
TDBLookUpComboPlus Component

Properties Methods Events Tasks

Unit

DBLUP2

Description
The TDBLookupComboPlus adds to the functionality of the TDBLookupCombo. The user should be
aquatinted with the original control since the help for the new component focuses only on the changes.
TDBLookupComboPlus adds the following capabilities;

 - The ability to sort the dropdown list.
 - The ability to display the list either left or right justified and above or below the edit box.
 - The ability to incrementally search the drop down list as the user types.
 - The ability to add new records to the lookup table on the fly.

A TDBLookupComboPlus is a cousin to the original Delphi control TDBLookupCombo. Like the original
control this component is a data-aware combo box that "looks up" a value in a lookup table. The user is
now assisted in this lookup with the ability to sort and search the lookup table. Additionally, the ability to
add new records to the lookup table at the time of data entry into the main form has been added via a
new event OnNewLookupRec.

TDBLookupComboPlus adds to the functionality of the original component by allowing the user to sort
the lookup table on a different key then the actual lookup. That is that for the period of time that the list is
dropped down the lookup table is in LookupIndex order. In addition to sorting the Drop Down list this
component supports incremental searches of the list. As the user types the highlight in the list moves to
the closest match in the list. The major advantage of this approach is that the number of keystrokes
required to fill the field with the correct data is substantially reduced and accuracy is improved. This
incremental search capability is implemented through the Style property. Two new styles are added to
the existing csDropDown and csDropDownList. These are csIncSearch which is delivers a read-only
incremental search and csIncSrchEdit which is an incremental search with the flexibility to enter data
that is not in the lookup list.

The DropDownCount and DropDownWidth properties determine how long and how wide the drop-down
list of the combo box is. In addition to these features which were in the original control, the
TDBLookupComboPlus control also allows the user to determine the direction of the list when it Drops
Down . Use the DropDownTop and DropDownAlign properties to control the list placement.

Properties

The properties listed here are either in addition to or modified from those in the TDBLookupCombo
Component.

    Run-time only
    Key properties

        AutoDropDown
        DropDownAlign
        DropDownTop

IgnorLUIndexErr
        LookupIndex
        Style
        ShowSpeedButton

DropDownAlign Property

Example

Applies To - TDBlookupComboPlus at both run time and design time.

Declaration

property DrowDownAlign : TLeftRight;

Note that TLeftRight is defined as
Type
        TLeftRight = (Left, Right);

Description
The DropDownAlign controls how the drop down list justifies it self in relation to the edit box part of the
control. There are only two possible values for this control, Right and Left. Choose Right to right allign
the drop down list and Left to left align the list. This property only appiles when the DropDownWidth
property has been assigned a value.

Note that the original TDBLookUpCombo allowed the list to display off of the visible screen when there
was not enough room. This problem can now be controled with this property. If fact if you try to drop the
list to the left and there is no room it will automatically switch to the right. Same if you try to drop it to the
right and there is not enough room it will switch to the left. If there is not enough room in either direction
it will right justify and go off the screen.

Example

This example increases the width of the dropdown and then left justifies it.

procedure TForm1.Button1Click(Sender: TObject);
begin
    DBLookUpComboPlus1.DropDownWidth := 250;
    DBLookUpComboPlus1.DropDownAlign := Left;
end;

DropDownTop Property

Example

Applies to

TDBlookupComboPlus for both design time and run time.

Declaration

property DropDownTop: TBelowAbove;

Note that TBelowAbove is defined as
Type
      TBelowAbove= (Below, Above);

Description

The original TDBLookupCombo defaults to drop down below the edit box portion for the control. In the
original control it will only rise up in the case where there is not enough room on the screen below the
control. Use the DropDownTop property to over ride this default and force the list to rise up.

The default selection is Below which causes the list to appear beneath the edit box portion of the
control. Select Above to force the list to rise up above the edit box.

Note that if this property is set to Above and there is not enough room to display the whole list it will
automatically switch back to the drop down state.

Example

This example causes the list box portion of DBLookupComboPlus1 to rise-up above the edit box portion
of the control:

procedure TForm1.DBLookupComboPlus1Click(Sender: TObject);
begin
    DBLookupComboPlus1.DropDownTop := Above;
end;

IgnorLUIndexErr Property

Example

Applies to

TDBlookupComboPlus for run time only.

Declaration

property IgnorLUIndexErr: Boolean;

Description

The IgnorLUIndexErr property is seldom used and as such it has not been published. This property
exists for the rare case when two TDBLookUpComboPlus controls are accessing the same field data
and a lookupIndex property is assigned. Under these circumstances the LUIndex error message is
reported when a new selection in the dropdown list is selected. The reason is that the control that has
the list dropped has temporarily changed the tables index to LookupIndex but the other control tries to
lookup its value using the lookup index. Normally this is not a problem. Setting the value of
IgnorLUIndexErr to True simply ignores the error message.

Example

This example turns off the reporting of the LUIndexError:

procedure TForm1.FormCreate(Sender: TObject);
begin
    IgnorLUIndexErr := True;
end;

LookupIndex Property

Example

Applies to

TDBLookupComboPlus for both design time and run time.

Declaration

property LookupIndex: String;

Description

The LookupIndex property identifies the index used for sorting the data in the drop down list.    If no
value is assigned to LookupIndex, the table's primary index will be used to order the records.

For dBASE tables, the index must reside in the table's master index file. Non-maintained indices are not
supported.

If no value is assigned to LookupIndex then the component behaves in the same as the original
TDBLookupCombo.

Example

This example changes the sort order of the drop down to be by company name.:

procedure TForm1.DBLookupComboPlus1Click(Sender: TObject);
begin
    DBLookupComboPlus1.LookupIndex := byCompanyName;
end;

Style Property

Example

Applies to

TDBLookupComboPlus component both design time and run time.

Declaration

property Style: TDBLookupComboPlusStyle;

Where TDBLookupComboPlusStyle is defined as

Type

      TDBLookupComboPlusStyle = (csDropDown, csDropDownList, csIncSearch, csIncSrchEdit);

Description

The Style property determines how a database lookup combo Plus box displays its items. These are the
possible values:

csDropDown - Creates a drop-down list with an edit box in which the user can enter text. This method
supports the OnNewLookupRec event. See csIncSrchEdit below.

csDropDownList - Creates a drop-down list with no attached edit box, so the user can't edit an item or
type in a new item.

csIncSearch - Creates a drop-down list with no attached edit box, so the user can't edit an item or type
in a new item. This style supports a readonly incremental search.

csIncSrchEdit - Creates a drop-down list with an edit box in which the user can enter text. As the user
enters text the drop down list is incrementally searched. This style allows the user to
enter items which are not in the drop down list so it is somewhat simialr to csDropDown
except that it supports the incremental search. Further, this style not only supports entry
of new items into the main DataSource it also supports a mechanism for adding records
to the Lookup table. See the OnNewLookupRec event for more details.

The default value is csDropDown.

Comments

As in the original TDBLookupCombo, if the value of the LookupDisplay property differs from the value of
the LookupField property then database lookup combo box will function as if its Style is
csDropDownList, regardless of the value of the Style property.

Another behavior of the original control was that if the DataSource was not assigned and the Style was
set to csDropDownList then the control would function as if it were a csDropDown. This last behavior
has been modified. Now if no DataSource is defined a csDropDownList remains a csDropDownList.

Also in the original TDBLookupCombo when the style was set to csDropDownList the <home> and
<end> keys did not navigate to the beginning and end of the list. This has been corrected in
TDBLookupComboPlus. In the TDBLookupComboPlus if the Style property is set to either
csDropDownList or csIncSearch (the readonly styles) the <home> and <end> keys navigate the list. If
the Style is set to either csDropDown or csIncSrchEdit (the read/write styles) then the <home> and
<end> keys navigate the edit box.
All four of the styles support a sorted list by assigning a value to LookupIndex.

Example

This example changes the style to csIncSearch:

procedure TForm1.DBLookupComboPlus1Click(Sender: TObject);

begin

    DBLookupComboPlus1.Style := csIncSearch;

end;

AutoDropDown Property

Example

Applies to

TDBLookupComboPlus for both design time and run time.

Declaration

property AutoDropDown: Boolean;

Description

Set this property to TRUE if you want the list to automatically drop down when the user starts to type in
the field. This applies only to the two new field styles csIncSrchEdit and csIncSearch. Set to FALSE and
the list does not drop down but the auto fill-in and incremental search still function.

Example

This example causes the DBLookupComboPlus to drop down when the user starts to type in the edit
field.

procedure TForm1.DBLookupComboPlus1Click(Sender: TObject);

begin

    DBLookupComboPlus1.AutoDropDown := True;

end;

ShowSpeedButton Property

Example

Applies to

TDBLookupComboPlus for both design time and run time.

Declaration

property ShowSpeedButton: Boolean;

Description

Hide the drop down speed button by setting this property to FALSE. Show the drop down speed button
by selecting TRUE.

Example

This example hides the drop down speed button.

procedure TForm1.DBLookupComboPlus1Click(Sender: TObject);

begin

    DBLookupComboPlus1.ShowSpeedButton := False;

end;

Events

There is only new event defined for TDBLookupComboPlus that was not in the original
TDBLookupCombo Component.

    Run-time only
    Key properties

        OnNewLookupRec
        OnPrepareList

        OnGridSelect

OnNewLookupRec Event

Example

Applies to

TDBLookupComboPlus component

Declaration

property OnNewLookupRec: TNewLookUpRecEvent;

Where TNewLookUpRecEvent is defined as
Type
      TNewLookUpRecEvent = procedure(Sender: TObject; var Cancelled: Boolean) of object;

Description

This event applies to the two editable (read/write) styles of the TDBLookupComboPlus controls;
csDropDown and csIncSrchEdit. Use this event to add new records to the lookup table. This event has
no effect in the non-editable styles; csDropDownList and csIncSearch. See the Styles Property.

In this event handler a new record can be inserted into the Lookup table. This can be done by simply
creating a new record and inserting it or by displaying a dialog box for the user to enter the new record.
Refer to the example to see how this is done.

If you decide to use this event handler you must follow these rules or it will fail and your application will
GPF. Here are the rules:

1.      You must set the canceled return var. The component defaults the value of canceled to True and
cancels the edit. This is safe but annoying. You need to set this value to true for the edits to hold.

2.      Insert a new record into the lookup table.

3.      Update the new record with the new lookup value and any other column data.

4.      Post the record.

5.      Set the DBLookUpComboPlus.Value property equal to the value of the field in the new record that
corresponds to the datafield. Note that this step comes after post.

The above steps must happen in stated order. Here are two code templates for OnNewLookUpRec. The
first for when the code just creates the record and the second when a dialog box allows the user to
create the record. Refer to the code segments in the Example to see two specific examples on
implementing this event.

Example

This first code template is probably most useful in the case where the lookup value and display value
are the same and the lookup table is a simple single field that contains the lookup/display string.

procedure DBLookupComboPlus1NewLookupRec(Sender: TObject;    var Canceled: Boolean);
begin
      TableLookup.Insert;
            {set the tables field values as appropriate}
      TableLookup.Post;
      DBLookupComboPlus1.Value := (value used to fill the lookup table's record);
      Canceled := False;
end;

The next code template is for when you want a dialog box displayed for the entry of the new lookup
record. This is almost required for the situation when the lookup and display values are different.

procedure DBLookupComboPlus2NewLookupRec(Sender: TObject;    var Canceled: Boolean);
begin
      LookUpEntryDlg.TableLookUp.Insert;
      LookUpEntryDlg.TableLookupDisplayField.Value :=    DBLookupComboPlus1.DisplayValue;
              {above presets sets a field in the dialog box prior to showing it}
      LookUpEntryDlg.ShowModal;                    { display the dialog box }
      if LookUpEntryDlg.ModalResult=mrOK then    { if user pressed OK then save the new vendor}
      begin
            LookUpEntryDlg.TableLookUp.Post;        { if user said ok then post}
            {*** VERY IMPORTANT*** Now Update the Combo's value property.}
            { The Combo component doesn't know anything about the table that    }
            { the LookUpDlg box uses so you must tell the combo what the                }
            { lookup value is. This will need to be done in any case where the          }
            { lookup field is different than the display field.  }
            DBLookupComboPlus1.Value := LookUpDlg.TableLookUpValueField.asString;
      end
      else
      begin
            LookUpEntryDlg.TableLookup.Cancel;
            Canceled := True;
      end;
end;

OnPrepareList Event

Example

Applies to

TDBLookupComboPlus component

Declaration

property OnPrepareList :    TNotifyEvent;

Description

Use this event when you want to do something special to the lookup table. Specifically this event is
useful for preparing a temporary lookup table by filling it with the results from a query.
This event executes just before the sort order specified in the LookupIndex property is applied to the
lookup table.

Example

This example uses the OnPrepareList event to fill a temporary lookup table with records.

procedure TForm1.DBLookupComboPlus1PrepareList(Sender: TObject);
begin
    Query1.Close;
    case RadioGroup1.ItemIndex of
        0 : Query1.Params[0].AsString := Something;
        1 : Query1.Params[0].AsString := Something else;
      end;
    Query1.Open;
    { Get the temp table ready for the new data}
    Table1.EmptyTable;
    { Move the data from the query result to the Temp Table}
    BatchMove1.Execute;

end;

OnGridSelect Event

Example

Applies to

TDBLookupComboPlus component

Declaration

property OnGridSelect :    TNotifyEvent;

Description

This event is fired when ever an element is selected in the dropdown list. The primary use of this event
is to update other fields with information from the just selected lookup record. Use this event when you
want information on multiple fields in the lookup record.

Example

This example updates the data displayed in the EditDept and EditState fields in Tform1 when ever the
user selects a row in the drop down list.

procedure TForm1.DBLookupComboPlus1GridSelect(Sender: TObject);

begin

      EditDept.Text := LookupDBTableFieldDept.Value;

      EditState.Text := LookupDBTableFiedlState.Value;

end;

Methods

There are no new methods defined for TDBLookupComboPlus. Please refer to the help for
TDBLookupCombo for information on all available methods.

Using the TDBLookupComboPlus Component

TDBLookUpCombo Plus Reference TDBLookupCombo

Purpose
The DBLookupComboPlus component extends the idea of the original TDBLookupCombo component
and can be used as a direct replacement. This component will do everything the original component
could do plus more. The user should be familiar with the capabilities of the original TDBLookupCombo
since this documentation only discusses the additional features of the new control. For more information
about the DBLookupCombo, see Using the TDBLookupCombo Component. In addition to the
capabilities offered by TDBLookupCombo, TDBLookupCombo plus offers the following features.

 - The ability to sort the dropdown list.
 - The ability to display the list either left or right justified and above or below the edit box.
 - The ability to incrementally search the drop down list as the user types.
 - The ability to add new records to the lookup table on the fly.

Users can update a field in the current record of a dataset by choosing a value from the drop-down list.
Delphi populates the DBLookupComboPlus list values dynamically from a second dataset, known as the
lookup dataset, at run time.

Connecting the DBLookupComboPlus

To specify a data source for the lookup dataset, set the LookupSource property.

The LookupSource must be a different data source than the DataSource. If you want to display values
from a column in the same table as the first dataset, place a second data source and dataset
component on the form and point them at the same data as the first data source and dataset.

To specify a field in the LookupSource dataset that Delphi links to the primary dataset, set the
LookupField property.

The LookupField property column must contain the same values as the DataField property column,
although the column names can differ.

Controlling the Display

To specify the columns that DBLookupComboPlus displays, set the LookupDisplay property.

If you do not set LookupDisplay, TDBLookupCombo displays the values found in the LookupField
column. Use LookupDisplay to display a column other than the LookupField column, or to display
multiple columns in the drop-down list. Use semicolons to separate multiple column names.

To specify the appearance of multiple columns, set the Options property.

loColLines, if True, separates the columns in the lookup list with lines.

loRowLines, if True, separates the rows in the lookup list with lines.

loTitles, if True, displays column names as titles above the columns in the lookup list.

To specify how the list justifies when it drops down, set the DropDownAlign Property to either Left or
Right. To specify whether the list drops down or rises up, set the DropDownTop Property to either
Below or Above.

Sorting the Dropdown List

To sort the DropDown List specify and index name in the LookupIndex property. This must be an already
defined maintained index on the lookup table.

Setting up the Incremental Searches

Incremental searches of the information in the dropdown list is supported by the csIncSearch and
csIncSrchEdit Style property. Set the Style property to csIncSearch for incremental searches with a
read only edit box. Select the csIncSrchEdit Style when you want edit box to be read/write.

Adding Records To The Lookup Table on the Fly

The csDropDown and csIncSrchEdit Styles support the ability to enter new records into the lookup table
during data entry into the main form. To accomplish this you must attach code to the onNewLookupRec
event. See the example for the onNewLookupRec event for directions on how to do this.

