Macintosh
Technical Notes

Developer Technical Support

#171: _PackBits Data Format

Revised by: Guillermo Ortiz February 1989
Written by: Cameron Birse November 1987

This Technical Note describes the format of data packed by the Toolbox utility PackBits. Although
you can simply unpack these files using the UnPackBits call, we provide this information here for
the terminally curious and for those manipulating MacPaint documents or PICT files by hand.
Warning: This information is subject to change.

Changes since March 1988: Added information on PICT files which contain data from the
_PackBits routine.

First there is a byte which specifies whether or not the the data is packed, and this byte is also the count
byte. It is a negative number if the data is packed (i.e., the high bit is set). If the high bit is set, then
that complete byte is a two’s complement number that tells you how many bytes were packed. Ifitisa
positive number, then it is simply a zero-based count of how many discrete data bytes exist. Consider
the following example:

Unpacked data:
AA AA AA 80 00 2A AA AA AA AA 80 00 2A 22 AA AA AA AA AA AA AA AA AA AA

After being packed by PackBits:

FE AA ; (-(-2)+1) = 3 bytes of the pattern S$SAA
02 80 00 2A ; (2)+1 = 3 bytes of discrete data

FD AA ; (-(-3)+1) = 4 bytes of the pattern S$SAA
03 80 00 2A 22 ; (3)+1 = 4 bytes of discrete data

F7 AA ; (-(-9)+1) = 10 bytes of the pattern $AA
or

FE AA 02 80 00 2A FD AA 03 80 00 2A 22 F7 AA

* * * * *

The bytes with the asterisk (*) under them are the count or flag bytes. ~PackBits will only pack the
data when there are 3 or more consecutive bytes with the same data, otherwise it just copies the data
byte for byte (and adds the count byte).

Note: The data associated with some PICT opcodes, $0098 (PackBitsRect) and $0099
(PackBitsRgn), contain PixData which is basically made of PackBits data. It should
be noted, though, that the format for PixData includes a byteCount or length in addition to
the data described in this note.

#171: PackBits Data Format of 21

For example, the following is the result of decoding a part of a sample PICT:

01CE 0000 0000 02D0 0240 /* Size and bounds, word + Rect */
11 /* pict 1, byte */
01 /* version, byte */
A0 00 82 /* short message, byte + 2 byte data */
01 0OO0OA 0000 0000 02D0O 0240 /* clip rgn, byte opcode + Rgn data */
98 /* PackBitsRect, byte opcode */
000A /* row bytes, word */
00C2 0O07E OO0OEB 00C6 /* bounds, Rect */
00C2 007E O00OEB 00C5 /* source rect, Rect */
0099 0090 00C2 00D7 /* dest rect, Rect */
0001 /* mode, Word */
/* Now we have the scan line data

which is packed into the following:
[byteCount for current scan line] [data as defined above]
If rowBytes > 250 then byteCount is a word else is a byte;
*/
/* first scan line */
04 /* number of bytes (byte since less than 250}
F8 00 00 67 /* —=(=-8)+1 of '00' and (0)+1 of '67'=10 */
/* second scan line */
05 /* number of bytes */
F9 00 01 01 6D /* —=(=7) + 1 '00'" and (1) + 1 '01 6D' = 10 */
/* The same math applies to all the following scan lines */
/* third line */
0A /* ten bytes */
04 00 00 03 FF FC FD 00 00 A7 /* '00 00 03 FF FC' '0O0O 00 00 00" 'A7' = 10
/* next line */
0A /* ten bytes */
04 00 00 02 3F F2 FD 00 00 67 /* '00 00 02 3F F2''00 00 00 00'"'67' = 10 */
/* last line */
08 /* number of bytes */
04 00 00 02 3E 31 FC 0O /* '00 00 02 3E 31' '00O 00 00 00 OO'" = 10 */
/* the very last line */
0B /* bytes */
04 00 00 02 3E 31 FE 00 01 01 EA /* '00 00 02 3E 31''00 00 00" '01 EA' = 10 */
/* more data follows */
Further Reference:
» Inside Macintosh, Volume 1-465, The Toolbox Utilities
» Inside Macintosh, Volume V-39, Color QuickDraw
e Technical Note #86, MacPaint Document Format
#171: PackBits Data Format of 22

*/

*/

