
TPercent Type

Unit
CtcBase
Declaration
TPercent = 0..100;
Description
The TPercent type is used for cardinal percentage values. Used by the PercentDone property.

PrevFieldText Property

Applies to
TParseTool
Declaration
property PrevFieldText : string;
Description
The PrevFieldText property sets FieldText to the previous field, i.e. decrements FieldNumber, and returns
the new value of FieldText.

The property is read-only.

 CoreTools for Delphi
Welcome to CoreTools for Delphi.
This is a shareware product. This allows you to try the software before you buy it. After evaluating
this toolset, if you decide to continue using it, you are required to register the product. You should
the read the How to install section first. See Registering your product for information on registering your
toolset.

Components

 TFileTool

 TSearchTool

 TScanTool

 TParseTool

 TSysInfoTool

Libraries
Character routines CRC-16 routines DPMI routines

File handling routines String conversion routines String-handling routines

PZStr handling routines Swapping routines System routines

Product Information
How to use this manual How to install License information

Registering your toolset Technical Support Address, Phone, Email, etc.

Deploying applications Technical notes File inventory

Release notes Free upgrade entitlement Copyright acknowledgements

 Registering by post

Send your remittance of $30 US (GBP 23 in Europe) in the form of CHEQUE or EUROCHEQUE, to the
address above, along with the completed registration form (Printable Registration form).

When the cheque has been cleared, you will normally receive same-day postal acknowledgement and
confirmation of your serial number.

Enter the registration details by editing the About property of one of the components, and your unique
license file will be automatically created in the Windows directory.

That's all there is to it!
See also
About property
Printable Registration form

ErrorCode Property

Applies to:
All CoreTools for Delphi components
Declaration
property ErrorCode: TCtError;
Description
Stores a code that identifies the last error trapped by the component.

 Registration form
CoreTools Registration

Company Name __

Name          __

Address __

__

City                    __

State _______________        ZIP _________    Country__________

Phone _________________________________

Product CoreTools for Delphi

Number to order ___________
Send To:
Core Software Limited x $30.00 ___________
3 Tearne Street, St Johns,
Worcester. WR2 6BL, UK

Total ___________

 Deploying your application

When deploying your application, created using CoreTools for Delphi, you should also include the file
CORE.LIC, which your application's deployment program should insert in the WINDOWS directory of the
target PC.
You will find your copy of CORE.LIC in your own WINDOWS directory, where it will have been installed when
you registered your toolset.
This procedure is necessary to ensure that CoreTools for Delphi operates in non-design mode.
See also
Design-mode enabled

 How to install
To install these components, we suggest that you:

1. Create a new sub-directory of your main delphi directory (e.g. C:\DELPHII\CMPNTS where C is the drive
where you installed Delphi).

2. Extract all the files in the CORE1A.ZIP file into it.

3. Add this directory to your LIB search list (Options|Environment|Library path).

4. Add the CTREG.PAS file to your library (Options|Install components), this installs all CoreTools for
Delphi components and their associated property editors. You can edit this file later to configure which
components you wish to install permanently.

5. Rebuild your Delphi library (remember to back up your old one as a precaution - better safe than sorry).
Installing Help
To merge the component help into the Delphi help you must add the CORETOOL.KWF file to the DELPHI.HDX
file by using the HELPINST.EXE program that comes with Delphi.

1. Launch the HELPINST.EXE application.

2. Open the DELPHI.HDX file (usually in \DELPHI\BIN)

3. Add the CORETOOL.KWF file.

4. Choose Save.
You should now be able to get context-sensitive help with the CoreTools for Delphi components.

Until the components are registered, they will only work correctly whilst Delphi is also running,
i.e. they are design mode enabled.
Get the toolset registered to be able to use the components in your applications.
See Also
Registering your product
Inventory of files

CtIsASCII Function

Unit
CtlChar
Declaration
function CtIsASCII    (C: char): boolean;
Description
Tests C to check if it is an ASCII character. The check performed is: C < Chr(128).
Parameters
C the character on which to perform the test.
Returns
True if the test is successful, otherwise returns False.
Exceptions
None
See also
CtIsAlNum
CtIsAlpha
CtIsCntrl
CtIsDigit
CtIsGraph
CtIsLower
CtIsPrint
CtIsPunct
CtIsReal
CtIsSigned
CtIsSpace
CtIsUpper
CtIsXDigit

FieldCount Property

Applies to
TParseTool
Declaration
property FieldCount: integer;
Description
The FieldCount property contains the number of lines in the Fields property. The Fields property is of a
type that is a descendant of TStringList and the FieldCount property is the same as Fields.Count.

Design mode enabled

Until the product has been registered and you have been issued with your unique serial number, the
CoreTools for Delphi components are design-mode enabled. This means that they will only run when
Delphi is also running. If you try to run an application you have developed using the components and the
CORE.LIC file is not present in your WINDOWS directory, then the controls will halt your application and
display a message dialog explaining that your application will not run until the CoreTools license is
present in the WINDOWS directory.
See also
Registering your product
About property
Deploying your own applications

About Property

Applies to
All CoreTools components
Declaration
property About: TAboutInfo
Description
The About property provides product and component information for the CoreTools for Delphi product.
The property editor associated with the About property also acts as the product registration mechanism.   
By selecting the Register button you enter the Registration Info page, where you can enter your name
and the unique serial number that is sent to you when you register your CoreTools for Delphi toolset.    It is
important that you enter your name in the exact form specified in your registration acknowledgement.
When the name and serial number have been entered correctly, the property editor creates a file called
CORE.LIC in your WINDOWS directory. The license file is the persistent record of your license information
and must be present for applications using the components to run correctly.    If the license file is lost for
any reason, you have only to repeat the registration entry process to duplicate the file.
See also
Design-mode enabled
Deploying your own applications

FilePath Property

Applies to
TFileTool, TScanTool, TParseTool
Declaration
property FilePath : string;
Description
The FilePath property returns the path portion of FileName. The property is read-only.

TCtDateText Type

Unit
CtlDate
Declaration
TCtDateText    = string[10];
Description
Variables of this type store dates in the short format.
See also
TCtTimeText
TDateTextPropertyEditor

TCtWinSettings Type

Unit
CtlSys
Declaration
TCtWinSet = (win80x87, winCPU286, winCPU386, winCPU486, winENHANCED, winPAGING,

winPMODE, winSTANDARD,    winWIN286, winWIN386);
TCtWinSettings = set of TCtWinSet;
Description
win80x87 System contains an Intel math coprocessor.
winCPU286 System CPU is an 80286.
winCPU386 System CPU is an 80386.
winCPU486 System CPU is an i486.
winENHANCED Windows is running in 386-enhanced mode. The winPMODE flag is always set when

winENHANCED is set.
winPAGING Windows is running on a system with paged memory.
winPMODE Windows is running in protected mode. In Windows 3.1, this flag is always set.
winSTANDARD Windows is running in standard mode. The winPMODE flag is always set when

winSTANDARD is set.
winWIN286 Same as winSTANDARD.
winWIN386 Same as winENHANCED.

See also
CoreTools system routines

Fields Property

Applies to
TParseTool
Declaration
property Fields : TSelectList;
Description
The Fields property maintains a list of fields, containing the individual fields that have been parsed from
LineText.

In addition, FieldText can be aliased as Fields.Strings[FieldNumber].

Caveat
Do not use the associated Objects property, inherited from TStringList, as that is used to store positional
data for the respective fields.

OnScan Event

Applies to:
TScanTool, TParseTool
Description
Whenever an Action Scan command has been initiated the component triggers the OnScan event for
each line in the file. This creates a simple mechanism to allow the developer to code file modifying or
parsing applications, without writing elaborate scanning and parsing code.

OnError Event

Applies to:
All CoreTools components
Description
The OnError event occurs whenever an error is trapped by any of the CoreTools for Delphi components.
i.e. they attempt to convert all exceptions to events.    If an OnError event handler has not been defined,
then an exception is generated and it is the responsibility of the user to have defined a try..exception
construct to catch the exception.

OnFinish Event

Applies to:
TFileTool, TSearchTool, TScanTool, TParseTool
Description
Whenever an Action initiated command is complete, then the components call the user defined OnFinish
event. This enables the developer to display messages or to take any other appropriate action.

OnStart Event

Applies to:
TFileTool, TSearchTool, TScanTool, TParseTool
Description
Whenever an Action command is set, the components verify that all property settings are in order and
then triggers the OnStart event. This allows the user to display messages or whatever is appropriate for
the application.

If the other property values are incorrect or inconsistent, then an OnError event is triggered.

 Release Notes

Version 1a - August 10, 1995
Original release.

Action Property

Applies to
TFileTool, TParseTool, TScanTool, TSearchTool
Declaration
Each component has its own declaration.
TFileTool component
TParseTool component
TScanTool component
TSearchTool component
Description
Specifies an Action command to be performed by the component.

CtReg Unit

Description
This unit performs registration of the components in CoreTools for Delphi.    The file is supplied in Pascal
format, so that the user can select which    components to install and to alter the component palette page
on which they appear by default.
Several of the components cannot be removed when component registering. CtcBase provides the base
class used by the other components and must be present, along with TAboutInfoPropertyEditor which is
the editor for the About property on all CoreTools for Delphi components.
Routines
Register

LineText Property

Applies to
TScanTool, TParseTool
Declaration
property LineText : string;
Description
The LineText property returns the current line of text being scanned.
The property value can also be represented as Lines.Strings[LineNumber].
See also
LineCount
LineDups
LineNumber
LinePos
Lines
LineSort

FieldSeparators Property

Applies to
TParseTool
Declaration
property FieldSeparators : string;
Description
The FieldSeparators property is the field separator string. This can be altered at run time, and results in
Fields being regenerated.

AutoDisplay Property

Applies to
All CoreTools components
Declaration
property AutoDisplay: boolean;
Description
When this property is set true, the component will perform all actions immediately, without waiting for an
Action command. For example, the TFileTool component will update all relevant file properties as the
FileName property is modified.

 Registering via CompuServe

If you want to register via CompuServe, GO SWREG and enter the product ID #6246

The cost will be charged on your next CIS Direct Debit.

After CompuServe has sent us your User ID and your address, we will email an acknowledgement to you,
as quickly as possible. (normally same day). The acknowledgement will advise you of your unique serial
number.

Enter the registration details by editing the About property of one of the components, and your unique
license file will be automatically created in the Windows directory.

That's all there is to it!
See also
About property

File Name Property

Applies to
TFileTool, TScanTool, TParseTool
Declaration
property FileName : TFileName;
Description
The FileName property specifies the file name that will be parsed.
The file name can include a path. For example, to open the file README.TXT in the directory C:\TEMP, set
FileName to C:\TEMP\README.TXT.
The TFileName property editor allows navigational selection of a file name in the Object Inspector.
The FileName property can be set to the name of a file that doesn't exist in the current directory.
See also
faCopy
faCopyVerify
faCRC16
faCreate
faDelete
faKill
faMove
faMoveVerify

FileNameOnly Property

Applies to
TFileTool, TScanTool, TParseTool
Declaration
property FileNameOnly : TCtFileNameOnly;
Description
The Filenameonly property returns FileName, without the path. The property is read-only.

WinSettings Property

Applies to
TSysInfoTool
Declaration
property WinSettings: TCtWinSettings
Description
This set property returns the system processor and memory configuration.

PercentDone Property

Applies to
TScanTool, TParseTool
Declaration
property PercentDone : TPercent;
Description
The PercentDone property returns the percentage of the file that has been scanned so far.

The value returned is based on the number of lines scanned, and not the number of bytes in the file.

LineDups Property

Applies to
TScanTool, TParseTool
Declaration
property LineDups : TDuplicates;
Description
The LineDups property determines whether duplicate strings are allowed in Lines. If the list is not
sorted (see LineSort), the value of LineDups has no effect. These are the possible values:

Value Meaning
dupIgnore Attempts to add a duplicate string to a sorted string list are ignored
dupAccept Duplicate strings can be added to a sorted string list
dupError Adding a duplicate string results in an EListError exception

FieldFilter Property

Applies to
TParseTool
Declaration
property FieldFilter : boolean;
Description
Determines whether to remove leading and trailing quotes from fields when the FieldMatch property is set
to True.

 Free upgrade entitlement

When you have registered your CoreTools for Delphi toolset, you will have the added bonus of
one free upgrade to the next version of the product. Afterwards, upgrades will be sold as separate
products and will require additional payment of a discounted upgrade price.

You will not have to register your free upgrade, as the toolset registration checking mechanism is
already enabled to accept the upgrade. Simply, monitor the shareware library where you obtained
this copy, and, when the next version is released, download it and start using it straight away.

 License Agreement
IMPORTANT - READ CAREFULLY BEFORE USING THE SOFTWARE. By using the SOFTWARE you
are agreeing to be bound by the terms of this Agreement.    If you do not agree to the terms of this
Agreement, you are not authorized to use the SOFTWARE.    The terms of this Agreement apply
specifically to the SOFTWARE identified herein and supersede, to the extent of any inconsistencies any
other agreement that might be packaged with the SOFTWARE.

LICENSE AGREEMENT

(CoreTools for Delphi)
SOFTWARE LICENSE

1. GRANT OF LICENSE.
This Agreement permits you to make and use copies of the software program identified above which
includes the files identified as CTREG . PAS , CTREG . DCR , CTCBASE . DCU , CTCFBASE . DCU , CTCFILE . DCU ,
CTCPARSE . DCU , CTCSCAN . DCU , CTCSERCH . DCU , CTCSYSIN . DCU , CTEABOUT . DCU , CTEABOUT . DFM , CTEDATE . DCU ,
CTEDATE . DFM , CTEFILEN . DCU , CTESELCT . DCU , CTESELCT . DFM , CTETIME . DCU , CTETIME . DFM , CTLCHAR . DCU ,
CTLCRC 16. DCU , CTLDATE . DCU , CTLDPMI . DCU , CTLERROR . DCU , CTLFILE . DCU , CTLSTRNG . DCU , CTLSWAP . DCU ,
CTLSYS . DCU , CTLZSTRN . DCU , CTSWITCH . INC , CORETOOL . HLP , CORETOOL . KWF     (the "SOFTWARE")    for your
internal use only provided each copy is used only on a single computer or by a single person.    The
SOFTWARE is in "use" on a computer when it is loaded into temporary memory (i.e., RAM) or installed
into permanent memory (e.g., hard disk, CD-ROM, or other storage device) of that computer.

2. COPYRIGHT.
The SOFTWARE (including any images, "applets", photographs, animations, video, audio, music, and
text incorporated into the SOFTWARE) is owned by Core Software Ltd or its suppliers and is protected by
copyright laws and international treaty provisions.    Therefore, you must treat the SOFTWARE like any
other copyrighted material (e.g., a book or musical recording).    You may not copy any printed materials
accompanying the SOFTWARE.

3. OTHER RESTRICTIONS.
You may not rent or lease the SOFTWARE, but you may transfer the SOFTWARE and accompanying
printed materials on a permanent basis provided you retain no copies and the recipient agrees to the
terms of this Agreement.    You may not reverse engineer, decompile, or disassemble the SOFTWARE.    If
the SOFTWARE is an update or has been updated, any transfer must include the most recent update and
all prior versions.

4. ADDITIONAL TERMS FOR DEVELOPMENT PRODUCTS
The products, including the one in this package, may include one or more libraries intended to help you
develop your own application programs. You may write and compile your own application programs using
the SOFTWARE contained in this package. If you are the licensed, registered user of this product, you
may use, reproduce, give away, or sell any program you write using this product, in executable form only,
without additional license or fees, subject to all the conditions in this statement.

You will remain solely responsible to anyone receiving your programs for support, service, upgrades, or
technical or other assistance, and such recipients will have no right to contact Core Software Ltd for such
services and or assistance.

Your programs may not merely be a set or subset of any of the libraries, code, or other files included in
this package.

You cannot use the libraries or components to produce other components, other than for use in your own
programs.

Regardless to any modifications that you make, you may not distribute any files (particularly source code
and other non executable files). Nothing in this license statement permits you to derive the source code of
files that Core Software Ltd has provided to you in executable form only, or to reproduce, modify , use, or
distribute the source code of such files.    You are not, of course, restricted from distributing source code
that is entirely your own.

LIMITED WARRANTY
NO WARRANTIES.    To the maximum extent permitted by applicable law, Core Software Ltd expressly
disclaims any warranty for the SOFTWARE.    The SOFTWARE and any related documentation is
provided "as is" without warranty of any kind, either express or implied, including, without limitation, the
implied warranties or merchantability or fitness for a particular purpose.    The entire risk arising out of use
or performance of the SOFTWARE remains with you.

CUSTOMER REMEDIES.    Core Software Ltd entire liability and your exclusive remedy shall not exceed
the price paid for the SOFTWARE.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES. To the maximum extent permitted by applicable law,
in no event shall Core Software Ltd or its suppliers be liable for any damages whatsoever (including,
without limitation, damages for loss of business profit, business interruption, loss of business information,
or any other pecuniary loss) arising out of the use or inability to use this    product, even if Core Software
Ltd has been advised of the possibility of such damages.    Because some states/jurisdictions do not allow
the exclusion or limitation of liability for consequential or incidental damages, the above limitation may not
apply to you.

Should you have any questions concerning this Agreement, or if you desire to contact Core Software Ltd
for any reason, please write to: Core Software Limited, 3 Tearne Street, St Johns, WORCESTER, WR5
3BL, England.

Registering your product

CoreTools for Delphi was created by:

Core Software Limited
Mail: 3 Tearne Street, St Johns, WORCESTER, WR2 6BL, UK
Email: 100041.3143@compuserve.com
CIS: 100041,3143
Phone: +44 1905 420784

This is a shareware product. This allows you to try the software before you buy it. When, after evaluating
the product, you decide to continue using it, you are required to register your toolset by sending us the
registration fee of $30 (GBP 23 in Europe).

There are 2 ways to register your product.

 Registering via CompuServe SWREG service:

 Registering via postal mail and cheque:

 How to use this manual
Manual organization
This manual is organized into logical topics. You can either use the table of contents to move from topic to
topic, or the search button to locate information on a particular subject.
Included topics
Since most components share a large number of properties, events, and methods, only new topics are
included for each component. To obtain help on common topics, use the Delphi manual.    We strongly
recommend you take advantage of Delphi's object browser (View|Browser).    It provides complete
information on every component.
Writing conventions
The manual is written using the following conventions:

The names of applications, products, or services are in bold italic (Windows 95).

Special references such as parameters, and points of interest, are in bold (Application name).

Keyboard commands, menu, buttons, and other items requiring direct response are in bold (Close).

File names and directories are in small capitals (PROGMAN.EXE).

Examples for property values are in purple, italic letters (Fantastic new product)

Examples for typed commands are in small, dark blue, Courier type (TipDialog.Execute).

Ellipses (...) are used in source code examples to represent non-pertinent code.

Important notes are in dark red (NOTE: This is dangerous).

Exceptions to the above conventions can be found in jumps and pop-ups.

 TFileTool Component
Unit
CtcFile
Description
This component allows the developer to modify existing file attributes, create new files, and rename or
delete existing files.
Files can also be copied and moved.
The component also provides information relating to the currently selected file, such as its size, CRC-16
value, and date/time stamp.
Properties
About Provides product and component version information and facilities to register your

product.
Action Specifies an action to be performed by the component.
ErrorCode Returns a code that identifies the last error trapped by the component.
FileAtts Sets/returns the attributes for thecurrent file.
FileCRC Returns the CRC-16 value for the currently selected file.
FileDate Sets/returns the date for the currently selected file.
FileExists Returns whether the specified file exists.
FileName Sets the currently selected file.
FileNameExt Returns the extension part of the currently selected file's full name.
FileNameOnly Returns the name part only of the currently selected file's full name.
FilePath Returns the path of the currently selected file.
FileSize Returns the size in bytes of the currently selected file.
FileTime Sets/returns the time of the currently selected file.
NewFileExt Sets a new extension part to the currently selected file's full name.
NewFileName Sets a new name for the currently selected file.
TransferName Sets the destination name for a file copy or file move action.
Events
OnError Fired when TFileTool encounters an error.
OnFinish Fired when TFileTool has completed a command.
OnStart Fired when TFileTool starts a command.
See also
Component logical model

 TSearchTool Component
Unit
CtcSerch
Description
This component performs seraches for files, on both mask setting and file attribute settings. The results of
the search are stored in report string lists, one for the directories and one for file, which allows simple
processing of the search results.
The report lists can be sorted and the developer can specify whether the full path name is required in the
reports.
Properties
About Provides product and component version information and facilities to register your

product.
Action Specifies an action to be performed by the component.
ErrorCode Returns a code that identifies the last error trapped by the component.
FileAtts Sets/returns the file attributes to be searched for.
AutoDisplay Allows AutoDisplay search without setting an Action command.
ListDirs The report list containing directories located during the search.
ListDirItems Returns the number of items in the ListDirs property.
ListFiles The report list containing the files located during the search.
ListFilesItems Returns the number of items in the ListFiles property.
ListsFullReport Sets whether the full path name should be used in the reports.
ListsSortReport Sets whether the reports should be sorted into ascending order.
SearchMask Sets the file mask for the search, set to *.* by default.
SearchPath Sets the start path for the search.
SearchSubDirs Sets whether sub-directories are to be searched, in addition to the directory specified in

SearchPath.
Events
OnStart Fired when TSearchTool starts a command.
OnFinish Fired when TSearchTool has completed a command.
OnError Fired when TSearchTool encounters an error.
See also
Component logical model

 TScanTool Component
Unit
CtcScan
Description
The TScanTool component allows you to quickly scan text files. It provides a mechanism to read a text file
without writing lots of code and error checking.
TScanTool can read lines up to 255 characters long while scanning files. If a line exceeds this limit,
TScanTool truncates the line and generates an Error event.
TScanTool is different from most other components in that it does not generate run time errors.    Instead,
it fires the OnError event and sets its own internal ErrorCode property.    Therefore, TScanTool ignores
errors by default.    You can trap errors by trapping the OnError event.
Properties
About Provides product and component version information and facilities to register your

product.
Action Specifies an action to be performed by the component.
AutoDisplay Specifies immediate actiion or whether to wait for an Action command.
ErrorCode Returns a code that identifies the last error trapped by the component.
FileName Sets or returns the name of the file to be scanned by the component.
FileNameExt Returns the DOS file name extension for FileName.
FileNameOnly Returns the name of the file without the path.
FilePath Returns the name of the file path.
LineCount Returns the number of lines in the file being parsed.
LineDups Specifies if duplicate lines are to be ignored, allowed or if an error is to be fired.
LineNumber Returns the current line number in the file being parsed.
LinePos Sets or returns the position of the current line within the file.
Lines A list containing the file being parsed.
LineSort Indicates whether the lines in the file are to be sorted before being parsed.
LineText Returns the value of the current text line.
PercentDone Returns a number between 0 and 100 that indicates how much of the current file has

been scanned.
Methods
Events
OnStart Fired when TScanTool opens a file for scanning, after Action is set to Start.
OnFinish Fired when TScanTool has completed scanning a file.
OnError Fired when TScanTool encounters an error.
OnScan Fired for each line in the input file while the component scans a file.
See also
Component logical model

 TParseTool Component
Unit
CtcParse
Description
The TParseTool component allows you to quickly scan and parse text files. It is the ideal tool for doing
simple data manipulation changing its format, checking its validity, retrieving items, generating reports,
and the like without having to write a lot of code to scan and parse files.
The TParseTool component is similar to the original AWK language in concept and purpose, but it is
substantially different in syntax, since the TParseTool is embedded in event driven Object Pascal. The
most apparent omissions are expression evaluation and a pattern matching mechanism.
TParseTool can read lines up to 255 characters long while scanning files. If a line exceeds this limit,
TParseTool truncates the line and generates an Error event.
TParseTool is different from most other components in that it does not generate run time errors.    Instead,
it fires the OnError event and sets its own internal ErrorCode property.    Therefore, TParseTool ignores
errors by default.    You can trap errors by trapping the OnError event.
Properties
About Provides product and component version information and facilities to register your

product.
Action Specifies an action to be performed by the component.
AutoDisplay Specifies immediate action or to wait for an Action command.
ErrorCode Returns a code that identifies the last error trapped by the component.
FieldConvert Determines whether to change the case of each line as it is read
FieldCount The number of fields in LineText.
FieldFilter Determines whether to remove leading and trailing quotes from fields when the

FieldMatch property is set to True.
FieldMatch Determines whether the TParseTool parser should regard quote-delimited strings as

single fields.
FieldNumber The index value into the Fields list.
Fields Sets or returns the value of a field within the current line.
FieldSeparators Field separator string.
FieldText The text field, represented by Fields[FieldNumber].
FileName Sets or returns the name of the file to be scanned by the component.
FileNameExt Returns the DOS file name extension for FileName.
FileNameOnly Returns the name of the file without the path.
FilePath Returns the name of the file path.
LineCount Returns the number of lines in the file being parsed.
LineDups Specifies if duplicate lines are to be ignored, allowed or if an error is to be fired.
LineNumber Returns the current line number in the file being parsed.
LinePos Sets or returns the position of the current line within the file.
Lines A list containing the file being parsed.
LineSort Indicates whether the lines in the file are to be sorted before being parsed.
LineText Returns the value of the current text line.
NextFieldText Returns the next field to that in FieldText.
PercentDone Returns a number between 0 and 100 that indicates how much of the current file has

been scanned.
PrevFieldText Returns the previous field to that in FieldText.
Methods
None
Events
OnError Fired when TParseTool encounters an error.
OnFinish Fired when TParseTool has completed scanning a file.
OnScan Fired for each line in the input file while the component scans a file.

OnStart Fired when TParseTool opens a file for scanning, after Action is set to Start.
See also
Component logical model

CtSwapByte Procedure

Unit
CtlSwap
Declaration
procedure CtSwapByte (var x, y: byte);
Description
Swaps the contents of two byte variables.
Parameters
x and y are the values to be swapped.
Exceptions
ECtError Message = CtlSwap: CtSwapByte
See also
CtSwapCardinal
CtSwapChar
CtSwapComp
CtSwapDouble
CtSwapExtended
CtSwapInteger
CtSwapLongInt
CtSwapPChar
CtSwapReal
CtSwapShortInt
CtSwapSingle
CtSwapString
CtSwapWord
CoreTools swapping routines

TCtError Type

Unit
CtlError
Declaration
TCtError = (feNone, feOpenFile, feCloseFile, feInvalidDirectory, feReadError, feInvalidFile,

feDateConversion, feTimeConversion, feSettingFileAttr, feCreateFile, feDeleteError,
feRenameError, feSameSourceAndTarget, feErrorDuringCopy, feLineTooLong,
feFieldTooLong, feCRCError);

Description
The enumeration contains the various errors returned by the CoreTools components.
If an error is detected, then the ErrorCode property is set to the appropriate error code. If the OnError
event has a handler defined, then that procedure is called, otherwise an ECtError exception is generated,
and it is the responsibility of the developer to handle the error condition.
Error Codes
feNone No error condition exists
feOpenFile Error occurred when opening a file
feCloseFile Error occurred when closing a file
feInvalidDirectory The directory does not exist
feReadError Error occurred when reading a file
feInvalidFile The file does not exists
feDateConversion Attempted invalid date conversion.
feTimeConversion Attempted invalid time conversion
feSettingFileAttr Error occurred when setting file attributes
feCreateFile Unable to create a file.
feDeleteError Unable to delete a file.
feRenameError Unable to rename a file.
feSameSourceAndTarget Same file used for both source and destination during file copy.
feErrorDuringCopy Error occurred while copying a file.
feLineTooLong The line being parsed exceeds 255 characters.
feFieldTooLong A field exceeds 255 characters.
feCRCError CRC checking error

TCtFileExt Type

Unit
CtlFile
Declaration
TCtFileExt = string[4];
Description
The TCtFileExt type stores the 4 byte DOS file name extension, including the period, e.g '.TXT'.

TCtFileNameOnly Type

Unit
CtlFile
Declaration
TCtFileNameOnly = string[8];
Description
The TCtFileNameOnly type stores a file name without the extension.

TScanActions Type

Unit
CtcScan
Declaration
TScanActions = (saDormant, saScan, saNextLine, saSave, saQuit);
Description
The TScanActions enumeration contains the valid commands for the TScanTool and TParseTool
components.
Commands
saDormant No command is being executed.
saScan Commands the component to scan each line of FileName, the text for which is stored in

Lines, and will trigger an OnScan event for each line in the text file. The current text line
is stored in LineText. scanQuit can be used to stop the command if necessary.

saNextLine Causes the component to scan immediately the next line of text, i.e. LineNumber is
incremented and LineText is altered appropriately.

saSave The Lines property will be saved to FileName, OnStart and OnFinish events will be
triggered. If any errors occur then the OnError event is triggered. scanQuit can be used
to stop the command if necessary.

saQuit Stops the current command, the OnFinish event will be triggered immediately.

TSearchActions Type

Unit
CtcSerch
Declaration
TSearchActions = (raDormant, raSearch, raQuit);
Description
The TSearchActions enumeration specifies valid actions for the TSearchTool component.
Commands
raDormant No command is being executed.
raSearch This command starts the search for the specified files and/or directories.
raQuit Stops the search process.

TFileActions Type

Unit
CtcFile
Declaration
TFileActions = (faDormant, faCopy, faCopyVerify, faCRC, faCreate, faDelete, faKill, faMove,

faMoveVerify);
Description
The valid Action commands for the TFileTool component.
Action commands
faDormant No command being executed.
faCopy Copies FileName to TransferName
faCopyVerify Copies FileName to TransferName and checks the CRC-16 values of both files.
faCRC16 Calculates the CRC-16 value for FileName.
faCreate Creates a new file called FileName
faDelete Deletes FileName if the files properties allow deletion.
faKill Deletes FileName regardless of the files properties.
faMove Moves FileName to TransferName, regardless of the files properties.
faMoveVerify Moves FileName to TransferName and checks the CRC-16 values of both files The

move ignores the files properties.

TCtFullFileName Type

Unit
CtlFile
Declaration
TCtFullFileName = string[12];
Description
The TCtFullFileName type stores a DOS file name, including the period and extension.

TSelectList Type

Unit
CtcBase
Declaration
TSelectList    = TStringList;
Description
The TSelectList type is used for storing lists of items that have been selected by the CoreTools for Delphi
components.

This TStringList descendant object maintains a list of strings. You can add, delete, insert, move, and
exchange strings using the Add, Delete, Insert, Move, and Exchange methods. The Clear method clears
all the strings in the list of strings. The Count property contains the number of strings in the list. Each
string list object has a Strings property that lets you access a particular string by its position in the list of
strings. To find the position of a string in the list, use the IndexOf method.

If you want to add several strings at once to a list of strings, use the AddStrings method. You can assign
one strings object to another using the Assign method.

To determine if a particular string exists in the list of strings, call the Find method. You can store strings in
a file and then load them all at one using the LoadFromFile method. To save the strings to a file, use the
SaveToFile method.

TTextConvert Type

Unit
CtcBase
Declaration
TTextConvert = (cvtNone, cvtUpper, cvtLower);
Description
The TTextConvert enumeration is used to specify the text conversion type required.

TCtTimeText Type

Unit
CtlDate
Declaration
TCtTimeText    = string[10];
Description
The TCtTimeText type stores time in the 24 hour hh:mm:ss format.
See also
TCtDateText
TTimeTextPropertyEditor

CtcBase Unit

Description
CtcBase is the unit containing the abstract super-class, TCoreTool, from which all CoreTools for Delphi
components descend.
Types
TCoreTool
TCtError
TPercent
TSelectList
TTextConvert
TMaxBuffer
Variables
CoreBuffer
Exceptions
ECtError

To see a listing of items declared in this unit including their declarations, use the ObjectBrower.

TAboutInfoPropertyEditor property editor

Description
This property editor allows the developer to edit the About property in all CoreTools for Delphi
components.

This property editor is associated with the About property and also acts as the product registration
mechanism.    By selecting the Register button you enter the Registration Info page, where you can
enter your name and the unique serial number that is sent to you when you register your CoreTools for
Delphi toolset.    It is important that you enter your name in the exact form specified in your registration
acknowledgement.

When the name and serial number have been entered correctly, the property editor creates a file called
CORE.LIC in your WINDOWS directory. The license file is the persistent record of your license information
and must be present for applications using the components to run correctly.    If the license file is lost for
any reason, you have only to repeat the registration entry process to duplicate the file.
Caveat:
If the property editor is not registered with the current Delphi library, then the CoreTools toolset cannot be
registered.

 CoreTools for Delphi components

The components in CoreTools for Delphi, version 1a, are:

TFileTool
TSearchTool
TScanTool
TParseTool
TSysInfoTool

FieldNumber Property

Applies to
TParseTool
Declaration
property FieldNumber : integer;
Description
The FieldNumber property returns the current field in the Fields property, used when the FieldText and
NextFieldText properties are being used to parse the current line, LineText.

FieldMatch Property

Applies to
TParseTool
Declaration
property FieldMatch: boolean;
Description
Determines whether the parser should regard quote-delimited strings as single fields. This feature was
added to facilitate parsing of quote and comma-delimited files such as those exported by most database
and spreadsheet programs.
Double or single quotes are both recognized, but one does not match the other.
Unmatched quotes in a line are not ignored, i.e. parsing continues until end-of-line and no error is
generated.

FieldConvert Property

Applies to
TParseTool
Declaration
property FieldConvert : TTextConvert;
Description
The FieldConvert property allows the user to specify what type of conversion should be performed on the
fields stored in the Fields property. Possible choices are none, upper case, and lower case.

FieldText Property

Applies to
TParseTool
Declaration
property FieldText : string;
Description
The FieldText property returns the value of the current field. This property is exactly the same as the
Fields.Strings[FieldNumber] property.

FileNameExt Property

Applies to
TFileTool, TScanTool, TParseTool
Declaration
property FileNameExt : TCtFileExt;
Description
The FileNameExt property returns the DOS file name extension for FileName. The property is read-only.

LineCount Property

Applies to
TScanTool, TParseTool
Declaration
property LineCount : integer;
Description
The LineCount property stores the number of lines in the file being parsed.

The file is read into the Lines property, taking into account the LineDups and LineSort property settings,
and the LineCount property reflects the number of lines read.

The limitation on file sizes that can be parsed is that imposed by the integer type, i.e. 32,767 lines, along
with the availability of free memory in the heap.

If the AutoDisplay property is true, then the file is read immediately the FileName property is set,
otherwise it is not read until the Action command to scan is issued.

LineNumber Property

Applies to
TScanTool, TParseTool
Declaration
property LineNumber : integer;
Description
The LineNumber property stores the current line being parsed.

LineText can also be represented as Lines.Strings[LineNumber].

LinePos Property

Applies to
TScanTool, TParseTool
Declaration
property LinePos : longint;
Description
The LinePos property stores the physical position in the file of the start of the current line, LineText.
The physical position is the number of bytes from the start of the file.

See also
LineNumber property

Lines Property

Applies to
TScanTool, TParseTool
Declaration
property Lines : TSelectList;
Description
The Lines property stores the file being parsed.

See also
LineNumber

LineSort Property

Applies to
TScanTool, TParseTool
Declaration
property LineSort : boolean
Description
The LineSort property determines whether or not the lines in the file will be sorted in alphabetical order
before being parsed.

See also
LineCount
LineDups
LineNumber
LinePos
Lines
LineText

CtIsCntrl Function

Unit
CtlChar
Declaration
function CtIsCntrl (C: char): boolean;
Description
Tests C to check if it is a control character. The check performed is: #00-#31 or #127.
Parameters
C the character on which to perform the test.
Returns
True if the test is successful, otherwise returns False.
Exceptions
None
See also
CtIsAlNum
CtIsAlpha
CtIsASCII
CtIsDigit
CtIsGraph
CtIsLower
CtIsPrint
CtIsPunct
CtIsReal
CtIsSigned
CtIsSpace
CtIsUpper
CtIsXDigit

NextFieldText Property

Applies to
TParseTool
Declaration
property NextFieldText : string;
Description
The NextFieldText property sets FieldText to the next field, i.e. increments FieldNumber, and returns the
new value of FieldText.

The property is read-only.

 CtcScan Unit
Description
This unit contains the implementation of the TScanTool component.
Types
TScanActions
TScanTool

To see a listing of items declared in this unit including their declarations, use the ObjectBrower.

 CtcParse Unit
Description
This unit is the implementation of the TParseTool component.
Types
TParseTool

To see a listing of items declared in this unit including their declarations, use the ObjectBrower.

 CoreSrch Unit
Description
This unit contains the implementation of the TSearchTool component.
Types
TSearchActions
TSearchTool

To see a listing of items declared in this unit including their declarations, use the ObjectBrower.

CtcFile Unit

Description
This unit contains the implementation of the TFileTool component.
Types
TFileActions
TFileTool

To see a listing of items declared in this unit including their declarations, use the ObjectBrower.

CteAbout Unit

Description
This unit contains the definition and implementation of TAboutInfoPropertyEditor, which is the property
editor used to edit the About property on all CoreTools for Delphi components.
Types
TAboutInfoPropertyEditor

To see a listing of items declared in this unit including their declarations, use the ObjectBrower.

CteFilen Unit

Description
This unit contains the implementation of the TFileNamePropertyEditor class. This is the property editor
associated with properties of the TFileName class.
Types
TFileNamePropertyEditor

To see a listing of items declared in this unit including their declarations, use the ObjectBrower.

CteSelct Unit

Description
This unit contains the implementation of the TSelectListPropertyEditor class. This is the property editor
associated with properties of the TSelectList type.
Types
TSelectListPropertyEditor

To see a listing of items declared in this unit including their declarations, use the ObjectBrower.

CteTime Unit

Description
This unit contains the implementation of the TTimeTextPropertyEditor property editor. This is the property
editor associated with properties of the TCtTimeText type.
Types
TTimeTextPropertyEditor

To see a listing of items declared in this unit including their declarations, use the ObjectBrower.

Units
The unit files constituting CoreTools for Delphi are:

CtReg CtcBase CtcFBase CtcFile

CtcParse CtcScan CtcSerch CtcSysIn

CteAbout CteDate CteFilen CteSelct

CteTime CtlChar CtlCRC16 CtlDate

CtlError CtlFile CtlStrng CtlSwap

CtlSys CtlZStrn

See also
Modifying the palette

CteDate Unit

Description
This unit contains the implementation of the TDateTextPropertyEditor property editor. This is the property
editor associated with properties of the TCtDateText type.
Types
TDateTextPropertyEditor

To see a listing of items declared in this unit including their declarations, use the ObjectBrower.

 Modifying the component palette

There are five components making up the CoreTools for Delphi toolset. It may be that you do not need all
of the components installed in your component palette, in which case it is possible to tailor the component
registration to suit your own needs.

The component and property editor registration is all handled in the CORETOOL.PAS unit file. If you examine
the file you will see that the Register procedure performs all registrations. The technique to employ is to
comment-out the components and associated property editors that you do not want installed at the
current time.

TCoreTool Component

Unit
CtcBase
Description
TCoreTool is the abstract super-class from which all CoreTools for Delphi components descend.
See also
Component logical model

FileExists Property

Applies to
TFileTool
Declaration
property FileExists : boolean;
Description
The FileExists property indicates whether the file specified by FileName actually exists.

FileAtts Property

Applies to
TFileTool, TSearchTool
Declaration
property FileAtts : TFileType;
Description
The FileAtts property stores the set of file attributes for the currently specified file.

If the AutoDisplay property is true then the changes/search will take place immediately, otherwise it will
not happen until the user sets the Action property.
Errors trapped
feInvalidFile
feDateConversion
feSettingFileAttr
Note
TFileType is declared in the Delphi unit FileCtrl.

FileDate Property

Applies to
TFileTool
Declaration
property FileDate : TCtDateText
Description
The FileDate property returns the date, in text format, of the current file..
Errors trapped
feOpenFile
feDateConversion
See also
FileTime

FileSize Property

Applies to
TFileTool
Declaration
property FileSize : longint;
Description
The FileSize property returns the size of the currently selected file. The property is read-only.

FileTime Property

Applies to
TFileTool
Declaration
property FileTime : TCtTimeText;
Description
The FileTime property returns the time stamp of the currently selected file. The time stamp can also be
modified by setting this property to the required new time.
Errors trapped
feOpenFile
feTimeConversion

FileCRC Property

Applies to
TFileTool
Declaration
property FileCRC : TCtCRC16
Description
The FileCRC property stores the CRC value of the currently selected file.

NewFileExt Property

Applies to
TFileTool
Declaration
property NewFileExt : TCtFileExt
Description
The NewFileExt property accepts user input of a new filename extension. If the AutoDisplay property is
set, then the file name is modified immediately, otherwise it will be modified when an actChangeExt
command is set in the Action property.

If the file rename is successful then the NewFileExt property is cleared, otherwise the ErrorCode property
is set to feRenameError and NewFileExt remains unaltered.
See also
NewFileName

NewFileName Property

Applies to
TFileTool
Declaration
property NewFileName : TCtFullFileName
Description
The NewFileName property accepts user input of a new filename. If the AutoDisplay property is set, then
the file name is modified immediately, otherwise it will be modified when an actChangeExt command is
set in the Action property.

If the file rename is successful then the Newfilename property is cleared, otherwise the ErrorCode
property is set to feRenameError and NewFileName remains unaltered.

See also
NewFileExt

ListDirs Property

Applies to
TSearchTool
Declaration
property ListDirs : TSelectList;
Description
The ListDirs property stores a list of the directories scanned during the search operation.

See also
SearchSubDirs

ListFiles Property

Applies to
TSearchTool
Declaration
property ListFiles : TSelectList;
Description
The ListFiles property stores a list of the files matched during the search process.

See also
ListsFullReport
ListsSortReport

CtGetUser Function

Unit
CtlSys
Declaration
function CtGetUser : string;
Description
The CtGetUser function returns the registered user name from the USER library.
Target
Windows, DOS Protected Mode (WinAPI unit)
Returns
The function returns the registered user name retrieved from the USER library.
Exceptions
ECtError Message = CtGetUser
See also
CtGetCompany
CtGetUserAndCompany
CoreTools system routines

ListsFullReport Property

Applies to
TSearchTool
Declaration
property ListsFullReport : boolean;
Description
The ListsFullReport property decides whether a full file description, including drive and path, is inserted in
the ListDirs and ListFiles lists. If the property is true then a full report is prepared, otherwise only the
shortened version is prepared.

If the AutoDisplay property is true then the search will take place immediately, otherwise it will not happen
until the user sets the Action property to fsaSearch.

See also
ListsSortReport

ListsSortReport Property

Applies to
TSearchTool
Declaration
property ListsSortReport : boolean;
Description
The ListsSortReport property decides whether the ListDirs and ListFiles string lists should be sorted in
ascending order.

This is the equivalent of ListDirs.Sorted and ListFiles.Sorted.

If the AutoDisplay property is true then the search will take place immediately, otherwise it will not happen
until the user sets the Action property to fsaSearch.

See also
ListsFullReport

SearchMask Property

Applies to
TSearchTool
Declaration
property SearchMask : string
Description
The SearchMask property allows the user to specify the file, files or directory to be searched for.

The property is set to *.* by default.

If the AutoDisplay property is true then the search will take place immediately, otherwise it will not happen
until the user sets the Action property to fsaSearch.

SearchPath Property

Applies to
TSearchTool
Declaration
property SearchPath : TFileName;
Description
The SearchPath property allows the user to specify the directory from which the search will take place.

If the AutoDisplay property is true then the search will take place immediately, otherwise it will not happen
until the user sets the Action property to fsaSearch.

SearchSubDirs Property

Applies to
TSearchTool
Declaration
property SearchSubDirs : boolean;
Description
The SearchSubDirs property specifies whether the search should take place in sub-directories as well as
that specified by SearchPath.

If the AutoDisplay property is true then the search will take place immediately, otherwise it will not happen
until the user sets the Action property to fsaSearch.

ListDirItems Property

Applies to
TSearchTool
Declaration
property ListDirItems : integer;
Description
The ListDirItems property stores the number of items in the ListDirs property.

CtGetUserAndCompany Procedure

Unit
CtlSys
Declaration
procedure CtGetUserAndCompany (var User, Company: string);
Description
The CtGetUserAndCompany procedure returns the registered company name and user name from the
USER library.
Target
Windows, DOS Protected Mode (WinAPI unit)
Parameters
User The registered user name.
Company The registered company.
Returns
The function returns the registered user and company names in the reference parameters.
Exceptions
ECtError Message = CtGetUserAndCompany
See also
CtGetCompany
CtGetUser
CoreTools system routines

CtGetEnvVar Function

Unit
CtlSys
Declaration
function CtGetEnvVar (VarName: string): string;
Description
Returns the environment variable parameters for the specified variable. The environment searched is that
belonging to the current (running) task.
The returned string starts with the first character after the equals sign (=) in the environment entry
specified by VarName.
Target
Windows, DOS Protected Mode (WinAPI unit)
Parameters
VarName The environment variable to search for.
Returns
The function returns a string containing the environment variable declaration, or an empty string if
VarName is not found.
See also
CtGetEnv
CtGetEnvUsed
CoreTools system routines

CtGetEnvUsed Function

Unit
CtlSys
Declaration
function CtGetEnvUsed: cardinal;
Description
The CtGetEnvUsed function returns the number of bytes actually stored in the DOS environment for the
current (running) task.
Comments
This function is useful in measuring how efficiently you are using the space reserved for the environment.
Target
Windows, DOS Protected Mode (WinAPI unit)
Returns
The number of bytes used in the environment string.
See also
CtGetEnv
CtGetEnvVar
CoreTools system routines

Copyright acknowledgements
All Borland products are trademarks or registered trademarks of Borland International, Inc.
IBM is a registered trademark of International Business Machines.
Almost everything else, everywhere, is a Microsoft copyright product.

Environment Property

Applies to
TSysInfoTool
Declaration
property Environment: TSelectList;
Description
This list contains the programs environment variables, split into separate list items.
See also
CtGetEnv
CtGetEnvUsed
CtGetEnvVar

CtlError Unit

Description
This unit contains the CoreTools for Delphi error handling subsystem.
Types
ECtError
TCtError

CtGetCompany Function

Unit
CtlSys
Declaration
function CtGetCompany : string;
Description
The CtGetCompany function returns the registered company name from the USER library.
Target
Windows, DOS Protected Mode (WinAPI unit)
Returns
The function returns a string containing the registered company in the USER library.
See also
CtGetUser
CtGetUserAndCompany
CoreTools system routines

TFileNamePropertyEditor property editor

Unit
CteFilen
Description
The TFileNamePropertyEditor is dedicated to the TFileName type, and allows graphical editing of all
properties of that type.
If the facility is not required, then simply comment-out the registration of the property editor in the
CORETOOL.PAS file and rebuild the component library.
Note
TFileName    is declared in Delphi's SysUtils unit.

TSelectListPropertyEditor property editor

Unit
CteSelct
Description
This property editor is devoted to the TSelectList type, and allows viewing of the list contents.
Note
If the editor is not required, then simply comment-out the editor registration in CORETOOL .PAS, rebuild the
component library, and the default TStringList editor will be implemented instead.

TTimeTextPropertyEditor property editor

Unit
CteTime
Description
This property editor is devoted to the TCtTimeText type, and allows graphical setting of the time string.

If the editor is not required, then simply comment-out the editor registration in CTLREG .PAS, rebuild the
component library, and the default string editor will be implemented instead.

TDateTextPropertyEditor

Description
This property editor allows the developer to set a TCtDateText property value, using a calendar type
editor.

If the facility is not required, then simply comment-out the registration of the property editor in the
CORETOOL.PAS file and rebuild the component library.

DOS Version Constants

Unit
CtlSys
Declaration
CtDOSMajor : byte;
CtDOSMinor : byte;
Description
These typed constants are initialized at boot up to the current DOS version parameters.
Example
For DOS 6.2:

CtDOSMajor = 6
CtDOSMinor = 20

See also
CtWinMajor
CtWinMinor
CoreTools system routines

CtlSys Unit

Description
This unit contains the CoreTools for Delphi System Library.
Constants
CtDOSMajor
CtDOSMinor
CtWinMajor
CtWinMinor
Types
TCtWinSet
TCtWinSettings
Routines
CtGetCompany
CtGetEnv
CtGetEnvUsed
CtGetEnvVar
CtGetSysDir
CtGetUser
CtGetUserAndCompany
CtGetWinDir
CtGetWinSettings
See also
CoreTools system routines

TCtCRC16 Type

Unit
CtlCRC16
Declaration
TCtCRC16 = word;
Description
The type is used to store the CRC-16 (16 bit Cyclic Redundancy Check) value of a file.

DPMI Constants

Unit
CtlDPMI
Declaration

DPMI API functions
dpmiGetDesc :word = $0000; { Allocate descriptors }
dpmiFreeDesc :word = $0001; { Free descriptor }
dpmiSegToDesc :word = $0002; { Map segment to descriptor }
dpmiGetSelInc :word = $0003; { Get selector increment value }
dpmiGetSegBase :word = $0006; { Get segment base address }
dpmiSetSegBase :word = $0007; { Set segment base address }
dpmiSetSegSize :word = $0008; { Set segment size }
dpmiGetRealInt :word = $0200; { Get real mode interrupt handler }
dpmiSetRealInt :word = $0201; { Set real mode interrupt handler }
dpmiGetExcept :word = $0202; { Get exception handler }
dpmiSetExcept :word = $0203; { Set exception handler }
dpmiGetInt :word = $0204; { Get interrupt handler }
dpmiSetInt :word = $0205; { Set interrupt handler }
dpmiGetRMCB :word = $0303; { Get real mode call-back }
dpmiGetVersion :word = $0400; { Get version information }

Flag masks
flagCarry :word = $0001;
flagParity :word = $0004;
flagAuxiliary :word = $0010;
flagZero :word = $0040;
flagSign :word = $0080;
flagTrap :word = $0100;
flagInterrupt :word = $0200;
flagDirection :word = $0400;
flagOverflow :word = $0800;

CtGetEnv Procedure

Unit
CtlSys
Declaration
procedure    CtGetEnv (L: TStringList);
Description
The CtGetEnv procedure inserts the environment string of the current (running) task into L, separating
and inserting each variable into the list.
The procedure clears the list before inserting the environment variables.
The list can be parsed later using the TParseTool component to split each variable declaration into its
separate parts.
Comments
Unlike an application, a dynamic-link library (DLL) does not have a copy of the environment string. As a
result, a library must call this function to retrieve the environment string into a native Delphi string list.
Parameters
L The list in which to insert the environment variables.
Target
Windows, DOS Protected Mode (WinAPI unit)
See also
CtGetEnvUsed
CtGetEnvVar
CoreTools system routines

CtGetSysDir Function

Unit
CtlSys
Declaration
function    CtGetSysDir: string;
Description
The CtGetSysDir function retrieves the path of the Windows system directory.
The path that this function retrieves does not end with a backslash unless the system directory is the root
directory.    For example, if the system directory is named WINDOWS\SYSTEM on drive C, the path of the
system directory retrieved by this function is C:\WINDOWS\SYSTEM.    If Windows is installed in the root
directory of drive C, the path retrieved is C:\.
The CtForceRightBackslash function will add the backslash character to the returned string if such a
character is required.
Comments
The system directory contains such files as Windows libraries, drivers, and font files. Applications should
not create files in the system directory. If the user is running a shared version of Windows, the application
will not have write access to the system directory.
Applications should create files only in the directory returned by the CtGetWinDir function.
Target
Windows
Returns
The function returns the system directory as a Pascal string.
See also
CtGetWinDir
CoreTools system routines

 CoreTools string conversion routines
Description
Routines to convert values between different types.
A PZStr is only a PChar with a fixed memory allocation of 256 bytes. Therefore, the standard Delphi
routines for conversion between String, PString and PChar can be freely used on the PZStr type.
Routines have only been provided to supplement those already existing in Delphi.
Routines
CtInsituPasToStr Converts a Pascal string to a null terminated string, using the original string

memory.
CtInsituStrToPas Converts a null terminated string to a Pascal string, using the original PChar

memory.
CtPCharToPZStr Converts a null terminated string to a PZStr.
PercentToText Converts a cardinal value to a text string with % character appended.
CtStringToPZStr Converts a Pascal string value to a PZStr value.
CtPZStrToString Converts a PZStr value to a Pascal string.
CtPZStrToPString Converts a PZStr value to a PString, optionally allows deallocation of the

original value.
Caveat
PZStr strings should only be deallocated with the CtFreePZStr function.
See also
Pascal-string handling routines
PZStr handling routines
Swapping routines

CtInsituPasToStr Function

Unit
CtlStrng
Declaration
function CtInsituPasToStr (P: PString): PChar;
Description
This function converts a Pascal string to a null terminated string, using the original string memory.
Parameters
P A pointer to the Pascal string to be converted.
Returns
The function returns a pointer to the same memory as the P argument, the zero terminated string having
been converted to a Pascal string.
Exceptions
ECtError: CtlStrng: CtInsituPasToStr
See also
CtInsituStrToPas
CoreTools string conversion routines
CoreTools string handling routines

CtlStrng Unit

Description
This unit contains the CoreTools for Delphi Pascal string library routines.
Routines
CtBoolToResult
CtBoolToState
CtBoolToString
CtCase
CtCharCount
CtCharPos
CtCharPosNext
CtCharReplace
CtCJustify
CtCount
CtDetab
CtEntab
CtFill
CtFirstCapital
CtFirstCapitalPos
CtForceRightChar
CtForceRightBackslash
CtInsituPasToStr
CtInsituStrToPas
CtIsCharInString
CtIsNumeric
CtLeft
CtLJustify
CtLowerCase
CtLRotate
CtLShift
CtLStrip
CtLStripSet
CtOverlay
CtParse
CtParseClean
CtPercentToText
CtPosSet
CtRCharPos
CtRemove
CtReplace
CtReverse
CtRight
CtRJustify
CtRPos
CtRRotate
CtRShift
CtRStrip
CtRStripSet
CtSplit

CtSqueeze
CtStrip
CtStripAll
CtStripSetAll
CtTrim
CtUpperCase
CtWordCount
CtWordExtract
CtWordNext
CtWordPos
CtWordProperCase
See also
CtlSwap Unit
CtlZStrn Unit
CoreTools string handling routines

TMaxBuffer Type

Unit
CtcBase
Declaration
TMaxBuffer = array[1..65521] of byte;
Description
Largest buffer that can be allocated on the heap.

 CoreTools Pascal string handling library
Description
A library of routines to supplement the Delphi Pascal string handling routines.
Routines
CtBoolToResult Returns a string showing the status of a boolean parameter in Result format.
CtBoolToState Returns a string showing the status of a boolean parameter in State format.
CtBoolToString Returns a string showing the status of a boolean parameter in String format.
CtCase Performs quote-string aware case conversions on a string.
CtCharCount Returns the number of instances of a specified character in a string.
CtCharPos Returns the index position of the first instance a character in a string.
CtCharPosNext Searches for the next occurrence of a character in a string.
CtCharReplace Replaces all instances of a character with a replacement.
CtCJustify Center justifies a string.
CtCount Returns the number of instances of one string in another string.
CtDetab Converts tab characters in a string to spaces.
CtEntab Converts spaces in a string to tab characters.
CtFill Fills a string with a specified number characters.
CtFirstCapital Returns the character of the first capital letter in a string.
CtFirstCapitalPos Returns the position of the first capital letter in a string.
CtForceRightChar Forces a specified trailing character on to the right of a string.
CtForceRightBackslash Forces a backslash character on to the right of a string.
CtInsituPasToStr Converts a Pascal string to a null terminated string, using the original Pascal

string memory.
CtInsituStrToPas Converts a null terminated string to a Pascal string, using the original PChar

memory.
CtIsCharInString Checks whether a specified character is in a string.
CtIsNumeric Checks a string to see if it contains only numerals.
CtLeft Returns characters from the left of a string argument.
CtLJustify Returns a left hand justified string.
CtLowerCase Returns a string with all uppercase case characters converted to lowercase.
CtLRotate Rotates all characters within a string one position to the left.
CtLShift Shifts a character from the left side of a string.
CtLStrip Strips all instances of a character from the left side of a string.
CtLStripSet Strips all instances of a character(s), specified in a set, from the left side of a

string.
CtOverlay Overlays a string onto another string starting at a specified index position.
CtParse Parses a string into separate text tokens.
CtParseClean Cleans up a string making it ready to be efficiently parsed.
CtPercentToText Converts a TPercent value to a text string.
CtPosSet Searches a string for the first character contained in a    set.
CtRCharPos Searches for a character in a string, starting the search from the right hand side.
CtRemove Removes all instances of a sub string from a string.
CtReplace Replaces all instances of a sub string with a replacement sub string.
CtReverse Reverses and returns a string argument.
CtRight Returns characters from the right of a string argument.
CtRJustify Returns a right hand justified string.
CtRPos Search for a sub string, starting from the right side of the string.
CtRRotate Rotates all characters within a string one position to the right.
CtRShift Shifts a character from the right side of a character.

CtRStrip Strips a specified character from the right hand side of a string.
CtRStripSet Strips all instances of a character(s), specified in a set, from the right side of a

string.
CtSplit Splits a string on the first occurrence of a specified character.
CtSqueeze Condenses repeated occurrences of a character in a string into a single

character.
CtStrip Procedure to remove a specified character from a string. The character can be

stripped from left, from right, both left and right, or from all of the string.
CtStripAll Removes every instance of a character from a string.
CtStripSetAll Removes all instances of a set of characters from a string.
CtSwapString Swaps the contents of two string variables.
CtTrim Removes    tabs, nulls and spaces from the right hand side of a string.
CtUpperCase Returns a string with all lowercase case characters converted to uppercase.
CtWordCount Returns the count of the number of words in a string.
CtWordExtract Returns a number of specified words from a string.
CtWordNext Returns the next word from a string.
CtWordPos Returns the starting index position of a specified word number.
CtWordProperCase Converts a string to proper case, i.e. the first character of each word is

capitalized.
See also
PZStr handling routines
String conversion routines
Swapping routines

CtInsituStrToPas Function

Unit
CtlStrng
Declaration
function CtInsituStrToPas (P: PChar): PString;
Description
The CtInsituPCharToString function converts a null terminated string to a Pascal string, using the original
memory pointed to by the PChar parameter.
If the length of P    > 255, then it is truncated to a length of 255 characters.
This function is useful when making calls to API functions which only accept and return null terminated
strings.
Parameters
P A pointer to a null terminated string. The contents of the memory pointed to are converted to a

Pascal type string.
Returns
The function returns a pointer to a Pascal type string.
Exceptions
ECtError: Message = CtlStrng: CtInsituStrToPas
See also
CtInsituPasToStr
CoreTools string conversion routines
CoreTools string handling routines

CtLeft Function

Unit
CtlStrng
Declaration
function CtLeft (S: string; N: byte): string;
Description
The CtLeft function returns the leftmost N characters of the string argument S.
Parameters
S string to copy from
N number of characters to copy
Returns
The CtLeft function returns the left N characters of S. If N > length of S, then S is returned.
Exceptions
ECtError CtlStrng: CtLeft
See also
CtLRotate
CtLShift
CtRight
CtRRotate
CtRShift
CoreTools string handling routines

CtRight Function

Unit
CtlStrng
Declaration
function CtRight (S: string;    N: byte): string;
Description
The CtRight function returns the rightmost N characters of the string argument S.
Parameters
S the string from which to extract the sub string
N the number of characters to extract
Returns
The function returns the rightmost N characters of S. If N > length of S, then S is returned.
Exceptions
ECtError CtlStrng: CtRight
See also
CtLeft
CoreTools string handling routines

CtRPos Function

Unit
CtlStrng
Declaration
function CtRPos (Sub, S: string): byte;
Description
Searches for the sub string Sub, starting from the right side of the string S.
Parameters
Sub The sub string to search for.
S The string to search.
Returns
The function returns the index position of the first match.
Returns 0 if no match found.
Exceptions
ECtError CtlStrng: CtRPos
See also
CtCharPos
CtCharPosNext
CtPosSet
CtRCharPos
CtWordPos
CoreTools string handling routines

CtReverse Function

Unit
CtlStrng
Declaration
function CtReverse (S: string): string;
Description
Reverses and returns the string argument S.
Parameters
S The string to reverse.
Returns
The reversed string.
Exceptions
ECtError CtlStrng: CtReverse
See also
CoreTools string handling routines

CtFirstCapitalPos Function

Unit
CtlStrng
Declaration
function CtFirstCapitalPos(const S : string): byte;
Description
This function returns the index position of the first capital letter in the string S.
Parameters
S The string to search for the capital letter.
Returns
The function returns the index position of the first capital letter in S.
Returns 0 if no capital letter is found.
Exceptions
ECtError CtlStrng: CtFirstCapitalPos
See also
CtFirstCapital
CoreTools string handling routines

CtWordProperCase Function

Unit
CtlStrng
Declaration
function CtWordProperCase (S: string): string;
Description
The CtWordProperCase function converts S to proper case, i.e. the first character of each word is
capitalized, and the remainder of the string is unaltered.
Parameters
S The string to capitalize.
Returns
The capitalized string.
Exceptions
ECtError CtlStrng: CtWordProperCase
See also
CtWordCount
CtWordExtract
CtWordNext
CtWordPos
CoreTools string handling routines

CtFirstCapital Function

Unit
CtlStrng
Declaration
function CtFirstCapital (const S : string): char;
Description
Returns the first capital letter in the string S.
Parameters
S The string to search for the capital letter.
Returns
The function returns the first capital letter in S.
The function returns a null #0 if the string does not contain any capital letters.
Exceptions
ECtError Message = CtFirstCapital
See also
CtFirstCapitalPos
CoreTools string handling routines

CtWordCount Function

Unit
CtlStrng
Declaration
function CtWordCount (S: string): byte;
Description
Returns the count of the number of words in the string S.
The function only recognizes spaces as word delimiters, therefore any tabs should firstly be converted to
spaces, perhaps by using CtParseClean.
Parameters
S The string to search for words.
Returns
The number of words in the string.
Exceptions
ECtError CtlStrng: CtWordCount
See also
CtWordExtract
CtWordNext
CtWordPos
CtWordProperCase
CoreTools string handling routines

CtStrip Procedure

Unit
CtlStrng
Declaration
procedure CtStrip (StripCode: TCtStrip; C: char; S: string): string;
Description
Removes a specified character from a string. The character can be removed from left, right, both left and
right or from all of the string.
Parameters
StripCode The type of stripping required
C The character to strip
S The string to strip.
Returns
The stripped string.
Exceptions
ECtError CtlStrng: CtStrip
See also
CtLStrip
CtLStripSet
CtRemove
CtRStrip
CtRStripSet
CtSqueeze
CtStripAll
CtStripSetAll
CtTrim
CoreTools string handling routines

CtBoolToState Function

Unit
CtlStrng
Declaration
function CtBoolToState(B: boolean): string;
Description
Returns a string showing the state of the boolean B in status format, either On or Off.
Parameters
B The subject of the conversion operation.
Returns
The function returns a textual status description for the state of B.
Exceptions
ECtError CtlStrng: CtBoolToState
See also
CtBoolToResult
CtBoolToString

TCtStrip Type

Unit
CtlStrng
Declaration
TCtStrip = (stripLeft, stripRight, stripBoth, stripAll);
Description
The TCtStrip enumeration is used with the CtStrip function to specify the form of stripping required.

CoreTools swapping routines

Description
Routines to swap values between two variables of the same type.
Routines
CtSwapByte Swaps the contents of two byte variables.
CtSwapCardinal Swaps the contents of two cardinal variables.
CtSwapChar Swaps the contents of two character variables.
CtSwapComp Swaps the contents of two complex variables.
CtSwapDouble Swaps the contents of two double variables.
CtSwapExtended Swaps the contents of two extended variables.
CtSwapInteger Swaps the contents of two integer variables.
CtSwapLongInt Swaps the contents of two longint variables.
CtSwapPChar Swaps the contents of two PChar variables, also applies to PZStr types.
CtSwapReal Swaps the contents of two real variables.
CtSwapShortInt Swaps the contents of two shortint variables.
CtSwapSingle Swaps the contents of two single variables.
CtSwapString Swaps the contents of two string variables.
CtSwapWord Swaps the contents of two word variables.
See also
Pascal string handling routines
PZStr handling routines
String conversion routines

CtSwapString Procedure

Unit
CtlSwap
Declaration
procedure CtSwapString (var x, y: string);
Description
Swaps the contents of two strings.
Parameters
x and y are the strings to be swapped.
Exceptions
ECtError Message = CtlSwap: CtSwapString
See also
CtSwapByte
CtSwapCardinal
CtSwapChar
CtSwapComp
CtSwapDouble
CtSwapExtended
CtSwapInteger
CtSwapLongInt
CtSwapPChar
CtSwapReal
CtSwapShortInt
CtSwapSingle
CtSwapWord
CoreTools swapping routines
CoreTools string-handling routines

CtlSwap Unit

Description
The CtlSwap unit contains routines that swap variable values.
Routines
CtSwapByte
CtSwapCardinal
CtSwapChar
CtSwapComp
CtSwapDouble
CtSwapExtended
CtSwapInteger
CtSwapLongInt
CtSwapPChar
CtSwapReal
CtSwapShortInt
CtSwapSingle
CtSwapString
CtSwapWord
See also
CoreTools swapping routines

CtSwapCardinal Procedure

Unit
CtlSwap
Declaration
procedure CtSwapCardinal (var x, y: cardinal);
Description
Swaps the contents of two cardinal values.
Parameters
x and y are the values to be swapped.
Exceptions
ECtError Message = CtlSwap: CtSwapCardinal
See also
CtSwapByte
CtSwapChar
CtSwapComp
CtSwapDouble
CtSwapExtended
CtSwapInteger
CtSwapLongInt
CtSwapPChar
CtSwapReal
CtSwapShortInt
CtSwapSingle
CtSwapString
CtSwapWord
CoreTools swapping routines

ListFilesItems Property

Applies to
TSearchTool
Declaration
property ListFileItems : integer;
Description
The ListFileItems property stores the number of items in the ListFiles property.

CtSwapInteger Procedure

Unit
CtlSwap
Declaration
procedure CtSwapInteger (var x, y: longint);
Description
Swaps the contents of two integer values.
Parameters
x and y are the values to be swapped.
Exceptions
ECtError Message = CtlSwap: CtSwapInteger
See also
CtSwapByte
CtSwapCardinal
CtSwapChar
CtSwapComp
CtSwapDouble
CtSwapExtended
CtSwapLongInt
CtSwapPChar
CtSwapReal
CtSwapShortInt
CtSwapSingle
CtSwapString
CtSwapWord
CoreTools swapping routines

CtSwapComp Procedure

Unit
CtlSwap
Declaration
procedure CtSwapComp (var x, y: comp);
Description
Swaps the contents of two complex variables.
Parameters
x and y are the values to be swapped.
Exceptions
ECtError Message = CtlSwap: CtSwapComp
See also
CtSwapByte
CtSwapCardinal
CtSwapChar
CtSwapDouble
CtSwapExtended
CtSwapInteger
CtSwapLongInt
CtSwapPChar
CtSwapReal
CtSwapShortInt
CtSwapSingle
CtSwapString
CtSwapWord
CoreTools swapping routines

CtSwapChar Procedure

Unit
CtlSwap
Declaration
procedure CtSwapChar (var x, y: char);
Description
Swaps the contents of two char variables.
Parameters
x and y are the values to be swapped.
Exceptions
ECtError Message = CtlSwap: CtSwapChar
See also
CtSwapByte
CtSwapCardinal
CtSwapComp
CtSwapDouble
CtSwapExtended
CtSwapInteger
CtSwapLongInt
CtSwapPChar
CtSwapReal
CtSwapShortInt
CtSwapSingle
CtSwapString
CtSwapWord
CoreTools swapping routines

CtCount Function

Unit
CtlStrng
Declaration
function CtCount (Pattern, S : string): byte;
Description
The CtCount function returns the number of instances of Pattern in the source string, S.
Parameters
Pattern The pattern to search for.
S The string on which perform the search.
Returns
The total of pattern matches.
Exceptions
ECtError CtlStrng: CtCount
See also
CtCharCount
CoreTools string handling routines

CtSplit Function

Unit
CtlStrng
Declaration
function CtSplit (S: string; C: char; var Before, After: string): byte;
Description
Splits S on the first occurrence of the character C.
The character C is not included in either new sub string.
If C is not found, then S is copied to Before and After is a zero length string.
Parameters
S the string to split.
C the character to search for.
Before the sub string before the split character.
After the sub string after the split character.
Returns
The function returns the index position in S at which the split occurred. Returns 0 if no split.
Exceptions
ECtError CtlStrng: CtSplit
See also
CoreTools string handling routines

CtIsNumeric Function

Unit
CtlStrng
Declaration
function CtIsNumeric (S: string): boolean;
Description
The CtIsNumeric function checks a string, S, to test if it contains only numerals.
Parameters
S The string that is the subject of the check operation.
Returns
True if only numerals in string, otherwise returns False.
Exceptions
ECtError CtlStrng: CtIsNumeric
See also
CoreTools string handling routines

 Inventory of files
The distribution file, CORE1A.ZIP, contains the following files:
CTREG . PAS Palette registration unit
CTREG . DCR Component bitmaps
CTCBASE . DCU The superclass for all components
CTCFBASE . DCU The superclass for file based components
CTCFILE . DCU TFileTool component
CTCPARSE . DCU TParseTool component
CTCSCAN . DCU TScanTool component
CTCSERCH . DCU TSearchTool component
CTCSYSIN . DCU TSysInfoTool component
CTEABOUT . DCU TAboutInfoPropertyEditor code
CTEABOUT . DFM TAboutInfoPropertyEditor form
CTEDATE . DCU TDateTextPropertyEditor code
CTEDATE . DFM TDateTextPropertyEditor form
CTEFILEN . DCU TFileNamePropertyEditor code
CTESELCT . DCU TSelectListPropertyEditor code
CTESELCT . DFM TSelectListPropertyEditor code
CTETIME . DCU TTimeTextPropertyEditor code
CTETIME . DFM TTimeTextPropertyEditor form
CTLCHAR . DCU Character classification library
CTLCRC 16. DCU CRC-16 library
CTLDATE . DCU Date and time routines
CTLDPMI . DCU DPMI library
CTLERROR . DCU Error handling unit
CTLFILE . DCU File handling routines
CTLSTRNG . DCU String library
CTLSWAP . DCU Swap library
CTLSYS . DCU System routines
CTLZSTRN . DCU PZStr library
CTSWITCH . INC The file containing switch settings used when building the toolset.
CORETOOL . HLP CoreTools for Delphi help file
CORETOOL . KWF CoreTools for Delphi help keyword file

 Technical notes
Naming conventions
Routine prefixes
Following the accepted practise amongst vendors of software libraries, all CoreTools for Delphi routines
start with a unique identifier, in our case Ct, e.g. CtReadDirectory.
This convention has arisen due to the problems of conflicting names between language standard library
functions and other vendors supplying routines that perform the same or similar functionality.
The convention has the advantage of informing you immediately of the source of any routine you meet in
your code.
Component names
All our component names comply with the Borland practise of starting all types with the letter T, and end
with the Suffix Tool, e.g. TScanTool.
Type names
All type declarations use the prefix TCt, e.g. TCtFullFileName.
Constant names
All constant declarations use the prefix Ct, e.g. CtMaxDriveNumber.
Exception names
Following the Borland example, all exceptions have the prefix E, again followed by the Ct identifier, e.g.
ECtCRCError.
Performance
Whenever performance is desirable, our routines are coded in assembler. Future upgrades will feature
more assembler routines and resultant speed gains.
The spelling used in this manual
US spelling is the international standard for computing documentation, and this document has complied
with that standard, albiet not always succesfully!
See also
Compiler switch settings

TPercentText Type

Unit
CtcBase
Declaration
TPercentText = string[4];
Description
The TPercentText type stores a cardinal percentage value in 0..100 range.

Windows Version Constants

Unit
CtlSys
Declaration
CtWinMajor : byte;
CtWinMinor : byte;
Description
These typed constants are initialized at bootup to the current Windows version parameters.
Example
For Windows .3.2:

CtWinMajor = 3
CtWinMinor = 20

See also
CtDOSMajor
CtDOSMinor
CoreTools system routines

CtGetWinDir Function

Unit
CtlSys
Declaration
function    CtGetWinDir: string;
Description
The CtGetWinDir function retrieves the path of the Windows directory as a Pascal string.
The path that this function retrieves does not end with a backslash unless the Windows directory is the
root directory.    For example, if the system directory is named WINDOWS on drive C, the path of the system
directory retrieved by this function is C:\WINDOWS.    If Windows is installed in the root directory of drive C,
the path retrieved is C:\.
The CtForceRightBackslash function will add the backslash character to the returned string if such a
character is required.
Comments
The Windows directory contains such files as Windows applications, initialization files, and help files.
The Windows directory is the only directory where an application should create files. If the user is running
a shared version of Windows, the Windows directory is the only directory guaranteed private to the user.
Target
Windows
Returns
The function returns the Windows directory as a Pascal string.
See also
CtGetSysDir
CoreTools system routines

CtGetWinSettings Function

Unit
CtlSys
Declaration
function CtGetWinSettings: TCtWinSettings;
Description
The CtGetWinSettings function retrieves the current Windows system and memory configuration.
Target
Windows, DOS Protected Mode (WinAPI unit).
Returns
The function returns, as a set, the current system and memory configuration.    The configuration returned
by CtGetWinSettings can be a combination of the TCtWinSettings values.
Exceptions
None
See also
CoreTools system routines

 CoreTools CRC-16 library
Description
The library routines calculate a cyclic redundancy check value, known as CRC-16, using the polynomial
X^16 + X^15 + X^2 + 1.
Routines
CtCRC16FileCalculate Calculates the CRC-16 value for a specified file.
CtCRC16FileCopy Calculates the CRC-16 value and copies a specified file
CtCRC16String Calculates the CRC-16 value for a Pascal string.
CtCRC16Update Calculates the CRC-16 value for a buffer.
Exceptions
All routines generate the ECtCRC16 exception.

 CtlCRC16 Unit
Description
Contains the CoreTools CRC-16 routines.
Routines
CtCRC16Update
CtCRC16FileCalculate
CtCRC16FileCopy
Exceptions
ECtCRC16

CtCRC16FileCopy Function

Unit
CtlCRC16
Declaration
function CtCRC16FileCopy (InFileName, OutFileName: TFileName): TCtCRC16;
Description
Calculates the CRC-16 value for InFileName. If OutFileName is specified then InFileName is copied to
OutFileName. In both cases, the CRC-16 value is returned.
The DateTime stamp of OutFileName is set to the same as InFileName.
This function can be used to verify the integrity of a file's contents, and is especially useful for detecting
viruses, defective media or unauthorized modifications. If you use this function to copy a file you can then
store the CRC-16 value separately from the original file, and can later verify the file's integrity by
calculating the CRC-16 on OutFileName and comparing that value with the stored CRC-16 value. If the
values do not match, the file has been modified or corrupted.
The routine uses CoreBuffer in which to read the file's contents, and you should ensure that you are not
using that buffer for your own purposes when calling this routine.
Parameters
InFileName The file to be CRC-16 checked and the source for the CRC-16 copy.
OutFileName The target file for the CRC-16 copy.
Returns
The CRC-16 value of In Filename.
Exceptions raised
ECtCRC16 CTLCRC16: Same source and destination

CTLCRC16: Cannot open input file
CTLCRC16: Cannot open output file
CTLCRC16: I/O error
CTLCRC16: Calculation failed

See also
CtCRC16FileCalculate
CtCrc16String
CtCRC16Update

CtCRC16Update Function

Unit
CtlCRC16
Declaration
function CtCRC16Update (var Buffer; Value, Count: integer) : TCtCRC16;
Description
The CtCRC16Update function is used to calculate the CRC-16 value of data that is too large to fit into
memory in one pass, the function is called consecutively, producing an accumulated CRC-16 value.
The first iteration should be with Value initialized to zero and passing Buffer, containing the data to be
checked, along with the buffer size in Count. Continue calling CtCRC16Update for subsequent blocks,
passing the previous value of Value until the data requiring the CRC-16 check has all passed through the
function.
Parameters
Buffer the buffer to be added to the calculation.
Value the accumulated CRC-16 value.
Count the size, in bytes, of the buffer.
Returns
The function returns the CRC-16 value of the buffer.
Exceptions
ECtCRC16Message = CTLCRC16: Calculation failed
ERangeError
See also
CtCRC16FileCalculate
CtCRC16FileCopy
CtCRC16String

CtCRC16FileCalculate Function

Unit
CtlCRC16
Declaration
function CtCRC16FileCalculate (F: TFileName): TCtCRC16;
Description
The CtCRC16FileCalculate function computes and returns the CRC-16 value for the contents of F. This
function can be used to verify the integrity of a file's contents, and is especially useful for detecting
viruses, defective media or unauthorized modifications. If you calculate a file's CRC-16 value and store
the value separately from the original file, you can later verify the file's integrity by calculating the CRC-16
on the current version and comparing that value with the stored CRC-16 value. If the values do not
match, the file has been modified or corrupted.
The routine uses CoreBuffer in which to read the file's contents, and you should ensure that you are not
using that buffer for your own purposes when calling this routine.
Parameters
F The name of the file requiring CRC-16 check. If the file is not in the current directory, then F

must contain the drive and/or directory if either is different from the default drive or current
directory.

Returns
The function returns the CRC-16 value for F.
Exceptions
ECtCRC16 CTLCRC16: Cannot open file

CTLCRC16: file read error
CTLCRC16: Calculation failed

See also
CtCRC16FileCopy
CtCRC16String
CtCRC16Update

ECtCRC16 Exception

Unit
CtlCRC16
Declaration
ECtCRC16 = class (Exception);
Description
This exception is raised for all CTLCRC16 library error conditions. The Message property defines the
exact error condition that occurred.
Messages
CTLCRC16: Cannot open input file <filename>
CTLCRC16: Cannot open output file <filename>
CTLCRC16: Input error
CTLCRC16: I/O error
CTLCRC16: Calculation failed

ECtError Exception

Unit
CtlError
Declaration
ECtError = class(Exception);
Description
Raised for all CoreTools for Delphi components error conditions. The Message property defines the exact
error condition that occurred, see also TCtError type.
Messages for each error code
feOpenFile Open file error
feCloseFile Close file error
feInvalidDirectory Invalid directory
feReadError Read error
feInvalidFile Invalid file
feSettingFileAttr Fail setting file attributes
feCreateFile Create file error
feDeleteError Delete file error
feErrorDuringCopy Copy file error
feRenameError Rename file error
feLineTooLong Line too long error
feFieldTooLong Field too long error
feConversionError Time Conversion error
feDateConversion Date conversion error
feTimeConversion Time conversion error
feSameSourceAndTarget Same source and destination
feCRCError CRC-16 error
feInvalidFieldIndexSet Invalid field index set
feInvalidFieldIndexGet Invalid field index get

 TSysInfoTool Component
Unit
CtcSysIn
Description
The TSysInfoTool component provides system information from DOS and Windows.
Properties
About Product and component version information and facilities to register your product.
Environment A list containing the applications environment variables.
FreeGDI Returns the percentage of free space for GDI resources.
FreeMEM Returns the amount of available memory, in bytes.
FreeSYS Returns the percentage of free space for system resources.
FreeUSR Returns the percentage of free space for USER resources.
MaxMEM Returns the size of the largest contiguous memory block available.
NameCompany Returns the Company Name registered with Windows.
NameUser Returns the User Name registered with Windows.
PathSystem Returns the path of the Windows system directory.
PathWindows Returns the path of the Windows directory.
SaverDelay Returns the screen-saver delay time-out in minutes.
VerDOS Returns the installed DOS version number.
VerWin Returns the installed Windows version number.
WinSettings Returns a set containing the windows processor and memory configuration.
Methods
None
Events
OnError

FreeGDI Property

Applies to
TSysInfoTool
Declaration
property FreeGDI : TPercentText
Description
Returns as text the percentage of free space for GDI resources. GDI resources include device-context
handles, brushes, pens, regions, fonts, and bitmaps.
See also
FreeMEM
FreeSYS
FreeUSR

FreeMEM Property

Applies to
TSysInfoTool
Declaration
property FreeMEM : longint
Description
Returns the amount of available memory, in bytes.
Note that a contiguous block of storage the size of the returned value is unlikely to be available due to
fragmentation of the heap. To find the largest free block, use the MaxMEM property.
In standard mode, the value returned represents the number of bytes in the global heap that are not used
and that are not reserved for code.
In 386-enhanced mode, the return value is an estimate of the amount of memory available to an
application. It does not account for memory held in reserve for non-Windows applications.
See also
FreeGDI
FreeSYS
FreeUSR
MaxMEM

FreeSYS Property

Applies to
TSysInfoTool
Declaration
property FreeSYS : TPercentText
Description
Returns as text the percentage of free space for system resources.
See also
FreeGDI
FreeMEM
FreeUSR

FreeUSR Property

Applies to
TSysInfoTool
Declaration
property FreeUSR : TPercentText
Description
Returns as text the percentage of free space for USER resources. These resources include window and
menu handles.
See also
FreeGDI
FreeMEM
FreeSys

NameCompany Property

Applies to
TSysInfoTool
Declaration
property NameCompany : string;
Description
The NameCompany property returns the company name registered with Windows API.
See also
NameUser

NameUser Property

Applies to
TSysInfoTool
Declaration
property NameUser : string;
Description
The NameUser property returns the user name registered with Windows API.
See also
NameCompany

PathSystem Property

Applies to
TSysInfoTool
Declaration
property PathSystem : string;
Description
Returns the path of the Windows system directory. The system directory contains such files as Windows
libraries, drivers, and font files.
Applications should not create files in the system directory. If the user is running a shared version of
Windows, the application will not have write access to the system directory.
Applications should create files only in the directory returned by the PathWindows property.
The path that this property returns ends with a backslash.
See also
PathWindows

PathWindows Property

Applies to
TSysInfoTool
Declaration
property PathWindows : string;
Description
Returns the path of the Windows directory. The Windows directory contains such files as Windows
applications, initialization files, and help files.
The Windows directory is the only directory where an application should create files. If the user is running
a shared version of Windows, the Windows directory is the only directory guaranteed private to the user.
The path this property returns ends with a backslash
See also
PathSystem

SaverDelay Property

Applies to
TSysInfoTool
Declaration
property SaverDelay : word;
Description
The SaverDelay property returns the screen-saver delay time-out as minutes.

VerDOS Property

Applies to
TSysInfoTool
Declaration
property VerDOS : string;
Description
Returns the version number of the installed DOS operating system.
See also
VerWin

VerWin Property

Applies to
TSysInfoTool
Declaration
property VerWin : string;
Description
Returns the version number of the installed Windows operating system.
See also
VerDOS

CtcSysIn Unit

Description
This unit contains the TSysInfoTool component.
Types
TSysInfoTool

To see a listing of items declared in this unit including their declarations, use the ObjectBrower.

Complier switch settings
The CoreTools for Delphi toolset has been constructed using the following compiler switches:

{$A-} {Align Data}
{$B-} {Complete Boolean Evaluation}
{$C MOVEABLE DEMANDLOAD DISCARDABLE} { Code Segment Attribute }
{$D-} {Debug Information}
{$F-} {Force FAR Calls}
{$G-} {Generate 286 Instructions}
{$I+} {Input/Output Checking}
{$L-} {Local Symbol Information}
{$N+} {8087 Math Coprocessor Support}
{$P+} {Open String Parameters}
{$Q+} {Arithmetic Overflow Checking}
{$R+} {Range Checking}
{$S+} {Stack-Overflow Checking}
{$T+} {Typed @ Operator}
{$U-} {Pentium-Safe FDIV}
{$V+} {Var-String Checking, overriden by $P}
{$W-} {Windows Stack Frame}
{$X+} {Extended Syntax}
{$Y-} {Symbol Reference Information}
{$Z-} {Word Size Enumerated Types}

CtForceRightChar Function

Unit
CtlStrng
Declaration
function CtForceRightChar (var S: string; const C:char): string;
Description
Forces a trailing character, C, on to the string S.
If the right hand side character is already set to C then no additional action is taken, otherwise C is
appended to the right hand side of S.
Parameters
S The string that is to be the subject of the operation.
C The character to force append.
Returns
The function returns a copy of S with the specified character forced onto the RIGHT HAND SIDE of the
string.
Exceptions
ECtError CtlStrng: CtForceRightChar
See also
CtForceRightBackslash
CoreTools string handling routines

CtPercentToText Function

Unit
CtlStrng
Declaration
function PercentToText (P: TPercent): TPercentText;
Description
Converts P to a text string of the type TPercentText. The % character is appended to the right side of the
string.
Parameters
P The value to convert.
Returns
A string representation of the % value.
Exceptions
ECtError CtlStrng: CtPercentToText
See also
CoreTools string handling routines

CtForceRightBackslash Function

Unit
CtlStrng
Declaration
function CtForceRightBackslash (S:string): string;
Description
Forces a trailing backslash character on to the string S.
If the right hand character is already set to backslash then no additional action is taken, otherwise a
backslash is appended to the right of S.
Parameters
S The string on which to append the backslash (\) character.
Returns
A copy of the parameter S, with a backslash character (\) forced onto the RIGHT HAND SIDE if one does
not already exist.
Exceptions
ECtError CtlStrng: CtForceRightBackslash
See also
CtForceRightChar
CoreTools string handling routines

CtPZStrToString Function

Unit
CtlZStrn
Declaration
function CtPZStrToString (Source: PZStr; const DeleteSource: boolean): string;
Description
Creates a new Pascal string and copies to it the contents of Source. Source is deallocated if
DeleteSource is set true..
Parameters
Source the string to be copied
DeleteSource if true, then Source is deallocated
Returns
A string containing the contents of Source.
Exceptions
ECtError Message = CtlZStrn: CtPZStrToString
See also
CtFreePZStr
CtNewPZStr
CtPCharToPZStr
CtPZStrToPString
CtStringToPZStr
CoreTools PZStr handling routines

CtStringToPZStr Function

Unit
CtlZStrn
Declaration
function CtStringToPZStr (const S: string): PZStr;
Description
Constructs a new PZStr on the heap, able to contain 255 characters and the null terminator, and copies to
it the contents of S.
Strings created using this function can be freely used with Pascal type strings as they are long enough to
avoid heap corruption, the Windows API routines are the best example where the PZStr type is useful..
Caveat
The returned string should always be deallocated using CtFreePZStr, as that ensures that all 256
characters allocated are correctly deallocated.
Parameters
S the Pascal string to convert.
Returns
A PZStr value, pointing to a PZStr containing the text copied from S.
Exceptions
ECtError CtlZStrn: CtStringToPZStr
See also
CtFreePZStr
CtNewPZStr
CtPCharToPZStr
CtPZStrToPString
CtPZStrToString
CoreTools PZStr handling routines

CtPZStrToPString Function

Unit
CtlZStrn
Declaration
function CtPZStrToPString (Source: PZStr; const DeleteSource: boolean): PString;
Description
Creates a new Pascal string on the heap and copies to it the contents of Source. Optionally Source can
be deallocated at the same time.
The resulting PString dynamic string should be deallocated with DisposeStr.
Caveat
Do not change the length of the resultant string. Increasing the length of the string overwrites other
variables on the heap. Decreasing the length of the string prevents some of the memory from being
deallocated.
Parameters
Source The null terminated string from which the contents are to be copied.
DeleteSource If true, Source is deallocated.
Returns
The function returns a new PString containing the contents of Source.
Exceptions
ECtError Message = CtlZStrn: CtPZStrToPString
See also
CtFreePZStr
CtNewPZStr
CtPCharToPZStr
CtPZStrToString
CtStringToPZStr
CoreTools PZStr handling routines

CtPCharToPZStr Function

Unit
CtlZStrn
Declaration
function CtPCharToPZStr (Source: PChar; const DeleteSource:boolean): PZStr;
Description
Converts Source, a null terminated string, to a PZChar string, which is a 256 byte null terminated string.
Optionally, Source can be deallocated. If Source is longer than 255 bytes, then only the first 255 bytes are
copied.
Caveat
The resulting PZStr string must be deallocated using CtFreePZStr, and not the StrDispose procedure.
Parameters
Source The null terminated string from which the contents are to be copied.
DeleteSource If true, Source is deallocated.
Returns
The function returns a PZStr pointer to a TZStr null terminated string containing the contents of Source.
Exceptions
ECtError Message = CtlZStrn: CtPCharToPZStr
See also
CtFreePZStr
CtNewPZStr
CtPZStrToPString
CtPZStrToString
CtStringToPZStr
CoreTools PZStr handling routines

CtFreePZStr Procedure

Unit
CtlZStrn
Declaration
procedure CtFreePZStr (Str: PZStr);
Description
Deallocates a PZStr created using CtNewPZStr, CtPCharToPZStr or CtStringToZStr functions. This
ensures that the full 256 characters originally allocated are deallocated correctly.
Parameters
Str The string pointer to be deallocated.
Exceptions
EInvalidPointer
ECtError CtlZStrn: CtFreePZStr
See also
CtNewPZStr
CtPCharToPZStr
CtPZStrToPString
CtPZStrToString
CtStringToPZStr
CoreTools PZStr handling routines

 CoreTools PZStr handling routines
Description
The PZStr routines are a library of routines to support the PZStr type, which is a dynamic, null terminated
string of 256 bytes in length, the same length as a Pascal type string. Using the PZStr type avoids the risk
of memory heap corruption when copying strings between the two types.
The standard Delphi routines for conversion between String, PString and PChar can be freely used on the
PZStr type. Routines have only been provided to supplement those already existing in Delphi.
Routines
CtFreePZStr Deallocates a PZStr type string.
CtNewPZStr Allocates heap memory for a PZStr string.
CtPCharToPZStr Converts a null terminated string to a PZStr.
CtPZStrToPString Converts a PZStr value to a PString, optionally allows deallocation of the

original value.
CtPZStrToString Converts a PZStr value to a Pascal string.
CtStringToPZStr Converts a Pascal string value to a PZStr value.
See also
CoreTools string handling routines
CoreTools string conversion routines
CoreTools swapping routines

CtNewPZStr Function

Unit
CtlZStrn
Declaration
function CtNewPZStr: PZStr;
Description
Allocates heap memory for a PZStr type. Deallocation should always be performed with the CtFreePZStr
function.
Returns
A pointer to a PZStr string, allocated on the heap. If memory is not available, then the EOutOfMemory
exception is raised.
Exceptions
ECtError Message = CtlZStrn: CtNewPZStr
EOutOfMemory
See also
CtFreePZStr
CtPCharToPZStr
CtPZStrToPString
CtPZStrToString
CtStringToPZStr
CoreTools PZStr handling routines

CtSwapPChar Procedure

Unit
CtlSwap
Declaration
procedure CtSwapPChar (var x, y: PChar);
Description
Swaps two PChar values.
Parameters
x,y values to swap.
Exceptions
ECtError Message = CtlSwap: CtSwapPChar
See also
CtSwapByte
CtSwapCardinal
CtSwapChar
CtSwapComp
CtSwapDouble
CtSwapExtended
CtSwapInteger
CtSwapLongInt
CtSwapReal
CtSwapShortInt
CtSwapSingle
CtSwapString
CtSwapWord
CoreTools swapping routines
CoreTools Pascal string handling routines

PZStr Type

Unit
CtlZStrn
Declaration
TZStr = array[0..255] of char;
PZStr = ^TZStr;
Description
The PZStr type is comparable to the PChar type, except for the fact that it has its own memory allocation
and deallocation functions, which ensure that a fixed length of 256 bytes, the same as a Pascal string, is
allocated and correctly deallocated.
The type can be used with Pascal type strings without fear of heap corruption, as may occur if a PChar of
less than 255 characters capacity is used and the Pascal string contains more characters than the
memory allocated to the PChar.
See also
CtFreePZStr
CtNewPZStr
CtPCharToPZStr
CtPZStrToPString
CtPZStrToString
CtStringToPZStr
CoreTools PZStr handling routines

 Technical Support
Who is eligible?
Only registered license holders of CoreTools for Delphi are eligible for techincal support.
Before you contact us
In order to save everyone some time, we'd like you to do a few things before you contact us. We know the
urge to call is great, but
we'd appreciate it if you double check this list:
· Have you read the whole manual? All of it?
· Have you used the search feature of the manual?
· Have you looked at the demo source?
If you got this far, it must be a tough one. Maybe it's time to tell us about your problem.
How to contact us
The preferred method of contacting us for technical support is on CompuServe, including through
services such as MCI Mail, BIX, the Internet, etc. You can send any questions or problems to our
CompuServe address. Do not leave questions on CompuServe forums as they probably won't be
anwsered.
We currently offer free telephone support on an "as available" basis, Monday through Friday usually from
9 a.m. to 6 p.m UK time. Please note the time before you call. Sorry, we cannot return international calls.
Although there is currently no expiry date on free support, we reserve the right to restrict it to the first 90
days from the time of purchase, without any prior notice.

MaxMEM Property

Applies to
TSysInfoTool
Declaration
property MaxMEM : longint
Description
The MaxMEM property returns the size of the largest contiguous free block in the heap.    MaxMEM
returns the larger of:
- The largest free blocks within the heap manager's sub-allocation space
- The Windows global heap
The value corresponds to the size of the largest dynamic variable that can be allocated at that time.
To find the total amount of free memory in the heap, check FreeMEM.
See also
FreeGDI
FreeMEM
FreeSYS
FreeUSR

 Address, Phone, Email, etc.
You can contact us through any of the following:

Post: Core Software Limited, 3 Tearne Street, St Johns, WORCESTER, WR2 6BL, UK

Phone: +44 1905 420 784

CompuServe: 100041,3143

Internet: 100041.3143@compuserve.com

Others:For other online services, such as America Online, Prodigy, MCI Mail, etc., please see
your manuals about contacting CompuServe or the Internet, and use the addresses listed above.

Due to time differences we cannot return international calls.
Preferred
Send e-mail.

CtlZStrn Unit

Description
This unit contains routines supporting the PZStr type.
Types
PZStr
TZStr
Routines
CtFreePZStr
CtNewPZStr
CtPCharToPZStr
CtStringToPZStr
CtPZStrToString
CtPZStrToPString
See also
CtlStrng Unit

TransferName Property

Applies to
TFileTool
Declaration
property TransferName: TFileName
Description
Specifies the new name for copy and move actions.
See also
faCopy
faCopyVerify
faMove
faMoveVerify

IsRegistered Property

Applies to
All CoreTools components
Declaration
property IsRegistered: boolean;
Description
Returns whether the file CORE.LIC is present in the Windows directory and contains a valid serial number
for CoreTools for Delphi.
See also
InDesignMode

InDesignMode Property

Applies to
All CoreTools components
Declaration
property InDesignMode: boolean;
Description
Returns whether Delphi is currently running.
See also
IsRegistered

CtIsAlpha Function

Unit
CtlChar
Declaration
function CtIsAlpha (C: char): boolean;
Description
Tests C to check if it is an alphabetical character. Characters checked for are: A-Z or a-z.
Parameters
C the character on which to perform the test.
Returns
True if the test is successful, otherwise returns False.
Exceptions
None
See also
CtIsAlNum
CtIsASCII
CtIsCntrl
CtIsDigit
CtIsGraph
CtIsLower
CtIsPrint
CtIsPunct
CtIsReal
CtIsSigned
CtIsSpace
CtIsUpper
CtIsXDigit

 CoreTools character classification routines
Description
This library contains assembler coded boolean functions that classify characters within a given group in
the lower ASCII table (<#128).
The routines are comparable in speed to using character sets.
Routines
CtIsAlNum Tests for alpha-numeric character
CtIsAlpha Tests for alphabetic character
CtIsASCII Tests for lower ASCII table character
CtIsCntrl Tests for printer control character
CtIsDigit Tests for numbers zero through nine
CtIsGraph Tests for a "black" printable character
CtIsLower Tests for lower case character
CtIsPrint Tests for printable character
CtIsPunct Tests for punctuation character
CtIsReal Tests for real number character
CtIsSigned Tests for signed number character
CtIsSpace Tests for non-printing paper-movement character
CtIsUpper Tests for upper case character
CtIsXDigit Tests for hex digit character
See also
Character classification sets

CtlDPMI Unit

Description
This unit contains the DPMI library routines.
Routines
CtRealIntr
Types
TCtRegs
Constants
dpmiFreeDesc dpmiGetDesc dpmiGetExcept
dpmiGetInt dpmiGetRealInt dpmiGetRMCB
dpmiGetSelInc dpmiGetSegBase dpmiGetVersion
dpmiSegToDesc dpmiSetExcept dpmiSetInt
dpmiSetRealInt dpmiSetSegBase dpmiSetSegSize

flagAuxiliary flagCarry flagDirection
flagInterrupt flagOverflow flagParity
flagSign flagTrap flagZero
See also
CoreTools DPMI routines
DPMI Constants

To see a listing of items declared in this unit including their declarations, use the ObjectBrower.

TFileBaseTool Component

Unit
CtcFBase
Description
TFileBaseTool is the abstract super-class from which all file based CoreTools for Delphi components
descend.
See also
Component logical model

CtcFBase Unit

Description
CtcFBase is the unit containing the abstract super-class, TFileBaseTool, from which all file based
CoreTools for Delphi components descend.
Types
TCtDateText
TCtFileExt
TCtFileNameOnly
TCtFullFileName
TCtTimeText
TFileBaseTool

To see a listing of items declared in this unit including their declarations, use the ObjectBrower.

CtIsAlNum Function

Unit
CtlChar
Declaration
function    CtIsAlNum    (C: char): boolean;
Description
Tests C to check if it is a alphanumeric character. Alphanumeric characters are: A-Z or a-z or a digit 0-9.
Parameters
C the character on which to perform the test.
Returns
True if the test is successful, otherwise returns False.
Exceptions
None
See also
CtIsAlpha
CtIsASCII
CtIsCntrl
CtIsDigit
CtIsGraph
CtIsLower
CtIsPrint
CtIsPunct
CtIsReal
CtIsSigned
CtIsSpace
CtIsUpper
CtIsXDigit

CtIsDigit Function

Unit
CtlChar
Declaration
function CtIsDigit (C: char): boolean;
Description
Tests C to check if it is a decimal-digit character. The check performed is: 0-9.
Parameters
C the character on which to perform the test.
Returns
True if the test is successful, otherwise returns False.
Exceptions
None
See also
CtIsAlNum
CtIsAlpha
CtIsASCII
CtIsCntrl
CtIsGraph
CtIsLower
CtIsPrint
CtIsPunct
CtIsReal
CtIsSigned
CtIsSpace
CtIsUpper
CtIsXDigit

CtIsGraph Function

Unit
CtlChar
Declaration
function CtIsGraph (C: char): boolean;
Description
Tests C to check if it is a printing character, excluding blank space (' '). The check performed is: .#33-#126
Parameters
C the character on which to perform the test.
Returns
True if the test is successful, otherwise returns False.
Exceptions
None
See also
CtIsAlNum
CtIsAlpha
CtIsASCII
CtIsCntrl
CtIsDigit
CtIsLower
CtIsPrint
CtIsPunct
CtIsReal
CtIsSigned
CtIsSpace
CtIsUpper
CtIsXDigit

CtIsLower Function

Unit
CtlChar
Declaration
function CtIsLower (C: char): boolean;
Description
Tests C to check if it is a lowercase character. The check performed is: .a-z.
Parameters
C the character on which to perform the test.
Returns
True if the test is successful, otherwise returns False.
Exceptions
None
See also
CtIsAlNum
CtIsAlpha
CtIsASCII
CtIsCntrl
CtIsDigit
CtIsGraph
CtIsPrint
CtIsPunct
CtIsReal
CtIsSigned
CtIsSpace
CtIsUpper
CtIsXDigit

CtIsPrint Function

Unit
CtlChar
Declaration
function CtIsPrint (C: char): boolean;
Description
Tests C to check if it is a printing character, including the blank space (' '). The check performed is: .#32 -
#126.
Parameters
C the character on which to perform the test.
Returns
True if the test is successful, otherwise returns False.
Exceptions
None
See also
CtIsAlNum
CtIsAlpha
CtIsASCII
CtIsCntrl
CtIsDigit
CtIsGraph
CtIsLower
CtIsPunct
CtIsReal
CtIsSigned
CtIsSpace
CtIsUpper
CtIsXDigit

CtIsPunct Function

Unit
CtlChar
Declaration
function CtIsPunct (C: char): boolean;
Description
Tests C to check if it is a punctuation character. The check performed is: .CtIsGraph but not CtIsAlNum.
Parameters
C the character on which to perform the test.
Returns
True if the test is successful, otherwise returns False.
Exceptions
None
See also
CtIsAlNum
CtIsAlpha
CtIsASCII
CtIsCntrl
CtIsDigit
CtIsGraph
CtIsLower
CtIsPrint
CtIsReal
CtIsSigned
CtIsSpace
CtIsUpper
CtIsXDigit

CtIsReal Function

Unit
CtlChar
Declaration
function CtIsReal (C: char): boolean;
Description
Tests C to check if it is a real number character. The check performed is: 0-9 + Minus . e E
Parameters
C the character on which to perform the test.
Returns
True if the test is successful, otherwise returns False.
Exceptions
None
See also
CtIsAlNum
CtIsAlpha
CtIsASCII
CtIsCntrl
CtIsDigit
CtIsGraph
CtIsLower
CtIsPrint
CtIsPunct
CtIsSigned
CtIsSpace
CtIsUpper
CtIsXDigit

CtIsSigned Function

Unit
CtlChar
Declaration
function CtIsSigned (C: char): boolean;
Description
Tests C to check if it is a signed number character. The check performed is: 0-9 + Minus
Parameters
C the character on which to perform the test.
Returns
True if the test is successful, otherwise returns False.
Exceptions
None
See also
CtIsAlNum
CtIsAlpha
CtIsASCII
CtIsCntrl
CtIsDigit
CtIsGraph
CtIsLower
CtIsPrint
CtIsPunct
CtIsReal
CtIsSpace
CtIsUpper
CtIsXDigit

CtIsSpace Function

Unit
CtlChar
Declaration
function CtIsSpace (C: char): boolean;
Description
Tests C to check if it is a space character. The check performed is: #09-#13
Parameters
C the character on which to perform the test.
Returns
True if the test is successful, otherwise returns False.
Exceptions
None
See also
CtIsAlNum
CtIsAlpha
CtIsASCII
CtIsCntrl
CtIsDigit
CtIsGraph
CtIsLower
CtIsPrint
CtIsPunct
CtIsReal
CtIsSigned
CtIsUpper
CtIsXDigit

CtIsUpper Function

Unit
CtlChar
Declaration
function CtIsUpper (C: char): boolean;
Description
Tests C to check if it is an uppercase character. The check performed is: A-Z
Parameters
C the character on which to perform the test.
Returns
True if the test is successful, otherwise returns False.
Exceptions
None
See also
CtIsAlNum
CtIsAlpha
CtIsASCII
CtIsCntrl
CtIsDigit
CtIsGraph
CtIsLower
CtIsPrint
CtIsPunct
CtIsReal
CtIsSigned
CtIsSpace
CtIsXDigit

CtIsXDigit Function

Unit
CtlChar
Declaration
function CtIsXDigit (C: char): boolean;
Description
Tests C to check if it is a hexadecimal character. The check performed is: 0-9 A-F a-f
Parameters
C the character on which to perform the test.
Returns
True if the test is successful, otherwise returns False.
Exceptions
None
See also
CtIsAlNum
CtIsAlpha
CtIsASCII
CtIsCntrl
CtIsDigit
CtIsGraph
CtIsLower
CtIsPrint
CtIsPunct
CtIsReal
CtIsSigned
CtIsSpace
CtIsUpper

CtlChar Unit

Description
This unit contains character classification routines.
Routines
CtIsAlNum
CtIsAlpha
CtIsASCII
CtIsCntrl
CtIsDigit
CtIsGraph
CtIsLower
CtIsPrint
CtIsPunct
CtIsReal
CtIsSigned
CtIsSpace
CtIsUpper
CtIsXDigit
Constants
CtAlphaSet
CtAlphaNumSet
CtASCIISet
CtControlSet
CtDelimSet
CtDigitSet
CtGraphSet
CtLowerSet
CtPrintSet
CtPunctSet
CtQuoteSet
CtRealSet
CtSignedSet
CtSpaceSet
CtUpperSet
CtXDigitSet

To see a listing of items declared in this unit including their declarations, use the ObjectBrower.

CtCRC16String Function

Unit
CtlCRC16
Declaration
function CtCRC16String (S: string): TCtCRC16;
Description
The CtCRC16String function returns the CRC-16 value for the string argument.
Parameters
S The string that is the subject of this operation.
Returns
The function returns the CRC-16 value of the string.
Exceptions
ECtCRC16Message = CTLCRC16: Calculation failed
See also
CtCRC16FileCalculate
CtCRC16FileCopy
CtCRC16Update

CtRealIntr Function

Unit
CtlDPMI
Declaration
function CtRealIntr (InterruptNumber: byte; var SimRegisters: TCtRegs): boolean;
Description
The CtRealIntr function simulates an interrupt in real mode using DPMI function $0300.    When the
interrupt is simulated, the registers will contain the values input in SimRegisters.    When the interrupt
returns, SimRegisters will contain the values returned by the real mode interrupt.
It is recommended that when the user creates an instance of TCtRegs that the Delphi FillChar procedure
is used first to set all registers to zero before use, as the memory allocated is not cleared by the Windows
API before allocation.
Parameters
InterruptNumber The interrupt to be simulated.
SimRegisters The instance of TCtRegs that is used to pass register values to the DPMI API and to

return register values to the caller.
Returns
The function returns true if the DPMI call was successful, otherwise returns false. In addition, if the
interrupt that you invoked modified the contents of any of the registers, the new values are retuned in
SimRegisters.
Exceptions
None
Remarks
When passing buffer addresses to the BIOS or DOS it is essential that these should have been allocated
using the Windows API function GlobalDOSAlloc, which allocates memory addressable by DOS in 'real
mode' and Windows applications in protected mode.
Memory allocated by GlobalDOSAlloc should only be released using GlobalDOSFree.    It is important
that the buffer should be released as soon as possible, because the memory pool from which the object is
allocated is a scarce system resource.
The GlobalDosAlloc function allocates global memory that can be accessed by MS-DOS running in real
mode. The memory is guaranteed to exist in the first megabyte of linear address space.The return value
contains a paragraph-segment value in its high-order word and a selector in its low-order word. An
application can use the paragraph-segment value to access memory in real mode and the selector to
access memory in protected mode. If Windows cannot allocate a block of memory of the requested size, it
returns zero.
When copied to the pseudo register, the segment/selector address obtained from the Windows API
function GlobalDOSAlloc should be handled thus:

globalDosBuffer := GlobalDOSAlloc(size);
...
realModeReg.DS := HiWord(globalDosBuffer);

When used in the application:
P^ := Pointer(MakeLong(0, LoWord(globalDosBuffer)));
...
GlobalDOSFree(globalDOSBuffer);

In the example above, the pseudo DS register and P^ are addressing the same memory by different
routes. The pseudo register is using real mode segment:offset addressing, whilst the P^ is using
Protected modes selector:offset addressing.
Memory allocated by using the GlobalDosAlloc function does not need to be locked by using the Windows
API GlobalLock function.
There is no guarantee that an interrupt is supported under Windows - many are not. You are entirely on
your own (like all of us) at the mercy of Windows.
This routine was written to handle those services or interrupts that use any memory addresses or
'undocumented' DOS calls that require 'real mode', or lower DOS addresses.

Most normal INT $21 functions are supported under Windows, and those that are will accept the
protected-mode memory addresses available from the Windows GlobalDOSAlloc function. For those
interrupts and functions, you can write asm code directly in Object Pascal, using the Windows DOS3Call,
as its a great deal quicker than using the DPMI API to switch from protected mode to real mode and back.
Caveat
You should NOT use this routine with

INTERRUPT $20, INTERRUPT $21 function 0, INTERRUPT $21 function $4C (all of which
terminate programs)

INTERRUPT $27 and INTERRUPT $21 function $31, which both make programs memory-
resident

INTERRUPT $25 and $26 (read/write absolute).

 CoreTools System routines

Description
This library contains DOS and Windows system routines.
Routines
CtGetCompany Returns the registered company name.
CtGetEnv Parses the environment and inserts all environment variables into a list.
CtGetEnvUsed Returns the number of bytes actually used in the DOS environment.
CtGetEnvVar Returns the environment variable parameters for a specified variable
CtGetSysDir Returns the path of the Windows system directory as a Pascal string.
CtGetUser Returns the registered user name.
CtGetUserAndCompany Returns the registered user name and company name.
CtGetWinDir Returns the path of the Windows directory as a Pascal string.
CtGetWinSettings Returns the current Windows system and memory configuration.
See also
CtDOSMajor
CtDOSMinor
CtWinMajor
CtWinMinor

 CoreTools DPMI support
Description
The DOS Protected Mode Interface (DPMI) was defined to allow DOS    programs to access the extended
memory of PC architecture computers whilst maintaining system protection.

DPMI defines a specific subset of DOS and BIOS calls that can be made by protected mode DOS
programs.    It also defines a new interface via software interrupt $31 that protected mode programs use
to allocate memory, modify descriptors, call real mode software,    etc.

Windows claims to be capable of supporting DPMI without affecting system security.

Routines
CtRealIntr Simulates an interrupt in real mode using DPMI function $0300.
See also
DPMI Constants

TCtRegs Type

Unit
CtlDPMI
Declaration
PCtRegs = ^TCtRegs;
TCtRegs = record Offset Register

EDI: longint; $00 EDI
ESI: longint; $04 ESI
EBP: longint; $08 EBP
reserved: longint; $0C Reserved
EBX: longint; $10 EBX
EDX: longint; $14 EDX
ECX: longint; $18 ECX
EAX: longint; $1C EAX
FLAGS: word; $20 Flags
ES: word; $22 ES
DS: word; $24 DS
FS: word; $26 FS
GS: word; $28 GS
IP: word; $2A IP
CS: word; $2C CS
SP: word; $2E SP
SS: word; $30 SS
end;

Description
The TCtRegs record is a pseudo register set for real mode DPMI services.
See also
CtRealIntr

TAboutInfo Type
Used internally by CoreTools for Delphi.

Component logical model
The logical model of the CoreTool for Delphi components, in Booch notation, is shown below:

CtlFile Unit

Description
This unit contains the file handling library.
Types
TCtFileExt TCtFileNameOnly TCtFullFileName

TCtFoundFunction TCtFileInfo

Routines
CtExtractFileDrive CtExtractFileNameOnly CtExtractPathNameOnly

CtFileAgeCmp CtFileAttrFull CtFileAttrShort

CtFileAttrToSet CtFileAttrToWord CtFileCompare

CtFileCopy CtFileDateStr CtFileDateTime

CtFileInformation CtFileLineCount CtFileSetAttr

CtFileSetStamp CtFileSize CtIsRootDir

CtParseFileSpec CtReadDirectory CtRemakeDirRoot

CtVerifyOFF CtVerifyON CtVerifyState

See also
CoreTools file-handling routines

CoreBuffer Variable

Unit
CtcBase
Declaration
CoreBuffer : array[1..16384] of byte;
Description
The CoreBuffer variable is the shared file buffer used internally by CoreTools for Delphi libraries and
components. There is little performance gain with a larger buffer and experimentation has shown this to
be the best compromise between memory usage and performance.
Caveat
If the buffer is employed by users for their own use, care must be taken to ensure that there is no conflict
with any CoreTools usage.

 CoreTools file handling routines
Description
This library contains routines that process files.
Routines
CtExtractFileDrive Extracts the drive information from a file specification.
CtExtractFileNameOnly Extracts the file name, without the extension, from a file specification.
CtExtractPathNameOnly Extracts the path, without the drive information, from a file specification.
CtFileAgeCmp Compares the date and time stamps of two files
CtFileAttrFull Returns a full textual description of a file attribute set.
CtFileAttrShort Returns a short description of a file attribute set.
CtFileAttrToSet Returns an attribute set corresponding to a DOS attribute word.
CtFileAttrToWord Converts a file attribute set to a DOS file attribute word.
CtFileCompare Performs byte-by-byte comparison of two files.
CtFileCopy Copies a file.
CtFileDateStr Returns the date/time stamp of the specified file as a string.
CtFileDateTime Returns the date/time stamp of the specified file as a TDateTime value.
CtFileInformation Returns file information, including the file date/time, size, and attributes.
CtFileLineCount Returns the number of lines in a text file.
CtFileSetAttr Sets a files attributes to those contained in an attribute set.
CtFileSetStamp Sets the date/time stamp for the specified file.
CtFileSize Returns the size of a file in bytes.
CtIsRootDir Tests if a path specification is a root directory.
CtParseFileSpec Fills a TStringList object with the separate parts of a file specification string.
CtReadDirectory Searches a specified directory for a file mask specification.
CtRemakeDirRoot Extracts a specified root path and replaces it with another.
CtVerifyOFF Turns the DOS verify flag off.
CtVerifyON Turns on the DOS verify flag.
CtVerifyState Returns the state of the DOS verify flag.
See also
CoreTools string handling routines

TCtFoundFunction Type

Unit
CtlFile
Declaration
TCtFoundFunction = function (const F:TFileName; const searchRecord:TSearchRec): boolean of

object;
Description
The TCtFoundFunction type defines a callback function used in the CtReadDirectory function parameters.
See also
CtReadDirectory

CtBoolToResult Function

Unit
CtlStrng
Declaration
function CtBoolToResult (B: boolean): string;
Description
Returns a string showing the state of the boolean B in text format, either Passed or Failed.
Parameters
B The subject of the conversion operation.
Returns
The function returns a textual result description for the state of B.
Exceptions
ECtError CtlStrng: CtBoolToResult
See also
CtBoolToState
CtBoolToString

CtCase Function

Unit
CtlStrng
Declaration
function CtCase (const Options:TCtCaseConvertSet; const S:string) : string;
Description
Performs quote-string aware case conversions on a string.
By default the function does not perform case conversion on portions of a string embedded between
quote characters.
The default can be overriden by setting the caseIgnoreQuotes attribute in Options, however the
CtUpperCase and CtLowerCase functions will perform that simple conversion much faster than this
specialist function.
Parameters
Options a set of conversion options
S the string that is the subject of this operation.
Returns
Returns a copy of S with character conversion performed in accordance with the Options settings.
Exceptions
ECtError CtlStrng: CtCase
See also
CtLowerCase
Ctwordpropercase
CtUpperCase

CtBoolToString Function

Unit
CtlStrng
Declaration
function CtBoolToString (B: boolean): string;
Description
Returns a string showing the state of the boolean B in text format, either True or False.
Parameters
B The subject of the conversion operation.
Returns
The function returns a textual result description for the state of B.
Exceptions
ECtError CtlStrng: CtBoolToString
See also
CtBoolToResult
CtBoolToState

CtUpperCase Function

Unit
CtlStrng
Declaration
function CtUpperCase (const S:string):string;
Description
This function converts all lowercase characters in S to uppercase. S remains unaltered.
Parameters
S The string that is the subject of the convert operation.
Returns
The function returns a copy of S with all lowercase characters converted converted to uppercase.
Exceptions
None
See also
CtCase
CtLowerCase
Ctwordpropercase
CoreTools string handling routines

TCtCaseConvertSet Type

Unit
CtlStrng
Declaration
type
    TCtCaseConvertSet = set of (caseIgnoreQuotes, caseUpper, caseLower);
Description
This set dictates the case conversion operations performed by the CtCase routine.
caseIgnoreQuotes When set overrides the default characteristic, which is to ignore quoted strings

when performing case conversion operations. Quotes recognized are ' and ".
caseUpper When set, all characters in the string are converted to upper case, other than the

default of those in quote strings.
caseLower When set, all characters in the string are converted to lower case, other than the default

of those in quote strings.

CtLowerCase Function

Unit
CtlStrng
Declaration
function CtLowerCase (const S:string):string;
Description
This function converts all uppercase characters in S to lower case. S remains unaltered.
Parameters
S The string that is the subject of the convert operation.
Returns
The function returns a copy of S with all uppercase characters converted converted to lowercase.
Exceptions
None
See also
CtCase
Ctwordpropercase
CtUpperCase
CoreTools string handling routines

CtCharCount Function

Unit
CtlStrng
Declaration
function CtCharCount (C:char; const S:string): byte;
Description
The CtCharCount function scans a string counting occurrences of a specified character.
Parameters
C the character to be searched for.
S the string that is the subject of this operation.
Returns
The function returns the number of occurrences of C in S.
Exceptions
None

CtDetab Function

Unit
CtlStrng
Declaration
procedure CtDetab(var D, S: string; TabStops: byte);
Description
The function CtDetab returns string S in string D with tab character(s) (ASCII $09) converted to space(s).
The number of space(s) is from the last non-space character to the next tab stop.
Parameters
D The destination string in which the converted copy of S will be returned.
S The source string on which the operation will be performed.
TabStops The tab stop interval. TabStops must be >= 2.
Returns
None
Exceptions
ECtError: CtlStrng: CtDetab
See also
CtEntab

CtCharPos Function

Unit
CtlStrng
Declaration
function CtCharPos (C:char; S:string): byte;
Description
The CtCharPos function returns the index position of the first instance a character in a string.
This function performs the same operation as the Pascal POS function except that it works only with a

single character.
Parameters
C the character to search for.
S the string that is to be the subject of the operation.
Returns
Returns the first index position of C in S, if not found returns 0.
Exceptions
None
See also
CtCharPosNext
CtPosSet
CtRCharPos
CtRPos
CtWordPos

CtCJustify Function

Unit
CtlStrng
Declaration
function CtCJustify (S:string; C:char; L:byte): string;
Description
Places the source string S in the center of a string L characters long. Any additional characters that have
to be added are implemented using C category characters.
Parameters
S the source string.
L the new string length.
C the character to expand the string with.
Returns
The function returns a copy of S center justified in a string of L length, using C characters to pad the
additional characters necessary to achieve the specified length.
Exceptions
ECtError: CtlStrng: CtCJustify
See also
CtLJustify
CtRJustify

CtCharPosNext Function

Unit
CtlStrng
Declaration
function CtCharPosNext (C:char; S:string; StartPos:byte):byte;
Description
This function searches for the next occurrence of C in S after position StartPos.
Note: the character at StartPos is not tested.
Parameters
C character to search for.
S string to search.
StartPos starting index position.
Returns
The function returns the offset from the beginning of the string, NOT the offset from StartPos.
Exceptions
None
See also
CtCharPos
CtPosSet
CtRCharPos
CtRPos
CtWordPos

CtWordPos Function

Unit
CtlStrng
Declaration
function CtWordPos (const N:byte; const S:string): byte;
Description
Determines the starting index position of a word.
Parameters
N The number of the word to check.
S The source string on which the operation will be performed.
Returns
The function returns the starting index position of the specified word number. If there are too few words in
the source string, then 0 is returned.
Exceptions
ECtError CtlStrng: CtWordPos
See also
CtWordCount
CtWordExtract
CtWordNext
CtWordProperCase
CoreTools string handling routines

CtRJustify Function

Unit
CtlStrng
Declaration
function CtRJustify (S:string; C:char; L:byte): string;
Description
The CtRJustify function expands and right justifies a string.
Parameters
S The source String.
C The character to expand the string with.
L The new string length.
Returns
Returns a right hand justified version of S, padded with character C, and of length L.
Exceptions
ECtError CtlStrng: CtRJustify
See also
CtCJustify
CtLJustify
CoreTools string handling routines

CtEntab Function

Unit
CtlStrng
Declaration
procedure CtEntab (var D, S: string; TabStops: byte);
Description
The function returns a copy of string S in string D with space character(s) converted to tab(s) (ASCII $9).
A tab replaces space characters from the last non-space character to the next tab stop.
Parameters
S The source string on which the operation will be performed.
D The destination string for the entabbing operation.
TabStops The tab stop interval.    TabStops must be >= 2.
Returns
None
Exceptions
ECtError: CtlStrng: CtEntab
See also
CtDetab

CtFill Function

Unit
CtlStrng
Declaration
function CtFill (C:char; N:byte): string;
Description
This function returns a string containing N instances of C.
Parameters
C The character to use to fill the string.
N The number of instances of C required.
Returns
The function returns a string filled with the specified characters.
Exceptions
None
See also
CtOverlay
CtReplace

CtParse Procedure

Unit
CtlStrng
Declaration
procedure CtParse(const S: string; const Separators: TCtCharSet; const Quotes: TCtCharset;

const FilterQuotes: boolean; List: TStringList);
Description
The procedure CtParse parses S into separate text tokens, placing the results into a TStringList object.
The function parses the passed string using the separator characters defined by the Separators
parameter. These usually include space, tab, null, comma, period and slashes.

Text strings delimited by Quotes, such as ' or ", can be treated as a single field if Quotes are specified,
otherwise text in the delimited strings is parsed into separate tokens. This allows, for instance,    complete
text strings in the parsed tokens.
If FilterQuotes is true and Quotes are specified, then the quote characters will be filtered (removed) from
the resultant text tokens.
The index position in S of each text token is added to the Objects property of the TStringList object. The
property is a pointer and the value has to be cast to a word to be used correctly.
The text tokens can be accessed later using the normal indexing of the TStringList class and its Count
property to show the number of test tokens parsed.
Parameters
S The string that is to be the subject of the parsing operation.
Separators Characters in this set are used as delimiters to separate the text tokens extracted from the

string.
Quotes If any characters are set, then strings in quote characters are treated as a single token.
FilterQuotes If true, and Quotes are specified, then the quote characters are removed from the text

tokens.
List The TStringList object in which to insert the text tokens.
Exceptions
ECtError CtlStrng: CtParse
See also
CtParseClean

CtIsCharInString Function

Unit
CtlStrng
Declaration
function CtIsCharInString (C:char; S:string): boolean;
Description
The CtIsCharInString function checks whether a specified character is in a string.
Parameters
C The character to search for.
S The string to search.
Returns
This function returns True if C is encountered, otherwise returns False.
Exceptions
None
See also
CoreTools string handling routines

CtLRotate Function

Unit
CtlStrng
Declaration
function CtLRotate (var S:string): integer;
Description
The CtLRotate function rotates all characters within a string one position to the left and returns the ASCII
value of the original string.
Parameters
S The string that is the subject of the operation.
Returns
The function returns the ASCII value of the first character of the original string.
If the string is null on entry, the function returns -1.
Exceptions
ECtError CtlStrng: CtLRotate
See also
CtLShift
CtRRotate
CtRShift
CoreTools string handling routines

CtLShift Function

Unit
CtlStrng
Declaration
function CtLShift (var S:string): integer;
Description
The CtLShift function shifts a character of the left end of the string (shortening its length) and returns the
ASCII code of the original string.
Parameters
S The string that is to be the subject of the operation.
Returns
The function returns the ASCII code of the character removed from the original string.
If the string is null on entry, then the function returns -1.
Exceptions
ECtError CtlStrng: CtLShift
See also
CtLRotate
CtRRotate
CtRShift
CoreTools string handling routines

CtRRotate Function

Unit
CtlStrng
Declaration
function CtRRotate (var S:string): integer;
Description
The CtRRotate function rotates all characters within a string one position to the right and returns the
ASCII value of the first character of the resultant string.
Parameters
S The string that is the subject of the operation.
Returns
The function returns the ASCII value of the last character of the original string.
If the string is null on entry, the function returns -1.
Exceptions
ECtError CtlStrng: CtRRotate
See also
CtLRotate
CtLShift
CtRShift
CoreTools string handling routines

CtRShift Function

Unit
CtlStrng
Declaration
function CtRShift (var S:string): integer;
Description
The CtRShift function shifts a character from the right end of the string (shortening its length) and returns
the ASCII code of the deleted character.
Parameters
S The string that is to be the subject of the operation.
Returns
The function returns the ASCII code of the character removed from the right hand side of the original
string.
If the string is null on entry, then the function returns -1.
Exceptions
ECtError CtlStrng: CtRShift
See also
CtLRotate
CtLShift
CtRRotate
CoreTools string handling routines

CtLJustify Function

Unit
CtlStrng
Declaration
function CtLJustify (const S:string; C:char; L:byte): string;
Description
Returns a left hand justified string padded on the right to the specified length, using the specified pad
character.
Parameters
S The string to extend to the specified length, using the pad character, C.
C The character to use to pad the the string to the specified length.
L The required length to pad to.
Returns
Returns a modified version of the string S, padded to the the specified length with the pad character, C.
Exceptions
ECtError CtlStrng: CtLJustify
See also
CtCJustify
CtRJustify

CtOverlay Function

Unit
CtlStrng
Declaration
function CtOverlay (const Overlay, Underlay:string; const P:byte):string;
Description
The function CtOverlay overlays Overlay onto Underlay starting at index P, i.e. the function combines the
two overlapping strings.
Parameters
Overlay The string to be added to the right hand side of the resultant string, starting at index position

P.
Underlay The string forming the left side of the combined string, up to index position P-1.
P The character position that string Overlay will be overlaid on string Underlay. Any characters

after the Pth position in string Underlay will be overwritten by the characters in string Overlay.
Returns
Returns an amalgamation of Underlay and Overlay, with Overlay starting at index P.
Exceptions
ECtError Message = CtOverlay
See also
CtFill
CtReplace
CoreTools string-handling routines

CtLStrip Function

Unit
CtlStrng
Declaration
function CtLStrip (C:char; S:string): string;
Description
Strips all instances of the character C from the left side of the string S.
Parameters
C the character to search and strip.
S the string that is the subject of this operation.
Returns
Returns the stripped string, with all instances of the specified character removed from the left of the
string.
Exceptions
ECtError CtlStrng: CtLStrip
See also
CtLStripSet
CtRemove
CtRStrip
CtRStripSet
CtSqueeze
CtStrip
CtStripAll
CtStripSetAll
CtTrim
CoreTools string handling routines

CtLStripSet Function

Unit
CtlStrng
Declaration
function CtLStripSet(CS: TCtCharSet; S: string): string;
Description
Strips the left hand side characters from S that are specified in the CS character set.
Parameters
S the string that is to be the subject of the operation.
CS Character set containing the characters to be searched for during the operation.
Returns
The function returns a copy of the string S, without the left hand side characters specified in CS.
Exceptions
ECtError CtlStrng: CtLStripSet
See also
CtLStrip
CtRemove
CtRStrip
CtRStripSet
CtSqueeze
CtStrip
CtStripAll
CtStripSetAll
CtTrim
CoreTools string handling routines

CtRemove Function

Unit
CtlStrng
Declaration
function CtRemove(const S, Unwanted : string; var Count: byte) : string;
Description
Removes all instances of Unwanted from the string S. The number of instances removed is reported back
in the Count reference.
Parameters
S The string that is to be the subject of the operation.
Unwanted The string that is searched for in the search and delete operation.
Count A reference that facilitates the reporting back of the number of instances removed from the

string.
Returns
The function returns a copy of S with all instances of Unwanted removed.
Exceptions
ECtError CtlStrng: CtRemove
See also
CtStripAll

CtRStripSet Function

Unit
CtlStrng
Declaration
function CtRStripSet(CS: TCtCharSet; S: string): string;
Description
Strips the right hand side characters from S that are specified in the CS character set.
Parameters
S the string that is to be the subject of the operation.
CS Character set containing the characters to be searched for during the operation.
Returns
The function returns a copy of the string S, without the right hand side characters specified in CS.
Exceptions
ECtError CtlStrng: CtRStripSet
See also
CtLStrip
CtLStripSet
CtRemove
CtRStrip
CtSqueeze
CtStrip
CtStripAll
CtStripSetAll
CtTrim
CoreTools string handling routines

CtSqueeze Function

Unit
CtlStrng
Declaration
function CtSqueeze (const C: char; const S: string): string;
Description
Condenses repeated occurrences of a character in a string into a single character.
Parameters
C The character to condense (replace) in the string with a single occurrence of this character.
S The string to condense.
Returns
The function returns a string containing the modified version of S, where repeated occurrences of C have
been condensed into a single character.
Exceptions
None
See also
CtLStrip
CtLStripSet
CtRemove
CtRStrip
CtRStripSet
CtStrip
CtStripAll
CtStripSetAll
CtTrim
CoreTools string handling routines

CtRStrip Function

Unit
CtlStrng
Declaration
function CtRStrip (C:char; S:string): string;
Description
Strips all instances of the character C from the right side of the string S.
Parameters
C the character to search and strip.
S the string that is the subject of this operation.
Returns
Returns the stripped string, with all instances of the specified character removed from the right of the
string.
Exceptions
ECtError CtlStrng: CtRStrip
See also
CtLStrip
CtLStripSet
CtRemove
CtRStripSet
CtSqueeze
CtStrip
CtStripAll
CtStripSetAll
CtTrim
CoreTools string handling routines

CtStripAll Function

Unit
CtlStrng
Declaration
function CtStripAll (C:char; S:string): string;
Description
Strips all instances of the character C from the string S.
Parameters
C The character to search and strip.
S The string that is the subject of this operation.
Returns
Returns a copy of S, with all instances of the specified character removed from the string.
Exceptions
None
See also
CtLStrip
CtLStripSet
CtRemove
CtRStrip
CtRStripSet
CtSqueeze
CtStrip
CtStripSetAll
CtTrim
CoreTools string handling routines

CtStripSetAll Function

Unit
CtlStrng
Declaration
function CtStripSetAll (CS:TCtCharSet; S:string): string;
Description
Strips all characters from S that are specified in the CS set.
Parameters
CS The character specification for stripping from S.
S The string that is the subject of the operation.
Returns
The function returns a copy of S with all characters that are set in CS stripped from the string.
Exceptions
ECtError Ctlstrng: CtStripAll
See also
CtLStrip
CtLStripSet
CtRemove
CtRStrip
CtRStripSet
CtSqueeze
CtStrip
CtStripAll
CtTrim
CoreTools string handling routines

CtTrim Function

Unit
CtlStrng
Declaration
function CtTrim (S:string): string;
Description
The CtTrim function removes tabs, nulls and spaces from the right hand side of a string.
Parameters
S The string that is the subject of this operation.
Returns
The function returns a copy of S with all tabs, nulls and spaces removed from the right hand side.
Exceptions
ECtError CtlStrng: CtTrim
See also
CtLStrip
CtLStripSet
CtRemove
CtRStrip
CtRStripSet
CtSqueeze
CtStrip
CtStripAll
CtStripSetAll
CoreTools string handling routines

TCtCharSet Type

Unit
CtlChar
Declaration
TCtCharSet = set of char;
Description
This character set type is used throughout CoreTools for Delphi whenever a character set is required.

CtReplace Function

Unit
CtlStrng
Declaration
function CtReplace (S, Unwanted, Replacement : string; var Changes: byte): string;
Description
Replaces all occurrences of Unwanted with Replacement in string S.
Parameters
S The primary string on which you wish to perform the search and replace operation.
Unwanted The string for which you are searching in S.
Replacement The string with which to replace Unwanted.
Changes A reference that facilitates the reporting back of the number of instances replaced during the

operation.
Returns
The function returns a string resulting from the search and replace operation.
Changes shows the number of replacements that occurred during the search and replace operation.
Exceptions
ECtError CtlStrng: CtReplace
See also
CtCharReplace
CoreTools string handling routines

CtParseClean Procedure

Unit
CtlStrng
Declaration
procedure CtParseClean (var S: string);
Description
Cleans-up a string ready to be parsed.

1. Converts tabs to spaces.
2. Strips leading and trailing spaces.
3. Removes duplicate spaces.

Parameters
S The string to clean-up.
Exceptions
ECtError CtlStrng: CtParseClean
See also
CtParse

CtPosSet Function

Unit
CtlStrng
Declaration
function CtPosSet (CS:TCtCharSet; S:string): byte;
Description
The CtPosSet function searches S for the first instance of one of the characters contained in CS.
Parameters
CS The character set for which to search.
S The string that is the subject of the search operation.
Returns
The function returns the index position in S where the first instance of a CS character is located.
Exceptions
ECtError CtlStrng: CtPosSet
See also
CtCharPos
CtCharPosNext
CtRCharPos
CtRPos
CtWordPos

CtRCharPos Function

Unit
CtlStrng
Declaration
function CtRCharPos (C:char; S:string): byte;
Description
The CtRCharPos function searches for a specified character in a string, starting the search from the right
hand side of the string, so that it returns the last occurrence of the character in the string..
Parameters
C The character to search for.
S The string that is to be the subject of the search operation.
Returns
The function returns the last index position of C in S. If no instance of the character is found, then the
function returns 0.
Exceptions
None
See also
CtCharPos
CtCharPosNext
CtPosSet
CtRPos
CtWordPos
CoreTools string-handling routines

CtCharReplace Function

Unit
CtlStrng
Declaration
function CtCharReplace (S: string; Unwanted, Replacement: char; var Changes: byte): string;
Description
Replaces all instances of Unwanted in S with Replacement.
Parameters
S The source string that is the subject of the operation.
Unwanted The character to be replaced.
Replacement The replacement character.
Changes The reference that allows the reporting back of the number of changes made during the

operation.
Returns
The function returns a copy of S with all instances of Unwanted replaced by Replacement characters.
Changes shows the number of replacements that occurred during the search and replace operation.
Exceptions
None
See also
CtReplace
CoreTools string handling routines

CtWordNext Function

Unit
CtlStrng
Declaration
function CtWordNext (var S: string): string;
Description
Extracts and returns the next space-delimited string from S. S is returned with the sub string stripped off.
If S is empty on entry, both S and the return value will be empty on return.
The function only recognizes spaces as word delimiters, therefore any tabs should firstly be converted to
spaces, perhaps by using CtParseClean.
Parameters
S The string to be the subject of the operation.
Returns
The function returns the next word extracted from the left hand side of S.
Exceptions
ECtError CtlStrng: CtWordNext
See also
CtWordCount
CtWordExtract
CtWordPos
CtWordProperCase
CoreTools string handling routines

CtWordExtract Function

Unit
CtlStrng
Declaration
function CtWordExtract(const StartWord, NumWords:byte; const S:string): string;
Description
The CtWordExtract function returns a number of specified words from a string.
The function only recognizes spaces as word delimiters, therefore any tabs should firstly be converted to
spaces, perhaps by using CtParseClean.
Parameters
StartWord The number of the first word to extract.
NumWordsThe number of words to extract.
S The string that is to be the subject of the operation.
Returns
The function returns a string containing the specified number of words.
Exceptions
ECtError CtlStrng: CtWordExtract
See also
CtWordCount
CtWordNext
CtWordPos
CtWordProperCase
CoreTools string handling routines

Character classification sets

Unit
CtlChar
Declarations
Const
    CtAlphaSet : TCtCharSet = ['A'..'Z', 'a'..'z'];
    CtAlphaNumSet : TCtCharSet = ['0'..'9', 'A'..'Z', 'a'..'z'];
    CtASCIISet : TCtCharSet = [#0..#127];
    CtControlSet : TCtCharSet = [#0..#31, #127];
    CtDelimSet : TCtCharSet = [#0..#32];
    CtDigitSet : TCtCharSet = ['0'..'9'];
    CtGraphSet : TCtCharSet = [#33..#126];
    CtLowerSet : TCtCharSet = ['a'..'z'];
    CtPrintSet : TCtCharSet = [#32..#126];
    CtPunctSet : TCtCharSet = [#33..#126]-['0'..'9', 'A'..'Z', 'a'..'z'];
    CtQuoteSet : TCtCharSet = ['"',''''];
    CtRealSet : TCtCharSet = ['0'..'9', '+', '-', '.', 'E', 'e'];
    CtSignedSet : TCtCharSet = ['0'..'9', '+', '-'];
    CtSpaceSet : TCtCharSet = [#9..#13, #32];
    CtUpperSet : TCtCharSet = ['A' .. 'Z'];
    CtXDigitSet : TCtCharSet = ['0'..'9','A'..'F','a'..'f'];

CtSwapDouble Procedure

Unit
CtlSwap
Declaration
procedure CtSwapDouble (var x, y: double);
Description
Swaps the contents of two double variables.
Parameters
x and y are the values to be swapped.
Exceptions
ECtError Message = CtlSwap: CtSwapDouble
See also
CtSwapByte
CtSwapCardinal
CtSwapChar
CtSwapComp
CtSwapExtended
CtSwapInteger
CtSwapLongInt
CtSwapPChar
CtSwapReal
CtSwapShortInt
CtSwapSingle
CtSwapString
CtSwapWord
CoreTools swapping routines

CtSwapExtended Procedure

Unit
CtlSwap
Declaration
procedure CtSwapExtended (var x, y: extended);
Description
Swaps the contents of two extended variables.
Parameters
x and y are the values to be swapped.
Exceptions
ECtError Message = CtlSwap: CtSwapExtended
See also
CtSwapByte
CtSwapCardinal
CtSwapChar
CtSwapComp
CtSwapDouble
CtSwapInteger
CtSwapLongInt
CtSwapPChar
CtSwapReal
CtSwapShortInt
CtSwapSingle
CtSwapString
CtSwapWord
CoreTools swapping routines

CtSwapLongInt Procedure

Unit
CtlSwap
Declaration
procedure CtSwapLongInt (var x, y: longint);
Description
Swaps the contents of two longint variables.
Parameters
x and y are the values to be swapped.
Exceptions
ECtError Message = CtlSwap: CtSwapLongint
See also
CtSwapByte
CtSwapCardinal
CtSwapChar
CtSwapComp
CtSwapDouble
CtSwapExtended
CtSwapInteger
CtSwapPChar
CtSwapReal
CtSwapShortInt
CtSwapSingle
CtSwapString
CtSwapWord
CoreTools swapping routines

CtSwapShortInt Procedure

Unit
CtlSwap
Declaration
procedure CtSwapShortInt (var x, y: shortint);
Description
Swaps the contents of two shortint variables.
Parameters
x and y are the values to be swapped.
Exceptions
ECtError Message = CtlSwap: CtSwapShortInt
See also
CtSwapByte
CtSwapCardinal
CtSwapChar
CtSwapComp
CtSwapDouble
CtSwapExtended
CtSwapInteger
CtSwapLongInt
CtSwapPChar
CtSwapReal
CtSwapSingle
CtSwapString
CtSwapWord
CoreTools swapping routines

CtSwapSingle Procedure

Unit
CtlSwap
Declaration
procedure CtSwapSingle (var x, y: single);
Description
Swaps the contents of two single precision variables.
Parameters
x and y are the values to be swapped.
Exceptions
ECtError Message = CtlSwap: CtSwapSingle
See also
CtSwapByte
CtSwapCardinal
CtSwapChar
CtSwapComp
CtSwapDouble
CtSwapExtended
CtSwapInteger
CtSwapLongInt
CtSwapPChar
CtSwapReal
CtSwapShortInt
CtSwapString
CtSwapWord
CoreTools swapping routines

CtSwapWord Procedure

Unit
CtlSwap
Declaration
procedure CtSwapWord (var x, y: word);
Description
Swaps the contents of two word variables.
Parameters
x and y are the values to be swapped.
Exceptions
ECtError Message = CtlSwap: CtSwapWord
See also
CtSwapByte
CtSwapCardinal
CtSwapChar
CtSwapComp
CtSwapDouble
CtSwapExtended
CtSwapInteger
CtSwapLongInt
CtSwapPChar
CtSwapReal
CtSwapShortInt
CtSwapSingle
CtSwapString
CoreTools swapping routines

CtSwapReal Procedure

Unit
CtlSwap
Declaration
procedure CtSwapReal (var x, y: real);
Description
Swaps the contents of two real variables.
Parameters
x and y are the values to be swapped.
Exceptions
ECtError Message = CtlSwap: CtSwapReal
See also
CtSwapByte
CtSwapCardinal
CtSwapChar
CtSwapComp
CtSwapDouble
CtSwapExtended
CtSwapInteger
CtSwapLongInt
CtSwapPChar
CtSwapShortInt
CtSwapSingle
CtSwapString
CtSwapWord
CoreTools swapping routines

CtlDate Unit

Description
This unit contains Date and Time based routines and their supporting types and constants.
Types
TCtDateText
TCtTimeText
Routines
None

CtExtractFileDrive Function

Unit
CtlFile
Declaration
function CtExtractFileDrive (const F:TFileName):string;
Description
The CtExtractFileDrive function returns the drive specification extracted from F.
Parameters
F The file specification that is the subject of this operation.
Returns
The function returns the drive definition, extracted from the file path.
Exceptions
None
See also
CtExtractFileNameOnly
CtExtractPathNameOnly
CoreTools file handling routines

CtExtractFileNameOnly Function

Unit
CtlFile
Declaration
function CtExtractFileNameOnly(const F:TFileName): TCtFileNameOnly;
Description
Extracts the file name, without the extension, from F.
Parameters
F The file specification to be parsed.
Returns
The function returns the file name, without the extension, extracted from the file specification.
Exceptions
None
See also
CtExtractFileDrive
CtExtractPathNameOnly
CoreTools file handling routines

CtExtractPathNameOnly Function

Unit
CtlFile
Declaration
function CtExtractPathNameOnly (const F:TFileName): TFileName;
Description
The function parses the path name, without the drive letter, from F.
Parameters
F The file specification to be parsed.
Returns
The function returns the path name, without the drive information, extracted from a file specification.
Exceptions
None
See also
CtExtractFileDrive
CtExtractFileNameOnly
CoreTools file handling routines

CtFileAgeCmp Function

Unit
CtlFile
Declaration
function CtFileAgeCmp (const F1,F2: TFileName): shortint;
Description
Compares the file date and time stamps for the two files.
Parameters
F1,F2 files for comparison.
Returns
-1, if F1 older than F2
 0, if same time stamp
 1, if F1 younger than F2
Exceptions
ECtError Message = CtlFile: CtFileAgeCmp
See also
CtFileSetStamp
CoreTools file handling routines

CtFileAttrFull Function

Unit
CtlFile
Declaration
function CtFileAttrFull (const A:TFileType): string;
Description
The function returns a string containing a textual description of the attributes in the A set.
Parameters
A The file attribute set to be deciphered.
Returns
A string containing the verbose description for the attribute(s) passed in A. The attributes are processed in
the following order:

Normal
Read only
Hidden
System
Volume
Directory
Archive

Exceptions
None
See also
CtFileAttrShort
CtFileAttrToSet
CtFileAttrToWord
CtFileSetAttr
CoreTools file handling routines

CtFileAttrShort Function

Unit
CtlFile
Declaration
function CtFileAttrShort (const A:TFileType): string;
Description
The CtFileAttrShort function returns a string containing a letter or dot in each position corresponding to
one of the allowed file attributes.
Parameters
A The file attribute set to be deciphered.
Returns
A string of length 7 bytes, containing either the first letter of each attribute (in lower case) to indicate the
attribute is set, or a dot "." to indicate it is not set. The order of the attributes is 'nrhsvda', where:

n = normal
r = read only
h = hidden
s = system
v = volume
d = directory
a = archive

Exceptions
None
See also
CtFileAttrFull
CtFileAttrToSet
CtFileAttrToWord
CtFileSetAttr
CoreTools file handling routines

CtFileAttrToSet Function

Unit
CtlFile
Declaration
function CtFileAttrToSet (const W:word): TFileType;
Description
The Ctfileattrtoset conversion routine returns a set containing members representing each of the attribute
bits set in W. The set members are:
 Bit Constant Value Set member

0 faReadOnly $01 ftReadOnly
1 faHidden $02 ftHidden
2 faSysFile $04 ftSystem
3 faVolumeID $08 ftVolumeID
4 faDirectory $10 ftDirectory
5 faArchive $20 ftArchive

Parameters
W The word to be decipher.
Returns
The function returns a set containing the members with corresponding bits set in W.
Exceptions
None
See also
CtFileAttrFull
CtFileAttrShort
CtFileAttrToWord
CtFileSetAttr
CoreTools file handling routines

CtFileAttrToWord Function

Unit
CtlFile
Declaration
function CtFileAttrToWord (const A:TFileType): word;
Description
The CtFileAttrToWord function returns a word where each bit set represents the following DOS file
attributes:

Bit Constant Value Description
0 faReadOnly $01 Read-only files
1 faHidden $02 Hidden files
2 faSysFile $04 System files
3 faVolumeID $08 Volume ID files
4 faDirectory $10 Directory files
5 faArchive $20 Archive files
6 faAnyFile $3F All attributes

Parameters
A The attribute set to decipher.
Returns
The function returns a word containing bits set to represent each of the set members present in A.
Exceptions
None
See also
CtFileAttrFull
CtFileAttrShort
CtFileAttrToSet
CtFileSetAttr
CoreTools file handling routines

CtFileCompare Function

Unit
CtlFile
Declaration
function CtFileCompare (const F1, F2:TFileName; const TimeStamp: boolean): longint;
Description
The CtFileCompare function compares the two specified files byte-by-byte and reports the offset where a
difference was detected. In addition, additional date/time and size comparisons are performed if
TimeStamp is set true.
Parameters
F1, F2 The files to compare.
TimeStamp If set true, then date/time comparisons are performed.
Returns
If the function result is zero, the files are identical. A positive result indicates that the files are not identical
and contains the offset (1-based) in F2 where a byte did not match F1.
If the result is negative, then the file dates or sizes did not match.
Exceptions
ECtError Message = CtlFile: CtFileCompare
See also
CoreTools file handling routines

CtFileCopy Procedure

Unit
CtlFile
Declaration
procedure CtFileCopy (S, D: TFileName);
Description
Copies file from S to D, without verification. If D is null then an ECtError exception is raised.
Parameters
S The source file to be copied to D.
D The destination file name for the copy.
Exceptions
ECtError Message = CtlFile: CtFileCopy
EFOpenError
EFCreateError
EWriteError
See also
CtVerifyOFF
CtVerifyON
CtVerifyState
CoreTools file handling routines

CtFileDateStr Function

Unit
CtlFile
Declaration
function CtFileDateStr (const F:TFileName):string;
Description
The CtFileDateStr function returns the date stamp of the specified file as a string. The date is returned in
the ShortDateFormat.
Parameters
F The file that is to be the subject of the operation.
Returns
The function returns a string containing the converted file stamp.
Exceptions
ECtError Message = CtlFile: CtFileDateStr
See also
CtFileDateTime
CtFileInformation
CtFileSetStamp
CoreTools file handling routines

CtFileDateTime Function

Unit
CtlFile
Declaration
function CtFileDateTime (const F: T FILENAME): TDateTime;
Description
Returns the date/time stamp of the specified file as a TDateTime value.
Parameters
F The file that is to be the subject of the operation.
Returns
Returns the file date/time stamp converted to a Delphi TDateTime type.
Exceptions
ECtError Message = CtlFile: CtFileDateTime
See also
CtFileDateStr
CtFileInformation
CtFileSetStamp
CoreTools file handling routines

CtFileInformation Procedure

Unit
CtlFile
Declaration
procedure CtFileInformation (var I: TCtFileInfo; const F: TFileName);
Description
The CtFileInformation procedure returns file information for a specified file, including the file date/time,
size (in bytes), and attributes.
Parameters
I The record to take the file information.
F The name of the file for which the information is required.
Exceptions
None
See also
CtFileDateStr
CtFileDateTime
CtFileSetStamp
CoreTools file handling routines

CtFileLineCount Function

Unit
CtlFile
Declaration
function CtFileLineCount (const F: TFileName): longint;
Description
The CtFileLineCount function returns the number of carriage return characters, Chr(13), in the specified

text file.
CtFileLineCount can determine the number of lines in a standard ASCII file as long as each line in the file
is terminated with a carriage return/line feed pair.
Parameters
F The file to check. If the file is not in the current directory, F must contain the directory and/or

drive if either is different from the default drive or current directory.
Returns
The function returns the number of Chr(13) characters found.
Exceptions
ECtError Message = CtlFile: CtFileLineCount
See also
CoreTools file handling routines

CtFileSetAttr Function

Unit
CtlFile
Declaration
function CtFileSetAttr (const F: TFileName; const A: TFileType): boolean;
Description
The CtFileSetAttr function sets the file attributes of the file specified by F to the attribute set values
represented by A.
Parameters
F The filename to set.
A The file attribute set containing the required file attributes.
Returns
The function returns true on success, otherwise returns false.
Exceptions
None
See also
CtFileAttrFull
CtFileAttrShort
CtFileAttrToSet
CtFileAttrToWord
CoreTools file handling routines

CtFileSetStamp Function

Unit
CtlFile
Declaration
function CtFileSetStamp (const F: TFileName; const T: TDateTime): boolean;
Description
The CtFileSetStamp function sets the date/time stamp for the specified file.
Parameters
F The file for which to set the date and time stamp.
T The time and date value to be set.
Returns
The function returns true on success, otherwise returns false.
Exceptions
None
See also
CoreTools file handling routines

CtFileSize Function

Unit
CtlFile
Declaration
function CtFileSize (const F: TFileName): longint;
Description
The CtFileSize function returns the size of the specified file in bytes.
Parameters
F The file that is to be the subject of the operation.
Returns
The function returns the size of the file in bytes, if the file does not exist then it returns -1.
Exceptions
None
See also
CoreTools file handling routines

CtIsRootDir Function

Unit
CtlFile
Declaration
function CtIsRootDir (S:TFileName): boolean;
Description
The CtIsRootDir function tests if a file specification is that for a root directory, e.g. C:\ is a root directory
specification.
Parameters
S The file specification to test.
Returns
The function returns true if the specification is for a root directory, otherwise it returns false.
Exceptions
None
See also
CtRemakeDirRoot
CoreTools file handling routines

CtParseFileSpec Procedure

Unit
CtlFile
Declaration
procedure CtParseFileSpec (const F: TFileName; var S:TStringList);
Description
The CtParseFileSpec procedure fills a TStringList object with the individual components of a file
specification string.
Parameters
F The file specification to be parsed.
S The target object in which to insert the parsed parts of the file specification.
Exceptions
None
See also
CoreTools file handling routines

CtReadDirectory Procedure

Unit
CtlFile
Declaration
procedure CtReadDirectory (const SearchPath:TFileName; const SearchMask:TFileName; const

SubDirs:boolean; const FileFound:TCtFoundFunction; const
DirFound:TCtFoundFunction);

Description
The procedure starts at the directory given in SearchPath and searches it for files matching the mask.
FileFound will be called for each file found within the current directory. The path will always end in a
backslash,    so the parameters F + SearchRecord.Name yields the full name of the found file to the
callback function. If the callback function returns False, the recursion will stop and CtReadDirectory
returns immediately.
After the directory has been scanned for files it is again scanned for directories and each found directory
is in turn scanned in the same manner, and DirFound is called for every directory found. If the callback
function returns False then CtReadDirectory returns immediately.
If FileFound = nil or DirFound = nil then the procedure returns immediately.
Parameters
SearchPath The directory at which to start the search
SearchMask The file search mask, allows wild cards. If this is an empty string, *.* is used.
FileFound The callback function to call when every file is found.
DirFound The callback function to call when every directory is found.
Exceptions
ECtError Message = CtlFile: CtReadDirectory
See also
CoreTools file handling routines

CtRemakeDirRoot Function

Unit
CtlFile
Declaration
function CtRemakeDirRoot (const NewRoot, OldRoot, F:TFileName): TFileName;
Description
Extracts OldRoot from the start of F and replaces it with NewRoot.
Parameters
NewRoot The new root path to prefix F
OldRoot The old root path to extract from F
F The file specification that is the subject of this operation
Returns
The function returns:          <NewRoot> + <right hand side of F>
Exceptions
None
See also
CtIsRootDir
CoreTools file handling routines

CtVerifyOFF Procedure

Unit
CtlFile
Declaration
procedure CtVerifyOFF;
Description
The CtVerifyOFF procedure turns the DOS verify flag off.
Exceptions
None
See also
CtVerifyON
CtVerifyState
CoreTools file handling routines

CtVerifyON Procedure

Unit
CtlFile
Declaration
procedure CtVerifyON;
Description
The CtVerifyON procedure turns on the DOS verify flag.
Exceptions
None
See also
CtVerifyOFF
CtVerifyState
CoreTools file handling routines

CtVerifyState Function

Unit
CtlFile
Declaration
function CtVerifyState: boolean;
Description
Returns the current state of the DOS verify flag.
Returns
The function returns true if the DOS verify flag is true, otherwise returns false.
Exceptions
None
See also
CtVerifyOFF
CtVerifyON
CoreTools file handling routines

TCtFileInfo Type

Unit
CtlFile
Declaration
TCtFileInfo = record

Atts: TFileType;
DateTime: TDateTime;
Size: longint;
end;

Description
This record type stores file information. The data has been converted from the low-level DOS format to
Delphi high-level types.
See also
CtFileInformation
CoreTools file-handling routines

