
VBOpt4 - DoDi's Disassembler for VB4
(October 1996)

After a lot of questions about a decompiler for VB4, I sat down and made a first rough version in 
form of a disassembler, similar to VBOpt3. In the moment only a display of the tokens is 
available, it's a long way to a real Discompiler like VBDis3. Nevertheless you'll find many 
astonishing things about the code produced by VB4, giving hints on how to optimize your 
programs.

The next step will provide a decompiler for setup programs. I hate that kind of programs, and 
want to know what they do before they can damage my system.

The demo version of VBOpt4 does not save any tables created or modified.
Some features described below are also unavailable.

Using VBOpt4

Start VBOpt4 and open a make file (*.MAK, *.VBP) with Files|*.MAK from the menu.

The Scan window pops up and shows what the program is doing.

Then you're asked for the project directory. The demo version creates only one file with the 
preprocessed sourcecode, but the registered versions create many more files. It will be easier to 
remove these files if you use a dedicated subdirectory as project directory.

If the project contains informations about both 16 and 32 bit versions, you're asked to specifiy the 
desired version.

Then the sources are preprocessed, resulting in a single text file with only the lines that belong to 
the selected version (16/32 bit). This file may be useful if you want to know which parts of your 
sources are really compiled.

The preprocessor of VBOpt4 is optimized for speed, so it may be necessary that you enter the 
value of constants or expressions, that the preprocessor cannot evaluate itself.

After the sources are scanned, VBOpt4 compares them with the executable file, to verify that the 
declarations are valid for that program. If not, or if the program exceeds some limits of the demo 
version, a message is displayed and the program terminated.

If no errors occured so far, two windows appear in the main window, with your sources in the 
Source window and the tokens of the compiled program in the Exe window.

Then you can choose a module and a section from any of these windows. The Sync button 
selects and displays the same section as currently shown in the other window.

Depending on the resolution and size of your screen it may be difficult to read text shown with a 
monospaced font. In this case you can select View | Fixed Font from the menu and set the size 
and attributes of that font as desired.



Window Overview

The Main window contains the Source window with your source code and the Exe window with 
the tokens of the compiled program. From the menu you can open more windows:

Window Contents
About version and copyright of the program
Assembler all defined assembly instructions
Classes all OLE classes found in the program and the standard DLLs of VB4.
Controls the custom controls built into VBOpt4
Globals the global variables of the program
Locals the local variables of the current subroutine
References all locations that reference the selected location in the exe file
Resource the resources of the exe file
Scan the progress of scanning the sources and the exe file
Segments dumps of all locations found in the segments of the exe file
Statics the static variables in subroutines of the current module
Tables all general tables with informations about the program
Text any text file (in the Main window)
Tokens all defined exe tokens
Types the user defined types (UDT) found in the source code

Most windows need no special description (or are unavailable in the demo version).



The Token Display

The Exe window shows the offset of the tokens relative to the start of the subroutine, a 
description (if the meaning of the token is roughly known), and the arguments.

Some lines containing "newline" (or something equivalent) are inserted in places where the end 
of a statement is assumed, but not guaranteed. You can create reliable marks for the statements 
by putting an "On Error" statement into your source code, forcing VB4 to compile "statement" 
tokens for every statement.

Lines with line numbers are always flagged correctly, with possible multiple occurences of the 
same number, due to a bug in some VB4 compiler.

Most tokens found in VB4 programs are displayed with a description. Unknown tokens or tokens 
with a wrong description of it's arguments switch the display to a hex dump until the end of the 
subroutine. In this case the token in error is displayed in the Token window, where you can enter 
a better description.

You can also examine and change the description of a token with a double click on the 
corresponding line in the Exe window.

The arguments of the tokens can be displayed as variable names, whenever a declared 
variable is accessed. You can use the check box above the token display to enable or disable the 
display of the variable names (not in the demo version).

Other buttons in the Source and Exe windows are:

Sync shows the same subroutine as is currently displayed in the other window.



The Token Window

The Token window displays the descriptions of all known tokens, with the hex code, verbose 
description and arguments. To add a token, enter it's code and argument string (the description 
is optional), and press Modify. You can scroll through the descriptions with the Spin button, edit a 
description and confirm the changes with the Modify button. With the Save button the modified 
descriptions are immediately saved to disk.

Then press the Refresh button to see the updated display in the Exe window.

The argument string can consist of the following characters (lower case for 1 word each, upper 
case for 2 words):

~ means a variable number of arguments, stored in the word following the token 
code. It can appear only as the first character in the argument string.

In a variable list of arguments these characters are allowed after "~":
L the arguments are all local variables
D the arguments are all displacements (labels with On GoSub/GoTo...)
$ the last argument is a string literal, starting with the character count
u the last argument is a Unicode literal, starting with the character count
g a description of the UDT in a Get or Put statement

These characters are always allowed:
w is an (unknown) word.
P is a pointer (VB4 compiles pointers to subroutines and some data structures). 

You must use this argument type if the dump shows a pointer like "1:2345" or a 
symbol name instead of a simple four digit hex word.

p starts a specific pointer declaration, and must be followed by a type character. 
These descriptions will be used later, currently defined are:

pc pointer to a GUID, that evaluates to a class name.
pz declares a pointer to a zero terminated string, that is displayed as a comment 

after the pointer.

d shows a displacement as absolute offset (in 'jump' tokens).
e is the argument to an "On Error" token.
l displays the name of a parameter or local variable.
M displays the name of a global variable (2 words).
m displays the name of a property or method.
s displays the name of a static variable (not always appropriate)
% & ! # @ displays arguments formatted according to the VB type character.
4 dumps a 4 byte constant (Long, Single)
8 dumps a 8 byte constant (Currency, Double, Date)

The last character can be:
_ inserts a "newline" comment after the token

Please note that some tokens can have different constant arguments, e.g. # and @. In this case 
using a special type may result in a wrong display, if the argument really has the other type. In 
this case, use 4 or 8 to show the argument without formatting.

Some more argument types may be introduced, for references to local and global variables, 
descriptions of objects and other data structures.

To clarify the operation of the tokens and the type of variables, the following additional type 
characters are used:



° Byte
² Boolean
³ or * String * <fixed length>
~ Variant
/ Date
{ User Defined Type (like a struct in C)
. any object (with properties and methods)
4 or | 4 byte operand like & and ! (or a pointer)
8 8 byte operand like @ and #
^ is sometimes used to denote a pointer or reference

A more systematic description of the operation of the tokens will be provided later. Sometimes "t" 
or "vt" is used if a token is assumed to deal with temporary variables, invisible in the source code.

Tokens in VB3 programs were found in the range &H0F00 to &H4B00, all values outside this 
range (at least >= &h8000) should be considered as arguments of the preceding token. Values up 
to &h7FFF may be tokens new to VB4. VB4/32 seems to have a single jump table for all tokens, 
they are contiguously numbered in steps of 2. Moreover, most tokens with the same meaning, but 
different argument types, are assigned sequential codes. This is similar to VB3, where the tokens 
for variables with an appended type character are also grouped together, but in VB4/32 the 
tokens in such a cluster are really different, eg. CVar(%), CVar(&)...



Some Background Information

When you open a project for the first time, an extensive scan of the whole project is executed. 
During this time the Scan window is displayed, showing the progress of the analysis.
The tables created from this step are saved to files and used when you reopen the same project 
later (not in the demo version).

The first action is to preprocess all conditionals (#If...) in the sources. The preprocessed text is 
saved to a *.T0 file, where * is the project name. Constants are not replaced in this step, to keep 
the source text as close to the original as possible. Predefined are the constants True and False, 
as well as Win16 and Win32, depending on the exe type. Constants found in the make file are 
added to this list. Expressions in #If and #ElseIf statements may evaluate to wrong results, 
currently no operator precedence is implemented.

Therefore you should use not more than one "And" or "Or" in conditional expressions.

Then a map of all sections in the source files is created (e.g. forms, declarations, subroutines), 
used to display the source modules in the Source window.

Descriptions for all User Defined Types are created, used to determine the locations of local 
variables in the subroutines, and the member names when a Type variable is accessed.

Then the exe file is scanned, resulting in a complete list of all modules, subroutines and other 
elements.

The Forms found in the exe file are displayed in text format, ready for usage with VB4. Some 
sizes may be shown incorrectly, I hope this can be fixed in some later version.
VBDis3 can handle any custom controls, when a description (*.300) is provided, but cannot 
display the forms in text format. Therefore all forms must be converted to text format using VB3, 
sometimes a lengty operation. This was changed in VBOpt4, now the forms can be output 
directly in text format, with the consequence that only the fully known controls built into the VB 
runtime DLL can be handled.

Constants are never stored in specific locations, their values are displayed on every occurence 
in the Exe window.

Then the result is displayed in the Source and Exe windows. When you select a subroutine in the 
Source window, the locations of the local variables are determined. The offsets calculated in this 
step are used to display the names of the variables in the Exe window. Incorrect calculations will 
result from declarations containing Constant names instead of numeric values, as in "var As 
String * someConstant" or "var(low To high)". In this case VBOpt4 asks you to enter the correct 
value of the expression.

Therefore you should replace all constants in such expressions by their numeric value 
before using VBOpt4.

A lot of temporary variables are displayed in most subroutines. You can determine such variables 
by offsets below the last local variable shown in the local variables list. The search for local 
variables in the source files is terminated with the first executable statement, because this can 
result in temporary variables inserted by the compiler, before the next Dim statement.

Therefore you must place all Dim statements at the begin of a subroutine, to obtain a 
complete list of the local variables.

The primary goal of the future VBDis4 is to decompile setup programs. Therefore I use 
SETUP1.VBP from the VB4 setupkit directory to test and improve the decompiler. You can 



compile this project and check the capabilities of VBOpt4 with it, too.



Current Limitations

If your project sources differ from the compiled program, VBOpt4 is terminated. The demo 
versions have more restrictions, in the maximum number of forms, variables...

Different versions of VB4 may have different allocations strategies for variables. At least the 
TR6 beta creates much more code and uses many more temporary variables than the following 
releases. This may result in incorrect variable names shown in the Exe window.

VBOpt4 may crash with out-of-memory and subscript errors if a project is too big. If this occurs, 
I'll introduce range checks in the demo version to prevent such crashes, and the registered 
versions will be updated to overcome such limits.

Constants are not evaluated in Dim statements, you can enter the appropriate value in an 
InputBox.

Local variables can be handled only if the declarations occur at the begin of a subroutine. 
Intermediate statements may result in temporary variables allocated by the compiler, moving the 
declared variables to some unknown location, depending on the version of the compiler.

Dynamic arrays created with ReDim are not handled now.

Class modules and Property functions are not handled yet.

Objects, methods and properties are partially handled.

Only the controls built into the VB4 runtime DLL can be handled now.

The forms shown contain some wrong sizes.



History of VBOpt4

ToDo List

- Handling constants in Dim statements.

- Correct sizes in the form descriptions.

- First version of a Discompiler.

- Tracking pointers through multiple dereference steps.

Version 4.05 from October 1996

- Handling of both 16 and 32 bit programs.

- Display of control names, methods and properties.

- Correct font size in forms.

Version 4.16.04 from June 1996

- Evaluation of class references, needed to show properties and methods. The information about 
classes are derived from TYPELIB informations, found in DLLs, OLBs and TLBs.

- The data structures found in 16- and 32-bit executables are very similar, so the same strategies 
can be used for both kinds, though the different structure of the exe files themselves may be 
better handled in different programs, with a common front end that detects the type of the 
program and invokes the appropriate back end.

Version 4.16.03 from April 1996

- Modules, subroutines and variables are automatically matched between the executables and 
the sources. The Subroutines window and some buttons related to the manual assignment were 
removed.

- All variables are located on the first pass through the source text, the display of variable names 
is now independent from the source code currently shown.

- References to variables are always displayed with their name found in the source code.

- Windows were added to display the global, static and local variables.

- A single file is used for the preprocessed source code.

Version 4.16.02 from March 1996

The first published version for VB4 (16 bit).



First Conclusions on VB4

VB4 does not compile the source code into the executables.
Statement separators are created only if needed for error handling, forced with "On Error".
"Debug.Print" statements are not compiled into the executable, but "Stop" is.

VB4 removes redundant type conversions, e.g. CInt from "i1%=CInt(i2%)", but preserves other 
conversions, e.g. CVar in "s1$=CVar(s2$)", resulting in CVar followed by CStr.

No general descriptions for user defined types were found yet, only descriptors for Strings and 
Variants (possibly containing strings). The members of an UDT are accessed directly by their 
offset in the data structure.
Only in every Get and Put statement a lengthy description of variable UDTs is included.

Constants are stored as tokens with immediate arguments, not as variables.
I suppose this comes from the preprocessor of VB4, that replaces all constants by the value, thus 
decreasing the symbol table size of the compiler. Unfortunately the preprocessor doesn't evaluate 
constant expressions, resulting in superfluous operations at runtime.
Therefore you cannot patch a constant value in a single place, as is possible with VB3.
To encrypt and minimize the size of your program, replace string constants by variables and 
initialize them in the start procedure of the program.

Forms are stored in a similar way as VB3 did, but now directly including the names of all 
controls.
The names of the controls cannot be removed, because the controls are referenced by their 
name, at least if variables of type Form are used. The same applies to Control variables and their 
properties and methods, and possibly to any OCX.

Where VB3 createt different tokens for the same function, VB4 now uses the same token for 
different tasks, e.g. "jz" and "jnz" for If, Else, Do, While, Select...

VB4 calls every subroutine adding at least one invisible argument for a possible return value.
Methods are always called with a Variant return argument, that is not used if the method doesn't 
return a value.
Procedures in forms are possibly called with a Form object. This applies to every subroutine in a 
form, not only to event procedures. Classes will have a similar implementation (the this pointer in 
C++).

VB4/16 can compile the routines of a module into different segments, based on the code size of 
the routines.

VB4 creates some native inline code for subroutine calls, and true pointers through fixups.
Though this may speed up execution, everybody can use a debugger, put breakpoints on any 
subroutine call and inspect or modify the parameters.
Therefore you should never pass textual passwords to a subroutine, even in calls to subroutines 
inside your program. Better use a common variable, or encrypt the password before passing it to 
an external subroutine.



My Suggestions for the Implementation of VB5

To reduce the size of a program, these elements should be kept in distinct locations:

- constant strings
- descriptions for UDTs with variable arguments (strings, variants) for Get/Put

To increase the execution speed of a program,

- references to properties and methods of controls should be evaluated once, when the object is 
created. This applies especially to forms and OLE objects. A similar approach as used in VB3 
(early binding for Form and Control variables) could be used to cover all fixed references to 
unspecific objects.

- methods without return values should be called without a return argument, thus eliminating the 
initialization and destruction of the unused variant.

- variants should be used only where absolutely required, never as dummy arguments that are 
not used in subroutine calls.

To reduce memory usage,

- strings should be separated explicitly in Unicode (16 bit) and Ansi (8 bit). This also reduces 
type conversions in calls to external subroutines, if the character set is already available as 
required.

- Boolean arrays should be implemented as bit arrays. There is no other obvious usage of the 
Boolean type, in comparison to Integer.

- constant expressions should be evaluated at compile time

- unused temporary variables should be removed

To improve program development,

- type checking should be done during compilation as far as possible. Using Variant variables is 
very convenient to compiler writers (and decompiler writers <gd&r>), but prohibits type checking 
at compile time.

- assumptions on the type of properties, arguments and return values of methods should be 
classified at least as numeric, text and other known or unknown data structures.

- it should be up to the programmer to use Variant variables during the first development step of 
a program, and replace them by specific types later. Using literal constants for variable types (like 
typedef in C) is highly desirable.

Extensive type checking can reveal many errors at compile time and remove many type 
conversions at runtime. In addition, error handling code in a program will be smaller or even 
unnecessary if the return type of methods and properties is known.

The need of separate tools like Unix lint to find obvious type mismatches is inadequate to 
modern compiler technology.

The STRICT option in the Windows header files and the many (often wrong and almost 
superfluous) typecasts in the SDK samples show what features are missing in Microsoft's C 



compilers; a VB compiler should not need such crutches.

On the other hand, the source code of the setup1 project shows that the programmers around VB 
are not very good. The usage of IIf or explicit If/Then/Else statements to convert the result of a 
comparison operation and assign it to a Boolean variable obviously shows, that the author either 
doesn't know about True and False and the handling of boolean values in Basic, or that he 
doesn't trust in the implementation of VB.



What comes next?

In the beginning it was not clear whether a decompiler for VB4 programs is feasable. Now I'm 
quite sure that it's possible. The only question is, whether it's desireable to publish such a tool 
or not. For VB3 it was necessary to publish VBDis3, forcing Microsoft to remove the source code 
from the programs compiled with VB4. On the other hand, VBDis3 could definitely help a lot of 
programmers to recover lost sources!

As you may already know, I hate setup programs that corrupt the INI files, autoexec.bat and 
config.sys of my system and overwrite DLLs, VBXs and OCXs with old versions or in different 
languages. Therefore I promised to publish at least a Discompiler for setup programs - and this 
one will come!

But before I can publish it, I must find a way to protect programs against misuse of that 
decompiler. It's not very easy to find data structures in VB4 programs that can be modified to 
confuse or crash a decompiler, but keep the program running. It were a poor solution to overwrite 
some bytes, just like putting in a prayer "This program shall not be decompiled". But I hope to find 
a more practical solution (size of a program, number of forms) to prevent decompilation of other 
programs, without the need for explicit protection of already existing VB4 executables.

A handy restriction is a new feature built into VBOpt4: where the user had to convert all the forms 
created by VBDis3 from binary to text format, VBDis4 will create all modules in one pass as text. 
Therefore only the controls built into VBDis4 can be used in a program, else it cannot be 
decompiled.

VBOpt4 is restricted to programs containing at most 8 forms and only the custom controls used in 
the setup1 program of the VB4 setup kit.

A decompiler will come, however, to recover lost source code. Every decompiler of this kind will 
be restricted to a specific program, so you need not fear about the privacy of your VB4 sources.

In addition, if the installation of a Windows application doesn't become much more 
transparent to the user, more decompilers will come for future versions of VB and MS(V)C, 
and these will be able to decompile at least setup programs.

A decompiler for C/C++ is a big task, so it may become a public project, with the sources 
available to all programmers willing to assist in developing a general decompiler for 80x86 
processors, as I made myself already for 680x0 processors. As can be seen with VB4 programs, 
most code of a Windows application is contained in DLLs and common libraries like MFC or 
OWL. Once these parts are identified in a program, they mustn't be decompiled because they are 
already documented. Even better, every common subroutine allows to locate and type the data 
structures it uses, resulting in many useful informations about the rest of the program. This 
strategy was successfully tested for several compilers on Atari and Amiga systems, as well as on 
Unix workstations.

DoDi
(Dr. H.-P. Diettrich)

CompuServe: 100752,3277
Internet: 100752.3277@compuserve.com
WWW: http://ourworld.compuserve.com/homepages/DoDi


