
Popup-Box Component for Delphi
Version 1.0

Contents
1. Introduction
2. Files
3. Installation
4. Sample-program
5. PopupBox properties
6. PopupBox variable
7. PopupBox events
 - Ownerdraw PopupBoxes

1. Introduction
The PopupBox-Component is a component for Borlands Delphi and a replacement
for the ComboBox with style csDropDownList. Because I am altogether dissatisfied
with the combobox, it's look and functionality, I made the decision to write my own
component. And here it is!
The PopupBox looks like an Edit- or Memofield, but it is not editable. If you click on
it, a list opens up. You may select one of the list-entries by an other Mouseclick or
by pressing the RETURN key. This entry will then become the current Text of the
PopupBox-field. Optional the next window-control can be automatically focused. But
if you don't like the way, PopupBox handles RETURN / MouseClicks, you can
simply control this behaviour in Delphis Objectinspector with the properties
GoAwayOnClick and GoAwayOnReturn. The PopupBox then will stay open until
you move to an other window-control (by pressing the TAB key or clicking at an
other field).
I guess it's a little bit difficult to understand how it works, but I think it's clear at once
if you see the SAMPLE program, included in this package. Before you can compile
and run this sample program you must install the PopupBox as a Delphi
component. Look at section 3 - Installation.
PopupBox has a few settings, wich can change it's style. They are listed at section
5 - PopupBox properties .

The PopupBox is much more resource friendly than Delphis ComboBox. Every
ComboBox in your application creates a (hidden) listwindow, wich is only unhidden,
when the combolist is shown. These hidden windows let go down your rare
windows system ressources. But the PopupBox creates only ONE listwindow. And
the listwindow exists only as long as the list is shown. It will be destroyed as soon
as the list is closed.

Using condition:
You can use the PopupBox-Component free, but won't see the source code,
because it's not part of this package. If you need (or would like to have) the source-
code of this component, you must register it. The registration fee is only $10.00 (or
15,00 DM).

How to register?
If you have a CompuServe account, you can register with GO SWREG . Look for
#6032.

The other possibility is to send me the money cash to:
Jan - M. Strube
Breslauer Str. 19
70806 Kornwestheim
GERMANY

I will e-mail you immediately the source code of the latest version, so don't forget to
tell me your e-mail address!

2. Files
The following 8 files are part of this package, called POPUPBOX.ZIP.

EXAMPLE.DFM Example program (form)
EXAMPLE.DPR Example program (project)
EXAMPLE1.DFM Example program (form)
EXAMPLE1.PAS Example program (example-code)
MAINCLSS.DCU MainClass-Components
POPUPBOX.DCR PopupBox-component icon
POPUPBOX.DCU PopupBox-component
README.WRI this README file (Write format)

3. Installation
Before you can try out the example program, you must install the PopupBox
component into the Delphi palette and rebuild the component library.

I) Copy MAINCLSS.DCU, POPUPBOX.DCR and POPUPBOX.DCU to a
directory, where your components reside, for instance C:\DELPHI\LIB .

II) From within Delphi, select from the main menu "Options" -> "Install components...".
A Dialog "Install components" opens up.

III) Select "Add" from the available buttons at the right of the dialog, enter POPUPBOX and
select the OK button.

IV) Before closing the "Install components" dialog, check if the path name, where
POPUPBOX.DCR and POPUPBOX.DCU were copied to, is part of the "Search path" edit
control.

V) Select OK to have Delphi compile and add the PopupBox component to the component
library. When installation is complete, a new item "PopupBox" can be found at palette tab
Standard.

4. Sample program
Within this package comes a sample program EXAMPLE.DPR . It shows, how to use the
PopupBox and demonstrates it's main properties. Open the project EXAMPLE.DPR and select
menu "Run" -> "Run" .

5. PopupBox properties

PopupBox is a two part component. There is:
 A) the PoupBox-Field and
 B) the PopupBox-List .

In Delphis Designmode only A) is visible. Whereas at runtime you can see A) and B).
Please note, that at runtime...

...you will not see B) until A) got the focus.

...B) is hidden (and destroyed) as soon as A) looses the focus.

Properties of A) PopupBox-Field:

Alignment
{taLeftJustify, taRightJustify, taCenter}
controls the Textalignment of the field

AutoSize
BorderStyle
CharCase
Color
Ctl3D
Cursor
DragMode
Enabled
Font
GoAwayOnClick

{True, False}

GoAwayOnClick = True:
the next window control is focused, when you
click on a listentry

GoAwayOnClick = False:
the next window control will not be focused,
when you click on a listentry

GoAwayOnReturn
{True, False}

GoAwayOnReturn = True:
the next window control is focused, when you
press the Return-key

GoAwayOnReturn = False:
the next window control will not be focused,
when you press the Return-key

Height
HelpContext
Hint
Left
MaxLength
Name
OEMConvert
ParentColor
ParentCtl3D
ParentFont

ParentShowHint
PopupMenu
ReadOnly
ShowHint
TabOrder
Tag
Text
Top
Visible
Width

Properties of B) PopupBox-List:

ListAlignment
Type: TAlignment
{taLeftJustify, taRightJustify, taCenter}
controls the Textalignment of the Listentries

ListAutoPos
Type: Boolean
{True, False}

True: when the list is opened, that listentry is automatically selcted
in the list, thats the current text of PopupBox-Field

False: when the list is opened, the first lisentry is selected

Tip: To select manually a specific listentry, make a call in the event
OnEnter like: Popupbox1.List.ItemIndex:= 3;

ListBorderStyle
Type: TBorderStyle
{bsSingle, bsNone}
controls the Listborder

ListColor
Type: TColor
{0..$FFFFFF}
controls the Listcolor (backgound)

ListFont
Type: TFont
{FontColor, FontHeight, FontName, FontStyle}
controls the Listfont

Note: The ListItemHeight automatically resets, if ListFont changes!
Thatswhy first select the font and then type in the
ListItemHeight

ListHeight
Type: Integer
{0..32767}
is the ListHeight

ListHint
Type: String
controls the Hinttext, when the List is open. While the List is closed,

Hint from PopupBox-Field is the Hinttext

Note: You will see the ListHint only, if ShowHint from PopupBox-
Field is set to True!

ListIntegralHeight
Type: Boolean
{True, False}
controls the way the list represents itself on the form. If
ListIntegralHeight is True, the list shows only entries that fit
completely in the vertical space, and the bottom of the list moves up
to the bottom of the last completely drawn item in the list. If
ListIntegralHeight is False, the bottom of the list is at the location
determined by its ItemHeight property, and the bottom item visible in
the list might not be complete.

ListItemHeight
Type: Integer
{0..32767}
is the height of an item in the list in pixels

ListItems
Type: TStringList
is the list of StringItems, you see in the list.
Note: All properties and methods of TStringList can be used. Look at
Delphi's Online-Help under TStringList.

Examples:
To add a new Item to the list call:
PopupBox1.ListItems.Add('TestString');

To remove all Items from the list call:
PopupBox1.ListItems.Clear;

To load a file into the list call:
PopupBox1.ListItems.LoadfromFile('C:\WINDOWS\WIN.INI');

To get the ListItems-count call:
MessageDlg(IntToStr(PopupBox1.ListItems.Count),

mtInformation,
[mbOK], 0);

ListLeft
Type: Integer
{-32768..32767}
is the distance between PopupBox-Field.Left and the left side of the
PopupBox-List

ListSel3D
Type: Boolean
{True, False}
if True the selected ListItem is painted in 3D-style

ListSelBGColor
Type: TColor
{0..$FFFFFF}

controls the backgroud color of the selected ListItem

ListSelColor
Type: TColor
{0..$FFFFFF}
controls the foreground(Text-) color of the selected ListItem

ListSorted
Type: Boolean
{True, False}
indicates whether the items in the list are arranged alphabetically. To
sort the items, set the ListSorted value to True. If ListSorted is False,
the items are unsorted.
If you add or insert items when ListSorted is True, PopupBox
automatically places them in alphabetical order.

ListTop
Type: Integer
{-32768..32767}
is the distance between PopupBox-Field.Top and the Top side of the
PopupBox-List

ListWidth
Type: Integer
{0..32767}
is the ListWidth

List.TopIndex
Type: Integer
{0..32767}
At Runtime only and the list must be open!
List.TopIndex property is the index number of the item that appears
at the top of the list. You can use the TopIndex property to determine
which item is the first item displayed at the top of the list and to set it
to the item of your choosing.

Example:
To make the 6th listentry the first displayed item make a call in the
event OnEnter like:
if Popupbox1.List <> nil then Popupbox1.List.TopIndex:= 5;

6. PopupBox variable

There is only one variable of interrest, the List of type TPopupBoxListBox.
List is available only at Runtime and while the list is open!
List is a descendant of TListBox. So you can use all properties and methods of TListBox.

Example: When the mouse moves about a list-entry a label shows the list number the mouse
is over. Event is OnListMouseMove.

procedure TForm1.PopupBox1ListMouseMove(Sender: TObject;
 Shift: TShiftState; X, Y: Integer);
VAR
 ListIndex: LongInt;
 ExistEntry: Boolean;

begin
 if PopupBox1.List <> nil then begin
 ListIndex:= PopupBox1.List.ItemAtPos(
 Point(X, Y), ExistEntry);
 if not ExistEntry then exit;
 Label1.Caption:= IntToStr(ListIndex + 1);
 end;
end;

An other call could be at event OnEnter of PopupBox1. This call sets the Height of the list to
such a value, that all entries fit in. (no scrollbar necessary)

 with Popupbox1.List do
 SetBounds(Left, Top, Width,
 PopupBox1.ListItems.Count * ItemHeight);

Note: The Items of the List are not in "PopupBox1.List.Items". They are in
"PopupBox1.ListItems" !

7. PopupBox events

PopupBox is a two part component. There is:
 A) the PoupBox-Field and
 B) the PopupBox-List .

Events refer to A)
OnChange -> text value of PopupBox-Field changed
OnClick -> click at PopupBox-Field
OnDblClick -> double click at PopupBox-Field
OnEnter Here is a good place to do initializations for the list!
OnExit Here is a good place to do cleanups at the list!
OnMouseDown -> mouse down at PopupBox-Field
OnMouseMove -> mouse moved over PopupBox-Field
OnMouseUp -> mouse up at PopupBox-Field

Events refer to B)

OnKeyDown -> key down
OnKeyPress -> key pressed
OnKeyUp -> key up
OnListClick -> clicks at the list
OnListMouseMove -> mouse moved over the list
OnDrawListItem -> necessary for owner draw PopupBoxes

Examples:

OnEnter:
procedure TForm1.PopupBox1Enter(Sender: TObject);
VAR
 y, month, day: Word;
begin

 Popupbox1.ListItems.Add('Value1');
 Popupbox1.ListItems.Add('Value2');
 Popupbox1.ListItems.Add('Value3');

 DecodeDate(Date, y, month, day);
 if (day = 24) and (month = 12) then
 Popupbox1.ListItems.Add('Happy christmas!');

 if (day = 31) and (month = 12) then
 Popupbox1.ListItems.Add('Happy New Year!');
end;

OnExit:
procedure TForm1.PopupBox1Exit(Sender: TObject);
begin
 Popupbox1.ListItems.Clear;
end;

Ownerdraw PopupBoxes
It's easy to make an ownerdraw PopupBox, because the most is automatically painted.
Only the Items itself still are to paint. These paint calls must be placed at the event
OnDrawListItem. The Popupbox becomes automatically an owner draw list, if something is
placed within the event OnDrawListItem.

Here is a simple example, that allows to write multiple lines at one list entry. The property
ListItemHeight must be high enough (something like 60 or so).

procedure TForm1.PopupBox1DrawListItem(Control: TWinControl;
 Index: Integer; Rect: TRect; State: TOwnerDrawState);
VAR
 TempBuf: Array[0..255] of Char;
begin
 (Control as TPopupBoxListBox).Canvas.FillRect(Rect);
 StrPCopy(TempBuf, PopupBox1.ListItems[Index]);
 DrawText((Control as TPopupBoxListBox).Canvas.Handle,
 TempBuf, -1, Rect, DT_WORDBREAK);
end;

THE INFORMATION AND CODE PROVIDED HEREUNDER IS PROVIDED AS IS WITHOUT
WARRANTY OF ANY KIND. IN NO EVENT SHALL I, JAN - M. STRUBE, BE LIABLE FOR
ANY DAMAGES WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL,
CONSEQUENTIAL, LOSS OF BUSINESS PROFITS OR SPECIAL DAMAGES, EVEN IF I
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Please tell me what you think about the PopupBox. Please tell
me also if you find any bugs, so that I can hopefully remove
them quickly. Thank you!

Jan - M. Strube
Breslauer Str. 19
70806 Kornwestheim
GERMANY

e-mail:
CompuServe: Jan Strube 100333.2744
Internet: 664104@rz.fht-esslingen.de

