
ITGraph Custom Control Version 1.2
Properties Events Methods Dialogs Usage New Features

ITGraph is a Visual Basic Custom Control (VBX) that can be used to create, display and manipulate
graphical structures from a Visual Basic application.    The ITGraph.VBX control provides properties and
methods to support interrogation and manipulation of the graph by the application, and events for
management of user interaction.    In addition to the ITGraph.VBX custom control itself, a Visual Basic
module, ITGraph.BAS, is supplied.    This file contains Const definitions for the various settings of the
ITGraph properties, and should be loaded into any project that uses the ITGraph control.

This help file describes the itgraph properties, events, methods and dialog boxes.    The usage section
covers basic topics pertaining to ITGraph usage, and provides sample code for common operations.   
You should scan through these topics first to get an overview of ITGraph capabilities and operation.

The New Features section delineates changes in the control between Versions 1.0, 1.1, and 1.2, and
should be scanned if you are currently using an earlier version of ITGraph.    Throughout the help file,
items that have been added will be marked with (1.1) or (1.2) to indicate the version of ITGraph where
the changes were made.

ITGraph Methods
AddItem
Clear
*Move
*Refresh
RemoveItem
*SetFocus
*ZOrder

* Standard Visual Basic Methods

ITGraph Properties
About DrawScale ItemGraphicTop (1.1) PrintToWnd

*Align *Enabled ItemGraphicWidth (1.1) QueryCount

ArrangeMode FillColor ItemHeight (1.2) QueryData (1.1)

AutoArrange *FontItalic ItemId QueryItem

AutoMouseEvent (1.2) *FontBold ItemIndex (1.2) QueryItemHandle

AutoMouseEvents (1.2) *FontName ItemLabelAlign (1.1) QueryState

*BackColor *FontSize ItemLabelHeight (1.1) Redraw (1.1)

*BorderStyle *FontStrike ItemLabelLeft (1.1) RemoveFrom

ConnectFromHandle *FontUnder ItemLabelTop (1.1) RubberBand

ConnectFromIndex *ForeColor ItemLabelWidth (1.1) SaveAs

ConnectionAlign (1.1) Gap ItemShape SelectedIndex (1.2)

ConnectionArrow GraphicAllowImport (1.1) ItemTextColor SelectRectEnabled

ConnectionColor GraphicCount (1.1) ItemWidth (1.2) SelectRectHeight

ConnectionData GraphicName (1.1) ItemXpos SelectRectLeft

ConnectionId (1.1) GraphicPath (1.1) ItemYpos SelectRectTop

ConnectionLabel Graphics (1.1) *Left SelectRectWidth

ConnectionLineWidth
(1.1)

GraphicSelect (1.1) LineWidth ShapeCount (1.1)

ConnectTo *Height List ShapeName (1.1)

ConnectToHandle *HelpContextID ListCount ShapeSelect (1.1)

ConnectToIndex *hWnd LoadFrom StoreGraphics (1.1)

*CtlName *Index *MousePointer *TabIndex

*DragIcon IsDirty (1.2) *Name *TabStop

DragItems ItemBorderColor NewIndex *Tag

*DragMode ItemData *Parent *Top

DrawArrows ItemDrawLabel (1.1) PrintGraph *Visible

DrawBackLinks ItemFillColor PrintHeader (1.1) *Width

DrawColored ItemGraphic (1.1) PrintRectHeight (1.1) XSpan

DrawConnLabels ItemGraphicAlign (1.1) PrintRectLeft (1.1) XSpace

DrawDir ItemGraphicHeight (1.1) PrintRectTop (1.1) YSpace

DrawHandles ItemGraphicLeft (1.1) PrintRectWidth (1.1) YSpan

DrawItemLabels ItemGraphicStyle (1.1) PrintToDC ZoomSelectRect

* Standard Visual Basic Properties

ITGraph Events
Click ItemResize (1.2)
DblClick *KeyDown
DragDrop *KeyPress
DragOver *KeyUp
*GotFocus LineClick
ItemClick LineDblClick
ItemConnect *LostFocus
ItemDblClick MouseDown (1.2)
ItemDrag (1.2) MouseUp (1.2)
ItemMouseMove SelectRect

* Standard Visual Basic Events

ITGraph Dialogs
AutoMouseEvents Setup (1.2)
Import Graphic (1.1)
Information for Graphic # of # (1.1)
ITGraph Graphic Table (1.1)
New Graphic Information (1.1)
Select a Graphic (1.1)
Select a Shape (1.1)

ITGraph Usage
Setting up the ITGraph Control
Adding Nodes to the ITGraph Control
Working with Connections
Working with Events (1.2)
Using the Selection Rectangle
File Operations
Printing

New Features

Several new features have been added to ITGraph Versions 1.1 and 1.2.    The following is a summary
of the additional capabilities.

Changes in Version 1.2

1. Event Handling is now fully customizable.    The AutoMouseEvents and AutoMouseEvent properties can be
used to configure how ITGraph responds to mouse events.    All three mouse buttons are supported in
conjunction with combinations of the Shift, Ctrl and Alt keys.

2. Nearly all the mouse events have been extended to include Button (the mouse button pressed to initiate the
event), Shift (which of the Shift, Ctrl and Alt keys were pressed), and X and Y (the mouse coordinates at the
time of the event, where applicable).

Note!    Users of previous versions of ITGraph will have to update the arguments to these events in their
applications.

3. An ItemDrag event has been added to report the dragging of a node.

4. A SelectedIndex property has been added to designate a node as being selected.    The selected node is
shown with eight sizing handles around it.

5. Nodes can now be individually resized.    Two new properties, ItemWidth and ItemHeight, have been added
to support this capability.    Consequently, changing XSpan and YSpan no longer affects the sizes of existing
nodes.    A user can resize a node by selecting it and then dragging the sizing handles.    An ItemResize
event has been added to report the resizing of a node by a user.

6. An ItemIndex property has been added to allow reordering of nodes.    The ItemIndex mainly affects the
order in which nodes are drawn in the tree layout.

7. The PrintGraph property has changed.    Instead of taking a scale factor as an argument, it is now passed a
device context in which to print.    The graph will be printed according to the current setting of the DrawScale
property.

8. MouseDown and MouseUp events have been added.    TheMouseDown event is useful for implementing
popup menus in your application.

9. ITGraph is now compatible with Microsoft Visual C++ and Borland Delphi.    Example programs have been
provided for both environments.

Changes in Version 1.1

1. Now supports the import of bitmaps and metafiles as ITGraph "graphics".    The Graphics property supports
design-time import of graphics.    The GraphicCount, GraphicName, GraphicPath, GraphicAllowImport and
GraphicSelect properties support run-time import and user selection of graphics.    The ItemGraphic,
ItemGraphicStyle, ItemGraphicAlign, ItemGraphicLeft, ItemGraphicTop, ItemGraphicWidth and
ItemGraphicHeight properties control graphic appearance on a node.    The StoreGraphics property
determines whether graphics will be saved and loaded with graphs by the LoadFrom and SaveAs properties.

2. Now supports user selection of node shapes via the ShapeSelect property.    The ShapeCount and
ShapeName properties provide information about the shapes.

3. Now supports text placement and alignment for nodes via the ItemLabelAlign, ItemLabelLeft, ItemLabelTop,
ItemLabelWidth and ItemLabelHeight properties.    The ItemDrawLabel property controls whether or not a
particular node's label will be shown.    The ConnectionAlign property controls the alignment of text for
connections.    Text can be multi-line in nodes and connections, simply by adding carriage returns in the text.
In Visual Basic, a carriage return can be added programmatically by appending chr$(13) to the node's text.

4. Now includes a ConnectionId property, which is automatically assigned to new connections analagously to
the ItemId property.

5. Now includes a QueryData property and four new query types (see QueryState):
ITG_QueryMatchConnectionData, ITG_QueryMatchConnectionId, ITG_QueryMatchItemData and
ITG_QueryMatchItemId, to support easier access to nodes and connections.

6. The PrintGraph property has been enhanced so that graphs can be printed across multiple pages.    The
PrintHeader property is used to set the headers and footers for the pages.

7. The capabilities of the PrintToDC and PrintToWnd properties have been enhanced.    The PrintRectLeft,
PrintRectTop, PrintRectWidth and PrintRectHeight properties define a destination rectangle and the
SelectRectLeft, SelectRectTop, SelectRectWidth and SelectRectHeight properties now specify an area in the
graph to be printed.

8. The Redraw property has been added.    This controls graph updating and is useful for speeding up
application manipulation of the graph.    Other enhancements reduce the amount of screen updating
necessary when changes are made, and drawing and mouse processing has been optimized.

9. A ConnectionLineWidth property has been added, which is used to set line widths for individual connections.

10. The AddItem method now takes an additional optional parameter which specifies the list index of a new
node.    This is useful if the node order is important.    The ITG_ModeTree setting of the ArrangeMode
property utilizes the node list order to determine the order of placement in the graph.

KAbout Property
Applies To

ITGraph

Description
Pops up a dialog box with information about the ITGraph Custom Control.

Usage
At design time, click on "..." in the properties window to see the ITGraph about box.

ArrangeMode Property
Applies To

ITGraph

Description
Specifies the mode for laying out the graph's nodes and connections.

Usage
[form.]control.ArrangeMode[= mode]
Read/Write at run time and design time.

Setting
The ArrangeMode settings are:

Setting Description
ITG_ModeHierarchy Layout the graph in a hierarchical fashion.
ITG_ModeCompact Layout the graph as compactly as possible while trying to minimize crossings

of connections.
ITG_ModeFlowChart Layout the graph as a flowchart.
ITG_ModeTree Layout the graph as a tree.

Remarks
The ArrangeMode setting determines two behaviors of the graph.    First, when AutoArrange is
ITG_AutoArrange, or when it is set to ITG_ArrangeNow, the ArrangeMode determines how the nodes
will be laid out.    Secondly, ArrangeMode determines how connections will be drawn between nodes.   
Usually, you will not want to change ArrangeMode once a graph has been created.    One exception may
be to select the ITG_ModeCompact ArrangeMode to provide connections directly between nodes once
the initial layout has be produced.

Data Type
Integer (Enumerated)

AutoArrange Property
Applies To

ITGraph

Description
Specifies whether the graph's nodes will be automatically arranged using one of ITGraph's layout
procedures.

Usage
[form.]control.AutoArrange[= mode]
Read/Write at run time and design time.

Setting
The AutoArrange settings are:

Setting Description
ITG_ManualArrange Do not rearrange nodes in the graph.
ITG_AutoArrange Graphically rearrange the graph whenever a change is made.
ITG_ArrangeNow Graphically rearrange the nodes exactly one time, then revert to

ITG_ManualArrange for the AutoArrange property (valid only at run-time).

Remarks
The ITG_ArrangeNow option is valid only at run time.    It causes the graph to be rearranged according
to the current settings of ArrangeMode and other properties, then sets AutoArrange to
ITG_ManualArrange.    If an application generates a graph, it would be best to set AutoArrange to
ITG_ManualArrange, create the graph, then set AutoArrange to ITG_ArrangeNow to layout the nodes.   
For an interactive application where a user is adding nodes, and automatic arrangement is desired, the
ITG_AutoArrange option should be used.

Data Type
Integer (Enumerated)

AutoMouseEvent Property
Applies To

ITGraph

Description
Used to configure ITGraphs response to a mouse event.

Usage
[form.]control.AutoMouseEvent (event) [= action]
Hidden at design time.    Read/Write at run time.

Remarks
The AutoMouseEvent property is used to set or retrieve ITGraphs response to a particular mouse event.
The event is composed of a single mouse button identifier (ITG_LeftButton, ITG_MiddleButton, or
ITG_RightButton) added to any combination of modifier keys (ITG_ShiftDown, ITG_CtrlDown and
ITG_AltDown).    The action cab be ITG_meNone (do nothing), or a composition from the following
constants: ITG_meMouseEvent (generate mouse events), ITG_meConnect (connect nodes),
ITG_meConstrained (constrain mouse movement), ITG_meDrag (drag nodes), ITG_meSelect (select an
area on the graph) and ITG_meSize (resize nodes).    See Working With Events for a more detailed
description of ITGraphs event handling scheme.

Data Type
Integer

AutoMouseEvents Property
Applies To

ITGraph

Description
Brings up the AutoMouseEvents Setup dialog box.

Usage
[form.]control.AutoMouseEvents[= dummyString]

Write only at run time.    Select only at design time (double-click on name or click on "..." in the property
window).

Remarks
The AutoMouseEvents property is used to bring up the AutoMouseEvents Setup dialog box, where
ITGraphs response to mouse events can be configured.    The dialog can also be brought up at run time
by setting AutoMouseEvents to a dummy string, the value being irrelevant.

Data Type
String

ConnectFromHandle
Applies To

ITGraph

Description
Set or retrieve the handle from which the current connection originates from its source node.

Usage
[form.]control.ConnectFromHandle[= handle]
Read/Write at run time.    Hidden at design time.

Setting
The ConnectFromHandle settings depend on the current value of DrawDir.    For a DrawDir of
ITG_XxxToYyy, ConnectFromHandle would be set to 1 for side Xxx and 3 for side Yyy.    The values start
at 1 (= side Xxx) and procede clockwise to 4.    The table below shows the handle sides corresponding to
the various DrawDir and ConnectFromHandles settings.

Setting ITG_RightToLeft ITG_LeftToRight ITG_BottomToTop ITG_TopToBottom

1 Right Left Bottom Top

2 Bottom Top Left Right

3 Left Right Top Bottom

4 Top Bottom Right Left

Remarks
The setting of this property is only relevant when ArrangeMode is set to ITG_ModeFlowChart.    When
the ConnectFromHandle property is set, the graph will be redrawn.    If the AutoArrange property is set to
ITG_AutoArrange, a new graph layout will be generated to reflect the change.    If no connection is
current, ConnectFromHandle will return 0.

Data Type
Integer (Enumerated)

ConnectFromIndex Property
Applies To

ITGraph

Description
Used to retrieve the target index of the current connection.

Usage
index = [form.]control.ConnectToIndex
Read only at run time.    Hidden at design time.

Remarks
If there is no current connection, ConnectFromIndex returns -1.

Data Type
Integer

ConnectionAlign Property (1.1)
Applies To

ITGraph

Description
Set or retrieve the text alignment used for the current connection.

Usage
[form.]control.ConnectionAlign[= alignment]
Read/Write at run time.    Hidden at design time.

Setting
The ConnectionAlign settings are:

Setting Description
ITG_AlignLeft Left justify text.
ITG_AlignCenter (Default)Center text.
ITG_AlignRight Right justify text.

Remarks
When the ConnectionAlign property is set, the graph will be redrawn.    If no connection is current,
ConnectionAlign will return -1.    Note that the ConnectionAlign property only affects the text if the
connection label has more than one line.

Data Type
Integer (Enumerated)

ConnectionArrow
Applies To

ITGraph

Description
Set or retrieve the type of arrowhead used for the current connection.

Usage
[form.]control.ConnectionArrow[= arrowhead]
Read/Write at run time.    Hidden at design time.

Setting
The ConnectionArrow settings are:

Setting Description
ITG_AHNone No arrowhead.
ITG_AHSolid (Default)Solid, filled, triangular arrowhead.
ITG_AHHollow Hollow triangular arrowhead.
ITG_AHOutline Triangular, open arrowhead.
ITG_AHSolidCircle Solid, filled, circular arrowhead.
ITG_AHHollowCircle Hollow circular arrowhead.

Remarks
When the ConnectionArrow property is set, the graph will be redrawn.    If no connection is current,
ConnectionArrow will return -1.

Data Type
Integer (Enumerated)

ConnectionColor Property
Applies To

ITGraph

Description
Set or retrieve the color used for the current connection.

Usage
[form.]control.ConnectionColor[= color]
Read/Write at run time.    Hidden at design time.

Remarks
In addition to a valid color value, ConnectionColor can be set to -1, in which case the connection will be
drawn in ForeColor.    This is the default setting for all connections.    When the ConnectionColor property
is changed, the graph will be redrawn.    If no connection is current, ConnectionColor will return -1.

Data Type
Long (Color or -1)

ConnectionData Property
Applies To

ITGraph

Description
Set or retrieve a user-defined data value associated with the current connection.

Usage
[form.]control.ConnectionData[= data]
Read/Write at run time.    Hidden at design time.

Remarks
The ConnectionData property can be used to associate a user-defined Long value with each connection.
By default, this value is set to 0.    If no connection is current, ConnectionData will return 0.

Data Type
Long

ConnectionId Property
Applies To

ITGraph

Description
Unique long index assigned by ITGraph to the current connection.

Usage
[form.]control.ConnectionData[= data]
Read only at run time.    Hidden at design time.

Remarks
When a connection is added with the ConnectTo property, it is assigned a unique ConnectionId.    This
value never changes for the connection, even if others are deleted or inserted, or the graph is saved or
retrieved from disk.    ConnectionId values are numbered beginning with 1.    When a graph is cleared by
the Clear method, the next connection to be added will be assigned a ConnectionId of 1.

Data Type
Long

ConnectionLabel Property
Applies To

ITGraph

Description
Used to set or retrieve the label of the current connection.

Usage
[form.]control.ConnectionLabel[= label]
Read/Write at run time.    Hidden at design time.

Remarks
When the ConnectionLabel property is set, the graph will be repainted.    If no connection is current,
ConnectionLabel will return an empty string.

Data Type
String

ConnectionLineWidth Property
Applies To

ITGraph

Description
Set or retrieve the line width used for the current connection.

Usage
[form.]control.ConnectionLineWidth[= line_width]
Read/Write at run time.    Hidden at design time.

Remarks
Specifies the width of the line used to draw a connection.    A value of 0 draws the thinnest line possible.
Higher values result in increasingly thicker lines.    A value of -1 causes the connection to be drawn using
the line thickness specified by the control's LineWidth property.

Data Type
Integer (Line Width or -1)

ConnectTo Property
Applies To

ITGraph

Description
Add a new connection or select and existing connection.

Usage
[form.]control.ConnectTo (from_index) = to_index
Write only at run time.    Hidden at design time.

Remarks
The ConnectTo property establishes a connection between two nodes in the graph..    If from_index and
to_index are valid node indices, a connection from node from_index to node to_index will be added to
the graph.    If the AutoArrange property is set to ITG_AutoArrange, the graph will be recomputed and
redrawn.

The new connection will become the current connection.    If there is already a connection between the
specified nodes, that connection will be made current, but the graph will not be redrawn.

Data Type
Integer

ConnectToHandle Property
Applies To

ITGraph

Description
Set or retrieve the handle to which the current connection connects to its target node.

Usage
[form.]control.ConnectToHandle[= handle]
Read/Write at run time.    Hidden at design time.

Setting
The ConnectToHandle settings depend on the current value of DrawDir.    For a DrawDir of
ITG_XxxToYyy, ConnectToHandle would be set to 1 for side Xxx and 3 for side Yyy.    The values start at
1 (= side Xxx) and procede clockwise to 4.    The table below shows the handle sides corresponding to
the various DrawDir and ConnectToHandles settings.

Setting ITG_RightToLeft ITG_LeftToRight ITG_BottomToTop ITG_TopToBottom

1 Right Left Bottom Top

2 Bottom Top Left Right

3 Left Right Top Bottom

4 Top Bottom Right Left

Remarks
The setting of this property is only relevant when ArrangeMode is set to ITG_ModeFlowChart.    When
the ConnectToHandle property is set, the graph will be redrawn.    If the AutoArrange property is set to
ITG_AutoArrange, a new graph layout will be generated to reflect the change.    If no connection is
current, ConnectToHandle will return 0.

Data Type
Integer (Enumerated)

ConnectToIndex Property
Applies To

ITGraph

Description
Used to retrieve the source index of the current connection.

Usage
index = [form.]control.ConnectToIndex
Read only at run time.    Hidden at design time.

Remarks
If there is no current connection, ConnectToIndex returns -1.

Data Type
Integer

DragItems Property
Applies To

ITGraph

Description
The DragItems property is no longer used by ITGraph.    It has been subsumed in the new event
handling mechanism.    See Working with Events for more details.

DrawArrows Property
Applies To

ITGraph

Description
Specifies whether arrowheads will be drawn on connections.

Usage
[form.]control.DrawArrows[= boolean]
Read/Write at run time and design time.

Setting
The ConnectionArrow settings are:

Setting Description
True (Default) Draw arrowheads on connections.
False Don't draw arrowheads.

Remarks
Whether an arrowhead is actually drawn and how it will appear for a particular connection is determined
by the the ConnectionArrow property for that connection.    When the DrawArrows property is changed,
the graph will be repainted.

Data Type
Integer (Boolean)

DrawBackLinks Property
Applies To

ITGraph

Description
When ArrangeMode is ITG_ModeHierarchy or ITG_ModeTree, specifies if and how back-links will be
drawn.

Usage
[form.]control.DrawBackLinks[= mode]
Read/Write at run time and design time.

Setting
The DrawBackLinks settings are:

Setting Description
ITG_NoBackLinks Don't show back-links on the graph.
ITG_SolidBackLinks Draw back-links using solid lines.
ITG_DashedBackLinks (Default) Draw back-links using dashed lines.

Remarks
When the DrawBackLinks property is changed, the graph will be repainted.

Data Type
Integer (Enumerated)

DrawColored Property
Applies To

ITGraph

Description
Specifies whether the graph will be drawn in color or black and white.

Usage
[form.]control.DrawColored[= boolean]
Read/Write at run time and design time.

Setting
The DrawColored settings are:

Setting Description
True (Default) Draw the graph using the specified colors.
False Draw the graph in black and white.    The background and interiors of nodes and hollow

arrowheads will be white.    Node outlines, connections, arrowheads and text will be
black.

Remarks
The DrawColored property is useful for printing a graph when the colored version is not legible.    When
the DrawColored property is changed, the graph will be repainted.

Data Type
Integer (Boolean)

DrawConnLabels
Applies To

ITGraph

Description
Specifies whether labels will be drawn on connections.

Usage
[form.]control.DrawConnLabels[= boolean]
Read/Write at run time and design time.

Setting
The DrawConnLabels settings are:

Setting Description
True (Default) Draw labels on connections.
False Don't draw labels on connections.

Remarks
The label for a particular connection must be set with the ConnectionLabel property.    When the
DrawConnLabels property is changed, the graph will be repainted.

Data Type
Integer (Boolean)

DrawDir Property
Applies To

ITGraph

Description
Specifies the preferred orientation for laying out the graph's nodes.

Usage
[form.]control.DrawDir[= mode]
Read/Write at run time and design time.

Setting
The DrawDir settings are:

Setting Description
ITG_RightToLeft The preferred flow of the graph is from right to left.
ITG_LeftToRight The preferred flow of the graph is from left to right.
ITG_BottomToTop The preferred flow of the graph is from bottom to top.
ITG_TopToBottom (Default) The preferred flow of the graph is from top to bottom.

Remarks
The setting of the DrawDir property guides the automatic layout procedures in producing a graph layout.
The setting should be according to normal flow for the desired graph type.    Flow Charts, for example,
usually flow from top to bottom, so an ITG_TopToBottom value would be used for this type of graph.    If
the AutoArrange property is set to ITG_AutoArrange, the graph will be recomputed and redrawn when
DrawDir is set.

Data Type
Integer (Enumerated)

DrawHandles Property
Applies To

ITGraph

Description
Specifies whether node handles will be shown in the ITG_ModeFlowChart ArrangeMode.

Usage
[form.]control.DrawHandles[= boolean]
Read/Write at run time and design time.

Setting
The DrawHandles settings are:

Setting Description
True (Default) Draw handles on nodes.
False Don't draw handles on nodes.

Remarks
This property is only relevant if ArrangeMode is set to ITG_ModeFlowChart.    When DrawHandles is set
to True, handles will be drawn to the left, right, above and below the nodes.    Clicking in one handle and
dragging to another will cause an ItemConnect event to be sent to the control, specifying the source and
destination handles as well as the node indices.    When the DrawHandles property is changed, the
graph will be repainted.

Data Type
Integer (Boolean)

DrawItemLabels Property
Applies To

ITGraph

Description
Specifies whether labels will be drawn on graph nodes.

Usage
[form.]control.DrawItemLabels[= boolean]
Read/Write at run time and design time.

Setting
The DrawItemLabels settings are:

Setting Description
True (Default) Draw labels on graph nodes.
False Don't draw labels on graph nodes.

Remarks
The label for a particular node must be set with the List property.    When the DrawItemLabels property is
changed, the graph will be repainted.    Note that if a particular node's ItemDrawLabel property is set to
False, then its label will not be drawn no matter what the setting of DrawItemLabels.

Data Type
Integer (Boolean)

DrawScale Property
Applies To

ITGraph

Description
Sets the magnification level for the graph.

Usage
[form.]control.DrawScale[= scale]
Read/Write at run time and design time.

Setting
The DrawScale settings are:

Setting Description
0 Draw the graph so that it fits in the control window, but no larger than normal size (i.e.

when DrawScale = 100).
< 100 Shrink the graph to the specified percentage of normal size.
100 (Default) Draw the graph at normal size.
> 100 Expand the graph to the specified percentage of normal size.

Remarks
When DrawScale is set, the graph will be redrawn at the specified scale.    A node that was previously
centered in the control window will be kept in the center at the new scale if possible.

Data Type
Integer (% scale)

FillColor Property
Applies To

ITGraph

Description
Set or retrieve the color used for the interiors of graph nodes.

Usage
[form.]control.FillColor[= color]
Read/Write at run time and design time.

Remarks
FillColor is the default color to be used for the interiors of all graph nodes.    If a node's ItemFillColor is
set to -1, it will be filled with FillColor.    If the DrawColored flag is False, all nodes will be filled white,
irrespective of the settings of FillColor and ItemFillColor.

Data Type
Long (Color)

Gap Property
Applies To

ITGraph

Description
Specifies the distance (in pixels) between the start or end of a connection and its point of branching.

Usage
[form.]control.Gap[= gap_pixels]
Read/Write at run time and design time.

Remarks
The exact interpretation of the Gap property depends on the setting of ArrangeMode and DrawDir.

If ArrangeMode is ITG_ModeHierarchy, Gap applies only in the direction of DrawDir.    It is the spacing
between the start point of the connection and the first branch point and between the last branch point
and the end point of the connection.

If ArrangeMode is ITG_ModeCompact, Gap is ignored.    Spacing is determined entirely by the XSpace
and YSpace properties.

If ArrangeMode is ITG_ModeFlowChart, Gap specifies the distance in any direction from the start or end
point of a connection and the first or last branch of the connection.

If ArrangeMode is ITG_ModeTree, Gap applies only in the direction of DrawDir. It is the spacing between
the start point of the connection and the first branch point and between the last branch point and the end
point of the connection.    Depending on the settings of Gap, XSpace and YSpace, you can use the
ITG_ModeTree mode to produce a tree (Gap = 0, and whichever of XSpace or YSpace is the primary
graph axis set to the spacing), an org chart (Gap = spacing, XSpace or YSpace of graph axis set to 0),
or a block diagram (Gap, XSpace, YSpace all set to 0).

Data Type
Integer

GraphicAllowImport Property (1.1)
Applies To

ITGraph

Description
Specifies whether the user can import graphics at runtime via the "Select a Graphic" dialog box.

Usage
[form.]control.GraphicAllowImport[= mode]
Read/Write at run time and design time.

Setting
The GraphicAllowImport settings are:

Setting Description
ITG_NoImportGraphics (Default) The user can only select existing graphics.    Importing new

graphics is not allowed.
ITG_ImportGraphics The user is allowed to import new graphics, and modify or delete

graphics imported at runtime.    Design time graphics cannot be modified
or deleted.

ITG_ModifyDTGraphics The user is allowed to import new graphics at runtime.    The user may
modify (change the name/shape) of any graphic.    Only graphics
imported at runtime may be deleted.

ITG_DeleteDTGraphics The user is allowed to import new graphics at runtime.    Any graphic
(runtime or design time) may be modified or deleted.

Data Type
Integer (Enumerated)

GraphicCount Property (1.1)
Applies To

ITGraph

Description
Specifies the number of currently loaded graphics.

Usage
count = [form.]control.GraphicCount
Read only at run time. Hidden at design time.

Data Type
Integer

GraphicName Property (1.1)
Applies To

ITGraph

Description
Specifies the name assigned to a graphic.

Usage
[form.]control.GraphicName (index)[= name]
Read/Write at run time.    Hidden at design time.

Remarks
The GraphicName property sets or retrieves the name associated with a graphic.    The GraphicCount
property can be used to determine how many graphics are currently loaded.    The index values range
from 0 to GraphicCount-1.    The value of GraphicName for an invalid index value is an empty string.

Setting GraphicName for a valid index changes the name of the indexed graphic.    If the assigned name
is the same as the name of another graphic, its name will be modified so as to preserve unique names
for all the graphics.

Setting GraphicName with index equal to the value of GraphicCount creates a new (initially empty)
graphic.    This must be done before GraphicPath can be set.

Setting GraphicName to an empty string causes the indexed graphic to be deleted.    Any nodes whose
ItemGraphic property were set to the deleted graphic will have their ItemGraphic property set to 0 (no
graphic).    All other nodes will retain their graphics, though the ItemGraphic values themselves may
change.    Graphic 0 cannot be deleted.

Data Type
String

GraphicPath Property (1.1)
Applies To

ITGraph

Description
Used to specify a graphic to be imported.

Usage
[form.]control.GraphicPath (index) = path
Write only at run time.    Hidden at design time.

Remarks
The GraphicPath property is used to specify the path of a graphic to be imported.    The string must be a
valid path to a bitmap or windows metafile.    The GraphicCount property can be used to determine how
many graphics are currently loaded.    The index values range from 0 to GraphicCount-1.    Graphic path
can only be set for a valid index value.    To add a new graphic, first set the GraphicName property for an
index of GraphicCount, then set the GraphicPath property of that graphic.    If the GraphicPath property
of a node is set to an empty string, nothing will be drawn for nodes referencing that graphic.

Data Type
String

Graphics Property (1.1)
Applies To

ITGraph

Description
Brings up the ITGraph Graphic Table dialog box.

Usage
Hidden at run time.    Select only at design time (double-click on name or click on "..." in the property
window).

Remarks
The Graphics property is used to bring up the ITGraph Graphic Table dialog box, where graphics can be
imported at design time.    Graphics that are imported at design time will be saved with the form on which
they appear.

GraphicSelect Property (1.1)
Applies To

ITGraph

Description
Brings up the Select a Graphic dialog box, where the user can choose from available graphics, import
new graphics, and modify or delete existing ones.

Usage
[form.]control.GraphicSelect[= graphic_index]
Read/Write at run time.    Hidden at design time.

Remarks
Setting GraphicSelect to a valid graphic_index brings up the Select a Graphic dialog box, with the
specified graphic selected.    When done, GraphicSelect will contain the index of the graphic selected by
the user, or -1 if no graphic was selected.    The setting of the GraphicAllowImport property determines
whether or not the user will be able to import new graphics, or modify or delete design time graphics,
imported via the Graphics property.

Data Type
Integer

IsDirty Property
Applies To

ITGraph

Description
Specifies whether the contents of the graph have changed.

Usage
[form.]control.IsDirty[= boolean]
Read/Write at run time.    Hidden at design time.

Setting
The IsDirty settings are:

Setting Description
True The graphs contents have changed.
False The graphs contents have not changed since the last

Clear, LoadFrom or SaveAs.

Remarks
The IsDirty property can be used to determine whether or not the graph has changed since it was last
cleared, saved or loaded.    This information can be used to alert the user prior to clearing the graph,
loading a new graph, or exiting the application.    Typically, a YES/NO/CANCEL box is brought up with
the question Save changes to graph?.    If the user chooses YES, the graph should be saved.    If NO,
the operation should proceed without saving the graph.    If CANCEL is chosen, the operation should be
cancelled, and the graph should remain as it is.

The IsDirty property is set to True whenever a stored property of the graph is changed.    Event
mappings and other properties that dont affect the graphs appearance do not set the IsDirty flag.    The
Clear method and LoadFrom and SaveAs properties are the only ways IsDirty is set to False by
ITGraph.    Your application can set or clear the flag as desired.

Delphi Users: Setting ITGraphs Font in Delphi does not cause the IsDirty flag to be set.    Therefore, if
the font is changed, the application should explicitly set IsDirty to True.

Data Type
Integer (Boolean)

ItemBorderColor Property
Applies To

ITGraph

Description
Specifies the color with which the specified node will be outlined.

Usage
[form.]control.ItemBorderColor (index)[= color]
Read/Write at run time.    Hidden at design time.

Remarks
ItemBorderColor sets the border color for a particular node.    If it is set to -1, then the node's border will
be drawn using ForeColor.    If DrawColored is False, the node's border will be black.

Data Type
Long (Color or -1)

ItemData Property
Applies To

ITGraph

Description
Set or retrieve a user-defined data value associated with the specified node.

Usage
[form.]control.ItemData (index)[= data]
Read/Write at run time.    Hidden at design time.

Remarks
The ItemData property can be used to associate a user-defined Long value with each node in the graph.
By default, this value is set to 0 for each node.

Data Type
Long

ItemDrawLabel Property (1.1)
Applies To

ITGraph

Description
Specifies whether or not a node's label will be drawn.

Usage
[form.]control.ItemDrawLabel (index)[= boolean]
Read/Write at run time.    Hidden at design time.

Setting
The ItemDrawText settings are:

Setting Description
True (Default) Draw the node's label.
False Don't draw the node's label.

Remarks
Specifies for a particular node whether or not its label will be drawn.    Note that if the DrawItemLabels
property is set to False, no node labels will be drawn, irrespective of the settings of ItemDrawLabel.

Data Type
Integer (Boolean)

ItemFillColor Property
Applies To

ITGraph

Description
Specifies the color with which the specified node will be filled.

Usage
[form.]control.ItemFillColor (index)[= color]
Read/Write at run time.    Hidden at design time.

Remarks
ItemFillColor sets the interior color for a particular node.    If it is set to -1, then the node will be filled
using FillColor.    If DrawColored is False, the node's interior will be white.

Data Type
Long (Color or -1)

ItemGraphic Property (1.1)
Applies To

ITGraph

Description
Specifies the graphic associated with a node.

Usage
[form.]control.ItemGraphic (index)[= graphic_index]
Read/Write at run time.    Hidden at design time.

Remarks
graphic_index is a positive index that identifies a graphic.    It ranges from 0 to GraphicCount - 1.   
Graphic 0 is the null graphic - nothing is drawn.    Other graphics can be imported at design time or
runtime, and associated with nodes by setting ItemGraphic.    If graphics are deleted, the value of
ItemGraphic for a node may change if the index of its associated graphic changes.    Also, if the graphic
associated with a node is deleted, the node's ItemGraphic property will be set to 0.

Data Type
Integer

ItemGraphicAlign Property (1.1)
Applies To

ITGraph

Description
Set or retrieve the alignment for the graphic of a node within the node's graphic rectangle.

Usage
[form.]control.ItemGraphicAlign (index)[= alignment]
Read/Write at run time.    Hidden at design time.

Setting
The ItemGraphicAlign settings are:

Setting Description
ITG_AlignTopLeft Top left corner.
ITG_AlignTopCenter Top center.
ITG_AlignTopRight Top right corner.
ITG_AlignMiddleLeft Middle left.
ITG_AlignMiddleCenter (Default) Center.
ITG_AlignMiddelRight Middle right.
ITG_AlignBottomLeft Bottom left corner.
ITG_AlignBottomCenter Bottom center.
ITG_AlignBottomRight Bottom right corner.

Remarks
The ItemGraphicAlign property specifies how a node's graphic (if any) will be placed within the node's
graphic rectangle.

Data Type
Integer (Enumerated)

ItemGraphicHeight Property (1.1)
Applies To

ITGraph

Description
Specifies the height of a node's graphic rectangle.

Usage
[form.]control.ItemGraphicHeight (index)[= pixels]
Read/Write at run time.    Hidden at design time.

Remarks
When ItemGraphicStyle is ITG_GraphicIconFill or ITG_GraphicIconFillIso, then the node's graphic is
drawn so as to fit in the rectangle defined by ItemGraphicLeft, ItemGraphicTop, ItemGraphicWidth and
ItemGraphicHeight.    These parameters are in graph coordinates, and are relative to the top-left corner
of the node.    If ItemGraphicHeight is 0, then the graphic will extend to the bottom of the node.

Data Type
Integer

ItemGraphicLeft Property (1.1)
Applies To

ITGraph

Description
Specifies the left edge of a node's graphic rectangle.

Usage
[form.]control.ItemGraphicLeft (index)[= pixels]
Read/Write at run time.    Hidden at design time.

Remarks
When ItemGraphicStyle is ITG_GraphicIconFill or ITG_GraphicIconFillIso, then the node's graphic is
drawn so as to fit in the rectangle defined by ItemGraphicLeft, ItemGraphicTop, ItemGraphicWidth and
ItemGraphicHeight.    These parameters are in graph coordinates, and are relative to the top-left corner
of the node.

Data Type
Integer

ItemGraphicStyle Property (1.1)
Applies To

ITGraph

Description
Set or retrieve the drawing style for a node's graphic.

Usage
[form.]control.ItemGraphicStyle (index)[= draw_style]
Read/Write at run time.    Hidden at design time.

Setting
The ItemGraphicStyle settings are:

Setting Description
ITG_GraphicNone Don't draw the node's graphic.
ITG_GraphicIconFill Draw the node's graphic so that it fills the

rectangle defined by ItemGraphicLeft,
ItemGraphicTop, ItemGraphicWidth and
ItemGraphicHeight.

ITG_GraphicIconFillIso Draw the node's graphic so that it fills the
rectangle defined by ItemGraphicLeft,
ItemGraphicTop, ItemGraphicWidth and
ItemGraphicHeight, while maintaining the original
aspect ratio of the graphic.

ITG_GraphicShapeFill (Default) Draw the node's graphic so that it fills the
node's bounding rectangle.

ITG_GraphicShapeFillIso Draw the node's graphic so that it fills the node's
bounding rectangle, while maintaining the original
aspect ratio of the graphic.

Remarks
The ItemGraphicStyle setting is only relevant if a graphic has been set for the node via the ItemGraphic
property.    The ITG_GraphicXXXFillIso settings maintain the aspect ratio of the graphic.    This may
mean that the graphic will actually be smaller in one dimension than the target rectangle.    In that case,
the graphic is aligned within its rectangle according to the setting of ItemGraphicAlign.    The non-Iso
settings will distort the graphic unless the target rectangle has the same aspect ratio as the graphic
itself.

Data Type
Integer (Enumerated)

ItemGraphicTop Property (1.1)
Applies To

ITGraph

Description
Specifies the top of a node's graphic rectangle.

Usage
[form.]control.ItemGraphicTop (index)[= pixels]
Read/Write at run time.    Hidden at design time.

Remarks
When ItemGraphicStyle is ITG_GraphicIconFill or ITG_GraphicIconFillIso, then the node's graphic is
drawn so as to fit in the rectangle defined by ItemGraphicLeft, ItemGraphicTop, ItemGraphicWidth and
ItemGraphicHeight.    These parameters are in graph coordinates, and are relative to the top-left corner
of the node.

Data Type
Integer

ItemGraphicWidth Property (1.1)
Applies To

ITGraph

Description
Specifies the width of a node's graphic rectangle.

Usage
[form.]control.ItemGraphicWidth (index)[= pixels]
Read/Write at run time.    Hidden at design time.

Remarks
When ItemGraphicStyle is ITG_GraphicIconFill or ITG_GraphicIconFillIso, then the node's graphic is
drawn so as to fit in the rectangle defined by ItemGraphicLeft, ItemGraphicTop, ItemGraphicWidth and
ItemGraphicHeight.    These parameters are in graph coordinates, and are relative to the top-left corner
of the node.    If ItemGraphicWidth is 0, then the graphic will extend to the right edge of the node.

Data Type
Integer

ItemHeight Property (1.2)
Applies To

ITGraph

Description
Specifies the height of the node's bounding rectangle.

Usage
[form.]control.ItemHeight (index)[= height]
Read/Write at run time.    Hidden at design time.

Remarks
When a node is added with the AddItem method, ItemHeight is set to the value of the YSpan property.

Data Type
Integer

ItemId Property
Applies To

ITGraph

Description
Unique long index assigned by ITGraph to the node.

Usage
id = [form.]control.ItemId (index)
Read only at run time.    Hidden at design time.

Remarks
When a node is added with the AddItem method, it is assigned a unique ItemId.    This value never
changes for the node, even if others are deleted or inserted, or the graph is saved or retrieved from disk.
ItemId values are numbered beginning with 1.    When a graph is cleared by the Clear method, the next
node to be added will be assigned an ItemId of 1.

Data Type
Long

ItemIndex Property (1.2)
Applies To

ITGraph

Description
Used to change the index of a node in the graph.

Usage
[form.]control.ItemIndex (index) = new_index
Write only at run time.    Hidden at design time.

Remarks
An items index is relevant to ITGraph on two occasions.    Firstly, the order in which nodes are drawn is
determined by the index.    The highest index is always on top if nodes overlap.    Secondly, if
ArrangeMode is set to ITG_ModeTree, nodes on the same level are drawn in order of increasing
ItemIndex.    Change ItemIndex allows your application to reorder the nodes.    Setting ItemIndex to 0 is
analogous to the Send To Back command in Visual Basics Edit menu.

Data Type
Integer

ItemLabelAlign Property (1.1)
Applies To

ITGraph

Description
Set or retrieve the alignment for the label of a node within the node's label rectangle.

Usage
[form.]control.ItemLabelAlign (index)[= alignment]
Read/Write at run time.    Hidden at design time.

Setting
The ItemLabelAlign settings are:

Setting Description
ITG_AlignTopLeft Top left corner.
ITG_AlignTopCenter Top center.
ITG_AlignTopRight Top right corner.
ITG_AlignMiddleLeft Middle left.
ITG_AlignMiddleCenter (Default) Center.
ITG_AlignMiddelRight Middle right.
ITG_AlignBottomLeft Bottom left corner.
ITG_AlignBottomCenter Bottom center.
ITG_AlignBottomRight Bottom right corner.

Remarks
The ItemLabelAlign property specifies how a node's label (if any) will be aligned within the node's label
rectangle.

Data Type
Integer (Enumerated)

ItemLabelHeight Property (1.1)
Applies To

ITGraph

Description
Specifies the height of a node's label rectangle.

Usage
[form.]control.ItemLabelHeight (index)[= pixels]
Read/Write at run time.    Hidden at design time.

Remarks
Specifies the height of the rectangle used to draw the node's label.    The label rectangle is defined
relative to the top-left corner of the node's bounding rectangle.    If ItemLabelHeight is set to 0, then the
label rectangle extends to the bottom of the node.

Data Type
Integer

ItemLabelLeft Property (1.1)
Applies To

ITGraph

Description
Specifies the left edge of a node's label rectangle.

Usage
[form.]control.ItemLabelLeft (index)[= pixels]
Read/Write at run time.    Hidden at design time.

Remarks
Specifies the left edge of the rectangle used to draw the node's label.    The label rectangle is defined
relative to the top-left corner of the node's bounding rectangle.

Data Type
Integer

ItemLabelTop Property (1.1)
Applies To

ITGraph

Description
Specifies the top of a node's label rectangle.

Usage
[form.]control.ItemLabelTop (index)[= pixels]
Read/Write at run time.    Hidden at design time.

Remarks
Specifies the top of the rectangle used to draw the node's label.    The label rectangle is defined relative
to the top-left corner of the node's bounding rectangle.

Data Type
Integer

ItemLabelWidth Property (1.1)
Applies To

ITGraph

Description
Specifies the width of a node's label rectangle.

Usage
[form.]control.ItemLabelWidth (index)[= pixels]
Read/Write at run time.    Hidden at design time.

Remarks
Specifies the width of the rectangle used to draw the node's label.    The label rectangle is defined
relative to the top-left corner of the node's bounding rectangle.    If ItemLabelWidth is set to 0, then the
label rectangle extends to the right edge of the node.

Data Type
Integer

ItemShape Property
Applies To

ITGraph

Description
Specifies the shape for drawing the node.

Usage
[form.]control.ItemShape (index)[= shape_index]
Read/Write at run time.    Hidden at design time.

Remarks
The ItemShape settings are:

Setting Description
ITG_ShapeNone No shape.    Useful if a graphic represents the node.
ITG_ShapeDefault (Default) Same as ITG_ShapeRectangle.
ITG_ShapeRectangle A rectangle.
ITG_ShapeEllipse An ellipse.
ITG_ShapeRoundRect A rounded rectangle.
ITG_ShapeParallelogram1 A parallelogram with the bottom shifted right.
ITG_ShapeParallelogram2 A parallelogram with the top shifted right.
ITG_ShapeHexagon A hexagon.
ITG_ShapePage A page of paper, with the top right corner folded over.
ITG_ShapeDiamond A diamond.
ITG_ShapeOctagon An octagon.
ITG_ShapePapers1 A stack of paper, with the top sheet in the top left.
ITG_ShapePapers2 A stack of paper, with the top sheet in the bottom left.

Data Type
Integer (Enumerated)

ItemTextColor Property
Applies To

ITGraph

Description
Specifies the color with which the specified node's text will be drawn.

Usage
[form.]control.ItemTextColor (index)[= color]
Read/Write at run time.    Hidden at design time.

Remarks
ItemTextColor sets the text color for a particular node.    If it is set to -1, then the node's caption will be
drawn in ForeColor.    If DrawColored is False, the node's text will be black.

Data Type
Long (Color or -1)

ItemWidth Property (1.2)
Applies To

ITGraph

Description
Specifies the width of the node's bounding rectangle.

Usage
[form.]control.ItemWidth (index)[= position]
Read/Write at run time.    Hidden at design time.

Remarks
When a node is added with the AddItem method, ItemWidth is set to the value of the XSpan property.

Data Type
Integer

ItemXpos Property
Applies To

ITGraph

Description
Specifies the left edge of the node's bounding rectangle.

Usage
[form.]control.ItemXpos (index)[= position]
Read/Write at run time.    Hidden at design time.

Remarks
If your application sets ItemXpos, you will probably want to set AutoArrange to ITG_ManualArrange so
that the graph is not recomputed later.    The horizontal center of a node can be found by adding
ItemWidth/2 to the ItemXpos value.

Data Type
Integer

ItemYpos Property
Applies To

ITGraph

Description
Specifies the top edge of the node's bounding rectangle.

Usage
[form.]control.ItemYpos (index)[= position]
Read/Write at run time.    Hidden at design time.

Remarks
If your application sets ItemYpos, you will probably want to set AutoArrange to ITG_ManualArrange so
that the graph is not recomputed later.    The vertical center of a node can be found by adding
ItemHeight/2 to the ItemYpos value.

Data Type
Integer

LineWidth Property
Applies To

ITGraph

Description
Specifies the default line width to be used for drawing connections between nodes.

Usage
[form.]control.LineWidth[= width]
Read/Write at run time and design time.

Remarks
A LineWidth of 0 causes lines to always be thin, irrespective of the setting of DrawScale.    If LineWidth is
greater than 0, it will be scaled according to the setting of DrawScale. The LineWidth property specifies
the default line width for connections.    All connections with a ConnectionLineWidth of -1 will be drawn
with the width specified by LineWidth, otherwise the connection's own line width setting will be used.

Data Type
Integer

List Property
Applies To

ITGraph

Description
Specifies the label associated with a node.

Usage
[form.]control.List (index)[= string]
Read/Write at run time.    Hidden at design time.

Remarks
The list property sets or retrieves the label associated with a node.    Note that the initial value for this
property is set by AddItem method.

Data Type
String

ListCount Property
Applies To

ITGraph

Description
Specifies the number of nodes in the graph.

Usage
count = [form.]control.ListCount
Read only at run time. Hidden at design time.

Data Type
Integer

LoadFrom Property
Applies To

ITGraph

Description
Load a saved ITGraph graph from disk.

Usage
[form.]control.LoadFrom = path
Write only at run time.    Hidden at design time.

Remarks
Setting the LoadFrom property to the path of an ITGraph file will clear the current contents of the control
and replace it with the graph found in the specified file.    Properties that affect the way in which the
graph is drawn are saved in the graph file.    Those that affect event handling are not.

Data Type
String (file path)

NewIndex Property
Applies To

ITGraph

Description
Index of the the last node added to the graph.

Usage
index = [form.]control.NewIndex
Read only at run time.    Hidden at design time.

Remarks
The value of the NewIndex property will either be a valid node index (greater than or equal to zero), or
-1.    NewIndex should only be used immediately after a node has been added with the AddItem.

Data Type
Integer

PrintGraph Property
Applies To

ITGraph

Description
Print the current graph on the printer.

Usage
[form.]control.PrintGraph = hDC
Write only at run time.    Hidden at design time.

Remarks
Prints the graph on the specified device context (hDC).    The graph will be drawn at the same scale as
the screen image.    If the graph won't fit on the page at the specified scale, it will be split across multiple
pages.    The PrintHeader property can be used to specify custom headers and footers for the pages of
the graph.

If you are creating a custom report and need to include the graph in the printout, you may want to use
the PrintToDC property to better control the way the graph is printed.

C++ Users: PrintGraph does not work with the MFC print preview feature.    In order to support print
preview, PrintGraphs pagination and printing must be implemented in your application.    The C++
demonstration program shows how this can be done.

Data Type
Integer

PrintHeader Property (1.1)
Applies To

ITGraph

Description
Specify custom headers and footers to be used when printing the graph with PrintGraph.

Usage
[form.]control.PrintHeader[= print_header]
Read/Write at run time and design time.

Remarks
If print_header is a simple text string, it will be printed in the top-center of each page printed by
PrintGraph.    Several formatting characters can be inserted in the string to customize the behavior as
follows:

Format Description
&1 Place the following text (up to the next placement marker) in the top-left corner of each

page.
&2 Place the following text (up to the next placement marker) in the top-center of each page.
&3 Place the following text (up to the next placement marker) in the top-right corner of each

page.
&4 Place the following text (up to the next placement marker) in the bottom-left corner of

each page.
&5 Place the following text (up to the next placement marker) in the bottom-center of each

page.
&6 Place the following text (up to the next placement marker) in the bottom-right corner of

each page.
&p Insert the current page number in this position.
&n Insert the total number of pages in this position.
&& Insert the '&' character in this position.

As an example, the following lines will print the current graph, with "Test Graph" at the top-center of each
page, the current date in the top right, and "Page # of #" at the bottom center.
ITGraph1.PrintHeader = "&2Test Graph&3" & Date & "&5Page&p of &n"
ITGraph1.PrintGraph = 100

Data Type
String

PrintRectHeight Property
Applies To

ITGraph

Description
Set or retrieve the height of the print rectangle.

Usage
[form.]control.PrintRectHeight[= pixels]
Read/Write at run time.    Hidden at design time.

Data Type
Integer

PrintRectLeft Property
Applies To

ITGraph

Description
Set or retrieve the left of the print rectangle.

Usage
[form.]control.PrintRectLeft[= pixels]
Read/Write at run time.    Hidden at design time.

Data Type
Integer

PrintRectTop Property
Applies To

ITGraph

Description
Set or retrieve the top of the print rectangle.

Usage
[form.]control.PrintRectTop[= pixels]
Read/Write at run time.    Hidden at design time.

Data Type
Integer

PrintRectWidth Property
Applies To

ITGraph

Description
Set or retrieve the width of the print rectangle.

Usage
[form.]control.PrintRectWidth[= pixels]
Read/Write at run time.    Hidden at design time.

Data Type
Integer

PrintToDC Property
Applies To

ITGraph

Description
Draws a portion of the graph in the specified device context.

Usage
[form.]control.PrintToDC[= hDC]
Write only at run time.    Hidden at design time.

Remarks
When the PrintToDC property is set to a Windows device context handle, the portion of the graph
specified by the selection rectangle will be drawn to that device context. The graph will be scaled to fit
the print rectangle, which should be set to the desired viewport in the device context prior to setting
PrintToDC.    The PrintToDC property is useful for including an ITGraph graph in a printout or custom
layout.

Note: If you set PrintToDC to 0, the selection rectangle will be set to the bounding rectangle of the entire
graph.    This can be used if you want PrintToDC to print the entire graph.    Alternatively, if
SelectRectWidth and SelectRectHeight are both set to 0, the entire graph will be printed.

Data Type
Integer (Device Context Handle)

PrintToWnd Property
Applies To

ITGraph

Description
Draws a portion of the graph in the specified window.

Usage
[form.]control.PrintToWnd[= hWnd]
Write only at run time.    Hidden at design time.

Remarks
When the PrintToWnd property is set to a Windows window handle, the portion of the graph specified by
the selection rectangle will be drawn in the specified window. The graph will be scaled to fit the print
rectangle, which should be set to the desired viewport in the target window prior to setting PrintToWnd.
The PrintToWnd can be used to display the graph in another control or window.

If you set PrintToWnd to 0, the selection rectangle will be set to the bounding rectangle of the entire
graph.    This can be used if you want PrintToWnd to print the entire graph.    Alternatively, if
SelectRectWidth and SelectRectHeight are both set to 0, the entire graph will be printed.

If you set PrintRectWidth and PrintRectHeight both to 0, then the printed portion of the graph will fill the
client area of hWnd.

Data Type
Integer (Window Handle)

QueryCount Property
Applies To

ITGraph

Description
The number of nodes or connections which satisfy the current query.

Usage
count = [form.]control.QueryCount
Read only at run time.    Hidden at design time.

Remarks
Returns the number of nodes or connections that match the current query as initiated by setting the
QueryState property.

Data Type
Integer

QueryData Property (1.1)
Applies To

ITGraph

Description
The reference data for the current query in ITG_QueryMatchItemId, ITG_QueryMatchItemData,
ITG_QueryMatchConnectionId and ITG_QueryMatchConnectionData queries.

Usage
 [form.]control.QueryItem[= data]
Read/Write at run time.    Hidden at design time.

Remarks
When set, establishes the reference data for an upcoming query of type ITG_QueryMatchItemId,
ITG_QueryMatchItemData, ITG_QueryMatchConnectionId or ITG_QueryMatchConnectionData.    Any
query currently in progress is invalidated.

Data Type
Long

QueryItem Property
Applies To

ITGraph

Description
The reference node for the current query or the current node in an ITG_QuerySelectRectItems query.

Usage
 [form.]control.QueryItem[= item]
Read/Write at run time.    Hidden at design time.

Remarks
When set, establishes the reference node for an upcoming query and sets QueryItemHandle to 0.    Any
query currently in progress is invalidated.

During an ITG_QuerySelectRectItems, the QueryItem property will contain the index of the current node
retrieved by the query.

Data Type
Integer

QueryItemHandle Property
Applies To

ITGraph

Description
The reference handle for a query.

Usage
 [form.]control.QueryItemHandle[= handle]
Write only at run time.    Hidden at design time.

Remarks
When set, establishes the reference handle for an upcoming query. Any query currently in progress is
invalidated.    A setting of 0 indicates that the query will apply to all handles of the node specified by
QueryItem.

Data Type
Integer (Enumerated)

QueryState Property
Applies To

ITGraph

Description
Control and monitor an ITGraph query.

Usage
 [form.]control.QueryState = query_cmd
query_valid = [form.]control.QueryState
Read/Write only at run time.    Hidden at design time.

Remarks
ITGraph queries can be initiated and controlled by setting QueryState to one of the following values:

Setting Description
ITG_QueryGetSources Initiates a query to get the sources of a node.    The QueryItem

property must previously have been set.    If only sources that
connect to a specific handle are desired, the QueryItemHandle
property should also be set.    The first connection matching the
query will be made the current connection, and the QueryCount
property will be set to the total number of connections matching the
query.

ITG_QueryGetTargets Initiates a query to get the targets of a node.    The QueryItem
property must previously have been set.    If only targets that
emmanate from a specific handle are desired, the QueryItemHandle
property should also be set. The first connection matching the query
will be made the current connection, and the QueryCount property
will be set to the total number of connections matching the query.

ITG_QueryGetConnections Initiates a query to get all connections of a node.    The QueryItem
property must previously have been set.    If only connections that
connect to a specific handle are desired, the QueryItemHandle
property should also be set. The first connection matching the query
will be made the current connection, and the QueryCount property
will be set to the total number of connections matching the query.

ITG_QueryGetSelectRectItems Initiates a query to get all nodes intersected by the current selection
rectangle.    The selection rectangle is set prior to sending a
SelectRect event, or can be directly set via the SelectRectLeft,
SelectRectTop, SelectRectWidth and SelectRectHeight properties.   
The index of the first node matching the query can be retrieved from
the QueryItem property, and the QueryCount property will contain the
number of nodes matching the query.

ITG_QueryIterate Iterates to the next node or connection in the query.    If the query
returns nodes, the QueryItem property is set to its index, otherwise,
current connection is set to the next connection matching the query.

ITG_QueryMatchItemId Initiates a query to get the index of the node with a particular ItemId.
The QueryData property must previously have been set to the ItemId
of the desired node.    The index of the node matching the query can
be retrieved from the QueryItem property, and the QueryCount
property will contain the number of nodes matching the query (either
0 or 1).

ITG_QueryMatchItemData Initiates a query to get the index of the nodes with a particular value
for ItemData.    The QueryData property must previously have been
set to the desired ItemData value.    The index of the first node
matching the query can be retrieved from the QueryItem property,
and the QueryCount property will contain the number of nodes
matching the query.

ITG_QueryMatchConnectionId Initiates a query to get the connection with a particular ConnectionId.
The QueryData property must previously have been set to the
ConnectionId of the desired connection.    If a connection matches
the query, it will be made the current connection, and the
QueryCount property will be set to the total number of connections
matching the query (either 0 or 1).

ITG_QueryMatchConnectionData Initiates a query to get the connections with a particular value for
ConnectionData.    The QueryData property must previously have
been set to the desired ConnectionData value. The first connection
matching the query will be made the current connection, and the
QueryCount property will be set to the total number of connections
matching the query.

If QueryState is read, it will be either True or False, depending on whether the node or connection
retrieved by the current query is valid.

Data Type
Integer (Enumerated)

Redraw Property (1.1)
Applies To

ITGraph

Description
Specifies whether the graph will be updated to reflect changes to its structure.

Usage
[form.]control.Redraw[= boolean]
Read/Write at run time and design time.

Setting
The Redraw settings are:

Setting Description
True (Default) Update the graph as changes are

made.
False Don't update the graph when changes are

made.

Remarks
The Redraw flag is useful to delay updating of the graph when several changes are being done at one
time.    When Redraw is set to True, any changes previously done will take effect on the graph, and it will
be redrawn.    When a lengthy operation is being performed (e.g. creating a graph by program control),
first set Redraw to False, then perform the graph modifications, then set Redraw back to True.

Data Type
Integer (Boolean)

RemoveFrom Property
Applies To

ITGraph

Description
Remove a connection between two graph nodes.

Usage
[form.]control.RemoveFrom (from_index) = to_index
Write only at run time.    Hidden at design time.

Remarks
If from_index and to_index are valid indices, the connection from node from_index to node to_index will
be removed from the graph.    If the AutoArrange property is set to ITG_AutoArrange, the graph will be
recomputed and redrawn.

Data Type
Integer

RubberBand Property
Applies To

ITGraph

Description
Specifies whether rubber-band lines will be shown when dragging connections between nodes or
handles.

Usage
[form.]control.RubberBand[= mode]
Read/Write at run time and design time.

Remarks
The settings for RubberBand are:

Setting Description
ITG_RBNone (Default) No rubber band lines.
ITG_RBItems Rubber band lines when dragging between nodes.
ITG_RBHandles Rubber band lines when dragging between handles.
ITG_RBBoth Rubber band lines when dragging between nodes or handles.
The setting of the RubberBand property merely determines whether or not rubber-band lines will be
shown during connection dragging.    Setting RubberBand to ITG_RBNone does not prevent
ItemConnect messages from being sent, it merely disables display of a rubber-band line.

Data Type
Integer (Enumerated)

SaveAs Property
Applies To

ITGraph

Description
Load a saved ITGraph graph from disk.

Usage
[form.]control.SaveAs = path
Write only at run time.    Hidden at design time.

Remarks
Setting the SaveAs property to a file path will save the current graph in the specified file, replacing it if it
already exists.    Properties that affect the way in which the graph is drawn are saved in the graph file.   
Those that affect event handling are not.

Data Type
String (file path)

SelectedIndex Property (1.2)
Applies To

ITGraph

Description
Index of the currently selected node in the graph.

Usage
index = [form.]control.SelectedIndex
Read/Write at run time.    Hidden at design time.

Remarks
The value of the SelectedIndex property will either be a valid node index (greater than or equal to zero),
or -1.    Setting SelectedIndex to the index of a node will cause that node to be drawn with sizing
handles.    If permitted, the user can the resize that node.    A good time to set the SelectedIndex property
is in response to an ItemClick event.    SelectedIndex should be set to -1 in response to a Click event, so
as to allow deselection.

Data Type
Integer

SelectRectEnabled Property
Applies To

ITGraph

Description
The SelectRectEnabled property is no longer used by ITGraph.    It has been subsumed in the new event
handling mechanism.    See Working with Events for more details.

SelectRectHeight Property
Applies To

ITGraph

Description
Set or retrieve the height of the selection rectangle.

Usage
[form.]control.SelectRectHeight[= pixels]
Read/Write at run time.    Hidden at design time.

Data Type
Integer

SelectRectLeft Property
Applies To

ITGraph

Description
Set or retrieve the left of the selection rectangle.

Usage
[form.]control.SelectRectLeft[= pixels]
Read/Write at run time.    Hidden at design time.

Data Type
Integer

SelectRectTop Property
Applies To

ITGraph

Description
Set or retrieve the top of the selection rectangle.

Usage
[form.]control.SelectRectTop[= pixels]
Read/Write at run time.    Hidden at design time.

Data Type
Integer

SelectRectWidth Property
Applies To

ITGraph

Description
Set or retrieve the width of the selection rectangle.

Usage
[form.]control.SelectRectWidth[= pixels]
Read/Write at run time.    Hidden at design time.

Data Type
Integer

ShapeCount Property
Applies To

ITGraph

Description
Specifies the number of node shapes.

Usage
count = [form.]control.ShapeCount
Read only at run time. Hidden at design time.

Data Type
Integer

ShapeName Property
Applies To

ITGraph

Description
Specifies the name assigned to a shape.

Usage
string = [form.]control.ShapeName (index)
Read only at run time.    Hidden at design time.

Remarks
The ShapeName property retrieves the name associated with a shape.    The ShapeCount property can
be used to determine how many shapes there are.    The index values range from 0 to ShapeCount-1.   
The value of ShapeName for an invalid index value is an empty string.

Data Type
String

ShapeSelect Property (1.1)
Applies To

ITGraph

Description
Brings up the Select a Shape dialog box, where the user can choose a node shape.

Usage
[form.]control.ShapeSelect[= shape_index]
Read/Write at run time.    Hidden at design time.

Remarks
Setting ShapeSelect to a valid shape index brings up the Select a Shape dialog box, with the specified
shape selected.    When done, ShapeSelect will contain the index of the shape selected by the user, or
-1 if no shape was selected.

Data Type
Integer

StoreGraphics Property
Applies To

ITGraph

Description
Specifies whether graphics will be loaded/stored together with a graph.

Usage
[form.]control.StoreGraphics[= mode]
Read/Write at run time and design time.

Setting
The StoreGraphics settings are:

Setting Description
ITG_NoLoadGraphics Graphics are neither loaded nor saved with a graph.
ITG_NoSaveGraphics Graphics are loaded with a graph, but not saved.
ITG_SaveUsedGraphics (Default) Graphics are loaded with a graph.    All referenced graphics are

saved when a graph is saved.
ITG_SaveRTGraphics Graphics are loaded with a graph.    All referenced graphics and all

graphics imported at run time are saved when a graph is saved.
ITG_SaveDTGraphics Graphics are loaded with a graph.    All graphics (run time and design time)

are saved when a graph is saved.

Remarks
StoreGraphics controls how graphics are treated by the LoadFrom and SaveAs properties.    If set to
ITG_SaveUsedGraphics, ITG_SaveRTGraphics or ITG_SaveDTGraphics, then the specified graphics
are saved by SaveGraph in the graph file, together with the graph itself.    LoadGraph uses the
StoreGraphics property to determine whether or not to load any graphics that are saved with the graph.
If StoreGraphics is anything other than ITG_NoLoadGraphics, then the graphics are loaded.    No
graphic will be loaded if there is already a graphic with the same name.    Nodes will always try to link to
a graphic with the same name as was saved with the graph; if the referenced graphic doesn't exist, the
node's ItemGraphic property is set to 0.

Data Type
Integer (Enumerated)

XSpace Property
Applies To

ITGraph

Description
Specifies the horizontal spacing between graph nodes.

Usage
[form.]control.XSpace[= integer]
Read/Write at run time and design time.

Remarks
The exact horizontal spacing between nodes may actually be greater than XSpace, depending on the
settings of the ArrangeMode, DrawDir and Gap properties. If the AutoArrange property is set to
ITG_AutoArrange, setting XSpace at run time will cause the graph to be recomputed and redrawn to
reflect the change in node spacing.

Data Type
Integer

XSpan Property
Applies To

ITGraph

Description
Specifies the width, in pixels, for new nodes in the graph.

Usage
[form.]control.XSpan[= integer]
Read/Write at run time and design time.

Remarks
Note that XSpan is used as the default width for new nodes.    Changing XSpan does not affect any of
the existing nodes.    This behavior is different than that of versions prior to 1.2.

Data Type
Integer

YSpace Property
Applies To

ITGraph

Description
Specifies the vertical spacing between graph nodes.

Usage
[form.]control.YSpace[= integer]
Read/Write at run time and design time.

Remarks
The exact vertical spacing between nodes may actually be greater than YSpace, depending on the
settings of the ArrangeMode, DrawDir and Gap properties. If the AutoArrange property is set to
ITG_AutoArrange, setting YSpace at run time will cause the graph to be recomputed and redrawn to
reflect the change in node spacing.

Data Type
Integer

YSpan Property
Applies To

ITGraph

Description
Specifies the height, in pixels, for new nodes in the graph.

Usage
[form.]control.YSpan[= integer]
Read/Write at run time and design time.

Remarks
Note that YSpan is used as the default height for new nodes.    Changing YSpan does not affect any of
the existing nodes.    This behavior is different than that of versions prior to 1.2.

Data Type
Integer

ZoomSelectRect Property
Applies To

ITGraph

Description
Brings the portion of the graph bounded by the selection rectangle to the center of the ITGraph window.
Zoom to fill the window with the selected portion if desired.

Usage
[form.]control.ZoomSelectRect = boolean
Write only at run time.    Hidden at design time.

Setting
The ZoomSelectRect settings are:

Setting Description
True Scale the graph to fit the selection rectangle.
False Maintain the current scale, center the selection rectangle in the window.

Remarks
The ZoomSelectRect property can be set to True in response to a SelectRect event to implement a
zoom window for your application.    If you wish to center the graph on a particular node, set the
selection rectangle to that node's rectangle (ItemXPos, ItemYPos, XSpan and YSpan), then set
ZoomSelectRect to False.    This will bring the node to the center without changing the scale of the
graph.

Data Type
Integer (Boolean)

AddItem Method
Adds a new node to the ITGraph graph at run time.

Syntax
control.AddItem item[,index]

Remarks
The AddItem method has these parts:

Part Description
control ITGraph control.
item String expression to be used as the label for the new node in the graph.
index Optional ListIndex for the new node.    An index of 0 causes the new node to be

added at the beginning of the list.

AddItem adds a new node to an ITGraph graph.    The node's List property is set to item and the the
ItemId property is set to a unique value.    The graph's NewIndex property will contain the index of the
newly added node or -1 if there is an error.    If the graph's AutoArrange property is set to
ITG_AutoArrange, the graph will be recomputed and redrawn to include the new node.

Delphi Users: Delphi's AddItem method only takes a single argument, the name of the new node.    To
insert a node at a specific index, use the following code:

control.AddItem(item);
control.ItemIndex(.control.NewIndex.) := index;

Clear Method
Clears an ITGraph graph at run time.

Syntax
control.Clear

Remarks
control is an ITGraph control.
Clear removes all nodes and connections from the graph.    No ITGraph properties are affected by this
method.

C++ Users: The CVBControl does not support a Clear method.    See the demo program for an example
of how to call ITGraphs Clear method from C++.

RemoveItem Method
Removes a node from an ITGraph graph at run time.

Syntax
control.RemoveItem index

Remarks
The RemoveItem method has these parts:

Part Description
control ITGraph control.
index Integer index of the graph node to be removed.    The index must be greater than or equal

to 0 and less than ListCount.

RemoveItem removes a node from an ITGraph graph. Along with the node, all connections to the node
will be removed. If the AutoArrange property is set to ITG_AutoArrange, the graph will be recomputed
and redrawn to reflect the changes.

Click Event
Example

Applies To
ITGraph

Description
Occurs when the user presses and then releases a mouse button over a blank (i.e. not over a node,
handle, or connection) area in an ITGraph window.

Syntax
ctlname_Click (Index As Integer, Button As Integer, Shift As Integer, X As Integer, Y As Integer)

Remarks
Button indicates which mouse button generated the event.    Shift specifies the state of the Alt, Ctrl and
Shift keys.    X and Y give the position of the mouse click, in graph coordinates.    A useful application of
this event is to add a node to the graph at the location that the user clicks.    Example shows how a node
could be added to the graph, centered at the location clicked by the user.

DblClick Event
Example

Applies To
ITGraph

Description
Occurs when the user double-clicks the left mouse button over a blank (i.e. not over a node, handle, or
connection) area in an ITGraph window.

Syntax
ctlname_DblClick (Index As Integer, Button As Integer, Shift As Integer, X As Integer, Y As Integer)

Remarks
Button indicates which mouse button generated the event.    Shift specifies the state of the Alt, Ctrl and
Shift keys.    X and Y give the position of the mouse click, in graph coordinates.    A useful application of
this event is to return from a zoom to a lower drawing scale as in Example.

Example: Adding A Node By Clicking

The following code shows how you might respond to a Click event by adding a node to the graph at the
location that was clicked.    If you allow users to add nodes at any location in the graph, the AutoArrange
property should be set to ITG_ManualArrange to prevent the graph from being recomputed when new
nodes are added.

Sub ITGraph1_Click (Button As Integer, Shift As Integer, X As Integer,
Y As Integer)
ITGraph1.AddItem "<New Node>"
ITGraph1.ItemXpos(ITGraph1.NewIndex) = X - (ITGraph1.XSpan/2)
ITGraph1.ItemYpos(ITGraph1.NewIndex) = Y - (ITGraph1.YSpan/2)

End Sub

DragDrop Event
Applies To

ITGraph

Description
Occurs when a drag-and-drop operation is completed as a result of dragging a control over an ITGraph
control and releasing the mouse button; or using the Drag method with its action argument = 2 (Drop).

Syntax
ctlname_DragDrop ([Index As Integer,] Source As Control, X As Single, Y As Single)

Remarks
Refer to the standard Visual Basic description of the DragDrop event for details.    The ITGraph
DragDrop event is the same except that the X and Y values are graph coordinates scaled to twips.    You
can determine the drop point in graph coordinates by dividing X and Y by Screen.TwipsPerPixelX and
Screen.TwipsPerPixelY respectively.

DragOver Event
Applies To

ITGraph

Description
Occurs when a drag-and-drop operation is in progress.    You can use this event to monitor when the
mouse pointer enters, leaves, or is directly over a valid target.    The mouse pointer position determines
which target object receives this event.

Syntax
ctlname_DragOver ([Index As Integer,] Source As Control, X As Single, Y As Single, State As
Integer)

Remarks
Refer to the standard Visual Basic description of the DragOver event for details.    The ITGraph
DragOver event is the same except that the X and Y values are graph coordinates scaled to twips.    You
can determine the drop point in graph coordinates by dividing X and Y by Screen.TwipsPerPixelX and
Screen.TwipsPerPixelY respectively.

ItemClick Event
Applies To

ITGraph

Description
Occurs when the user presses and then releases the left mouse button over a node or handle in the
graph.

Syntax
ctlname_ItemClick (Index As Integer, ItemIx As Integer, ItemHandle As Integer, Button As Integer,
Shift As Integer, X As Integer, Y As Integer)

Remarks
ItemIx identifies the node that was clicked, or -1 if the user didn't click on a node or handle.    If a handle
was clicked, ItemHandle specifies which handle was clicked, otherwise it is 0.    Note that if the
DrawHandles property is False or ArrangeMode property is not ITG_ModeFlowChart, there will be no
handles shown on the graph and therefore ItemHandle will always be 0. Button indicates which mouse
button generated the event.    Shift specifies the state of the Alt, Ctrl and Shift keys.    X and Y give the
position of the mouse, in graph coordinates.

ItemConnect Event
Applies To

ITGraph

Description
Occurs when the user presses the left mouse button while the mouse is over a node or handle, drags
the mouse to another node or handle, and releases the mouse button.

Syntax
ctlname_ItemConnect (Index As Integer, FromIx As Integer, FromHandle As Integer, ToIx As
Integer, ToHandle As Integer, Button As Integer, Shift As Integer)

Remarks
Occurs when the user presses the left mouse button while the mouse is over a node or handle, drags
the mouse to another node or handle, and releases the mouse button.    FromIx identifies the starting
node and ToIx the ending node.    If the mouse was dragged between two handles, FromHandle and
ToHandle identify the selected handles corresponding to nodes FromIx and ToIx, respectively.    If the
mouse was dragged between two nodes, FromHandle and ToHandle will both be 0. Note that if the
DrawHandles property is False or ArrangeMode property is not ITG_ModeFlowChart, there will be no
handles shown on the graph and therefore FromHandle and ToHandle will always be 0. The setting if the
RubberBand property determines whether rubber band lines will be shown while a connection is being
drawn between two nodes or handles.

ItemDblClick Event
Applies To

ITGraph

Description
Occurs when the user presses and then releases the left mouse button twice over a node or handle in
the graph.

Syntax
ctlname_ItemDblClick (Index As Integer, ItemIx As Integer, ItemHandle As Integer, Button As
Integer, Shift As Integer, X As Integer, Y As Integer)

Remarks
ItemIx identifies the node that was clicked, or -1 if the user double-clicked on a blank area in the graph.
If a handle was clicked, ItemHandle specifies which handle was clicked, otherwise it is 0.    Note that if
the DrawHandles property is False or ArrangeMode property is not ITG_ModeFlowChart, there will be
no handles shown on the graph and therefore ItemHandle will always be 0. Button indicates which
mouse button generated the event.    Shift specifies the state of the Alt, Ctrl and Shift keys.    X and Y
give the position of the mouse, in graph coordinates.

ItemDrag Event (1.2)
Applies To

ITGraph

Description
Occurs after an item is dragged to a new location in the graph.

Syntax
ctlname_ItemDrag ([Index As Integer,] X0 As Integer, Y0 As Integer, X1 As Integer, X1 As Integer,
Button As Integer, Shift As Integer)

Remarks
Specifies the initial (X0, Y0) and final (X1, Y1) values for a nodes ItemXpos and ItemYpos properties
when a node is dragged.    The drag can effectively be cancelled by setting the nodes ItemXpos and
ItemYpos properties to the X0 and Y0 parameters, respectively.    Button indicates the button which
initiated the dragging and Shift specifies the state of the Shift, Ctrl and Alt keys when the drag was
initiated.

ItemMouseMove Event
Applies To

ITGraph

Description
Occurs when the mouse passes over a node or handle in the graph.

Syntax
ctlname_ItemMouseMove (Index As Integer, ItemIx As Integer, ItemHandle As Integer, IsDragging
As Integer, Button As Integer, Shift As Integer, X As Integer, Y As Integer)

Remarks
ItemIx identifies the node over which the mouse moved, or -1 if the cursor is not over a node or handle.
ItemHandle identifies the handle under the cursor, or 0 if the mouse is not over a handle.    If a drag
operation is in progress (i.e. one of the mouse buttons is down), IsDragging will be True.    If the
DrawHandles property is False or ArrangeMode property is not ITG_ModeFlowChart, there will be no
handles shown on the graph and therefore ItemHandle will always be 0.    The ItemMouseMove event
can be used to set the cursor, change a node's properties, or retrieve a node's properties when the
mouse passes over it.    If IsDragging is True, then Button indicates which mouse button initiated the
drag and Shift specifies the state of the Alt, Ctrl and Shift keys.    X and Y give the position of the mouse,
in graph coordinates.

ItemResize Event (1.2)
Applies To

ITGraph

Description
Occurs after an item is resized by the user.

Syntax
ctlname_ItemResize ([Index As Integer,] L0 As Integer, T0 As Integer, W0 As Integer,
H0 As Integer, L1 As Integer, T1 As Integer, W1 As Integer, H1 As Integer, Button As Integer,
Shift As Integer)

Remarks
Specifies the initial (L0, T0, W0, H0) and final (L1, T1, W1, H1) values for a nodes ItemXpos, ItemYpos,
ItemWidth and Height properties when a node is resized by a user.    The node can be returned to its
original size by setting ItemXpos, ItemYpos, ItemWidth and ItemHeight to the L0,T0, W0, and H0
parameters, respectively.    Button indicates the button which initiated the resize and Shift specifies the
state of the Shift, Ctrl and Alt keys when the resize was initiated.

LineClick Event
Applies To

ITGraph

Description
Occurs when the user presses and releases the left mouse button on a connection in the graph.

Syntax
ctlname_LineClick (Index As Integer, FromIx As Integer, ToIx As Integer, Button As Integer, Shift As
Integer, X As Integer, Y As Integer)

Remarks
FromIx identifies the source of the connection and ToIx identifies the target of the connection.    If the
user clicks in a location which could be more than one connection, FromIx, ToIx, or both will be -1.    If
only ToIx is -1, then the user clicked on a connection/connections the go to multiple targets.    The
application may want to provide a selection box for the user to choose a target.    A query on FromIndex
with QueryState set to ITG_QueryTargets can be used to determine the possible targets. Button
indicates which mouse button generated the event.    Shift specifies the state of the Alt, Ctrl and Shift
keys.    X and Y give the position of the mouse, in graph coordinates.

LineDblClick Event
Applies To

ITGraph

Description
Occurs when the user double-clicks the left mouse button on a connection in the graph.

Syntax
ctlname_LineDblClick (Index As Integer, FromIx As Integer, ToIx As Integer, Button As Integer, Shift
As Integer, X As Integer, Y As Integer)

Remarks
FromIx identifies the source of the connection and ToIx identifies the target of the connection.    If the
user double-clicks in a location which could be more than one connection, FromIx, ToIx, or both will be
-1.    If only ToIx is -1, then the user clicked on a connection/connections the go to multiple targets.    The
application may want to provide a selection box for the user to choose a target.    A query on FromIndex
with QueryState set to ITG_QueryTargets can be used to determine the possible targets. Button
indicates which mouse button generated the event.    Shift specifies the state of the Alt, Ctrl and Shift
keys.    X and Y give the position of the mouse, in graph coordinates.

MouseDown Event (1.2)
Applies To

ITGraph

Description
Occurs when the user presses a mouse button in an ITGraph window.

Syntax
ctlname_MouseDown (Index As Integer, Button As Integer, Shift As Integer, X As Integer,
Y As Integer)

Remarks
Button indicates which mouse button generated the event.    Shift specifies the state of the Alt, Ctrl and
Shift keys.    X and Y give the position of the mouse, in graph coordinates.    A useful application of this
event is to initiate a popup menu.

MouseUp Event (1.2)
Applies To

ITGraph

Description
Occurs when the user releases a mouse button in an ITGraph window.

Syntax
ctlname_MouseUp (Index As Integer, Button As Integer, Shift As Integer, X As Integer,
Y As Integer)

Remarks
Button indicates which mouse button generated the event.    Shift specifies the state of the Alt, Ctrl and
Shift keys.    X and Y give the position of the mouse, in graph coordinates.

SelectRect Event
Applies To

ITGraph

Description
Occurs when the user drags a selection rectangle in the graph.

Syntax
ctlname_SelectRect (Index As Integer, L As Integer, T As Integer, W As Integer, H As Integer,
Button As Integer, Shift As Integer)

Remarks
L, T, W, and H identify the left, top, width and height of the selection rectangle, respectively - in graph
coordinates.    This event is sent when the user presses a mouse button, drags the mouse and then
releases it.    A dashed selection rectangle is drawn as the user drags the mouse.    See the Working
With Events section for a description of how to enable dragging of a selection rectangle.    When this
event is generated, the SelectRectLeft, SelectRectTop, SelectRectWidth and SelectRectHeight
properties will be set to the same values as the L, T, W and H event parameters.    In response to the
SelectRect event, the ZoomSelectRect property can be used to zoom in on the selected area.    The
ITG_QuerySelectRectItems setting of the QueryState property can be used to determine which nodes
fall inside the selection rectangle. Button indicates which mouse button generated the event.    Shift
specifies the state of the Alt, Ctrl and Shift keys.

Setting up the ITGraph Control

There are several important properties which should be set at design time for an ITGraph control.   
These properties control display characteristics of the entire graph:

At design time, the ITGraph window shows a default node in the center of the screen.    You should
adjust the properties described below so that the colors and styles are as you desire.

The AutoArrange property should be set to either ITG_ManualArrange or ITG_AutoArrange.    Set it to
ITG_AutoArrange if you want the graph to be updated when new nodes or connections are added.    If
you only want the graph to be updated when explicitly required by your application, then set
AutoArrange to ITG_ManualArrange at design time.    You can set it to ITG_ArrangeNow at runtime to
arrange the graph when needed.

Set the ArrangeMode, DrawDir and DrawBackLinks properties according to the layout needs of your
application.    Even if you don't use the automatic layout features, these properties will affect the way in
which connections are drawn between nodes.    The XSpan, YSpan, and Gap properties affect the
spacing of nodes and connections.    The exact interpretation of these properties depends on the
settings of ArrangeMode and DrawDir.    The DrawScale property should probably be set either to 100 for
WYSIWYG drawing or 0 to keep everything in the control window.

Set the XSpace, YSpace, BackColor, FillColor, ForeColor, and LineWidth properties to determine the
default sizes and colors for nodes and connections.    The DrawArrows, DrawColored and
DrawItemLabels properties further affect the components that will be shown in the graph.

Use the AutoMouseEvents and RubberBand properties to configure how mouse events will be
processed by your application.    Using these options, you can implement node dragging, zooming,
multiple-node selections, and rubber band lines for connections, among other possibilities.

Adding Nodes to the ITGraph Control

New nodes are added to an ITGraph at run time only via the AddItem method.    This method takes as
an argument the initial value for the node's List property.    An optional second argument specifies the
position to insert the new node in the node list.    This is particularly useful for the tree layout, where the
appearance of the graph depends on the insertion order.    The AddItem method sets the NewIndex
property of the control to the index of the new node in the graph.    Note that this index value is valid until
another node is added or deleted from the graph, at which time it may be shifted; if you need a
permanent reference to a node, the ItemId property gives you an identifier which will never be changed.
Alternatively, you can use the ItemData property to associate your own data with a node.

When a new node is added, several other properties should be set before the graph is redrawn.    The
ItemShape, ItemFillColor, ItemBorderColor and ItemTextColor properties control the display
characteristics of the node.

If your application uses manual placement of nodes, then you should also set the ItemXpos and
ItemYpos properties at this time.    These properties are particularly useful if you implement a drag-drop
capability where the user can drop nodes directly onto the graph as in Example.

If you need to remove a node from the graph, use the RemoveItem method, supplying the index of the
node you wish to remove.

Example: Adding Nodes By Drag-Drop

The following code shows how you might allow a user to drop a node onto the ITGraph control.    To
prevent the new node from being moved, the AutoArrange property must be set to ITG_ManualArrange.
Notice the conversion at the beginning from Twips to Pixels for the drop coordinates.    The call to the
Refresh method at the end causes the graph to be redrawn (although none of the nodes are moved).

Sub ITGraph1_DragDrop (Source As Control, x As Single, y As Single)
 x = x / Screen.TwipsPerPixelX
 y = y / Screen.TwipsPerPixelY

 ITGraph1.AddItem "New Node"
 ITGraph1.ItemXpos(ITGraph1.NewIndex) = x - ITGraph1.XSpan / 2
 ITGraph1.ItemYpos(ITGraph1.NewIndex) = y - ITGraph1.YSpan / 2
 ITGraph1.ItemShape(ITGraph1.NewIndex) = ITG_ShapeRectangle
 ITGraph1.ItemBorderColor(ITGraph1.NewIndex) = &H000000
 ITGraph1.ItemFillColor(ITGraph1.NewIndex) = &H0000FF
 ITGraph1.ItemTextColor(ITGraph1.NewIndex) = &H00FF00
 ITGraph1.Refresh
End Sub

Working with Connections
Example
A connection can be added to the graph by setting the ConnectTo property of the source to the index of
the new target.    The new connection will be added to the graph and made the current connection and
the graph will be redrawn to include the additional connection.    This is now the time to change the
connection's properties from the default values.    If ArrangeMode is ITG_ModeFlowChart, then you may
want to set the ConnectFromHandle and ConnectToHandle to specify the way the connection should be
drawn; the DrawHandles property determines whether handles will be shown on the graph.    The
ConnectionColor property can be set to give the connection its own color, or can be set to -1 to use the
setting of ForeColor.    The ConnectionArrow property determines the type of arrowhead (if any) to be
drawn at the end of the connection; the DrawArrows property determines whether any arrows will be
drawn at all.    A label can be assigned to the connection by setting the ConnectionLabel property and an
application-defined long integer can be associated with the connection via the ConnectionData property.
The DrawConnLabels property determines whether or not to draw labels on connections that have them.

When ArrangeMode is ITG_ModeHierarchy or ITG_ModeTree, connections are classified into two
categories.    Regular connections proceed according to the specified value of DrawDir.    Backlinks,
which only occur in graphs with circularities, proceed in the opposite direction.    Also, a connection from
a node to itself is considered a backlink.    The distinction between these two types of connections may
affect how the graph is drawn.    The setting of the DrawBackLinks property determines whether or not
backlinks will be drawn, and in what style (solid or dashed lines).

To access or retrieve the properties of a connection, it is necessary to make it the current connection.   
There are several ways this can be done.    If you already know the source and target indices (e.g. from
an event), then you can make the connection current by setting the ConnectTo property of the source to
the index of the target.    Since this connection is already in the graph, ConnectTo will not add a new
connection or redraw the graph.    Alternatively, you can query connections belonging to a node in the
graph.    First, set the QueryItem property to the index of the reference node.    If you are interested in
connections related to a particular handle of the node, set the QueryItemHandle property to the index of
the desired handle.    Start your query by setting QueryState to the code for the type of query you want.
This will start a query to get all connections or all incoming or outgoing connections from the node or
handle.    The QueryCount property tells you how many connections match the query criteria.   
QueryState tells you if the current connection is valid.    If it is, you can access the properties of that
connection as described above.    QueryState is also used to iterate through the matching connections.   
This is done by setting QueryState to ITG_Iterate, then checking its value to see if the current
connection is valid (i.e. another connection matched the criteria) or invalid (i.e. you have seen all the
matching connections).

A connection can be removed by setting the RemoveFrom of the source to the index of the target.   
Additionally, if a node is removed by the RemoveItem method, any connections into or out of that node
will also be removed.

Three ITGraph events are relevant for working with connections.    The LineClick event is fired when the
user clicks on a connection in the graph with the left mouse button.    The LineDblClick event is fired
when the user double-clicks on a line with the left mouse button.    You may want to respond to one or
both of these events by selecting the connection (perhaps by changing its color), returning information
on the selected connection, or some other appropriate action.    Note that the LineClick and LineDblClick
events return the source and target indices of the connection.    These can be used to select the
connection with the ConnectTo property.    If more than one connection is clicked at the same time, the
LineClick and LineDblClick events will indicate this by providing -1 in place of node indices.    Your
application can then use the provided index to iterate through the possible matching connections.
The ItemConnect event is fired when a user clicks on a node with the left mouse button, drags the
mouse to a different node, and releases the mouse button.    An appropriate response to this event may
be to add a connection between the two nodes.    The ItemConnect event provides the indices of the
selected nodes as well as handle indices.    If the user drags between two nodes, the handle indices will
both be 0.    If the user drags between two handles, the indices will indicate which handles were chosen.
The RubberBand property determines whether connection dragging will be accompanied by a rubber

band line.    The RubberBand property does not affect whether or not ItemConnect events will be sent; it
is the application's responsibility to respond (or not respond) appropriately to the ItemConnect event.

Example: Finding the Targets of a Node

The following code shows how you might respond to an ItemDblClick event by placing the names of all
targets of the selected node in a ListBox control named TargList.    If a node is double-clicked, all targets
of the node are listed.    If a handle is double-clicked, only those connections emmanating from the
handle are shown.

Sub ITGraph1_ItemDblClick (ItemIx As Integer, ItemHandle As Integer,
Button As Integer, Shift As Integer, X As Integer, Y As Integer)
Dim targIndex As Integer

TargList.Clear
ITGraph1.QueryItem = ItemIx
ITGraph1.QueryItemHandle = ItemHandle
ITGraph1.QueryState = ITG_QueryGetTargets
While ITGraph1.QueryState
targIndex = ITGraph1.ConnectToIndex
TargList.AddItem ITGraph1.List(targIndex)
ITGraph1.QueryState = ITG_QueryIterate

Wend
End Sub

The first step in the code is to specify the query parameters.    The QueryItem property is set to the index
of the node that was double-clicked and the QueryItemHandle property is set to the handle that was
clicked (or 0 if a node was clicked).    The query for targets of the selected node is then initiated by
setting QueryState to ITG_QueryGetTargets.    In a while loop, the QueryState property is checked.    If
true, then the query has returned a connection whose properties (in this case the target index) can be
read.    At the end of the while loop, QueryState is set to ITG_QueryIterate to get the next connection in
the query.

Similarly, the sources of a node can be found simply by initializing QueryState to ITG_QueryGetSources
instead of ITG_QueryGetTargets as above.

Current Connection
There can be at most one current connection.    Several operations that affect connection properties
apply to the current connection.    When a new connection is added or selected (by setting the
ConnectTo property) or retrieved by a query (using the QueryXXX properties) it becomes the current
connection.

Source
If there is a connection from one node to another, the first node is a source of the second node. The
ConnectTo property is used to make a node a source of another node.

Target
If there is a connection from one node to another, the second node is a target of the first node. The
ConnectTo property is used to add a target to a node.

File Operations

The ITGraph control includes two special properties used for saving and loading graphs from the disk.   
The SaveAs property allows you to specify a path to save the graph.    You may want to use the .ITG
extension for ITGraph files to distinguish them from other types of files.    Previously saved files can be
loaded by using the LoadFrom method.    The CMDialog control can be used to query the user for a path
to save a file or for a graph to be loaded.

All ITGraph properties that affect the way a graph is drawn are saved in the graph file.    Those
properties that affect the control's behavior are not saved.    Properties NOT saved are: Align,
AutoArrange, AutoMouseEvent, AutoMouseEvents, BorderStyle, CtlName, DragIcon, DragItems,
DragMode, Enabled, GraphicAllowImport, Height, HelpContextID, hWnd, Index, IsDirty, Left,
MousePointer, Name, Parent, PrintHeader, PrintRectHeight, PrintRectLeft, PrintRectTop,
PrintRectWidth, Redraw, RubberBand, SelectedIndex, SelectRectEnabled, SelectRectHeight,
SelectRectLeft, SelectRectTop, SelectRectWidth, StoreGraphics, TabIndex, TabStop, Tag, Top, Visible,
Width and ZoomSelectRect.

Note that the AutoArrange property is not saved in the graph file.    If a graph is loaded when the ITGraph
control's AutoArrange property is set to ITG_AutoArrange, the graph will be rearranged.

The StoreGraphics property determines whether bitmaps and metafiles will be saved in a graph file, or
loaded from the file.    This property's setting affects both loading and saving.

Printing

Printing an ITGraph graph can be accomplished by setting the PrintGraph property to the destination
device contest.    Since color graphs dont look good, setting the DrawColored flag to False before
printing will optimize the graph for black and white printing.    The PrintHeader property allows you to
customize the headers and footers placed on pages printed by PrintGraph.

The PrintToDC and PrintToWnd properties can be used to "print" an image of the graph or portion of the
graph into another Visual Basic control or an application window or report.    The first function is given a
handle to a device context while the second is given a handle to a window.    Many Visual Basic controls
provide an hWnd property that can be used to retrieve the control's window handle.    Prior to setting the
PrintToDC or PrintToWnd properties, the selection rectangle should be set to a rectangle in the graph.   
This is the portion of the graph that will be printed.    If SelectRectWidth and SelectRectHeight are both
set to 0, then the entire graph will be printed.    The print rectangle, defined by PrintRectLeft,
PrintRectTop, PrintRectWidth and PrintRectHeight, specifies a viewport in the destination device context
or window.    The portion of the graph delineated by the selection rectangle will be scaled to fit the print
rectangle.
The selection rectangle's bounds can be set using the SelectRectLeft, SelectRectTop, SelectRectWidth
and SelectRectHeight properties.

Note: If you set PrintToWnd or PrintToDC to 0, the selection rectangle will be set to the bounding
rectangle of the graph.

Using the Selection Rectangle
Example1 Example2 Example3
Associated with the graph is a current selection rectangle.    The selection rectangle can be set in
response to a user SelectRect event or any other time by setting the SelectRectLeft, SelectRectTop,
SelectRectWidth and SelectRectHeight properties.

One useful application of the selection rectangle is to implement a zoom window.    When the user drags
a rectangle with the left or right mouse button, the graph will be zoomed to show the area that was
selected.    To implement this capability, dragging of a selection rectangle must be enabled as described
in Working With Events.    Next, the application must respond to the SelectRect event by setting the
ZoomSelectRect to 1, causing the selected area to fill the ITGraph control window.    This is illustrated by
Example1.

Another application of the select rectangle is to allow the user to select a node from a list of node
names, and then center the graph on that node.    This is particularly useful for large graphs.    Such a
capability can be implemented by setting the selection rectangle bounds to the bounds of the desired
node and then setting the ZoomSelectRect property to 0, which centers the selection rectangle in the
graph window, but doesn't change the scale.    This is illustrated by Example2.

A query can be used to perform a particular action on all the nodes that the selection rectangle
intersects.    The ITG_QuerySelectRectItems query is provided for this purpose.    Example3 shows how
this is done.

Additionally, the selection rectangle defines the portion of the graph to be printed by the PrintToDC and
PrintToWnd properties.

Example: Implementing a Zoom Window

The following code shows how you might implement a zoom window in response to a SelectRect event.
Note that you must set the SelectRectEnabled property to True in order for the user to be able to drag a
selection rectangle and for the SelectRect event to be called.

Sub ITGraph1_SelectRect (L As Integer, T As Integer, W As Integer,
H As Integer, Button As Integer, Shift As Integer)
ITGraph1.ZoomSelectRect = 1

End Sub

That's all there is to it!    The user can now select an area of the graph to zoom in on.    You may want to
provide some way to zoom out again.    A convenient place to do this is in response to the DblClick
event.

Sub ITGraph1_DblClick (Button As Integer, Shift As Integer, X As Integer,
Y As Integer)
ITGraph1.DrawScale = 0 'Fit to screen

End Sub

In our example, we respond to a double-click on the ITGraph screen by setting the DrawScale property
to 0, which causes the entire graph to fit on the screen.

Example: Centering On A Node

The following code shows a procedure that will center the graph on a node whose index is passed to the
procedure.

Sub CenterOnNode (NodeIx As Integer)
ITGraph1.SelectRectLeft = ITGraph1.ItemXpos(NodeIx)
ITGraph1.SelectRectTop = ITGraph1.ItemYpos(NodeIx)
ITGraph1.SelectRectWidth = ITGraph1.ItemWidth(NodeIx)
ITGraph1.SelectRectHeight = ITGraph1.ItemHeight(NodeIx)
ITGraph1.ZoomSelectRect = 0

End Sub

Setting ZoomSelectRect to 0 causes the selection rectangle to be centered in the ITGraph window, but
without changing the scale of the graph.

Example: Marking Selected Nodes

The following code shows how you might respond to a SelectRect event by changing the interior color of
all the nodes in the rectangle to red.    Note that you must set the SelectRectEnabled property to True in
order for the user to be able to drag a selection rectangle and for the SelectRect event to be called.

Sub ITGraph1_SelectRect (L As Integer, T As Integer, W As Integer,
H As Integer, Button As Integer, Shift As Integer)
Const COLOR_RED = &HFF
ITGraph1.QueryState = ITG_QuerySelectRectItems
While ITGraph1.QueryState
ITGraph1.ItemFillColor(ITGraph1.QueryItem) = COLOR_RED
ITGraph1.QueryState = ITG_Iterate

Wend
End Sub

Setting QueryState to ITG_QuerySelectRectItems initiates a query to get all the nodes intersected by
the current selection rectangle.    Since this is being done in response to a SelectRect event, the
selection rectangle will be the area selected by the user.    The selection rectangle could also be set by
the application if desired. QueryState will be true as long as node are found.    The QueryItem property
can be used to get the index of the last node found by the query.    The next node is found by setting
QueryState to ITG_Iterate.

Import Graphic Dialog (1.1)
Applies To

ITGraph

Purpose
Used to select a graphic to be imported at design time or run time.

Description
The "Import Graphic" dialog box appears when the Select button is pressed on the New Graphic
Information or Information for Graphic dialog boxes.

The Import Graphic dialog box is essentially a file selection dialog, for choosing a graphic file to be
imported as an ITGraph graphic.    The controls on the dialog are as follows:

Control Description
File Name The "File Name" list box contains a list of the files in the specified drive

and directory that are of the desired file types.    Double-clicking on a file
in the list box will close the Import Graphic dialog box, and place the path
of the selected file into the Path box of the Graphic Information dialog
box.    The File Name edit box contains the path of the selected file,
relative to the current directory.    A path can be typed directly in this
dialog box if desired.

List Files of Type The "List Files of Type" combo box can be used to limit the files
displayed in the File Name list box to files of a certain type.    The options
are "Graphic Files," "Windows Bitmaps" and "Windows Metafiles."

Directories The "Directories" list box contains the directory tree for the selected
drive.    Double clicking on a directory name expands the tree to show the
subdirectories, and sets the current directory (shown above the list box)
to the selected directory.

Drives The "Drives" combo box contains a list of the drives on your system.   
The current drive is shown in the edit box.

OK Close the Import Graphic dialog box and import the graphic file specified
in the File Name edit box.

Cancel Close the Import Graphic dialog box without importing a new graphic.

New Graphic Information Dialog (1.1)
Information for Graphic # of # Dialog (1.1)
Applies To

ITGraph

Purpose
Used to specify or modify the name and path for an ITGraph graphic.    For a new graphic, the "New
Graphic Information" dialog box is shown.    The "Information for Graphic # of #" dialog box is shown
when an existing graphic is being modified.

Description
The "New Graphic Information" dialog box appears when the New... button is pressed on the ITGraph
Graphic Table or Select a Graphic dialog boxes.    The "Information for Graphic # of #" dialog box
appears when a graphic is double clicked in the "ITGraph Graphic Table" dialog box, or when the Modify
button is pressed on the "Select a Graphic" dialog box.

The controls on these dialog boxes are as follows:

Control Description
Name Specifies the name of the graphic.    This is the name referenced by the

graphic's GraphicName property.    Every graphic must have a name, and
these names must be unique.    FOr the "Information for Graphic # of #"
dialog box, this name will be filled in with the name of the graphic being
modified.

Path Used to specify the path of a graphic image to be imported.    If no image
should be associated with the graphic, the Path box can be left empty.   
Since the original image path is not stored with a graphic, the Path box
will always be initially empty when a graphic is modified.

Select Brings up the Import Graphic dialog box, for selection of a graphic file.   
The selected path is placed in the Path box.    If a file is selected and the
Name box is empty, the name of the selected file will also be placed in
the Name box.

Accept Close the Import Graphic dialog box and import or modify the graphic.   
This button will be dimmed if there is no entry in the Name box.    If there
is already a graphic with the same name, a message box will appear,
and you will be requried to change the name of the graphic before
importing.

Cancel Close the Graphic Information dialog box without importing or modifying
a graphic.

ITGraph Graphic Table Dialog (1.1)
Applies To

ITGraph

Purpose
Used to view, add, modify and delete ITGraph graphics at design time.

Description
The ITGraph Graphic Table dialog box is accessed by double clicking on the Graphics property in the
Visual Basic Properties window.    The controls on the dialog are as follows:

Control Description
Graphics The Graphics list box lists the names of all the graphics currently loaded.

They are listed in the order they were added.    The first entry, "<No
Graphic>" is always present and cannot be modified or deleted.    Above
the list box is a line listing the number of graphics in the list.    When a
graphic is selected in the list box, it is drawn to the right of the list box.   
Double clicking on a graphic (other than "<No Graphic>") brings up the
Information for Graphic # of # dialog box, where the graphic's information
can be modified.

Remove Removes the selected graphic.    This button will be dimmed if no graphic
is selected, or if "<No Graphic>" is selected.

New... Brings up the New Graphic Information dialog box, for the definition of a
new graphic to be imported.

Done Closes the ITGraph Graphic Table dialog box.

Select a Graphic Dialog (1.1)
Applies To

ITGraph

Purpose
Used to view, select, add, modify and delete ITGraph graphics at run time.

Description
The Select a Graphic dialog box is brought up at run time by setting the GraphicSelect propery.    If set to
a valid graphic index, the specified graphic will be initially selected in the dialog box.    The controls on
the dialog are as follows:

Control Description
Graphics The Graphics list box alphabetically lists the names of all the graphics

currently loaded.    The entry, "<No Graphic>" is always present and
cannot be modified or deleted.    Above the list box is a line listing the
number of graphics in the list.    When a graphic is selected in the list box,
it is drawn to the right of the list box.    The Remove and Modify buttons
are lit or dimmed according to which graphic is selected and the current
setting of the GraphicAllowImport property.    Double clicking on a graphic
selects that graphic and closes the dialog box.    The selected graphic's
index is stored as the value of the GraphicSelect property, for retrieval by
the application.

Remove Removes the selected graphic.    This button will be dimmed if no graphic
is selected, if "<No Graphic>" is selected, or if the setting of
GraphicAllowImport precludes removal of the selected graphic.    If
GraphicAllowImport is set to ITG_NoImportGraphics, the Remove button
will not be shown.

Modify Brings up the Information for Graphic # of # dialog box to modify the
selected graphic.    This button will be dimmed if no graphic is selected, if
"<No Graphic>" is selected, or if the setting of GraphicAllowImport
precludes modification of the selected graphic.    If GraphicAllowImport is
set to ITG_NoImportGraphics, the Modify button will not be shown.

New... Brings up the New Graphic Information dialog box, for the definition of a
new graphic to be imported.    If GraphicAllowImport is set to
ITG_NoImportGraphics, the New... button will not be shown.

Accept Closes the Select a Graphic dialog box, setting the GraphicSelect
property to the index of the selected graphic.

Cancel Closes the Select a Graphic dialog box without selecting any graphic.   
The GraphicSelect property will be set to -1 to indicate that Cancel was
pressed.

Select a Shape Dialog (1.1)
Applies To

ITGraph

Purpose
Used to view and select ITGraph shapes at run time.

Description
The Select a Shape dialog box is brought up at run time by setting the ShapeSelect propery.    If set to a
valid shape index, the specified shape will be initially selected in the dialog box.    The controls on the
dialog are as follows:

Control Description
Graphics The Shapes list box alphabetically lists the names of all the ITGraph

node shapes.    The entry, "<No Shape>" indicates that no shape will be
drawn for the node.    This is useful if the node is being drawn as a
graphic instead.    Above the list box is a line listing the number of shapes
in the list.    When a shape is selected in the list box, it is drawn to the
right of the list box.    Double clicking on a shape selects that shape and
closes the dialog box.    The selected shape's index is stored as the value
of the ShapeSelect property, for retrieval by the application.

Accept Closes the Select a Shape dialog box, setting the ShapeSelect property
to the index of the selected shape.

Cancel Closes the Select a Shape dialog box without selecting any graphic.   
The ShapeSelect property will be set to -1 to indicate that Cancel was
pressed.

AutoMouseEvents Setup Dialog (1.2)
Applies To

ITGraph

Purpose
Used to configure ITGraph event responses.

Description
The AutoMouseEvents Setup dialog box is brought up at run time by setting the AutoMouseEvents
property, or at design time by double clicking on the property in the properties window. The controls on
the dialog are as follows:

Control Description
List Box The list box at the top of the AutoMouseEvents Setup dialog box lists all

the mouse events and their corresponding actions.    Each row in the list
corresponds to a combination of one of the mouse buttons (left, middle or
right) together with any of the modifier keys (shift, control and alt).    This
information is represented by the first four columns.    The first shows the
button, while the next three have stars for the selected modifiers (alt in
the A column, control in the C column and shift in the S column).    The
fifth column lists the types of actions that can be initiated by that
combination of mouse button and modifier keys.    For a more detailed
description of the options see Working With Events.    Selecting a row in
the list will cause the Button, Modifiers and Events groups to be filled in
with the information from the selected row.

Button Group When a row in the list is selected, either Left, Middle or Right will be
chosen, depending on the value in the Button column of the selected
row.    Choosing a different button will cause the appropriate row in the list
box to be selected.

Modifiers Group When a row in the list is selected, the Alt, Ctrl and Shift checkboxes will
be checked according to the values in the A, C and S columns of the
selected row.    Checking and unchecking the boxes will cause the
appropriate row in the list box to be selected.

Events Group Shows which events will be performed for the button/modifiers
combination defined for the selected row in the list box.    Any
combination of the boxes can be checked with the exception of Connect
and Drag, which cannot be checked at the same time.

Done Closes the AutoMouseEvents Setup dialog box.

Working With Events

ITGraph events are generated in response to user actions such as clicking with the mouse, typing on the
keyboard, or dragging and dropping an item on the control.    Your application determines exactly which
events will be handled and what the response will be.

The events list shows all the events generated by ITGraph.    Several are standard events, and reference
should be made to the Visual Basic documentation for more information.    Events which are unique to
ITGraph are described in this help file.    Four of the standard Visual Basic events have been modified
slightly for ITGraph.    The Click, DblClick, DragDrop and DragOver events have been extended to
include the coordinates (within the graph) of the mouse at the time of the event, and in the case of Click
and DblClick, the mouse button which generated the event and the state of the modifier keys (Shift, Ctrl
and Alt).

The ItemMouseMove, ItemClick, ItemDblClick, ItemDrag and ItemResize events are generated when a
node is passed over by the mouse, clicked, double clicked, dragged to a new location or resized,
respectively.    LineClick and LineDblClick events are generated when a connection is respectively
clicked or double clicked.    A SelectRect event is generated when the user drags out a selection
rectangle.    Again, the events specify the mouse button which caused the event, the state of the modifier
keys and any relevant coorinates in the graph.

Most events have two special parameters: Button and Shift.    The first, Button, can have three possible
values: ITG_LeftButton, ITG_MiddleButton and ITG_RightButton.    The Button parameter specifies
which button caused the event to be generated.    The Shift parameter contains three flags which
indicate the state of the modifier keys.    It can be a combination of zero to three of the flags:
ITG_ShiftDown, ITG_CtrlDown and ITG_AltDown.    Note that the Button and Shift parameters relate to
the initiation of the event and may not correspond to the machine state when the event is actually
generated.    An ItemDrag event, for example, specifies the mouse button that was pressed down to start
the drag and finally released to drop the node in a new position.    All intermediate clicking of other
mouse buttons is irrelevant.    Likewise the Shift parameter will specify the state of the modifier keys
when the mouse button was first pressed.    Henceforth, they can be released without affecting the
ItemDrag event.

There are two ways to configure ITGraphs events: at design time through the AutoMouseEvents
property and associated dialog box, or at run time through the AutoMouseEvent property.    In both
cases, what is specified is the types of actions that can occur in response to the user clicking the mouse
with a particular combination of modifier keys.    Each mouse button and modifier combination can have
a different response.    Possible actions are summarized in the table below:

Action Flag Description
None Dont do anything in response to the button/modifier combination.

MouseEvent Generate mouse events, depending on where the user clicked.    This
enables the Click, DblClick, ItemMouseMove, ItemClick, ItemDblClick,
LineClick, LineDblClick, MouseDown and MouseUp events.

Connect If the user clicks on a node or handle, initiate a connection.    This
enables the ItemConnect event.    A rubber-band line will be shown while
the mouse is being dragged only if the RubberBand property is
appropriately set.

Constrained In combination with the Drag flag, limits dragging to a single direction.   
This option will frequently be associated with a Shift key.

Drag Enables dragging a node in the graph, resulting in an ItemDrag event.

Select Enables dragging a selection rectangle in graph, resulting in a
SelectRect event.

Size Enables resizing of nodes, generating an ItemResize event.    Note that a
node must be selected (see SelectedIndex) in order to be resized by the
user.

Subject to certain constraints, these options can be combined as desired.    The Drag and Connect flags
cannot be used together.    Drag and Connect take precedence over Select, so if Select and either Drag
or Connect are enabled, clicking on a node and dragging will result in an ItemDrag or ItemConnect event
rather than a SelectRect event.    When a mouse event occurs, the AutoMouseEvent entry is checked for
the appropriate button and modifier key combination.    If a reasonable action has been specified,
processing for the event is initiated.    Otherwise, given that the action includes the MouseEvent flag, the
next most general handler is checked.    The order of search is: (1) original modifier keys, (2) without alt
key, (3) without control key, (4) without shift key.    If no handlers can be found, the event is ignored.

An example scheme might be to set the Left button to MouseEvent+Connect+Select+Size, the Left+Shift
to MouseEvent+Connect+Select+Size+Constrained and all the rest of the left button combinations to
MouseEvent, which allows them to pass to the more general handlers.    This has the effect of ignoring
the Ctrl and Alt keys and treating the Shift button as a movement constrainer.    All Middle and Right
button actions should be set to None to disable events from those buttons.

Note that a particular ITGraph event may be generated by several different button/modifier
combinations.    The applications event handler may need to check the Button and Shift parameters to
determine how the event was generated and respond appropriately.

