
Classic Component Set Help

Contents

 TcsNotebook Component TcsProperEdit Component

 TcsFormPanel Component TcsDBProperEdit Component

 TcsAutoDefaults Component TcsComboBox Component

 TcsHiResTimer Component TcsDBComboBox Component

 TcsGrid Component TcsRankListBox Component

TcsStringTable Class

Technical Support

 TcsNotebook Component

Properties Events

Unit

CSNoteBk

Description

The TcsNotebook component is similar to the TTabbedNotebook component but differs in that you can:

Attach the tabs to the top, bottom, left or right of the notebook using the TabOrientation property.

Specify a different bitmap to be displayed on each tab by editing the Bitmap property.

Specify how many glyphs are in the chosen Bitmap by editing the NumGlyphs property.

Disable specific notebook pages by editing the Pages property.

Specify the color of the selected tab's caption text using the SelectedColor and the color of the unselected tab's
caption text using the UnselectedColor.

Specify the color of the notebook and the selected tab using the Color and ParentColor properties.

Specify the color of the unselected tabs using the UnselectedTabColor and UseUnselectedTabColor properties.

Specify the alignment of the tab’s caption text using the TextAlignment property.

Specify the alignment of the tab’s bitmap using the BitmapAlignment property.

Save resources by releasing the handles for the controls on the current page when another page is selected by
setting the SaveResources property.

Control the appearance of the tabs/notebook with the CornerSize, MaxTabWidth, RowIndent, SidewaysText,
TabHeight properties.

Change the behaviour of the notebook with the AnchoredTabs property.

Easily access the Notebook's Pages property at design time by using the (right click) context menu.

Properties

ActivePage RowIndent UseUnselectedTabColor

AnchoredTabs SaveResources

Bitmap SelectedColor

BitmapAlignment SidewaysText Run-time only:

CornerSize TabFont TabBitmap

MaxTabWidth TabHeight TabCaption

NumGlyphs TabOrientation TabNumGlyphs

PageIndex TabsPerRow TabPageEnabled

Pages TextAlignment TabPageIndex

ParentTabFont UnselectedColor TabPageVisible

RowExtent UnselectedTabColor

Events

OnPageChanged

OnPageChanging

OnTabClick

CSNoteBk Unit

The CSNoteBk unit contains the declaration for the TcsNotebook component and its associated objects.

The following items are declared in the CSNoteBk unit:

Components

TcsNotebook

TcsPage

Types

TTabNumGlyphs

TTabOrientation

TTextAlignment

TBitmapAlignment

TTabRects = (trAll, trSelected, trUnselected);

TcsTabPoints = Array[0..5] of TPoint;

TPageChangingEvent

ActivePage Property

Applies to

TcsNotebook, TNotebook,    TTabbedNotebook component

Declaration

property ActivePage: String;

Description

The ActivePage property determines which page is displayed in the notebook or tabbed notebook control.    The value
of ActivePage must be one of the strings contained in the Pages property.

AnchoredTabs Property

Applies to

TcsNotebook component

Declaration

property AnchoredTabs: Boolean;

The AnchoredTabs property determines whether tabs will remain in place when selected or will be brought to the front
row.    The default value is False.

Bitmap Property

Applies to

TcsNotebook, TcsPage component

Declaration

property Bitmap: TBitmap;

Description

The Bitmap property for TcsNotebook indicates the bitmap for the currently selected page.    The Bitmap property for
TcsPage indicates the bitmap for that page's tab. The specified bitmap can contain multiple glyphs, according to
NumGlyphs, which are used for the different states of the page's tab. Note that each page has its own Bitmap and
NumGlyphs properties.    To easily assign bitmaps to each tab, select the TcsNotebook component on the form,
choose the Bitmap property in the Object Inspector and then use the context menu (right-click the component)
whenever you need to assign the Bitmap for a different page.

BitmapAlignment Property

Applies to

TcsNotebook component

Declaration

property BitmapAlignment: TBitmapAlignment;

Description

The BitmapAlignment property determines the placement of the appropriate bitmap (if specified) on each tab.    Note
that the different bitmap alignment options are always regarded as though you are viewing the tab in Top orientation,
doing the stated bitmap alignment, and then rotating the tab (but not rotating the bitmap).

TBitmapAlignment Type

Unit

CSNoteBk

Declaration

TBitmapAlignment = (baLeftTop, baCentreTop, baCenterTop, baRightTop, baLeftMiddle, baCentreMiddle,
baCenterMiddle, baRightMiddle, baLeftBottom, baCentreBottom, baCenterBottom, baRightBottom, baFit,
baInvisible);

Description

TBitmapAlignment defines the possible values the BitmapAlignment property of a TcsNotebook object can assume.

CornerSize Property

Applies to

TcsNotebook component

Declaration

property CornerSize: Integer;

Description

The CornerSize property can be used to alter the size of the corner of each Tab.    The value specified is the amount,
in pixels, which is to be cut’ off the corner of the tab.    The CornerSize will always be greater than 0.    Specify a
CornerSize value of 1 if you want Win95 style (square) tabs.

Note that in certain situations the control will automatically adjust the CornerSize to prevent inappropriate values
relative to the values of the following properties: MaxTabWidth, TabHeight.

MaxTabWidth Property

Applies to

TcsNotebook component

Declaration

property MaxTabWidth: Integer;

Description

The MaxTabWidth property controls the maximum width, in pixels, of each tab.    When set to 0 (the default) the tabs
in a row will be sized to spread evenly across the full width of each row.    If you don't want the tabs to ever be wider
than a certain amount, for example if each tab has a short caption, you should change MaxTabWidth to the desired
value.    Note that you are not specifying the tab's width but the maximum width it can be.    If the tab is narrower than
MaxTabWidth (by virtue of the width of the notebook and how many tabs there are per row) the tab's width will not be
increased to MaxTabWidth.

Increasing the TabsPerRow property to a value greater than the actual no. of tabs will have a similar effect to
increasing MaxTabWidth but with all tabs always in a single row.

Note that in certain situations the control will automatically adjust the MaxTabWidth to prevent inappropriate values
relative to the value of the CornerSize property.

NumGlyphs Property

Applies to

TcsNotebook, TcsPage components

Declaration

property NumGlyphs: TTabNumGlyphs;

Description

The NumGlyphs property for TcsNotebook indicates the number of glyphs in the Bitmap for the current tab.    The
NumGlyphs property for TcsPage indicates the number of glyphs in the Bitmap for that page's tab.    Each page has
its own NumGlyphs property.    The default value is 1.    The first glyph is used for the Selected tab state, the second
glyph (if NumGlyphs is > 1) is used for the Disabled tab state and the third glyph (if NumGlyphs > 2) is used for the
Unselected tab state.

TTabNumGlyphs Type

Unit

CSNoteBk

Declaration

TTabNumGlyphs = 1..3; { Selected, Disabled, Unselected }

Description

The TTabNumGlyphs type defines the range of values the NumGlyphs property of TcsNotebook or TcsPage can
assume.

PageIndex Property

Applies to

TcsNotebook, TNotebook,    TTabbedNotebook component

Declaration

property PageIndex: Integer;

Description

The PageIndex property determines the current page in the notebook.    Changing the PageIndex value changes the
page currently displayed by the control.    The PageIndex value is zero based and will range from 0 up to the number
of tabs minus 1, i.e. 0..4 if there are 5 tabs.    Each new page added will be given the next available page number.   
Note that if you delete pages the PageIndex values will be re-assigned to the remained tabs, starting from 0 and
increasing.

You can also change the current page by using the ActivePage property.

Pages Property

See alsoBitmaps

Applies to

TcsNotebook, TNotebook,    TTabbedNotebook component

Declaration

property Pages: TStrings;

Description

The Pages property contains the captions that identify each page in the notebook.    The control ensures that the
captions for each page are unique.    Each caption in Pages will have an associated page which contains the controls
for that page.    Each page can be enabled or disabled, with the appearance of    the page's tab being changed
accordingly.    Pages can also be hidden so that no tab is shown.    The bitmap (if specified) for each page is also
contained in each page.

To access the actual pages themselves you can use the Objects property of Pages.    Each page, i.e. each item in
Objects[], is of type TcsPage.      To access the tab caption for a page you can also use the TabCaption property.    To
access the bitmap for a page you can also use the TabBitmap property. To access the NumGlyphs property for a
page you can also use the TabNumGlyphs property.    To access the PageEnabled property for a page you can also
use the TabPageEnabled property.    To access the PageVisible property for a page you can also use the
TabPageVisible property.

See Also

Add Tab Dialog Box

Edit Tab Dialog Box

TabBitmap

TabCaption

TabNumGlyphs

TabPageEnabled

TabPageIndex

TabPageVisible

TcsNotebook

Bitmaps for TcsNotebook Pages

Normally, the bitmaps for each tab of the TcsNotebook would be specified at design-time using the Bitmap property.   
However, if you want to assign or change the bitmaps for the tabs at run-time you can do this by using the TabBitmap
property.    The following examples show how to do this when the form is first created .    The examples assume that
you have added a TcsNotebook component to Form1 and that it is called csNotebook1.    The first example shows
how a new bitmap can be assigned to the first tab (page 0) by loading a bitmap file.

Example 1

procedure TForm1.FormCreate(Sender: TObject);
begin
    csNotebook1.TabBitmap[0].LoadFromFile('c:\bitmaps\map.bmp');
end;

The next example shows how a bitmap which has been included in a resource file can be assigned to the first tab.   
The bitmap's resouce identifier is 'mybitmap'.

Example 2

procedure TForm1.FormCreate(Sender: TObject);
begin
    csNotebook1.TabBitmap[0].Handle :=
        LoadBitmap(HInstance, 'mybitmap');
end;

ParentTabFont Property

Applies to

TcsNotebook component

Declaration

property ParentTabFont: Boolean;

Description

The ParentTabFont property determines where the notebook looks for the font information for the tabs.    If
ParentTabFont is True, the notebook uses the font in its parent component's Font property for the tabs.    If
ParentTabFont is False, the notebook uses the TabFont property for the tabs.

Specifying a different TabFont value will automatically set ParentTabFont to False.    Setting ParentTabFont to True
automatically sets the notebook's TabFont to the same font as its parent component's Font property.

RowExtent Property

Applies to

TcsNotebook component

Declaration

property RowExtent: Integer;

Description

The RowExtent property is a calculated read-only property which specifies the number of rows of tabs currently
displayed.    It is recalculated if the number of tabs is changed or if the TabsPerRow property is changed.

RowIndent Property

Applies to

TcsNotebook component

Declaration

property RowIndent: Integer;

Description

The RowIndent property is the indent, in pixels, added to each successive row of tabs after the first.

SaveResources Property

Applies to

TcsNotebook component

Declaration

property SaveResources: Boolean;

Description

The SaveResources property indicates whether resources will be saved by releasing the Windows handles for the
components on a page when another page is selected.    Normally, the handles for the components on a Notebook
page are created when the page is first shown and then only released when the form is destroyed.    If
SaveResources is True then the handles for the components on a page will be released when another page is
selected, thus reducing the total resources required.

Note that if SaveResources is True there may be a slight increase in how long it takes to display a new page (even if
it has previously been selected) because the handles must be re-created each time the page is re-selected.

SelectedColor Property

Applies to

TcsNotebook component

Declaration

property SelectedColor: TColor;

Description

The SelectedColor property indicates the color to be used for the text of the selected tab, the default color is
clBtnText.

SidewaysText Property

Applies to

TcsNotebook component

Declaration

property SidewaysText: Boolean;

Description

The SidewaysText property indicates whether tab text is to be displayed sideways when using Left or Right tab
orientation.    You can only set SidewaysText to True when TabOrientation is toLeft or toRight.    Changing
TabOrientation from toTop or toBottom to toLeft or toRight will automatically set SidewaysText to True.    Changing
TabOrientation from toLeft or toRight to toTop or toBottom will automatically set SidewaysText to False.    When
SidewaysText is True the list of fonts available when editing the TabFont property only includes TrueType fonts so that
text rotation will be possible.

TabFont Property

Applies to

TcsNotebook, TTabbedNotebook component

Declaration

property TabFont: TFont;

Description

The TabFont property determines the font used on the tabs of the notebook control.    The text of the selected tab is
boldfaced if the selected font for the TabFont property is not also boldfaced.

When using Left or Right oriented tabs (see TabOrientation) and SidewaysText you should use a TrueType font to get
rotated text.

TabHeight Property

Applies to

TcsNotebook component

Declaration

property TabHeight: Integer;

Description

The TabHeight property determines the height, in pixels, of each tab.

TabOrientation Property

Applies to

TcsNotebook component

Declaration

property TabOrientation: TTabOrientation;

Description

The TabOrientation property determines the orientation of the tabs around the notebook pages.    If the SidewaysText
property is True the tab text will be rotated when using Left and Right tab orientations.    Note that bitmaps are never
rotated, regardless of    the values of the TabOrientation or BitmapAlignment properties.    Changing TabOrientation
from toTop or toBottom to toLeft or toRight or from toLeft or toRight to toTop or toBottom will automatically set the
SidewaysText property to the appropriate default value.

TTabOrientation Type

Unit

CSNoteBk

Declaration

TTabOrientation = (toTop, toLeft, toBottom, toRight);

Description

TTabOrientation defines the possible values of the TabOrientation property.

TabsPerRow Property

Applies to

TcsNotebook, TTabbedNotebook component

Declaration

property TabsPerRow: Integer;

Description

The TabsPerRow property determines how many tabs will appear in each row of tabs for the TcsNotebook control.   
The default value is 3.    The appropriate number of rows of tabs will be created to allow for all tabs to be displayed
using the TabsPerRow value.    If TabsPerRow is greater than the actual number of tabs the size of the tabs will be
reduced accordingly; this is similar to changing the MaxTabWidth property.

TextAlignment Property

Applies to

TcsNotebook component

Declaration

property TextAlignment: TTextAlignment;

Description

The TextAlignment property determines where the tab’s caption text will be placed on the tab. Note that the different
text alignment options are always regarded as though you are viewing the tab in Top orientation, doing the stated text
alignment, and then rotating the tab.

TTextAlignment Type

Unit

CSNoteBk

Declaration

TTextAlignment = (taLeftTop, taCentreTop, taCenterTop, taRightTop, taLeftMiddle, taCentreMiddle,
taCenterMiddle, taRightMiddle, taLeftBottom, taCentreBottom, taCenterBottom, taRightBottom,
taInvisible);

Description

TTextAlignment defines the possible values the TextAlignment property of a TcsNotebook object can assume.

UnselectedColor Property

Applies to

TcsNotebook component

Declaration

property UnselectedColor: TColor;

Description

The UnselectedColor property indicates the color to be used for the text of the unselected tabs, the default color is
clBtnText.

UnselectedTabColor Property

Applies to

TcsNotebook component

Declaration

property UnselectedTabColor: TColor;

Description

The UnselectedTabColor property indicates the color used for the background of the unselected tabs.    The
UnselectedTabColor property is only relevant when the UseUnselectedTabColor property is True.    All tabs will have
the same background color when UseUnselectedTabColor is False.

UseUnselectedTabColor Property

Applies to

TcsNotebook component

Declaration

property UseUnselectedTabColor: Boolean;

Description

The UseUnselectedTabColor property determines whether the value of the UnselectedTabColor property will be used
for the background color of the unselected tabs.    When UseUnselectedTabColor is False all the tabs will have the
same background color regardless of the UnselectedTabColor value.    Also note that the UnselectedTabColor
property is always ignored if there is more than one row of tabs and AnchoredTabs is True, even if
UseUnselectedTabColor is True.

OnPageChanged Event

Applies to

TcsNotebook, TNotebook component

Declaration

property OnPageChanged: TNotifyEvent;

Description

The OnPageChanged event occurs immediately after a new page has been made the current page.

OnPageChanging Event

Example

Applies to

TcsNotebook component

Declaration

property OnPageChanging: TPageChangingEvent;

Description

The OnPageChanging event is sent before a new page is made the current page.    Use the OnPageChanging event
handler if you want to prevent a change to a new page, for example when certain validation conditions are not met for
the current page.    To perform processing after changing to a new page use the OnPageChanged event.

OnPageChanging Event Example

The following example shows how to prevent a change to a new page if certain conditions are not met.

procedure TForm1.csNotebook1PageChanging(Sender: Tobject;
NewIndex: Integer; var AllowChange: Boolean);

begin
    if not PageIsValid(csNotebook1.PageIndex) then
        AllowChange := False;
end;

function TForm1.PageIsValid(Index: Integer): Boolean;
begin
    case Index of
        0: Result := (Length(Name.Text) > 0);
        1: Result := (Length(Address.Text) > 0);
    end;
end;

TPageChangingEvent Type

See also

Unit

CSNoteBk

Declaration

TPageChangingEvent = procedure(Sender: TObject; NewIndex: Integer; 
var AllowChange: Boolean) of object;

Description

The TPageChangingEvent type points to a method that is called before a new page is selected.    NewIndex indicates
the PageIndex value of the page which is about to be selected.    The AllowChange variable indicates if it is
permissable to select the new page.    If AllowChange is False the new page will not be selected.

See Also

OnPageChanging

OnTabClick Event

Applies to

TcsNotebook component

Declaration

property OnTabClick: TNotifyEvent;

Description

An OnTabClick event occurs when the user selects a tab using one of the following techniques:

(1) pressing the primary mouse button while the mouse pointer is over the tab

(2) pressing the appropriate accelerator key for a tab (as for buttons)

(3) using the arrow keys when the tab has a focus rectangle

An OnTabClick event will not occur if the OnPageChanging event handler prevents the change to the new page.

An OnTabClick event will not occur if a tab is selected programmatically, for example when the ActivePage or
PageIndex properties are assigned new values in source code.    To respond to a page being made current
(regardless of whether the user selected it or it was selected in source code) use the OnPageChanged event instead.
The OnTabClick event, when it does occur, will occur after the OnPageChanged event.

Technical Support

Technical support for the Classic Component Set can be obtained from Classic Software via:

CompuServe ID: 100033,1230

Internet: 100033.1230@compuserve.com

Telephone/Fax: +61 9 271 5407 (9:00am-6:00pm WST)

Mail: Unit 2/19A Wood Street

INGLEWOOD    WA    6052

AUSTRALIA

Please note that the times for telephone support are for Australian Western Standard Time which corresponds to
Greenwich Mean Time + 08:00 hours.

Country Code Area Code (WA) Telephone No.

61 9 271 5407

Notebook Tabs Editor

Use the Notebook Tabs editor to add, edit, delete or move tabs in a TcsNotebook component.    The editor shows the
Caption, Help Context, Enabled and Visible information for each tab.    The bitmap for the highlighted row of the list of
tabs is also shown.

Opening the Notebook Tabs Editor:

Select the TcsNotebook component on the form and then use one of the following techniques:

· press the secondary mouse button while the mouse pointer is positioned over the form and then choose the Edit
Tabs command

· click the ellipsis button in the Value column for the Pages property

· double click in the Value column for the Pages property

· press Ctrl+Enter after moving to the Value column for the Pages property

Edit Button

Choose the Edit button to edit the Caption, Help Context, Enabled or Visible status of an existing tab.    The Edit Tab
dialog box will be displayed.

Add Button

Choose the Add button to add a new tab.    The Add Tab dialog box will be displayed.    New tabs are always added to
the end of all existing tabs.    If you want to insert a new tab you can add it and then use the Move button to change its
position in the list of tabs.

Delete Button

Choose the Delete button to delete an existing tab.    You will be asked to confirm that you want to delete the
highlighted tab.

Up/Down Buttons

Choose the Up or Down buttons to change the position of an existing tab.

Choose OK or press Esc to close the editor.

Edit Tab Dialog Box

Applies to

TcsNotebook

Use the Edit Tab dialog box to edit the details for an existing tab in a TcsNotebook control.    The Caption can contain
an ampersand prefix to indicate the letter to be underlined.

Enabled

Remove the check from the Enabled check-box to prevent selection of the tab at run-time.    You can use the
TabPageEnabled method of TcsNotebook to enable/disable individual tabs at run-time.

Visible

Remove the check from the Visible check-box to prevent the tab from showing.    You can use the TabPageVisible
method of TcsNotebook to show/hide individual tabs at run-time.

Add Tab Dialog Box

Applies to

TcsNotebook

Use the Add Tab dialog box to add the details for a new tab in a TcsNotebook control.    Refer to the Edit Tab Dialog
Box for more information.

TcsPage Component

See alsoProperties

A TcsPage component is used for each page of a TcsNotebook component.

See Also

Pages

TabBitmap

TabCaption

TabNumGlyphs

TabPageEnabled

TabPageIndex

TabPageVisible

Properties

Bitmap

NumGlyphs

PageEnabled

PageVisible

TabBitmap Property

Applies to

TcsNotebook component

Declaration

property TabBitmap[Index: Integer]: TBitmap;

Description

Run-time only.    The TabBitmap property gives you access to the bitmap for each tab.    The Index value corresponds
to the tab's page number.    TabBitmap will return nil if the Index value is out of range.

Note that:

csNotebook1.TabBitmap[0].LoadFromFile('map.bmp');

is equivalent to:

TcsPages(csNotebook1.Pages.Objects[0]).Bitmap.LoadFromFile('map.bmp');

TabCaption Property

Applies to

TcsNotebook component

Declaration

property TabCaption[Index: Integer]: String;

Description

Run-time only.    The TabCaption property gives you access to the caption text for each tab.    The Index value
corresponds to the tab's page number.    TabCaption will return an empty string if the Index value is out of range.

Note that:

csNotebook1.TabCaption[0] := 'Tab 0';

is equivalent to:

TcsPages(csNotebook1.Pages.Objects[0]).Caption := 'Tab 0';

TabNumGlyphs Property

Applies to

TcsNotebook component

Declaration

property TabNumGlyphs[Index: Integer]: TTabNumGlyphs;

Description

Run-time only. The TabNumGlyphs property gives you access to the NumGlyphs property for the specified tab.    The
Index value corresponds to the tab's page number.    TabNumGlyphs will return 1 if the Index value is out of range.

TabPageIndex Property

Applies to

TcsNotebook component

Declaration

property TabPageIndex[const TabIdentity: String]: Integer;

Description

Run-time only.    The read-only TabPageIndex property allows you to determine the page number of the tab with the
specified identity.    TabPageIndex will return -1 if no tab exists with the specified identity.

TabPageEnabled Property

Applies to

TcsNotebook component

Declaration

property TabPageEnabled[Index: Integer]: Boolean;

Description

Run-time only.    The TabPageEnabled property gives you access to the enabled status for each tab.    The Index
value corresponds to the tab's page number.

TabPageVisible Property

Applies to

TcsNotebook component

Declaration

property TabPageVisible[Index: Integer]: Boolean;

Description

Run-time only.    The TabPageVisible property gives you access to the visible status for each tab.    The Index value
corresponds to the tab's page number.

PageEnabled Property

Applies to

TcsPage

Declaration

property PageEnabled: Boolean;

Description

The PageEnabled property indicates if you can select the page at run-time.    Note that each page also has an
(inherited) Enabled property that will be True if the page is the current page and False otherwise.

PageVisible Property

Applies to

TcsPage

Declaration

property PageVisible: Boolean;

Description

The PageVisible property indicates if you can see the page at run-time.    Note that each page also has an (inherited)
Visible property that will be True if the page is the current page and False otherwise.

 TcsProperEdit Component
Unit

CSProper

Description

The TcsProperEdit and TcsDBProperEdit components allow proper-case text input and editing.    During input each
letter which occurs after a delimiter (such as space, comma, hyphen, apostrophe etc.) is converted to upper-case and
all other letters are converted to lower-case.    The TcsProperEdit and TcsDBProperEdit components both have the
same additional properties and events beyond their ancestor's classes (TEdit and TDBEdit respectively), they do
however differ in their implementations.

In addition to the following properties and events, TcsProperEdit components have the same properties and events
as TEdit components.

In addition to the following properties and events, TcsDBProperEdit components have the same properties and
events as TDBEdit components.

Properties

ProperCase

Events

OnConvert

ProperCase Property

Applies to

TcsProperEdit, TcsDBProperEdit components

Declaration

property ProperCase: Boolean;

Description

The ProperCase property determines whether the text should be converted to proper-case.    The default value is
True.    Set ProperCase to False to disable text conversion.

OnConvert Event

Applies to

TcsProperEdit, TcsDBProperEdit components

Declaration

property OnConvert: TcsConvertEvent;

Description

The OnConvert event occurs prior to the default conversion of the input text whenever the text is changed.    Writing
an event handler for this event allows you to pre-process the text before the default handling is performed and/or to
block the default handling altogether.

 TcsDBProperEdit Component
Unit

CSProper

Description

The TcsDBProperEdit has the same additional properties as TcsProperEdit but is descended from TDBEdit.

TcsConvertEvent Type

Unit

CSProper

Declaration

TcsConvertEvent = procedure(var AString: String; var Handled: Boolean) of object;

Description

The TcsConvertEvent type points to a method that is called when the specified text needs converting to proper-case.
The assigned method can set Handled to True to indicate that it has handled the conversion and no further
conversion is necessary.

CSProper Unit

The CSProper unit contains the declaration for the TcsProperEdit and TcsDBProperEdit components and their
associated objects.

The following items are declared in the CSProper unit:

Components

TcsProperEdit

TcsDBProperEdit

Types

TcsConvertEvent

 TcsHiResTimer Component

Properties Events

Unit

CSHRTime

Description

The TcsHiResTimer component is similar to the TTimer component but differs in that you can set timer intervals less
than the minimum 55ms (18.2 times per second) allowed with a TTimer.    TcsHiResTimer allows an Interval as small
as 1 millsecond.    The timer events generated by TcsHiResTimer also have a higher priority than those generated by
a TTimer thus ensuring that they are more likely to be processed when needed.    The WM_TIMER messages used
by TTimer are generally ignored by Windows while there are other messages pending and multiple pending
WM_TIMER messages will actually be combined into a single message.

Important Note:

The TcsHiResTimer component depends on the file CSTIME16.DLL (for Delphi 1, 16-bit applications) or
CSTIME32.DLL (for Delphi 2, 32-bit applications).    You should make sure that the appropriate DLL is present in your
\WINDOWS\SYSTEM directory before attempting to use a TcsHiResTimer component.

Properties

DLLLoaded (run-time only)

Enabled

Interval

OneShot

Resolution

Events

OnTimer

DLLLoaded Property

Applies to

TcsHiResTimer component

Declaration

property DLLLoaded: Boolean;

Description

The DLLLoaded property indicates if the DLL (Dynamic Link Library) required by the TcsHiResTimer component was
found and loaded successfully.    If DLLLoaded is False no timer events will occur.    The name of the DLL file is
CSTIME16.DLL for Delphi 1 and CSTIME32.DLL for Delphi 2.

Enabled Property

Applies to

TcsHiResTimer component

Declaration

property Enabled: Boolean;

Description

The Enabled property determines whether the component will generate OnTimer events.    The default value is True.

Interval Property

Applies to

TcsHiResTimer component

Declaration

property Interval: Word;

Description

The Interval property determines the interval in milliseconds (1ms = 1/1000th of a second) between successive timer
events.    The default value is 100ms.    For example, to generate timer events 50 times per second you would set
Interval to 20.

You should use the largest possible value appropriate for your needs.    For example, if you only need to generate a
timer event for an alarm in an appointment system alarm you could use an Interval of 1000 (1 second), using a
smaller Interval would be wasteful of CPU time.    System overhead, i.e. the amount of CPU time used, will increase
as the Interval value is decreased.

The Resolution value can affect the accuracy of the Interval.

OneShot Property

Applies to

TcsHiResTimer component

Declaration

property OneShot: Boolean;

Description

The OneShot property determines whether Enabled will automatically be set to False after the OnTimer event occurs.
This can be used to reduce system overhead if you need to generate timer events of varying, but known, lengths.   
The default value is False.

For example, if you have some MIDI data to output you can send the first note to be played and set the Interval so
that the next timer event occurs when the next note needs to be played.    This is more efficient than setting the
Interval to a small value and then continually checking (in each OnTimer event) if the next note needs to be played
yet.

Resolution Property

Applies to

TcsHiResTimer component

Declaration

property Resolution: Word;

Description

The Resolution property determines the accuracy of the timer events in milliseconds.    The default value is 100ms.   
In general you can usually use a Resolution value equal to the Interval value.    Using Resolution values smaller than
necessary will just increase system overhead, i.e. the amount of CPU time used.

OnTimer Event

Applies to

TcsHiResTimer component

Declaration

property OnTimer: TNotifyEvent;

Description

The OnTimer event occurs at successive time intervals as specified by the Interval value.    If OneShot is True only
one event will occur whenever the component is Enabled.    No OnTimer events will occur if Enabled is False.   
Unless using OneShot timer events, the code you place in the OnTimer event handler should be able to execute in as
little time as possible.

If your OnTimer event handler takes too long to execute it is possible (depending on the Interval value being used)
that another (and another and...) timer event could occur before the previous timer event has been handled.    Your
program would continually be handling the timer events and would probably hang were this situation (time needed to
execute OnTimer event handler > Interval) to continue.

CSHRTime Unit

The CSHRTime unit contains the declaration for the TcsHiResTimer component.

The following items are declared in the CSHRTime unit:

Components

TcsHiResTimer

 TcsRankListBox Component

Properties

Unit

CSRankLB

Description

The TcsRankListBox component is a TListBox descendant in which the order of items can be changed at run-time by
dragging them with the mouse (or by using the keyboard).    Two modes of moving items using the mouse are
possible, one where the item is moved as it is dragged (MoveOnDrag = True), the other where the item is only moved
when the mouse button is released (MoveOnDrag = False).

Moving an item using the mouse:

Use Shift+Left-Click to select the item and then drag the item (keeping the Shift key and left mouse button
depressed) to its new position.    Release the mouse button and Shift key when the item is in the desired position.

Moving an item using the keyboard:

Select the item to be moved.    Hold down the Shift key while using the Up, Down, Home or End keys to move the
item to its new position.

In addition to the new MoveOnDrag property a TcsRankListBox component inherits all the properties and events of
TListBox.    However, the following properties have been made read-only and can't be changed:

ColumnsAlways 0 (zero)

DragCursor Always crDrag

DragMode Always dmManual

ExtendedSelect Always False

MultiSelect Always False

Sorted Always False

Properties

MoveOnDrag

MoveOnDrag Property

Applies to

TcsRankListBox component

Declaration

property MoveOnDrag: Boolean;

Description

The MoveOnDrag property determines whether the item's position will be changed immediately (MoveOnDrag =
True) as it is being dragged with the mouse or only when it is dropped (MoveOnDrag = False).    The default value is
True.    When the keyboard is used to move an item the position will be changed immediately, regardless of the
MoveOnDrag setting.

CSRankLB Unit

The CSRankLB unit contains the declaration for the TcsRankListBox component.

The following items are declared in the CSRankLB unit:

Components

TcsRankListBox

 TcsAutoDefaults Component

Properties

Unit

CSADMain

Description

The TcsAutoDefaults component allows you to automatically apply previously stored default property values to new
components dropped onto a form at design-time.    You can also apply default property values to existing components
on a form by using the Edit Automatic Defaults dialog box.

The component works by allowing you to store 'default' components in a file, called an AutoDefaults File.    Default
property values apply on a component type (class) basis (including descendant classes).    An AutoDefaults file can
contain any number of default components.    The size of the AutoDefaults file will depend on the type and number of
default components it contains.

Once you have defined your AutoDefaults file it is simply a matter of adding a TcsAutoDefaults component to a form
and then whenever a new component is added to the form the component's properties will be changed to that of the
'default' component.

TcsAutoDefaults components on different forms can share the same AutoDefaults file, i.e. you will usually only need
one file though you can have separate files for different types of forms or different projects.

TcsAutoDefaults components are ignored at run-time.

Using TcsAutoDefaults

To use the TcsAutoDefaults component you need to:

1. Add the component to a form.

2. Change the Filename property to the desired name.

3. Add a new component, e.g. a Label component, and set its properties to the values you want to be
the default values for a TLabel.    You should only change those properties which you would always
change (to the same value) for every new Label.

4. Double-click the TcsAutoDefaults component or select it and then right-click and choose Edit.    The
Edit Automatic Defaults dialog box will be displayed.    It is important to note that this step is only
necessary in defining the 'default' component and is not necessary each time you want to later auto-
default new components added to forms.

5. Select the label component you just edited from the Component/Class list and then choose the Add
button.    That component has now been saved as the 'default' Label component in the AutoDefaults
file.    The "Classes with defaults:" list will now show TLabel.

6. Close the Automatic Property Defaults form by pressing Esc or choosing the Close button.

7. Now add a new Label component to your form, you will see that its properties are changed to those of
the 'default' component.    Note that some properties (such as Left, Top) are not defaulted.    The Name
property is never defaulted.

If you want to change the defaults for a particular component you just need to repeat steps 3 to 5.

Setup

Prior to using this component you need to add the following information to your DELPHI.INI file.    Please note that the
UnsupportedClasses list should all be on one line (up to and including TSpinEdit), not on two lines as shown below:

[ClassicSoftware.AutoDefaults]
DefaultFilename=c:\delphi\noname.adf

Extension=adf
UnsupportedClasses=TMainMenu;TPopupMenu;TTabSet;TDBNavigator;

TDBLookupCombo;TSpinButton;TSpinEdit
Ignore0=TControl.Left
Ignore1=TControl.Top
Ignore2=TComponent.Caption
Ignore3=TComponent.Text
Ignore4=TRadioGroup.Items
Ignore5=TDBRadioGroup.Items
Ignore6=TTabbedNotebook.Pages
Ignore7=TcsNotebook.Pages

Description of INI file settings

DefaultFilename specifies the value to be used for the Filename property when a new TcsAutoDefaults component is
added to a form (thus saving you from having to type the filename every time).    Change the setting to a suitable
name.

Extension is the default filename extension to be used for AutoDefaults files when no extension is specified.

UnsupportedClasses are those classes within the standard Delphi environment which cannot be saved as default
components, there may be others in addition to those shown above which you come across from 3rd party
component libraries.    Attempting to save a component which is an unsupported class should not cause any problems
and you can later add it to the UnsupportedClasses section if you get an 'Ignore this component' message when
loading the AutoDefaults file.

Ignore<n> settings specify which properties of a default component are to be ignored because they are not relevant
or cause problems.    For example, when you drop a new component on a form you want it to stay where you dropped
it, thus the Top and Left properties should not be set to the default values.    The Ignore<n> settings in DELPHI.INI are
used as the initial Ignore values when an AutoDefaults file is first loaded.    If the AutoDefaults file contains alternate
values which have been specified from within the TcsAutoDefaults component editor, they will be used instead.

Properties

Active

Filename

ShowHints

Active Property

Applies to

TcsAutoDefaults component

Declaration

property Active: Boolean;

Description

The Active property determines whether the TcsAutoDefaults component will respond to the adding of new
components to the form.    The default value is True.    When a new component is added to a form and Active is True,
any existing default property values for that type of component will be applied.    When Active is False, no action is
taken when new components are added to the form.

Filename Property

Applies to

TcsAutoDefaults component

Declaration

property Filename: String;

Description

The Filename property determines the name of the AutoDefaults file in which the 'default' components will be stored.
The DefaultFilename setting in the [ClassicSoftware.AutoDefaults] section of your DELPHI.INI file is used as the
default value.    If you specify the name of an existing AutoDefaults file the defaults in that file will be loaded.    If you
specify the name of a file which is not an AutoDefaults file you will get an error message.    If you omit the filename
extension the Extension setting in the [ClassicSoftware.AutoDefaults] section of your DELPHI.INI file will be used.   
AutoDefaults filenames can use any extension but the recommended extension is "ADF".

ShowHints Property

Applies to

TcsAutoDefaults component

Declaration

property ShowHints: Boolean;

Description

The ShowHints property determines whether hints will be shown for buttons on the component editor (Edit Automatic
Defaults dialog box) at design-time.    You can show the component editor by double clicking the component or by
right clicking the component and choosing the Edit command.

CSADMain Unit

The CSADMain unit contains the declarations for the TcsAutoDefaults component.

The following items are declared in the CSADMain unit:

Components

TcsAutoDefaults

Exceptions

EcsADStreamError

Constants

WM_ApplyDefaults

Edit Automatic Defaults Dialog Box

Applies to

TcsAutoDefaults

The Edit Automatic Defaults dialog box shows all the components on the current form in alphabetical order.    The
class for each component is also shown.    On the right hand side is a list which shows the classes which have
previously stored defaults.

Add button

Press this button to add the property values of the highlighted component as the defaults for that component's class.
The defaults are saved immediately in the AutoDefaults file.    If the class of the highlighted component already has
defaults then they will be replaced with the new defaults.

Set button

Press this button to set the property values of the highlighted component to the default values for that component's
class.    If the highlighted component's class has no defaults then no changes will be made to the component's
properties.

Delete button

Press this button to delete the defaults for the classes highlighted in the "Classes with defaults" list.    You can make
multiple/extended selections in the list to delete the defaults for multiple classes.

Delete All button

Press this button to delete the defaults for all classes in the "Classes with defaults" list, whether they are
highlighted or not.    You will be asked to confirm that you want to delete all defaults before this is done.    Note that
the only way of restoring the default values after deleting all defaults is by shutting down Delphi and then restoring the
original AutoDefaults file from a backup copy (or by re-adding the defaults for each class from scratch).

Ignore button

Press this button to define the list of property values that should be ignored when applying defaults.    Each item in the
list should be in the format <class>.<property> where <class> is the class containing the property and <property> is
the property name.    For example, to ignore the Left property (because you don't want components added to a form
to all be defaulted to the same position) of all TControl descendants you would add TControl.Left to the list.    (This is
in fact standard so you don't actually need to add TControl.Left in this case.)    Each item in the list should be on a
separate line.    The specified properties will be ignored in the specified class and all its descendants.    Thus including
TControl.Left in the list actually causes TEdit.Left, TLabel.Left etc. to be ignored too because these are all TControl
descendants.

Close button

Press this button or press the ESC key to close the dialog box.    Changes are automatically saved so there is no
difference between using the Close button and pressing ESC.

 TcsFormPanel Component

Properties

Unit

CSFrmPnl

Description

The TcsFormPanel component is similar to a TPanel but adds two new properties -- Form (run-time only) and
FormName -- which allow a form to be displayed on the panel's surface.      Thus, a TcsFormPanel can be used as a
sub-form component to allow one form to be placed on another form, on another panel, on a notebook page etc.   
This allows greater modularity of your code by allowing you to keep the code for the sub-form separate from its
container (form/panel/notebook) and can also allow you to re-use the same sub-form on multiple forms.

Certain properties which are available in TPanel are not applicable in TcsFormPanel -- because the form will be
occupying the whole of the TcsFormPanel's surface -- and have been removed.    In some cases (DragCursor, Font,
OnClick, OnDragDrop etc.) there are equivalent properties/events in the sub-form that you can use instead.    The
TPanel properties and events which are not also present in TcsFormPanel components are listed below:

Properties removed

Alignment, DragCursor, DragMode, Ctl3D, Font, Locked, ParentCtl3D, ParentFont, ParentShowHint, PopupMenu,
ShowHint.

Events removed

OnClick, OnDblClick, OnDragDrop, OnDragOver, OnEndDrag, OnMouseDown, OnMouseMove, OnMouseUp,
OnResize.

Properties

Form (run-time only)

FormName

Form Property

Example

Applies to

TcsFormPanel component

Declaration

property Form: TForm;

Description

Run-time only.    The Form property determines the current form to display on the panel.    When using auto-created
forms you can also use the FormName property.    Note that when you assign a new form to the Form property the
previous form is only hidden and not closed or released.

It is your responsibility to create (before assigning to the Form property) and destroy (after hiding) any forms which
are not auto-created by the application. The example shows how to do this within another form.    The source code for
CSFPMAIN.PAS in the CSFPDEMO project illustrates how to dynamically create and destroy forms as each page on
a TcsNotebook is displayed.

FormName Property

Applies to

TcsFormPanel component

Declaration

property FormName: String;

Description

The FormName property can be used to indicate the name of the auto-created form to be displayed on the panel.   
You can determine all forms which are being auto-created by choosing Options | Project from the Delphi menu and
then choosing the Forms tab.    You should not use the FormName property for a form that is not being auto-created
-- use the Form property instead.

CSFrmPnl Unit

The CSFrmPnl unit contains the declaration for the TcsFormPanel component.

The following items are declared in the CSFrmPnl unit:

Components

TcsFormPanel

Example

The following example shows how you would create a sub-form (Form2) in Form1's OnCreate event handler.    Form1
is specified as the owner of the sub-form so that it will take care of destroying the sub-form.    Remember to include
the name of the unit containing the sub-form in the uses clause of the unit which is creating the sub-form, i.e. for the
following example you would include Unit2 in the uses clause of    Unit1 (this assumes that Unit1 contains the
definition for TForm1 and Unit2 contains the definition for TForm2):

procedure TForm1.FormCreate(Sender: TObject);
begin
    csFormPanel1.Form := TForm2.Create(Self);
end;

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
    if (csFormPanel1.Form <> nil) then
        csFormPanel1.Form.Close;
end;

 TcsComboBox Component
Unit

CSXCombo

Description

The TcsComboBox component is functionally the same as the TComboBox component except that it will correctly
remember the current item when changing pages on a TcsNotebook component which has the SaveResources
property set to True.    All properties and events of TcsComboBox are the same as for TComboBox, only the
behaviour is changed.    The TcsComboBox component can also be used instead of TComboBox on other 'paged'
components such as TNotebook and TTabbedNotebook when other resource saving mechanisms (via direct calls to
DestroyHandle) are being used.

 TcsDBComboBox Component
Unit

CSXCombo

Description

The TcsDBComboBox component is functionally the same as the TDBComboBox component except that it will
correctly remember the current item when changing pages on a TcsNotebook component which has the
SaveResources property set to True.    All properties and events of TcsDBComboBox are the same as for
TDBComboBox, only the behaviour is changed.    The TcsDBComboBox component can also be used instead of
TDBComboBox on other 'paged' components such as TNotebook and TTabbedNotebook when other resource saving
mechanisms (via direct calls to DestroyHandle) are being used.

CSXCombo Unit

The CSXCombo unit contains the declarations for alternative ComboBox components which can be used on the
pages of TcsNotebook components.

The following items are declared in the CSXCombo unit:

Components

TcsComboBox

TcsDBComboBox

 TcsGrid Component

Properties Methods

Unit

CSGrid

Description

The TcsGrid component is similar to the TStringGrid component but differs in that it uses a TcsStringTable to store the
cells' data rather than a sparse-array as used by TStringGrid.    The main ramification of this is that each cell already
contains a zero length string and insertion and deletion of columns and rows can be performed quickly using the
InsertColumn, DeleteColumn, InsertRow and DeleteRow methods.      Additional changes allow the grid to be used as
though it were a multiple-selection columned ListBox by using the ExtendedSelect and MultiSelect properties (in
conjunction with the goRowSelect setting in Options).

A current row indicator will be drawn in the last fixed column when MultiSelect and goRowSelect have both been set
to True and you have one or more fixed columns.

Properties

TcsGrid inherits all the properties of TDrawGrid.    The following properties have been added or changed:

Cells (run-time only) MultiSelect

Data (run-time only) Objects (run-time only)

DataCells (run-time only) Selected (run-time only)

DataObjects (run-time only)

ExtendedSelect

Methods

TcsGrid inherits all the methods of TDrawGrid.    The following methods have been added or changed:

AddColumn InsertColumn

AddRow InsertRow

ClearDataCells InvalidateRow

ClearSelected

DeleteColumn

DeleteRow

Cells Property

Applies to

TStringGrid, TcsGrid components; TcsStringTable object

Declaration

property Cells[ACol, ARow: Integer]: String;

Description

Run-time only.    The Cells property allows access to each individual cell of the grid.    ACol specifies the column
coordinate and ARow specifies the row coordinate.    Column coordinates range from 0 to ColCount - 1.    Row
coordinates range from 0 to RowCount - 1.    To reference cells which are not part of the fixed rows or columns in a
TcsGrid you can use the DataCells property, i.e. DataCells[0, 0] is equivalent to Cells[FixedCols, FixedRows].

Unlike TStringGrid, with TcsGrid you do not have to store something in a cell before using it, all cells are initialised to
a zero length string.

Data Property

Applies to

TOutlineNote, TcsGrid components

Declaration

property Data: TcsStringTable;

Description

Run-time only.    The Data property allows access to the data structure which holds the data for the cells of the grid.

DataCells Property

Applies to

TcsGrid component

Declaration

property DataCells[ACol, ARow: Integer]: String;

Description

Run-time only.    The DataCells property allows access to each individual 'data' cell of the grid.    A 'data' cell is any of
the non-fixed cells.    ACol specifies the column coordinate and ARow specifies the row coordinate.    Column
coordinates range from 0 to ColCount -FixedCols - 1.    Row coordinates range from 0 to RowCount - FixedRows - 1.
DataCells[0, 0] is equivalent to Cells[FixedCols, FixedRows].

DataObjects Property

Applies to

TcsGrid component

Declaration

property DataObjects[ACol, ARow: Integer]: TObject;

Description

Run-time only.    The DataCells property allows access to the objects associated with each individual 'data' cell of the
grid.    A 'data' cell is any of the non-fixed cells.    ACol specifies the column coordinate and ARow specifies the row
coordinate.    Column coordinates range from 0 to ColCount -FixedCols - 1.    Row coordinates range from 0 to
RowCount - FixedRows - 1.    DataCells[0, 0] is equivalent to Cells[FixedCols, FixedRows].

Objects Property

Applies to

TStringList, TStrings objects; TStringGrid, TcsGrid components

Declaration

property Objects[ACol, ARow: Integer]: TObject;

Description

Run-time only.    The Objects property allows access to the object associated with each individual cell of the grid.   
ACol specifies the column coordinate and ARow specifies the row coordinate.    Column coordinates range from 0 to
ColCount - 1.    Row coordinates range from 0 to RowCount - 1.    To reference objects associated with cells in a
TcsGrid which are not part of the fixed rows or columns you can use the DataObjects property, i.e. DataObjects[0, 0]
is equivalent to Objects[FixedCols, FixedRows].

Selected Property

Applies to

TDBListBox, TDirectoryListBox, TFileListBox, TListBox, TcsGrid components; TcsStringTable object

Declaration

property Selected[ARow: Integer]: Boolean;

Description

Run-time only.    The Selected property indicates if the specified row has been selected.

ExtendedSelect Property

Applies to

TListBox, TcsGrid components

Declaration

property ExtendedSelect: Boolean;

Description

The ExtendedSelect property determines if the user can select a range of rows in the grid.    It is only effective when
MultiSelect is True and goRowSelect has been selected in Options.

MultiSelect Property

Applies to

TListBox, TFileListBox, TcsGrid components

Declaration

property MultiSelect: Boolean;

Description

The MultiSelect property determines if the user can select more than one item in the grid.    This property is only
effective when goRowSelect has been selected in Options.    A current row indicator will be drawn in the last fixed
column (when you have one or more fixed columns) when MultiSelect and goRowSelect are set to True.

AddColumn Method

Applies to

TcsGrid component; TcsStringTable object

Declaration

procedure AddColumn;

Description

The AddColumn method adds a new (last) column.    The new column will have the same number of rows as existing
columns and each cell will contain a zero length string.

AddRow Method

Applies to

TcsGrid component; TcsStringTable object

Declaration

procedure AddRow;

Description

The AddRow method adds a new (last) row.    The new row will have the same number of columns as existing rows
and each cell will contain a zero length string.

ClearDataCells Method

Applies to

TcsGrid component

Declaration

procedure ClearDataCells;

Description

The ClearDataCells method sets the contents of each 'data' cell (all non-fixed cells) to a zero length string and clears
any selected rows.

ClearSelected Method

Applies to

TcsGrid component; TcsStringTable object

Declaration

procedure ClearSelected;

Description

The ClearSelected method sets the Selected status for all rows to False.

DeleteColumn Method

Applies to

TcsGrid component; TcsStringTable object

Declaration

procedure DeleteColumn(ACol: Integer);

Description

The DeleteColumn method deletes the specified column.    If there are objects associated with the cells of the column
to be deleted you should free the objects before using DeleteColumn.

DeleteRow Method

Applies to

TcsGrid component; TcsStringTable object

Declaration

procedure DeleteRow(ARow: Integer);

Description

The DeleteRow method deletes the specified row.    If there are objects associated with the cells of the row to be
deleted you should free the objects before using DeleteRow.

InsertColumn Method

Applies to

TcsGrid component; TcsStringTable object

Declaration

procedure InsertColumn(ACol: Integer);

Description

The InsertColumn method inserts a new column at the specified column position.

InsertRow Method

Applies to

TcsGrid component; TcsStringTable object

Declaration

procedure InsertRow(ARow: Integer);

Description

The InsertRow method inserts a new row at the specified row position.

InvalidateRow Method

Applies to

TcsGrid component

Declaration

procedure InvalidateRow(ARow: Integer);

Description

The InvalidateRow method invalidates the whole of the specified row, including fixed cells and any partially visible
cells on the right hand side of the grid.

CSGrid Unit

The CSGrid unit contains the declaration for TcsGrid.

The following items are declared in the CSGrid unit:

Components

TcsGrid

TcsStringTable Object

Properties Methods

Unit

CSStrTbl

Description

The TcsStringTable class defines a dynamic two dimensional string array which is used as the storage class for
TcsGrid cells but which can also be used for other purposes.

Properties

Cells (run-time only) SelectedRows (run-time only)

ColCount (run-time only)

Objects (run-time only)

RowCount (run-time only)

Selected (run-time only)

Methods

AddColumn DeleteRow

AddRow InsertColumn

ChangeSize InsertRow

Clear MoveColumn

ClearSelected MoveRow

Create

DeleteColumn

ColCount Property

Applies to

TDrawGrid, TStringGrid, TcsGrid components; TcsStringTable object

Declaration

property ColCount: Integer;

Description

Run-time only.    The ColCount property indicates the number of columns in the grid/table.    ColCount must be greater
than zero.

RowCount Property

Applies to

TDrawGrid, TStringGrid, TcsGrid components; TcsStringTable object

Declaration

property RowCount: Integer;

Description

Run-time only.    The RowCount property indicates the number of rows in the grid/table.    RowCount must be greater
than zero.

SelectedRows Property

Applies to

TcsStringTable object

Declaration

property SelectedRows: TStringList;

Description

Run-time and read only.    The SelectedRows property contains details of the selected rows.    Each item in the list is
the IntToStr() value of the number of the row which was selected.    The list of selected rows is adjusted whenever
rows are inserted, deleted or moved.

ChangeSize Method

Applies to

TcsStringTable object

Declaration

procedure ChangeSize(NewColCount, NewRowCount: LongInt);

Description

The ChangeSize method allows the number of columns and rows in the table to be changed.    You can use
ChangeSize instead of making multiple calls to AddColumn, DeleteColumn, AddRow or DeleteRow.

Clear Method

Applies to

TcsStringTable object

Declaration

procedure Clear;

Description

The Clear method allows the contents of all cells to be set to a zero length string.    If you have objects associated
with each cell these will be unaffected by this method.

Create Method

Applies to

TcsStringTable object

Declaration

constructor Create(NumCols, NumRows: Integer);

Description

The Create method creates a new TcsStringTable object with the specified number of columns and rows.    The
minimum size table that can be created is a 1 x 1 size table.

MoveColumn Method

Applies to

TcsStringTable object

Declaration

procedure MoveColumn(FromIndex, ToIndex: LongInt);

Description

The MoveColumn method moves the column at position FromIndex to position ToIndex.

MoveRow Method

Applies to

TcsStringTable object

Declaration

procedure MoveRow(FromIndex, ToIndex: LongInt);

Description

The MoveRow method moves the row at position FromIndex to position ToIndex.

CSStrTbl Unit

The CSStrTbl unit contains the declaration for TcsStringTable.

The following items are declared in the CSStrTbl unit:

Types

TcsStringTable

