
Contents
Introduction
Welcome to the world of cwComponents designed to enhance your productivity and add the Professional
Touch to your applications.

This suite of 3 components delivers instant Cut Copy and Paste support not just for Edit fields, but also
for Grids and dbImage fields. Without these components, this support would take a significant
programming effort.

Overview
This component set was born because of the difficulty of coding generic cut copy and paste routines that
work with dbGrids stringGrids and even dbImages. Especially in Delphi 1.0. It also fixes the bug in Delphi
1.0 dbImages that causes a GPF if you try to cut an image to the clipboard when the Stretch property is
true.

Components
TcwClpBoardButton
TcwClpBoardBar
TcwToolBar

Other Information
Tips
Menu Support

Registration

Technical Support

Compuserve      73163,2765
From the Internet 73163.2765@compuserve.com

Additional Files
TBAR.RES contains the bitMaps for the 3 buttons.
TBAR1.DCR contains the icons for the components.

Known Problems
Does not support all 3 rd Party Grids. Contact us for specific information and additional modules with
alternate code.

Registration
Registration and Pricing

Pricing (Subject to change without notice)
Without source $19.00
With Source $29.00

Via Compuserve [SWREG]

Go SWREG and follow the instructions.
Without source SWREG 10762
With Source SWREG 10763

We also take
VISA
Master Card
American Express

To order by Credit Card you must provide
Card Number, Expiration Date and Name as it appears on the card.
Please also include your Address and Telephone number.

Concerned about sending your card number over the Internet?
Fax it to us at 619-566-0210 USA

All Components are delivered by eMail.
INTERNET : Delivery by UUE encoded Zip file.

TcwClpBoardBar

This is a descendant of TcwToolBar

It is a TcwToolBar with three cwClpBoardButtons encapsulated as Cut Copy and Paste buttons.

Using this composite component will ensure a conforming appearance across all forms without needing
precise GUI manipulation. It inherits all the neat features of the TcwToolBar and by increasing its width
you can add additional buttons that will also be manipulated as in the TcwToolBar.

New Method
setEnabledState

 This method controls the setEnabledState of all 3 encapsulated TcwClpBoardButtons.

Example
1. Create an appIdle method. If you already have one then just add the code to it.
2. Give cwClpBoardBar an informative name (not required)
3. Add the code shown below.
4. Point the Application.onIdle method to the new AppIdle method in the FormCreate event.

procedure TForm1.AppIdle(Sender: TObject; var Done: Boolean);
Begin
Try
 myClipBar.setEnabledState;
except
 on E:Exception do
 messageDlg(E.Message,mtError,[mbOK],0);
end;
end;

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnIdle := AppIdle;
end;

TcwClpBoardButton
The TcwClpBoardButton encapsulates all the necessary code for Cutting, Copying or Pasting within its
click method. No code needed!

New property
Kind
.Values
 bkCut The default
 bkCopy
 bkPaste

Setting this property is all you have to do to turn it into the appropriate type of button including setting the
correct
BEHAVIOUR, BITMAP and HINT.

New Method
 setEnabledState

It has a 'setEnabledState' method which makes their Enabled state Data Aware.

Example
1. Create an appIdle method. If you already have one then just add the code to it.
2. Give each button an informative name (not required)
3. Add the code shown below.
4. Point the Application.onIdle method to the new AppIdle method in the FormCreate event.

procedure TForm1.AppIdle(Sender: TObject; var Done: Boolean);
Begin
Try
 butCut.setEnabledState;
 butCopy.setEnabledState;
 butPaste.setEnabledState;
except
 on E:Exception do
 messageDlg(E.Message,mtError,[mbOK],0);
end;
end;

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnIdle := AppIdle;
end;

TcwToolBar

This is a descendent ot TPanel that knows how to:-

Resize any components it contains when IT is resized.

Set its orientation to Horizontal or Vertical.

Dock itself to Top, Left, Top, Bottom or None.

New Properties
AutoSizeButtons
KeepSquare
Orientation
Dock

AutoSizeButtons
 Values
    True
    False Default

Turns autoSizing On or Off. When On all contained buttons will be resized to exactly fill the toolbar.
You can also use this ability to make sure all components dropped onto the toolBar are the correct height
and precisely aligned.
A great time saver!
Hint
By dropping bevel components onto the toolbar and setting their visible property to FALSE you can create
spacers to seperate different logical groups of buttons.

KeepSquare
 Values
    True
    False Default

Turn On or Off When On buttons will stay square when autoSized.
Can not be True if AutoSizeButtons is False.

Orientation
 Values
              toHorizontal Default
              toVertical.

When the Orientation is changed the component knows how to reset any components it contains to a
horizontal set or a vertical set.
WARNING : Components that are not approximately square may be truncated if orientation is changed.
(e.g. Drop down combo)

Dock
 Values
        tdTop
        tdLeft
        tdBottom
        tdRight

        tdNone Default

Dock itself to Top, Left, Right, Bottom or None.
It automatically takes care of reAligning any buttons it contains appropriately.

Tips
HINTS ON USE

TcwClpBoardButton

Use it as a non visual object (Visible = False) to easily enable Menu items with one line of code.

1. Give the button a descriptive name e.g. butCut
2. In the Menu event handler use butCut.Click;

If you set the menu item shortCut key to Ctrl-X you will get the added benefit of having the component
code respond instead of windows native behaviour. This avoids the dbImage cutToClipboard GPF
problem.

You can also handle Shift-Delete but that has to be done on each dbImage component in the KeyDown
event.
Example
procedure    TForm1.DBImage1KeyDown(Sender: TObject; var Key: Word;    Shift: TShiftState);
begin
 if (shift = [ssShift]) and (Key = VK_Delete) then begin
      Key := 0; {Prevent windows from seeing it}
      butCut.Click;
 end;
end;

