
About Property
Description
The About property displays the about box for this component.    The about box contains version and
copyright information.    It is only available at design time.

Version 1.0 TProgBar Component Help, © 1994, 1995 SHORELINE SOFTWARE
VisualPROS is a trademark of SHORELINE SOFTWARE

About SHORELINE SOFTWARE

About SHORELINE SOFTWARE
SHORELINE is a developer haven created to provide excellent products and support.    Our developers
have been creating MS-Windows based applications since 1985 and real life client server applications
since 1987.    We are bringing our real world experience into the design and development of unique
controls.    We are a TRANSDOMINION Company and are part of a software family including the PRISM
Client Server Group.    Our family of companies offer many services that include:
· Component development
· Application development (off-site)
· Multi-media design and development
· Install development
· Technology transfer
· Training

How to purchase any of our products:
You can order directly from SHORELINE at 800-261-9198 or contact your favorite dealer.SHORELINE
accepts VISA, Mastercard or the Discover card.    Dealer prices may vary.

How to contact SHORELINE SOFTWARE about our products or service:
We welcome all ideas, comments and suggestions.    Please let us know what you think of our pricing and
support policies.    If you have a unique story about our products please share it with us; our developers
love to hear how our products are being used!

CompuServe: 70541, 2436
US Mail: 35-31 Talcottville Road, #123

Vernon, CT 06066-4030
Phone: 800-261-9198
Fax: 203-870-5727
Contact: Glenn A. Field

© Copyright 1994, 1995 SHORELINE SOFTWARE

A division of TRANSDOMINION Corporation

VisualPROS is a trademark of SHORELINE SOFTWARE

Prices and versions are subject to change without notice.    Products and company names are generally
trademarks or registered trademarks of their respective companies.    We are not responsible for
typographical errors.

SHORELINE is always looking for additional talent.    We even work with several remote developers for
our products.    If you feel you have what it takes to be part of SHORELINE send us your cv or resume.
Where to send your resume

AddValue Method
Example
Declaration
procedure AddValue (number:Longint);

Description
The AddValue method is used to increment the current value.    This method is useful whenever you want
to add an increment to the current value.

Align Property
Example
Description
The Align property determines how the controls align within their container (or parent control).    These
are the possible values:

Value Meaning

alNone The component remains where you place it in
the form.    This is the default value.

alTop The component moves to the top of the form
and resizes to fill the width of the form.    The
height of the component is not affected.

alBottom The component moves to the bottom of the
form and resizes to fill the width of the form.   
The height of the component is not affected.

alLeft The component moves to the left side of the
form and resizes to fill the height of the form.
The width of the component is not affected.

alRight The component moves to the right side of the
form and resizes to fill the height of the form.
The width of the component is not affected.

alClient The component resizes to fill the client area of
a form.    If a component already occupies part
of the client area, the component resizes to fit
within the remaining client area.

If the form or a component containing other components is resized, the components realign within the
form or control.

Using the Align property is useful when you want a control to stay in one position on the form, even if the
size of the form changes.    For example, you could use a panel component with various controls on it as
a tool palette.    By changing the Align to alLeft, you guarantee that the tool palette always remains on the
left side of the form, and always equals the client height of the form.

NOTE:    This property follows the standard Delphi Align property found in the installed Borland
VCL library.

BackColor Property
See Also Example
Declaration
property BackColor: TColor;

Description
The BackColor property is used to set the background color of the progress bar.    Even when using a
bitmap or LED for the foreground, the selected backcolor is still used.    The BackColor property uses the
same values as the Color property.

BackgroundColor Property
See Also
NOTE:    This property is here for reference purposes only.    It is not available for TProgBar.    See
BackColor property for TProgBar.

Declaration
property BackgroundColor: TColor;

Description
The BackgroundColor property determines the background color of the tab set control. The background
area of the tab set control is the area between the tabs and the border of the control. For a list of possible
color values, see the Color property.

BarShape Property
See Also Example
Declaration
property BarShape: TPBarShape;

Description
The BarShape property allows you to change the shape of your Progress Bar.    There are two predefined
shapes for your bar: (Rectangular, Trapezoidal).

The Direction, TrapezoidalDir, TrapezoidalMin and TrapezoidalShape properties will modify the
trapezoidal shape selection.

BarType Property
See Also Example
Declaration
property BarType: TPBarType;

Description
The BarType property adjusts the progress bar's appearance from 3D, LED, or Normal.    The 3D
appearance is similar to the window style introduced in Windows 3.1.    The LED type supports multi-
colored segments for progress display.    Finally the normal type is the standard percent bar appearance.

The Segment properties are used when the LED bartype has been selected.    For 3D and Normal, the
various Segment properties are ignored.

BevelType Property
See Also Example
Declaration
property BevelType        : TBevelStyle;

Description
The BevelType allows you to change the appearance of the border region.    There are three options
available for BevelType (Lowered, None, Raised)

BevelWidth Property
See Also Example
Declaration
property BevelWidth      : Byte;

Description
The BevelWidth property determines the width, in pixels, between the inner and outer bevels of
TProgBar.

Bitmap Property
See Also    Example
Declaration
property Bitmap              : TBitmap;

Description
The Bitmap property for TProgBar allows you to use an actual bitmap for the foreground of the progress
bar.    This property is useful if you want to have a scrolling bitmap message or logo.    With this option
your opportunities are endless for a customized progress bar look.

BorderType Property
See Also Example
Declaration
property BorderType        : TBorderStyle

Description
The BorderType property establishes a border surrounding TProgBar.    You have two options (None,
Single) for this property.    A Single border will place a thin, black border around the ProgressBar.

BrushStyle Property
Declaration
property BrushStyle:    TBrushStyle

Description
The BrushStyle property determines the brush style used for filling the background of the progress bar.   
You can choose from several different brush styles.

Color
These are the possible values of Color:

Value Meaning
clBlack Black
clMaroon Maroon
clGreen Green
clOlive Olive green
clNavy Navy blue
clPurple Purple
clTeal Teal
clGray Gray
clSilver Silver
clRed Red
clLime Lime green
clBlue Blue
clFuchsia Fuchsia
clAqua Aqua
clWhite White
clBackground Current color of your Windows

background
clActiveCaption Current color of the title bar of the

active window
clInactiveCaption Current color of the title bar of inactive

windows
clMenu Current background color of menus
clWindow Current background color of windows
clWindowFrame Current color of window frames
clMenuText Current color of text on menus
clWindowText Current color of text in windows
clCaptionText Current color of the text on the title

bar of the active window
clActiveBorder Current border color of the active

window
clInactiveBorder Current border color of inactive

windows
clAppWorkSpace Current color of the application

workspace
clHighlight Current background color of selected

text
clHightlightText Current color of selected text
clBtnFace Current color of a button face
clBtnShadow Current color of a shadow cast by a

button
clGrayText Current color of text that is dimmed
clBtnText Current color of text on a button
clInactiveCaptionText Current color of the text on the title

bar of an inactive window
clBtnHighlight Current color of the highlighting on a

button

The second half of the colors listed here are Windows system colors. The color that appears depends on
the color scheme users are using for Windows. Users can change these colors using the Control Panel in
Program Manager. The actual color that appears will vary from system to system. For example, the color

fuchsia may appear more blue on one system than another.

When you use the Color dialog box to select a color, you are assigning a new color value to the dialog
box's Color property. You can then use the value within the Color property, and assign it to the Color
property of another control.

Create Method
NOTE:    For more information regarding Create methods please refer to the Delphi help.

Declaration
constructor Create;

Description
The Create method constructs a new object instance. Create returns an instance of the type being
created, allocated on the global heap. As with all constructors, Create calls the NewInstance method to
allocate the memory for the instance, and the InitInstance method to initialize the allocated memory
before executing its own code.

By default, Create allocates the number of bytes returned by the InstanceSize method, and initializes the
allocated memory to zeros.

When declaring new component types, always add the override directive if your new component
declares a Create method. The Create method of TComponent is virtual, so to ensure that Delphi calls
the correct constructor when a user drops your component on a form, you must override the Create
method.

Note:
When you override the Create constructor in a descendant object type, you should call the
inherited Create to complete the initialization of inherited fields and properties. Always use the inherited
keyword when calling the inherited Create, rather than specifying the ancestor type, as calling
AncestorType.Create actually constructs an additional instance of that ancestor
type.

Cursor Property
Example
Declaration
property Cursor: TCursor;

Description
The Cursor property is the image used when the mouse passes into the region covered by the
control. These are the possible images:

Value                              Image

crDefault

crArrow

crCross

crIBeam

crSize

crSizeNESW

crSizeNS

crSizeNWSE

crSizeWE

crUpArrow

crHourglass

crDrag

crNoDrop

crHSplit

crVSplit

Destroy Method
NOTE:    For more information regarding Destroy methods please refer to the Delphi help.

Declaration
destructor Destroy;

Description
The Destroy method destroys the object, component, or control and releases the memory allocated to it.

You seldom need to call Destroy. Objects designed with Delphi create and destroy themselves as
needed, so you don't have to worry about it. If you construct an object by calling the Create method, you
should call Free to release memory and dispose of the object.

Direction Property
Example
Declaration
property Direction          : TDirection

Description
The Direction property determines which direction the progress bar will paint.

Enabled Property
Example
NOTE:    This information is provided for reference only.    For more information refer to the Delphi
help.

Description
The Enabled property determines if the control responds to mouse, keyboard, or timer events, or if the
data-aware controls update each time the dataset they are connected to changes.

Example for AddValue Method
Example
This example used the AddValue method to demonstrate incremental increases to the progress bar.   
The progress bar control named ProgBar1, will be changed during the creation of TForm1:

To see the AddValue method work during design time try the following:
NOTE:    The AddValue method can not be seen during design time.

To see the AddValue method work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the AddValue incremental change
4a)    Double click on TForm1 in a blank area
4b)    Type in the following line of code in the edit window after the begin.

ProgBar1.AddValue(50);
Your code should look like the following

procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.AddValue(50);
end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form.    Your progress bar should display 50%

Example for Align property
Example
This example moves a progress bar control named ProgBar1, to the bottom of the form and resizes it to
fill the width of the form, during the creation of TForm1:

To see the Align property work during design time try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Change the Align property to see the actual alignment change
4a)    Click on Object Inspector window
4b)    Select the drop down list for the Align property
4c)    Select alBottom from the list
4d)    ProgBar1 should be at the bottom of the form expanded to the width of the form

To see the Align property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the alignment change
4a)    Double click on TForm1 in a blank area
4b)    Type in the following line of code in the edit window after the begin.

ProgBar1.Align := alBottom
Your code should look like the following

procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.Align := alBottom
end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form

Example for BackColor Property
Example
This example changes the backcolor of a progress bar control named ProgBar1, to yellow during the
creation of Form:

To see the BackColor property work during design time try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Change the BackColor property to see the actual color change
4a)    Click on Object Inspector window
4b)    Select the drop down list for the BackColor property
4c)    Select clYellow from the list
4d)    ProgBar1 should have a yellow background

To see the BackColor property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the color change
4a)    Double click on TForm1 in a blank area
4b)    Type in the following line of code in the edit window after the begin.

ProgBar1.BackColor := clYellow
Your code should look like the following

procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.BackColor := clYellow;
end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form

Example for BarShape Property
Example
This example will change the shape of the progress bar control named ProgBar1, during the creation of
TForm1.    This example will change the shape to a trapezoid:

To see the BarShape property work during design time try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Change the BarShape property to see the actual shape change
4a)    Click on Object Inspector window
4b)    Select the drop down list for the BarShape property
4c)    Select Trapezoidal from the list
4d)    ProgBar1 should be changed to a Trapezoid

To see the BarShape property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the shape change
4a)    Double click on TForm1 in a blank area
4b)    Type in the following line of code in the edit window after the begin.

ProgBar1.BarShape := Trapezoidal
Your code should look like the following

procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.BarShape := Trapezoidal;
end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form

Example for BarType Property
Example
This example changes the BarType for a progress bar control named ProgBar1, during the creation of
TForm1.    We will change the type to a LED style:

To see the BarType property work during design time try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Change the BarType property to see the actual style change
4a)    Click on Object Inspector window
4b)    Select the drop down list for the BarType property
4c)    Select LED from the list
4d)    ProgBar1 should be display black LED segments for the width of the bar

To see the BarType property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the bar type change
4a)    Double click on TForm1 in a blank area
4b)    Type in the following line of code in the edit window after the begin.

ProgBar1.BarType := LED
Your code should look like the following

procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.BarType := LED;
end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form

Example for BevelType Property
Example
This example changes the BevelType for a progress bar control named ProgBar1, during the creation of
TForm1.    The example will change the BevelType from Lowered to Raised:

To see the BevelType property work during design time try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Change the BevelType property to see the bevel change
4a)    Click on Object Inspector window
4b)    Select the drop down list for the BevelType property
4c)    Select Raised from the list
4d)    ProgBar1 should have the bevel raised

To see the BevelType property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the bevel change
4a) Double click on TForm1 in a blank area

4b)    Add GrphFunc to the uses line right before ProgBar.
Your uses statement should look like the following
uses

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms,
Dialogs, GrphFunc, ProgBar;

4c)    Type in the following line of code in the edit window after the begin.
ProgBar1.BevelType := Raised

Your code should look like the following
procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.BevelType := Raised;
end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form

Example for BevelWidth Property
Example
This example changes the bevel width on a progress bar control named ProgBar1, during the creation of
TForm1.    The example will change the width from 2 to 10:

To see the BevelWidth property work during design time try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Change the BevelWidth property to see the actual width change
4a)    Click on Object Inspector window
4b)    Click on the BevelWidth edit field
4c)    Enter 10 and press enter
4d)    ProgBar1 should have a large bevel

To see the BevelWidth property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the width change
4a)    Double click on TForm1 in a blank area
4b)    Type in the following line of code in the edit window after the begin.

ProgBar1.BevelWidth := 10;
Your code should look like the following

procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.BevelWidth := 10;
end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form

Example for Bitmap Property
Example
This example assigns a bitmap for the foreground of a progress bar control named ProgBar1, during the
creation of TForm1.    This example will use the arcade.bmp found in your windows directory:

To see the Bitmap property work during design time try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Change the Bitmap property to see the actual bitmap change
4a)    Click on Object Inspector window
4b)    Double click the Bitmap property
4c)    Click Load from the Picture Editor dialog
4d)    In the Load Picture dialog navigate to your MS-Windows subdirectory
4e)    Double click the arcade.bmp found in the file list
4f)      Click OK on the Picture Editor dialog
4g)    Click the edit field for Value property
4h)    Enter the number 75 for the Value property
4i)    ProgBar1 should have the arcade.bmp 3/4 way across the progress bar

To see the Bitmap property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the bitmap change
4a)    Double click on TForm1 in a blank area
4b)    Type in the following lines of code in the edit window after the begin.
NOTE:    Substitute your MS-Windows path if it is different than C:\WINDOWS\

ProgBar1.Bitmap.LoadFromFile('C:\windows\arcade.bmp');
ProgBar1.Value := 75;

Your code should look like the following
procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.Bitmap.LoadFromFile('C:\windows\arcade.bmp');
ProgBar1.Value := 75;

end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form

If you receive an error check your pathname of the bitmap file.

Example for BorderType Property
Example
This example changes the border type for a progress bar control named ProgBar1, during the creation of
TForm1.    This example will change the border type from bsNone to bsSingle:

To see the BorderType property work during design time try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Change the BorderType property to see the actual border change
4a)    Click on Object Inspector window
4b)    Select the drop down list for the BorderType property
4c)    Select bsSingle from the list
4d)    ProgBar1 should have a thin black border sorrounding it
NOTE:    If you are using a high-resolution monitor you may want to click on the blank form

once to remove the focus from ProgBar1, to better see the border.

To see the BorderType property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the border change
4a)    Double click on TForm1 in a blank area
4b)    Type in the following line of code in the edit window after the begin.

ProgBar1.BorderType := bsSingle
Your code should look like the following

procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.BorderType := bsSingle;
end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form

Example for Cursor Property
Example
This example changes the cursor for a progress bar control named ProgBar1, during the creation of
TForm1.    This example changes the cursor from the csDefault to crlBeam:

NOTE:    The Cursor property can be changed during design, but you will not see the results until
runtime.

To see the Cursor property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the cursor change
4a)    Double click on TForm1 in a blank area
4b)    Type in the following line of code in the edit window after the begin.

ProgBar1.Cursor := criBeam;
Your code should look like the following

procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.Cursor := criBeam;
end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form

Pass the mouse over the progress bar and watch the cursor change to the IBEAM.    If
you receive an "unknown identifier" compile message, you probably misspelled criBeam.    Check the third
letter and make sure it is an i.

Example for Direction Method
Example
This example changes the paint direction of a progress bar control named ProgBar1, during the creation
of TForm1.    This example changes the direction from RightDirect to DownDirect :

To see the Direction property work during design time try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Change the Direction property to see the actual direction change
4a)    Click on Object Inspector window
4b)    Select the drop down list for the Direction property
4c)    Select DownDirect from the list
4d)    Click on the Value property to edit the value
4e)    Enter 50 for Value property and press enter
4f)      ProgBar1 should have the top half of the progress bar filled in

To see the Direction property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the direction change
NOTE:    Add GrphFunc to the uses statement right before ProgBar.    Your uses statement

should look like the following:
uses
    SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
    Forms, Dialogs, GrphFunc, ProgBar;

4a)    Double click on TForm1 in a blank area
4b)    Type in the following line of code in the edit window after the begin.

ProgBar1.Direction := DownDirect;
ProgBar1.Value := 50;

Your code should look like the following
procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.Direction := DownDirect;
ProgBar1.Value := 50;

end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form

Example for Enabled Property
Example
This example disables a progress bar control named ProgBar1, during the creation of TForm1:

To see the Enabled property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the enabled change
4a)    Double click on TForm1 in a blank area
4b)    Type in the following line of code in the edit window after the begin.

ProgBar1.Enabled := FALSE
Your code should look like the following

procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.Enabled := FALSE
end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form
NOTE:    You won't see much with this example.    The control is disabled and there are no

visible signs indications.

Example for Font Property
Example
This example changes the font on a progress bar control named ProgBar1, during the creation of
TForm1.    This example will change the font from system to arial:

To see the Font property work during design time try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Change the Direction property to see the actual direction change
4a)    Click on Object Inspector window
4b)    Expand the Font property
4c)    Select Arial from the Name drop down list
4d)    Click on the Value property to edit the value
4e)    Enter 50 for Value property and press enter
4f)      ProgBar1 should display 50% with the Arial font

To see the Font property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the font change
4a)    Double click on TForm1 in a blank area
4b)    Type in the following line of code in the edit window after the begin.

ProgBar1.Font.Name := 'Arial';
ProgBar1.Value := 50;

Your code should look like the following
procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.Font.Name := 'Arial';
ProgBar1.Value := 50;

end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form

Example for ForeColor Property
Example
This example changes the forecolor on a progress bar control named ProgBar1, during the creation of
TForm1.    This example will change the forecolor from clBtnFace to clYellow:

To see the Font property work during design time try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Change the ForeColor property to see the actual color change
4a)    Click on Object Inspector window
4b)    Select clYellow from the Forecolor drop down list
4c)    Enter 50 for Value property and press enter
4d)    ProgBar1 should display display 50% of the bar in yellow

To see the ForeColor property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the color change
4a)    Double click on TForm1 in a blank area
4b)    Type in the following line of code in the edit window after the begin.

ProgBar1.ForeColor := clYellow;
ProgBar1.Value := 50;

Your code should look like the following
procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.ForeColor := clYellow;
ProgBar1.Value := 50;

end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form

Example for Hint Property
Example
This example changes the hint line for a progress bar control named ProgBar1, during the creation of
TForm1:

To see the Hint property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the hint change
4a)    Double click on TForm1 in a blank area
4b)    Type in the following line of code in the edit window after the begin.

ProgBar1.Hint := "A Nice Hint";
ProgBar1.ShowHint := TRUE;

Your code should look like the following
procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.Hint := 'A Nice Hint';
ProgBar1.ShowHint := TRUE;

end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form

Move the mouse over the progress bar and in a couple of seconds the hint box will show.

6) Now for a little fun (NOTE:    You will need to have the VisualHelpCloud component
installed for this to work)

6a)    Click on the VisualPROS-1 tab found in VCL tabs
6b)    Select the HelpCloud icon and double click
6c)    Press F9 and watch your new form

Move the mouse over the progress bar, and in a couple of seconds the help cloud will
show your help.    See how easy it is to use VisualPROS to add dramatic impact to your applications!

Example for Left Property
Example
This example moves a progress bar control named ProgBar1, during the creation of TForm1.    This
example uses the left property to move the progress bar:

To see the Left property work during design time try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Change the Left property to see the actual movement
4a)    Click on Object Inspector window
4b)    Click on the Left property edit field
4c)    Enter 200 and press enter
4d)    ProgBar1 should have moved left

To see the Left property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the Left change
4a)    Double click on TForm1 in a blank area
4b)    Type in the following line of code in the edit window after the begin.

ProgBar1.Left := 200;
Your code should look like the following

procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.Left := 200;
end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form

Example for MaxValue Property
Example
This example changes the maxvalue on a progress bar control named ProgBar1, during the creation of
TForm1.    This example will change the maxvalue from 100 to 200:

To see the MaxValue property work during design time try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Change the MaxValue property to see the actual value change
4a)    Click on Object Inspector window
4b)    Double click on the Value property
4c)    Enter 100 and press Enter

The progress bar should be full at 100%
4d)    Double click on the MaxValue property
4e)    Enter 200 for the MaxValue property and press enter
4f)      ProgBar1 should display 50%

To see the MaxValue property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the value change
4a)    Double click on TForm1 in a blank area
4b)    Type in the following line of code in the edit window after the begin.

ProgBar1.Value := 100;
ProgBar1.MaxValue := 200;

Your code should look like the following
procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.Value := 100;
ProgBar1.MaxValue := 200;

end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form

Example for MinValue Property
Example
This example changes the minvalue on a progress bar control named ProgBar1, during the creation of
TForm1.    This example will change the minvalue from 0 to 10:

To see the MinValue property work during design time try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Change the MinValue property to see the actual value change
4a)    Click on Object Inspector window
4b)    Double click on the Value property
4c)    Enter 25 and press Enter

The progress bar should be full at 25%
4d)    Double click on the MinValue property
4e)    Enter 10 for the MinValue property and press enter
4f)      ProgBar1 should display 16%
NOTE:    MaxValue must equal 100 for this to work.

To see the MinValue property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a)    Select New Project from the Delphi File menu
3) Place the TProgBar on the form

3a)    Click on the VisualPROS-1 tab found in VCL tabs
3b)    Select the ProgBar icon and double click

4) Create the actual code for the value change
4a)    Double click on TForm1 in a blank area
4b)    Type in the following line of code in the edit window after the begin.

ProgBar1.Value := 25;
ProgBar1.MinValue := 10;

Your code should look like the following
procedure TForm1.FormCreate(Sender: TObject);
begin

ProgBar1.Value := 25;
ProgBar1.MinValue := 10;

end;
end.

5) Try the application and see the results
5a)    Press F9 and watch your new form

Font Property
See Also Example
Declaration
property Font: TFont;

Description
The Font property is a font object that controls the attributes of text written on or in the component, or
object, or sent to the printer. To modify a font, you change the value of the Color, Name, Size or Style
properties of the font object.

ForeColor Property
See Also Example
Declaration
property ForeColor: TColor;

Description
The ForeColor property is used to set the foreground color of the progress bar.    Even when using a
bitmap or LED for the foreground, the selected backcolor is still used.    The ForeColor property uses the
same values as the Color property.

Height Property
Declaration
property Height: Integer;

Description
The Height property determines vertical size of a component or object.

Hint Property
Example
Declaration
property Hint: string;

Description
The Hint property is the text string that can appear when the OnHint event occurs, which happens when
the user moves the mouse pointer over a control or menu item. The code within the OnHint event handler
determines how the string is displayed. A common use of an OnHint event handler is to display the hint as
the caption of a panel component, that is being used as a status bar.

You can have a Help Hint, a box containing help text, appear for a control when the user moves the
mouse pointer over the control, and pauses momentarily. This is how:

1 Specify a Hint value for each control you want a Help Hint to appear for.
2 Set the ShowHint property of each control to True.
3 At run time, set the value of application's ShowHint property to True.

If the application's ShowHint property is False, the Help Hint won't appear.

If a control has no Hint value specified, but its parent control does, the control uses the Hint value of the
parent control, as long as the control's ShowHint property is True.

With SHORELINE's VisualHelpCloud you can create floating bubble with your applications.

Key Property
The most significant properties:    Generally having an effect on the behavior of the component.    You
probably want to learn these properties first.

Left Property
Example
Declaration
property Left: Integer;

Description
The Left property determines the horizontal coordinate of the left edge of a component, relative to the
form in pixels. For forms, the value of the Left property is relative to the screen in pixels. The default value
is -1.

MaxValue Property
See Also Example
Declaration
property MaxValue            : Longint;

Description
The MaxValue property establishes the upper limit for the progress bar.

Methods

Declaration
procedure      AddValue        (number: Longint);
property        Percentage: Longint;

MinValue Property
See Also Example
Declaration
property MinValue            : Longint;

Description
The MinValue property establishes the lower limit for the progress bar.

Name Property
Declaration
property Name: TProgBar;

Description
The Name property contains the name of the component as referenced by other components. By default,
Delphi assigns sequential names based on the type of the component, such as 'ProgBar1', 'ProgBar2'
and so on. You may change these to suit your needs.

Note: Change component names only at design time.

NumSegments Property
See Also
Declaration
property NumSegments      : Byte;

Description
NumSegments defines how many segments are available for the LED display option.

OnClick Event
Description
An OnClick event occurs when the user clicks the component

OnDblClick Event
Description
The OnDblClick event occurs when the user double-clicks the mouse button, while the mouse pointer
is over the component.

OnDragDrop Event
Description
The OnDragDrop event occurs when the user drops an object being dragged. Use the OnDragDrop
event handler to specify what you want to happen when the user drops an object. The Source parameter
of the OnDragDrop event is the object being dropped, and the Sender is the control the object is being
dropped on. The X and Y parameters are the coordinates of the mouse positioned over the control.

OnDragOver Event
Description
The OnDragOver event occurs when the user drags an object over a component. Usually you'll use an
OnDragOver event to accept an object, so the user can drop it.

The OnDragOver event accepts an object when its Accept parameter is True.

Usually, you will want the cursor to change shape, indicating that the control can accept the dragged
object if the user drops it. You can change the shape of the cursor by changing the value of the
DragCursor property for the control, at either design or run time, before an OnDragOver event occurs.

OnEndDrag Event
Description
The OnEndDrag event occurs whenever the dragging of an object ends, either by dropping the object,
or by canceling the dragging. Use the OnEndDrag event handler to specify any special processing
you want to occur when the dragging stops. If the dragged object was dropped and accepted by the
control, then the Target parameter of the OnEndDrag event is True. If the object was not dropped
successfully, the value of Target is nil.

OnEnter Event
Description
The OnEnter event occurs when a component becomes active. Use the OnEnter event handler to specify
any special processing you want to occur when a component becomes active.

Note:
The OnEnter event does not occur when switching between forms, or between another Windows
application and your application.

The OnEnter event for a TPanel or THeader component never occurs, as panels and headers never
receive focus.

OnExit Event
Description
The OnExit event occurs when the input focus shifts away from one control to another. Use the OnExit
event handler when you want special processing to occur when this control ceases to be active.

Note:
The OnExit event does not occur when switching between forms, or between another Windows
application and your application.

The OnExit event for a TPanel or THeader component never occurs, as panels and headers never
receive focus.

The ActiveControl property is updated before an OnExit event occurs.

OnMouseDown Event
Description
The OnMouseDown event occurs when the user presses a mouse button with the mouse pointer over a
control. Use the OnMouseDown event handler when you want some processing to occur, as a result of
pressing a mouse button.

The Button parameter of the OnMouseDown event identifies which mouse button was pressed. By using
the Shift parameter of the OnMouseDown event handler, you can respond to the state of the mouse
buttons and shift keys. Shift keys are the Shift, Ctrl and Alt keys.

OnMouseMove Event
Description
The OnMouseMove occurs when the user moves the mouse pointer while the mouse pointer is over a
control. Use the OnMouseMove event handler when you want something to happen while the mouse
pointer moves within the control.

By using the Shift parameter of the OnMouseDown event handler, you can respond to the state of the
mouse buttons and shift keys. Shift keys are the Shift, Ctrl and Alt keys.

OnMouseUp Event
Description
The OnMouseUp event occurs when the user releases a mouse button that was pressed with the mouse
pointer over a component. Use the OnMouseUp event handler when you want processing to occur when
the user releases a mouse button.

The OnMouseUp event handler can respond to left, right, or center mouse button presses, and shift key
plus mouse button combinations. Shift keys are the Shift, Ctrl and Alt keys.

OnResize Event
Description
The OnResize event occurs whenever the form is resized while an application is running. Use the
OnResize event handler when you want something to happen in your application when the form is
resized.

Overriding Methods
NOTE:    For more information regarding overriding methods please refer to the Delphi help.

Overriding a method means extending or refining it, rather than replacing it. That is, a descendant object
type can redeclare and reimplement any of the methods declared in its ancestors. One cannot override
static methods, because declaring a static method with the same name as an inherited static method
replaces the inherited method completely.

To override a method in a descendant object type, add the directive override to the end of the method
declaration.

Using override will cause a compile-time error if:
The method does not exist in the ancestor object
The ancestor's method of that name is static
The declarations are not otherwise identical (names and types of parameters, procedure vs.

function, and so on)

ParentColor Property
See Also
Declaration
property ParentColor: Boolean;

Description
The ParentColor property determines where a control looks for its color information. If ParentColor is
True, then the control uses the color in its parent component's Color property. If ParentColor is False, the
control uses its own Color property. Except for the radio group, database radio group, label and database
text controls, the default value is False.

By using ParentColor, you can ensure that all the controls on a form have a uniform appearance. For
example, if you change the background color of your form to gray, by default, the controls on the form will
also have a gray background.

To specify a different color for a particular control, specify the desired color as the value of that control's
Color property, and ParentColor becomes False automatically.

ParentFont Property
See Also
Declaration
property ParentFont: Boolean;

Description
The ParentFont property determines where a control looks for its font information. If ParentFont is True,
then the control uses the font in its parent component's Font property. If ParentFont is False, the control
uses its own Font property.

By using ParentFont, you can ensure that all the controls on a form have a uniform appearance. For
example, if you want all the controls in a form to use 12-point Courier for their font, you can set the form's
Font property to that font. By default, all the controls on that form will use the same font.

To specify a different font for a particular control, specify the desired font as the value of the control's Font
property, and ParentFont becomes False automatically.

When the ParentFont is True for a form, the form uses the value of the application's Font property.

Percentage Property
Declaration
property        Percentage: Longint;

Description
The Percentage property is a Read Only property and only available at Runtime.    The property returns
the current value of the progress bar.

Read Only
Properties with this symbol are read only and cannot be changed.    Usually provided so that application
code can inspect certain characteristics of a component.

Runtime Only
Properties with this symbol are only available at runtime.    In design mode these properties will not be
shown in the object inspector.    Most runtime only properties are read only as well.

See Also
About
Align
BackColor
BarShape
BarType
BevelType
BevelWidth
Bitmap
BorderType
BrushStyle
Color
Cursor
Direction
Font
ForeColor
Height
Hint
Left
MaxValue
MinValue
Name
NumSegments
ParentColor
Seg1Color ... Seg3Color
Seg1Count ... Seg3Count
SegOffColor
SegSpacing
ShowText
Tag
Top
TrapezoidDir
TrapezoidMin
TrapezoidShape
Value
Width

See Also
Color
Font Color
ForeColor
ParentColor
Seg1Color ... Seg3Color
SegOffColor

See Also
BarType
Direction
TrapezoidDir
TrapezoidMin
TrapezoidShape

See Also
BarShape
BevelType
BevelWidth
BorderType
NumSegments
Seg1Color ... Seg3Color
Seg1Count ... Seg3Color
SegOffColor
SegSpace

See Also
BevelType
BevelWidth

See Also
BackColor
BrushStyle
Color
ForeColor
ParentColor
Seg1Color ... Seg3Color
SegOffColor

See Also
NumSegments
Seg1Color ... Seg3Color
Seg1Count ... Seg3Count
SegOffColor
SegSpacing

See Also
BarShape
BarType
TrapezoidDir
TrapezoidMin
TrapezoidShape

See Also
BarShape
BarType
Bitmap
BorderType
ShowText

See Also
BackColor
Font
ForeColor
Height
ShowText

See Also
MaxValue
MinValue
TrapezoidMin

Seg1Color Property
See Also
Declarations
property Seg1Color          : TColor;

Description
Seg1Color property is used to define the color for the first segment group when using the LED option for
the progress bar.

Seg1Count Property
See Also
Declaration
property Seg1Count          : Byte;

Description
Seq1Count property determines how many segments are dedicated to the first segment.

Seg2Color Property
See Also
Declarations
property Seg2Color          : TColor;

Description
Seg2Color property is used to define the color for the second segment group when using the LED option
for the progress bar.

Seg2Count Property
See Also
Declaration
property Seg2Count          : Byte;

Description
Seq2Count property determines how many segments are dedicated to the second segment.

Seg3Color Property
See Also
Declarations
property Seg3Color          : TColor;

Description
Seg3Color property is used to define the color for the third segment group when using the LED option for
the progress bar.

Seg3Count Property
See Also
Declaration
property Seg3Count          : Byte;

Description
Seq3Count property determines how many segments are dedicated to the third segment.

SegOffColor Property
See Also
Declarations
property SegOffColor          : TColor;

Description
SegOffColor property is used to define the forecolor for the segment group when the is not illuminated.

SegSpacing Property
See Also
Declaration
property SegSpacing        : Byte;

Description
The SegSpacing property determines the pixel spacing between each segment.

ShowHint Property
Declaration
property ShowHint: Boolean;

Description
The ShowHint property determines if the control should display a Help Hint when the user's mouse
pointer momentarily rests on the control. The Help Hint is the value of the Hint property, which is
displayed in a box just beneath the control. If ShowHint property is True, the Help Hint will appear.

If ShowHint is False, the Help Hint may or may not appear. If ParentShowHint is also False, the Help Hint
won't appear. If, however, ParentShowHint is True, whether or not the Help Hint appears depends on the
setting of the ShowHint property of the control's parent. For example, imagine a check box within a group
box. If the ShowHint property of the group box is True and the ParentShowHint property of the check box
is True, but the ShowHint property of the check box is False, the check box will still display its Help Hint.

The default value is False.

Changing the ShowHint value to True automatically sets the ParentShowHint property to False.

ShowText Property
Declaration
property ShowText            : Boolean;

Description
The ShowText property allows you to disable the percent text from being displayed.    In some cases
where you just need the LED display, and not the percentage shown, this property should be set to
FALSE.

Style Property
NOTE:    The Style property is not directly available to TProgBar it is here for reference purposes
only.

Declaration
property Style: TBevelStyle;

Description
The value of the Style property determines if the bevel is raised or lowered. These are the possible
values:

Value Meaning

bsLowered The bevel is lowered.
bsRaised The bevel is raised.

TBevelStyle Type
Declaration
type
    TBevelStyle = (bsLowered, bsRaised);

Description
The TBevelStyle type defines the possible values of the Style property, of the TBevel component.

TBitmap Type
NOTE:    More information is available in the standard Delphi on-line help.

Description
A TBitmap object contains a bitmap graphic (.BMP file format). A TBitmap encapsulates a Windows
HBITMAP and an HPALETTE, and manages the realizing of the palette automatically.

The canvas of the TBitmap is a TCanvas object specified by the Canvas property. The palette of the
TBitmap is specified by the Palette property.

The height and width in pixels of the bitmap are specified by the Height and Width properties,
respectively.

If the Monochrome property is set to False, then the bitmap is displayed in color. If Monochrome is set to
True,
then the bitmap is displayed in monochrome.

To load a bitmap from a file, call the LoadFromFile method. To save a bitmap to a file, call SaveToFile.

To draw a bitmap on a canvas, call the Draw or StretchDraw methods of a TCanvas object, passing a
TBitmap as a parameter.

When the bitmap is modified, an OnChange event occurs.

In addition to these properties, methods, and events, this object also has the methods that apply to all
objects.

TBorderStyle Type
Declaration
type
    TBorderStyle = bsNone..bsSingle;

Description
TBorderStyle is the type of BorderStyle property for controls. The BorderStyle property for forms and
windows uses the type TFormBorderStyle.

TBrush Property
NOTE:    This information is provided for reference purposes only.    Please refer to the standard
Delphi help for more information.

Description
A TBrush object is used when filling solid shapes, such as rectangles and ellipses. The interior of the
shape is filled with a color or pattern. TBrush encapsulates a Windows HBRUSH.

The color of the brush is specified by the Color property, and the pattern is specified by the Style property.
If a bitmap is specified by the Bitmap property, the pattern of the brush is defined by the bitmap, rather
than the Style property.

If the brush is modified, an OnChange event occurs.

In addition to these properties, methods, and events, this object also has the methods that apply to
all objects.

TBrushStyle Type
Declaration
type
    TBrushStyle = (bsSolid, bsClear, bsHorizontal, bsVertical, bsFDiagonal, bsBDiagonal, bsCross,
DiagCross);

Description
The TBrushStyle type is used by the Style property to determine the pattern of a TBrush object.

Hatch                                Pattern

bsSolid

bsClear

bsBDiagonal

bsFDiagonal

bsCross

bsDiagCross

bsHorizontal

bsVertical

TColor Type
Declaration
type
    TColor = -(COLOR_ENDCOLORS + 1)..$02FFFFFF;

Description
The TColor type is used to specify the color of an object.

The Graphics unit contains definitions of useful constants for TColor. These constants map either directly
to the closest matching color in the system palette (for example, clBlue maps to blue), or to the
corresponding system screen element color, defined in the Color section of the Windows Control panel
(for example, clBtnFace maps to the system color for button faces).
The constants that map to the closest matching system colors are: clAqua, clBlack, clBlue, clDkGray,
clFuchsia, clGray, clGreen, clLime, clLtGray, clMaroon, clNavy, clOlive, clPurple, clRed, clSilver, clTeal,
clWhite and clYellow.

The constants that map to the system screen element colors are: clActiveBorder, clActiveCaption,
clAppWorkSpace, clBackground, clBtnFace, clBtnHighlight, clBtnShadow, clBtnText, clCaptionText,
clGrayText, clHighlight, clHighlightText, clInactiveBorder, clInactiveCaption, clInactiveCaptionText, clMenu,
clMenuText, clScrollBar, clWindow, clWindowFrame and clWindowText.

If you specify TColor as a specific 4-byte hexadecimal number instead of using the constants defined in
the graphics unit, the low three bytes represent RGB color intensities for blue, green, and red,
respectively. The value $00FF0000 represents full-intensity, pure blue, $0000FF00 is pure green, and
$000000FF is pure red. $00000000 is black and $00FFFFFF is white.

If the highest-order byte is zero ($00), then the color obtained is the closest matching color in the system
palette. If the highest-order byte is one ($01), the color obtained is the closest matching color in the
currently realized palette. If the highest-order byte is two ($02), the value is matched with the nearest
color in the logical palette of the current device context.

To work with logical palettes, you must select the palette with the Windows API function SelectPalette. To
realize a palette, you must use the Windows API function RealizePalette.

TCursor Type
Declaration
type
    TCursor = -32768..32767;

Description
The TCursor type defines the different kinds of standard cursors a component can have. TCursor is
the type of the Cursor property, and the DragCursor property.

TDirection Type
Declaration
type
      TDirection        = (UpDirect, DownDirect, LeftDirect, RightDirect);

TFont Object
NOTE:    This information provided for reference only.    For more information refer to the Delphi
help.

Description
A TFont object defines the appearance of text. TFont encapsulates a Windows HFONT.

A TFont object defines a set of characters by specifying their height, font family (typeface), name and so
on. The height is specified by the Height property; The typeface is specified by the Name property; The
size in points is specified by the Size property; The color is specified by the Color property; The attributes
of the font (bold, italic, and so on) are specified by the Style property.

When a font is modified, an OnChange event occurs.

TPBarShape Type
type
    TPBarShape = (Rectangular, Trapezoidal);

TPBarType Type
type
    TPBarType = (Normal, Bar3D, LED);

TProgBar Component
Properties Methods
Version 1.0 TProgBar Component Help, © 1994, 1995 SHORELINE SOFTWARE
VisualPROS is a trademark of SHORELINE SOFTWARE
SHORELINE SOFTWARE 35-31 Talcottville Rd.    #123, Vernon, CT 06066-4030
Technical Support: Phone: (203) 870-5707 24-Hour Fax:    (203) 870-5727
CompuServe 70541,2436

Description
Use a TProgBar to provide a graphical status to the user.    ProgBars can be solid fill, or led with multi-
color segments.    A bitmap may be used for the progress bar as well.    You can also refer to the Progress
Bar as a Percent Bar.

Feature List
Standard percent bars
Flicker free performance
LED segment display
Complete font control
Progress Bar can be a bitmap
3D options
Easy setup and use

Key Properties
Use the MinValue and MaxValue properties to set the lower and upper range for your percent bar.    Use
the Value property to set the current position within that range.    If the value property is set beyond the
min or max value, it will be set to the min or max value.

Use the BarType to select a 3D bar, LED bar or Normal bar type.    If you want to change the shape of the
bar use BarShape to select Rectangular or Trapezoidal.

If you want to use a bitmap for the progress bar, double click the Bitmap property to load the Picture
Editor.    The Picture Editor is included with Delphi.

When using the LED bar you have several properties which you can adjust.    These properties include:   
NumSegments, SegOffColor, SegSpacing and three independent segments, colors and counts.
(Seg1Color, Seg1Count)

Use the ShowText property to enable, or disable, percent text displayed on the progress bar.    The
percent text is not available when the LED bar is used.

About SHORELINE SOFTWARE

Properties

About Height Seg3Count
Align Hint SegOffColor
BackColor Left SegSpacing
BarShape MaxValue ShowText
BarType MinValue Tag
BevelType Name Top
BevelWidth NumSegments TrapezoidDir
Bitmap ParentColor TrapezoidMin
BorderType ParentFont TrapezoidShape
BrushStyle Percentage Value
Color Seg1Color Width
Cursor Seg1Count
Direction Seg2Color
Font Seg2Count
ForeColor Seg3Color

TTrapDirect Type
See Also
Declaration
type
    TTrapDirect      = (LargeToSmall, SmallToLarge);

TTrapShape Type
See Also
Declaration
type
    TPBarShape = (TSLeft, TSCenter, TSRight);

Tag Property
Declaration
property Tag: Longint;

Description
The Tag property is available to store an integer value as part of a component. While the Tag property
has no meaning to Delphi, your application can use the property to store a value for its special needs.

Test
asdfasdf

Top Property
Declaration
property Top: Integer;

Description
The Top property determines the y coordinate of the top left corner of a control, relative to the form in
pixels. For forms, the value of the Top property is relative to the screen in pixels.

TrapezoidDir Property
See Also
Declaration
property TrapezoidDir    : TTrapDirect;

Description
The TrapezoidDir property identifies which direction you wish the trapezoid to point.    The property is
only available if the BarShape has been set to Trapezoidal.

TrapezoidMin Property
See Also
NOTE THIS NEEDS TO BE CHANGED!!!

Declaration
property TrapezoidMin    : Integer;

Description
The TrapezoidMin property determines the .    The BarShape must be set to Trapezoidal.

TrapezoidShape Property
See Also
Declaration
property TrapezoidShape: TTrapShape

Description
The TrapezoidShape property determines the visual characteristics of the shape.    The BarShape must
be set to Trapezoidal.

Value Property
Declaration
property Value: Longint;

Description
The Value property contains the initialized value for the progress bar.    This is where the progress will
actually start within the MinValue and MaxValue range.

Visible Property
Declaration
property Visible: Boolean;

Description
The Visible property determines whether or not the component appears onscreen. If Visible is True, the
component appears. If Visible is False, then the component is not visible.

For controls, calling the Show method makes the control's Visible property True, but it also performs other
actions to ensure that the user can view the control.

For field components, the Visible property determines if a field can be displayed in a TDBGrid component.
If Visible is False, the field is not displayed.

The default value is True for all components, except for forms.

Where to send your resume
Please send your resume and other CV related materials to:

SHORELINE SOFTWARE
35-31 Talcottville Road, #123
Vernon, CT 06066-4030

ATTN: Glenn A. Field

Phone: 800-261-9198
Fax: 203-870-5727

We will contact you after receiving your resume.

Width Property
Declaration
property Width: Integer;

Description
The Width property determines horizontal size.

