

TInfoVerRebEvent = procedure(
 Sender: TObject;
 AMessage : String;
 Process : TUVerRebProcess;
 var Abort : Boolean) of object;

Where the Process field is
TUVerRebProcess = (TUVerifying, TURebuilding);

As ExecuteVerifyRebuild runs it sends general status information back to the application by firing
onInfoVerReb. The status information arrives in the AMessage field. This information can be written to
the screen or printer for later review.

The Process field indicates which process is running (verify or rebuild). You can abort onInfoVerReb by
setting Abort to true.

Example

Use iErrorlevel,    pCurrentTblDesc and pAltTblDesc to properly rebuild a table.

procedure TFormTUMain.ButtonRebuildClick(Sender: TObject);
begin

 TUtilityVerReb.AltStructName:= C:\Data\GoodInfo.DB;
 TUtility1.tBkUpTableName := C:\Data\BadInfo_.DB
 TUtility1.tKeyVTableName := C:\Data\KyVInfo.DB
 TUtility1.tProbTableName:= C:\Data\ProbInfo.DB

 If (TUtility1.iErrorLevel < 3) then
 Tutility1.ExecuteRebuild(TUtility1.pCurrentTblDesc);
 else if (TUtility1.iErrorLevel < 4) then
 Tutility1.ExecuteRebuild(TUtility1.pAltTblDesc);
 else
 begin
 MessageDlg('BAD NEWS! The cannot be rebuilt.' + #10#13 +
 'Reload from backups.', mtInformation, [mbOK], 0);
 exit; {Can't rebuild so Bail out }
 end;
 MessageDlg('Table Successfully rebuild!', mtInformation, [mbOK], 0);
end;

Example

procedure TFormTUMain.ButtonVerifyClick(Sender: TObject);
begin

 TUtility1.TableName := C:\Data\BadInfo.DB;
 TUtility1.tErrTableName := C:\Data\ErrInfo.DB
 TUtility1.ExecuteVerify;
 if TUtility1.ierrorLevel <> 0 then
 begin
 MessageDlg('The table is corrupt and must be repaired!,
 mtWarning, [mbYes, mbNo], 0) = mrYes then
 end
 else
 begin
 MessageDlg('GOOD NEWS!' + #10#13 + 'Header and Data are O.K.',
 mtInformation, [mbOK], 0);
 end;
end;

Example

procedure TFormBatchMain.ButtonFixAllClick(Sender: TObject);
begin
 TUtilityVerReb.TableName := C:\Data\BadInfo.DB;
 TUtilityVerReb.AltStructName:= C:\Data\GoodInfo.DB;
 TUtilityVerReb.tBkUpTableName := C:\Data\BadInfo_.DB
 TUtilityVerReb.tErrTableName := C:\Data\ErrInfo.DB
 TUtilityVerReb.tKeyVTableName := C:\Data\KyVInfo.DB
 TUtilityVerReb.tProbTableName:= C:\Data\ProbInfo.DB
 Try
 TUtilityVerReb.ExecuteVerifyRebuild;
 except
 {report the error to the log so it doesn't stop the process}
 on E:Exception do
 SendToLog(E.Message);
 end;
end;

Example

procedure TFormTUMain.TUtility1InfoRebuild(Sender: TObject;
 RebuildCBRec: TRebuildCBData);
begin
 with RebuildCBRec do
 begin
 if sMsg = '' then
 FormRebuildStatus.GaugeRebuild.Progress := iPercentDone
 else
 begin
 FormRebuildStatus.LabelNumPacked.Caption := sMsg;
 FormRebuildStatus.refresh;
 end;
 end;
end;

Example

procedure TFormTUMain.TUtility1InfoVerify(Sender: TObject;
 VerifyCBRec: TVerifyCBData);
begin
 with VerifyCBRec do
 begin
 Case Process of
 TUVerifyTableName : FormVerifyStatus.LabelStatus.Caption := TableName;
 TUVerifyHeader : FormVerifyStatus.GaugeHeader.Progress := PercentDone;
 TUVerifyIndex : FormVerifyStatus.GaugeIndex.Progress := PercentDone;
 TUVerifyData : FormVerifyStatus.GaugeData.Progress := PercentDone;
 TUVerifySXHeader : FormVerifyStatus.GaugeHeaderIdx.Progress :=
PercentDone;
 TUVerifySXIndex : FormVerifyStatus.GaugeIndexIdx.Progress :=
PercentDone;
 TUVerifySXData : FormVerifyStatus.GaugeDataIdx.Progress :=
PercentDone;
 TUVerifySXIntegrity :
 begin
 FormVerifyStatus.GaugeIntegrity.Progress := PercentDone;
 FormVerifyStatus.LabelZeroOf.Caption := IntToStr(CurrentIndex);
 FormVerifyStatus.LabelOfZero.Caption := IntToStr(TotalIndex);
 FormVerifyStatus.refresh;
 end;
 end; {Case}
 end;
end;

Example

procedure TFormBatchMain.TUtilityRestInfoVerReb(Sender: TObject;
 AMessage: String; Process: TUVerRebProcess; var Abort: Boolean);
begin
 SendToLog(AMessage);
 if process <> CurProcess then
 begin
 Case Process of
 TUVerifying :
 begin
 FormStatus.GroupBoxVerify.Font.Color := clRed;
 FormStatus.GroupBoxRebuild.Font.Color := clBlack;
 end;
 TURebuilding :
 begin
 FormStatus.GroupBoxVerify.Font.Color := clBlack;
 FormStatus.GroupBoxRebuild.Font.Color := clRed;
 end;
 end; {case}
 FormStatus.GroupBoxVerify.refresh;
 FormStatus.GroupBoxRebuild.refresh;
 CurProcess := Process;
 end;
end;

TU Unit

The TU unit contains the declarations for the TTUtility component, as well as, the declarations for the
associated fields. When you add a component declared in this unit to a form, the unit is automatically
added to the uses clause of that form's unit. The following items are declared in the TU unit:

Components
TTUtility

Types

ETUtilityError
TVerifyOption
TVerifyCBData
TInfoVerifyEvent
TRebuildCBData
TInfoRebuildEvent
TInfoVerRebEvent
TTableInfo

To see a listing of items declared in this unit including their declarations, use the ObjectBrower.

ETUtilityError Type

Unit

TU

Declaration

ETUtilityError = class(Exception)

Description

Specialized TUtility error class that knows about the errors and error messages supported in the TUtility
API.

TVerifyOption Type

Unit

TU

Declaration

    TVerifyOption = (
        vTU_Append_Errors,
        vTU_No_Secondary,
        vTU_No_Warnings,
        vTU_Header_Only,
        vTU_Dialog_Hide,
        vTU_No_Lock);

also
    TVerifyOptions = Set of TVerifyOption;

Description

Type used bt the Tutility.Options property.

TU_Append_Errors Append errors to an existing error table
TU_No_Secondary Bypass secondary indexes
TU_No_Warnings Prevents warnings of secondary errors
TU_Header_Only Verify table header only
TU_Dialog_Hide Reserved for future expansion. Do not use
TU_No_Lock Do not lock table being verified

TVerifyCBData Type

Unit

TU

Declaration

    TVerifyCBData = record
        PercentDone: word;
        TableName: String[82];
        Process: TUVerifyProcess;
        CurrentIndex: word;
        TotalIndex: word;
    end;

where

    TUVerifyProcess = (TUVerifyHeader, TUVerifyIndex, TUVerifyData, TUVerifySXHeader,
  TUVerifySXIndex, TUVerifySXData, TUVerifySXIntegrity,
  TUVerifyTableName);

Description
The TVerifyCBData record is one of the paramenters of the TInfoVerifyEvent which is the type of the
TTUtility.OnInfoVerify event.

PercentDone The Percent Completed
TableName Passed only with Process = TUVerifyTableName
Process Changes with the various verify steps below.
CurrentIndex Increments with each secondary index checked.
TotalIndex Number of Secondary Indexes

The Process field of TVerifyCBData is of type TUVerifyProcess its members are described as

TUVerifyHeader Header is verified, PercentDone increments.
TUVerifyIndex Primary Index is verified, PercentDone increments.
TUVerifyData Primary Index Data is verified, PercentDone increments.
TUVerifySXHeader A Secondary Index Header verified, PercentDone incs.
TUVerifySXIndex A Secondary Index verified, PercentDone increments.
TUVerifySXData A Secondary Index data verified, PercentDone incs.
TUVerifySXIntegrity A Secondary Index integrity is verified. Ditto.
TUVerifyTableName Passes the Table Name in TVerifyCBData.TableName

TInfoVerifyEvent Type

Unit

TU

Declaration
    TInfoVerifyEvent = procedure(
            Sender: TObject;
            VerifyCBRec: TVerifyCBData) of object;

Description

The OnInfoVerify event is defined as type TInfoVerifyEvent. The Sender field specifices the object that
fired the event. VerifyCBRec is of type TVerifyCBData and contains all the information needed to
created RAD status displays for the verify process.

TRebuildCBData Type

Unit

TU

Declaration
    TRebuildCBData = record
        iPercentDone        : Integer;
        sMsg                        : String[128];
    end;

Description

TRebuildCBData defines the type of the information record passed as one of the parameters in in
OnInfoRebuild event which is of type TInfoRebuildEvent.

PercentDone contains the percentage complete of the data move part of the rebuild process while sMsg
contains a verbal description of the pack part of the rebuild process.

TInfoRebuildEvent Type

Unit

TU

Declaration
    TInfoRebuildEvent = procedure(
            Sender: TObject;
            RebuildCBRec: TRebuildCBData) of object;

Description

The TInfoRebuildEvent type is used to define the OnInfoRebuild event. RebuildCBRec contains the
information needed to display RAD status dialogs.

TInfoVerRebEvent Type

Unit

TU

Declaration
    TInfoVerRebEvent = procedure(
            Sender: TObject;
            AMessage : String;
            Process : TUVerRebProcess;
            var Abort : Boolean) of object;

    where Process is defined as

        TUVerRebProcess = (TUVerifying, TURebuilding);

Description

TInfoVerRebEvent is the type of the ExecuteVerifyRebuild event.

As ExecuteVerifyRebuild runs it sends general status information back to the application by firing
onInfoVerReb. The status information arrives in the AMessage field. This information can be written to
the screen or printer for later review.

The Process field indicates which process is running (verify or rebuild). You can abort onInfoVerReb by
setting Abort to true.

TTableInfo Type

Unit

TU

Declaration
    TTableInfo = Record
        sTableType : String[32];
        iFields                : Word;
        iRecSize                : Word;
        iKeySize                : Word;
        iIndexes                : Word;
        iValChecks            : Word;
        iRefIntChecks      : Word;
        iRestrVersion      : Word;
        iPasswords            : Word;
        bProtected            : Bool;
        sLangDriver          : String[32];
        iBlockSize            : Word;
        iRecords                : Longint;
        bValidInfo            : Bool;
    end;

Description
TTableInfo is the type of TTUtilities TblInfo and AltTblInfo properties.

sTableType : String[32]; Driver type - Should always be "Paradox"
iFields : Word; Number of fields in Table
iRecSize : Word; Record size in bytes
iKeySize : Word; Key size (Primary key)
iIndexes : Word; Number of indexes on the table
iValChecks : Word; Number of val checks on the table
iRefIntChecks : Word; Number of Ref Integrity constraints on the table
iRestrVersion : Word; Restructure version number
iPasswords : Word; Number of Aux passwords on the table
bProtected : Bool; True if the table is protected by a password
sLangDriver : String[32]; Language driver name
iBlockSize : Word; Physical file blocksize in K
iRecords : Longint; Number of records in table
bValidInfo : Bool; Was the header information reliable.

TUtility API

The TTUtility component implements the functionality of Borland's TUtility.DLL through the function
made public by the published TUtility API. If you would like a copy of the API then download the
TUTILITY.ZIP file found in the Borland Tools forum on CompuServe. The following are some
observations about the Tutility API that we made during the development of this component.

BDE Sessions vs. TUtility Sessions

The TUtility API does not use the standard BDE session. In fact the API supports it's own specialized
session. This session has no knowledge of the things that are associated with a typical BDE session,
like aliases for example. This does not mean that you have no access to BDE session information while
working with the TTUtility component. You can still access the global session variable as long as the DB
unit is referenced in your uses clause. Just bear in mind that TTUtility itself knows nothing about
session. You do not need to worry about the TUtility session since it has been completely encapsulated
into the component.

The TUtility API also does all its table verification and rebuilding without ever opening a BDE cursor on
the table. This is a requirement for rebuild since if the table is corrupted no cursor could be opened in
any case.

Once again. The TUtility component never opens a cursor on the table being worked on. Any
verify/rebuild functionality that you build into your application must insure that the table to be worked has
its active property set to false and that this property remain false while you use the TUtilitys
executeXXXX methods.

Passwords

Passwords and the TUtility API are rather tricky. Since the TUtility does not use a standard BDE session
it has no knowledge of what passwords are available. For this reason you must specify the table's
master password in order for the ExecuteRebuild procedure to work correctly.

WARNING & VERY IMPORTANT,    there is no way to check if the password entered is valid. If a table
has a password assigned to it, ExecuteRebuild will run with no errors even if the wrong password (or no
password) is entered. When this happens the resulting rebuild table will have no records. Note that this
is even true in the Rebuild performed by Paradox for Windows. PFW will ask for a master password but
if you key in an incorrect one there is no error message. The table is rebuilt and the record count is zero.

The TUtility component offers some ways to insure that the correct password is entered. Heres the
strategy. When the TableName property is assigned, as a side effect,    it checks to see if a password is
required for the table. If a password is required it checks TUtility's password property to see if it has
been assigned. If no password has been assigned a message box asks the user to assign the
password. Now with the password in hand, TUtility attempts to get an extended description of the table
without opening a cursor on the table. If this is successful then TUtility's TableInfo record property will
show a positive value in the iRecords field. It's a good bet that if iRecords is zero then the password is
incorrect but it's still no guarantee since a corrupt table header can also return an iRecords count of zero
even when the password is correct.

Of course you could always try to open the table but if the table is corrupt then this may not be possible.
Remember that the TUtility component never opens a cursor on the table being worked on.

So the bottom line is, make sure the value assigned to the password property is correct.

Active Tables at Design Time

Another side effect of the TUtilities independent session is that it does not recognize a table being made
inactive (Active := False) at run time. Note, this limitation only applies when trying to run an
application inside the Delphi environment.

In fact, the TUtility component sees Delphi design time as being a separate application that has the
table it wants to work on open. This is unfortunate because it means that you must insure that no table
that could possibly be run against executeVerify or ExecuteRebuild be set to active at design time. For

example, you cannot set a table to active at design time and then set it to inactive at run time prior to
running executeVerify. The problem is that the TUtility API has no knowledge of the DBE session so it
does not see the table go inactive at run time. It still believes the table is open and you will get a "Table
Busy" error message. So.... you must insure that all tables in an application that use the TUtility API
must have there active property set to FALSE at design time.

This requirement is only true when you run your application under Delphi. The problem does not exist
when running the compiled executable application alone outside the Delphi environment. Also there is
no problem making a table active at run time. In fact, as long as the table starts off as Active = FALSE,
then active can be set to TRUE, have something done to it, set back to FALSE and have executeVerify
run against it!

The Rule is only that it must start off inactive if you want to test the verify/rebuild functionality inside the
Delphi environment.

Strategies for corrupt file recovery

Creating an Environment for the Painless recovery of Table Corruption

Over the years, TUtility, in its various forms, has probably created more forum and seminar discussion
than probably any other single aspect of the Paradox database system. Certainly corruption and lost
data tends to be a loud issue.

Data corruption does seem to just happen. Probably the biggest reason is desktops or servers being
turned off or rebooted while some table activity is going on. Often there is no apparent reason and often
the data corruption can go on for a long period of time before anyone notices. The one thing that you
can be sure of is that data corruption will eventually happen.

Creating an environment that allows you to recover from data corruption quickly, easily and with
minimum loss of data is really very straight forward. Just follow three rules:

Rule #1 - Backup your files regularly and keep a number of iterations of the backups.

While this rule is obvious it still needed to be said. Going to a non-corrupt backup is sometimes the only
way you have of recovering from a badly damaged table. If ExecuteVerify reports a level 4 error in
iErrorLevel then you are SOL unless you have a recent (and good) backup.

Rule #2 - For every table in your database keep an empty clone of it stored in a separate
directory and on removable disk.

As mentioned earlier, the safest way to rebuild a table is to borrow the tables structure from another
identical table which is known to be good. The official word is that the TUtility.DLL can rebuild a table
using its own structure as long as the iErrorLevel is less than 3. While this is the official word there are a
number of users out there who would disagree based on experience. So, whenever possible rebuild
tables using a borrowed structure from a known good clone.

Rule #3 - Verify all your tables on a regular basis.

The Paradox world is littered with stories of corrupt tables that turned out to also be corrupt on the last
backup, on the backup before that. In fact, we heard one story of a shop that went back to its year end
backup (9 months old) and discovered that the table in question was corrupt even then. The solution is
simple: verify all the tables in your database on a regular basis.

Deciding How to Rebuild a Table

The decision on how to rebuild a table can be a little complicated. By far the simplest (and safest)
solution is to not make the decision at all and to always rebuild the table using an alternate or borrowed
table structure.

Having said that, here are the decision making rules if you want to make a decision.

Check the iErrorLevel property after ExecuteVerify is run. If iErrorLevel is less than 3 then the table is a
good candidate for a rebuild using its own structure. The possibly of a successful rebuild goes down if
the TblInfo.bValidInfo value is FALSE and/or the TblInfo.iRecord shows a value of zero when you know
the table has records in it. But even then you might be OK.

What to do when you have a Level 4 Error and no table to borrow the structure from If this happens then
you are still probably OK it's just that you need to do a little more work. You need to create a table using
either Paradox or the Database Desktop. This table must be exactly the same structure as the corrupt
table. If you don't know the structure then you are out of luck. Once you have created this table you can
use it as the alternate structure table and borrow its structure to rebuild the corrupt table.

Support Etc.

TTUtility was created by Out & About Productions. We provide support for this component by e-mail,
FAX., and snail mail.

e-mail : Compuserve 75664,1224
: Internet 75664.1224@compuserve.com

FAX : 619.259.0210

snail mail : Out & About Production
: 8526 Lepus Road
: San Diego, CA 92126

Disclaimers and Legal Stuff.

We really hate disclaimers but in the case of this component we feel it is absolutely necessary. The
TUtility API and this component on which it is based are very powerful and can make your file
maintenance tasks much easier. However, along with this power comes great potential for disaster.

We have studied the TUtility API in depth and have learned about a number of its quirks. All that we
have discovered is documented here. We realize that the documentation is lengthy, but we highly
recommend that you read it from front to back. If you follow the guidelines documented here you should
be able to easily and successfully build applications that incorporate verify and rebuild functionality. We
have tested the component both in house and in beta test, but this

testing is still a far cry from understanding all the different things that can happen to a file in the real
world. So... here's the disclaimer.

Use of this product is at your own risk. Neither Out & About Productions or Borland International is
responsible for any damage to your data as a result of using this component (TTUtility) or the underling
TUtility.DLL

The TUtility.DLL is a unsupported product from Borland International. Borland International has made
the TUtility.DLL (included with this product) freely redistributable with an application developed with the
Borland Database Engine.

Along with the TUtility.DLL you may distribute any application that includes the TTUtility component and
supporting components with no additional royalties beyond your initial license registration fee.

If you use the TTUtility component to develop an application where you also deliver the application's
source then this is considered an additional license and the receiving party must license a copy of
TTUtility from Out & About Production.

The TUtility.DLL and its API are NOT official Borland products, and as such Borland does not support
the published API.

You have the right to use this technical information subject to the terms of the no-nonsense License
Statement that you received with Delphi. Out & About products are licensed with exactly the same rules
as documented in Borland's no-nonsense License Statement.

If you would like additional information on Borland's TUtility API you should download the file
TUTILITY.ZIP from the Borland Tools forum on CompuServe.

The TTUtility component is copyright 1995 by Out & About Productions and is protected by international
law. We reserve all rights.

The TTUtility components, help files and documentation are copyright 1995 by Out & About
Productions and is protected by international law. We reserve all rights.

TIdxUtl Component

Properties Methods Events Support Etc.

The TIdxUtl component was added to the TUtility component set to give the Delphi application
developer a simple way to validate and update Paradox table indexes. With TIdxUtl you can check to
see if the indexes on a Paradox table are up to date and then if they are out of date the component can
regenerate the index(es). This component was added for completeness of the component set. The
TUtility.Dll does not check for out of date indexes so this component was added to fill the gap.

To use TdxUtl to check and regen a tables index you need to assign a table to the TableName property
and assign the Password property if the table has a master password. Then run CheckIndexes to
determine if the indexes are up to date. If indexes are found to be out of date run RegenIndex to
regenerate the indexes. You can use the onInfoIdxCheck and onInfoIdxRegen events to monitor the
progress.

This component is especially useful in situations where file servers or work stations are rebooted while
table access is in progress. Often this does not cause table corruption however it often causes
maintained indexes to become out of date. You can also use this component with tables that have non-
maintained indexes. Use TIdxUtl with the TTUtility component for a complete table maintenance
solution.

The TIdxUtl component does not use the TUtility.DLL. All calls access only are made directly the
Borland Database Engine only.

Since TIdxUtl does not use the TUtility.DLL you could develop an application without the table verify and
repair functionality but with index checking and regenerating and not worry about including TUtility.DLL
as a distribution file.

See Also TTUtility Component

Properties

    Run-time only
    Key properties

        Password
        RegenAll

Table
        TableName

Methods

(New topic text goes here.)

        CheckIndexes
        RegenIndex

Events

    Run-time only
    Key properties

        onInfoIdxCheck
        onInfoIdxRegen

Password Property

Applies To - TIdxUtl

Declaration

property Password : String;

Description

If the table has a master password it must be specified in this property otherwise CheckIndexes and
RegenIndex will not run.

RegenAll Property

Applies To - TIdxUtl

Declaration

property RegenAll : Boolean

Description

Set this property to TRUE if you want RegenIndex to regenerate all indexes, including the indexes that
are up to date.

Table Property

Applies To - TIdxUtl

Declaration

property Table : TTable;

Description

This property was added as an optional way of specifying the TableName. You can drop a TTable
component into your form and then use this property to select that TTable component. Assigning this
component automatically assigns a value to the TableName property. This may be easier than assigning
the TableName property directly if the path name is very long.

Note that this property is completely optional and is meant only as a way of assisting in the assigning   
the TableName property. Also note that using this method to assign Tablename uses slightly more
resources than assigning TableName directly,

TableName Property

Applies To - TIdxUtl

Declaration

property TableName : TFileName;

Description

Assign this property the name of the table to be checked and/or regenerated. This should be a
completely qualified file name, including the path.

CheckIndexes Method

Example

Applies To - TIdxUtl

Declaration

function CheckIndexes : Boolean;

Description

Execute CheckIndexes from your application to perform the check of the table identified in the
TableName property. CheckIndexes examines the information stored in the tables header to determine if
the index is out of date. Define an onInfoIdxCheck event to receive status information as the
CheckIndexes process runs.

If CheckIndexes finds that any of the Table's indexes are out of date then it returns FALSE. If all indexes
are up to date then TRUE is returned.

If the table is password protected then the Password property must be assigned, otherwise you will
receive a run time error.

RegenIndex Method

Example

Applies To - TIdxUtl

Declaration

procedure RegenIndex

Description

Execute RegenIndex from your application to regenerate out of date indexes.

If the RegenAll property is set to FALSE then only the indexes that are out of date are regenerated. If
RegenAll is TRUE than all indexes are regenerated. You can also control which indexes are regenerated
by defining the onInfoIdxRegen event.

Note : The Borland Database Engine User's Guide states, "The effect of regenerating a maintained
index is that it becomes more efficient and compact. (Frequent updates can fragment an Index)". pp277.

So... it a good idea to periodically regenerate all your indexes even if CheckIndexes shows all indexes
are up to date.

If the table is password protected then the Password property must be assigned, otherwise you will
receive a run time error.

onInfoIdxCheck Event

Example

Applies To - TIdxUtl

Declaration

property onInfoIdxCheck : TInfoIdxCheckEvent

Description

The onInfoIdxCheck    event reports information about the CheckIndexes process as it runs. The   
TInfoIdxCheckEvent event is defined as:

TInfoIdxCheckEvent = procedure(
Sender: TObject;
IndexName : String;
IsUptoDate : Boolean) of object;

Where IndexName reports the name of the index being checked and IsUptoDate reports TRUE if the
index is up to date and FALSE if the index is out of date.

onInfoIdxRegen Event

Example

Applies To - TIdxUtl

Declaration

property onInfoIdxRegen : TInfoIdxRegenEvent

Description

The onInfoIdxRegen event reports information about the RegenIndex process as it runs. You can also
use the onInfoIdxRegen event to selectively regenerate indexes in the selected table. The
TInfoIdxRegenEvent is defined as:

TInfoIdxRegenEvent = procedure(
Sender: TObject;
IndexName : String;
IsUptoDate : Boolean;
var Skip : Boolean) of object;

Where IndexName is the name of the index to be regenerated. IsUptoDate reports TRUE if the index is
up to date and FALSE if the index is out of date.

Use Skip to selectively regenerate indexes. If you set Skip to FALSE then the index will be regenerated
even if it is already up to date. Set Skip to TRUE if you do not want the index regenerated. Skip has
default values that will apply if you do not set its value. If the IsUptoDate parameter is TRUE then the
default value for Skip is TRUE. If IsUptoDate is FALSE then the default value for Skip is FALSE.

Example

procedure TFormIndxProjMain.ButtonCheckIndexesClick(Sender: TObject);
begin
 if not IdxUtl1.CheckIndexes then
 MessageDlg('Index(es) are out of date and should be regenerated.',
 mtWarning, [mbOk], 0);
end;

Example

procedure TFormIndxProjMain.ButtonRegenIndexesClick(Sender: TObject);
begin
 IdxUtl1.RegenIndex;
end;

Example

procedure TFormIndxProjMain.IdxUtl1InfoIdxCheck(Sender: TObject;
 IndexName: String; IsUptoDate: Boolean);
begin
 if IsUptoDate then
 SendToLog('Index ' + IndexName + ' is up to date.')
 else
 SendToLog('INDEX ' + Uppercase(IndexName) + ' IS OUT OF DATE.');
end;

Example

procedure TFormIndxProjMain.IdxUtl1InfoIdxRegen(Sender: TObject;
 IndexName: String; IsUptoDate: Boolean; var Skip: Boolean);
begin
 if IsUptoDate then
 begin
 if MessageDlg(IndexName + ' is not out of date do you want to regenerate
it anyway?',
 mtInformation, [mbYes,mbNo], 0) = mrYes then
 begin
 Skip := False;
 SendToLog(IndexName + ' is being regenerated.');
 end
 else
 begin
 Skip := True; {this line is not necessary cause Skip is true by
default}
 SendToLog(IndexName + ' not out of date and not being regenerated.');
 end;
 end
 else
 begin
 Skip := False; {this line is not necessary cause Skip is false by
default}
 SendToLog(IndexName + ' is being regenerated.');
 end;
end;

