Macintosh Technical Notes D

#120: Drawing Into an Off-Screen PixMap

See also:

Written by:
Modified by:
Updated:
Modified by:

Inside Macintosh: QuickDraw
Technical Note #41: Drawing Into an Off-Screen Bitmap
Technical Note #119: Determining If Color
QuickDraw Exists
Technical Note #129: SysEnvirons

Jim Friedlander & Rick Blair May 4, 1987

Rick Blair July 1, 1987
March 1, 1988

Rich Collyer October 1, 1988

This Technical Note provides a simple example of drawing to, then copying
from, an off-screen PixMap.
Changes since March 1, 1988: Added sample MPW C 3.0 code.

This example shows how to draw something in an off-screen PixMap and then use

_CopyBits to copy
different pixel depths

it back to the screen. It handles the case where multiple screens of
are present.

Before we can make any Color QuickDraw calls, we must be sure that Color QuickDraw is
present (see Technical Note #129 for details). Then, given the following types, constants

and variables:

CONST
OffLeft = 30;
OffTop = 30;
OffBottom = 250;
OffRight = 400;

{These constants for the bounds of the off-screen PixMap are chosen because

we

know what the extent of the drawing will be and we want to restrict the size

of
the map

TYPE

as much as possible.}

BitMapPtr = ~BitMap; {for type coercion in the CopyBits call}

Technical Note #120

page of 7 Drawing Into an Off-Screen PixMap1

VAR

offRowBytes LONGINT;
sizeOfOff LONGINT;
myBits Ptr;
destRect Rect;
globRect Rect;
bRect Rect;
theDepth INTEGER;

i INTEGER;
err INTEGER;
myCGrafPort CGrafPort;
myCGrafPtr CGrafPtr;
ourCMHandle CTabHandle;
theMaxDevice GDHandle;
oldDevice GDHandle;

We first create a color window.

We need to find the maximum depth device to which we will copy the off-screen image with

_CopyBits.

Now we need to set theGDevice to the device with the maximum pixel depth, so that the

myCWindow :=

SetPort (myCWindow) ;

GetNewCWindow (SomeID,NIL,WindowPtr (-1));

{set to this port for the localToGlobals that follow}

SetRect (bRect,OffLeft,0ffTop, 0OffRight, OffBottom) ;

IF NOT SectRect (myCWindow”.portRect,bRect,globRect)

NothingToCopy; {nothing to do,

{still here,

LocalToGlobal (globRect.topleft) ;
LocalToGlobal (globRect.botRight) ;

THEN
clean up and EXIT}

so let’s convert to globals}

{figure out how much space we need for our pixel image.
we will call GetMaxDevice and get the pixel map from that --
we do this to cover the case where the pixel image that we wish

to CopyBits to spans multiple devices

(of possibly different depths)}

theMaxDevice:= GetMaxDevice (globRect) ; {get the maxDevice}

pixel map of our new CGrafPort will be copied from one of the proper depth, etc.

oldDevice :=

SetGDevice (theMaxDevice) ;

GetGDevice; {save theGDevice so we can restore it later}

{Set to the maxdevice}

We then open a new CGrafPort which will be used for off-screen drawing.

myCGrafPtr := @myCGrafPort; {initialize this guy}
OpenCPort (myCGrafPtr) ; {open a new color port — this calls InitCPort}
theDepth:= myCGrafPtr”.portPixMap"”".pixelSize;

Technical Note #120 of 7 Drawing Into an Off-Screen PixMap2

page

Now we are ready to calculate the size of the pixel image that we will need.

{similar formula to technote 41, except we must include pixel depth}

offRowBytes := ((((theDepth * (OffRight - OffLeft)) + 15)) DIV 16) * 2;
{make sure LONGINT math is done on the next line!}

sizeOfOff := LONGINT (OffBottom - OffTop) * offRowBytes;

OffSetRect (bRect, - OffLeft, - OffTop); {adjust for local coordinates}

{Set up baseAddr, rowBytes,bounds and pixelSize

of the PixMap in our fresh, new CPort}
myBits := NewPtr (sizeOfOff); {allocate space for the pixel image}

{real programs do error checking here}

Now we fix the PixMap location- and size-specific information.

WITH myCGrafPtr”.portPixMap”” DO BEGIN

baseAddr := myBits;
rowbytes := offRowBytes + $8000; {remember to be a PixMap}
bounds := bRect;

END; {with}

Color QuickDraw distinguishes between a BitMap and PixMap by checking the high bit of
rowBytes, which is why we add $8000 to 0f fRowBytes in the above code. Now we need
to clone the color table of the maxDevice so we can put it into our off-screen PixMap.

ourCMHandle := theMaxDevice””.gdPMap””.pmTable;
err := HandToHand (Handle (ourCMHandle)) ; {clone it}
{real programs do error checking here}

{put the cloned,
correctly set-up Color
Table into the
off-screen map}

SetPort (GrafPtr (myCGrafPtr)); {Set the port to the off-screen port}

myCGrafPtr”.portPixMap””.pmTable := ourCMHandle;

Now we call procedure DrawIt (which calls the function Fi11InColors) to draw an image
in the off-screen port.

FUNCTION FillInColor(r,g,b: Integer): RGBColor;
{small utility routine to return an RGBColor}

VAR
theColor : RGBColor;
BEGIN {FillInColor}
WITH theColor DO BEGIN
red := r;
green := g;
blue := b;
END;
FillInColor := theColor;
END; {FillInColor}

Technical Note #120 page of 7 Drawing Into an Off-Screen PixMap3

PROCEDURE DrawlIt;

VAR
OvalRect : Rect;
myRed, myBlue, myWhite,
myGreen, myBlack : RGBColor;

BEGIN { DrawlIt }
{get our colors set up}
myRed := FillInColor(-1,0,0);
myBlue := FillInColor(0,0,-1);
myGreen := FillInColor(0,-1,0);
myWhite := FillInColor(-1,-1,-1);
myBlack := FillInColor(0,0,0);
PenMode (PatCopy) ;
RGBBackColor (myBlue); {set the backcolor of the current port}
EraseRect (thePort”.portRect); {blue it out}
RGBBackColor (myWhite) ; {set back to white}

RGBForeColor (myRed) ; {set the forecolor of the current port}
SetRect (OvalRect, 30,30,190,150) ;
PaintOval (OvalRect) ;

InsetRect (OvalRect,1,20);
EraseOval (OvalRect); {erase oval to white}

RGBForeColor (myGreen) ; {draw the final oval in green}
InsetRect (OvalRect, 40,1);
PaintOval (OvalRect) ;
RGBForeColor (myBlack) ;
END; { DrawIt }

Now we are done drawing, so set thePort and theGDevice back.

SetPort (MyCWindow) ;
SetGDevice (oldDevice) ;

Now we can draw the image on the screen by using CopyBits to copy the bits from the
portPix of the off-screen PixMap to the portPix of MyCWindow.

destRect := bRect;

OffSetRect (destRect,O0fflLeft,0ffTop); {adjust for coordinates}

CopyBits (BitMapPtr (MyCGrafPtr”.portPixMap”) ", MyCWindow”.portBits, DbRect, destRect, O,
NIL);

Finally, we clean up by closing the CGrafPort we created, freeing the space we reserved
for the pixel image of the off-screen pixMap and disposing of the color table we allocated.

CloseCPort (myCGrafPtr) ; {Close our port}
DisposPtr (MyBits) ; {clean up}
DisposHandle (Handle (ourCMHandle)) ; {get rid of color table we cloned}

Technical Note #120 page of 7 Drawing Into an Off-Screen PixMap4

MPW 3.0 C code:

Note: Most of the comments above apply to this C code. If you do not understand what the
code is doing, try looking at the equivalent Pascal code above and the comments which are
associated with that code.

/* Define constants for the Off-Screen Rect */

#define OffLeft 30
#define OffTop 30
#define OffBottom 250
#define OffRight 400

/* typedef BitMapPtr for use during CopyBits operation */
typedef BitMap *BitMapPtr;

long offRowBytes, sizeOfOff;
Ptr myBits;

Rect destRect, globRect, DbRect;
int theDepth, i, err;
CGrafPort myCGrafPort;

CGrafPtr myCGrafPtr;

CTabHandle ourCMHandle;

GDHandle theMaxDevice, oldDevice;
Point tempP;

Open a color window on screen. In MPW C, myWindow will be declared as a WindowPtr
not a CWwindowPtr, which is contrary to the way Inside Macintosh, Volume V documents it.

myWindow = GetNewCWindow (SomeID,nil, (WindowPtr) -1);

/* set to this port for the localToGlobals that follow */
SetPort ((WindowPtr) myWindow) ;

SetRect (&bRect,O0ffLeft,0ffTop, OffRight,0ffBottom) ;
if (!SectRect (& (*myWindow) .portRect, &bRect, &globRect))
ExitToShell(); /*nothing to do, clean up and EXIT*/

MPW does not have topLeft or botRight elements for Rect structures, so you need to
set the tempPoint, call LocalToGobal then reset globRect.

tempP.v = globRect.top;
tempP.h = globRect.left;
LocalToGlobal (&tempP) ;

globRect.top = tempP.v;
globRect.left = tempP.h;

tempP.v = globRect.bottom;
tempP.h = globRect.right;
LocalToGlobal (&tempP) ;

globRect.bottom = tempP.v;
globRect.right = tempP.h;

theMaxDevice = GetMaxDevice (&globRect);/*get the maxDevice*/

oldDevice = GetGDevice();/*save theGDevice so we can restore it later*/
SetGDevice (theMaxDevice) ; /*Set to the maxdevice*/

Technical Note #120 page of 7 Drawing Into an Off-Screen PixMap5

Now it is time to set up the off-screen PixMap.

myCGrafPtr = &myCGrafPort; /*initialize this guy*/
OpenCPort (myCGrafPtr) ; /*open a new color port — this calls InitCPort*/
theDepth = (** (*myCGrafPtr) .portPixMap) .pixelSize;

/* Bitshift and adjust for local coordinates */

offRowBytes = (((theDepth * (OffRight - OfflLeft)) + 15) >> 4) << 1;
sizeOfOff = (long) (OffBottom - OffTop) * offRowBytes;

OffsetRect (&bRect, - OffLeft, - OffTop);

myBits = NewPtr (sizeOfOff);

/* Remember to be a PixMap */

(** (*myCGrafPtr) .portPixMap) .baseAddr = myBits;

(** (*myCGrafPtr) .portPixMap) .rowBytes = offRowBytes + 0x8000;
(** (*myCGrafPtr) .portPixMap) .bounds = bRect;

ourCMHandle = (** (**theMaxDevice) .gdPMap) .pmTable;
err = HandToHand (& ((Handle) ourCMHandle));
/* Real programs do error checking here */

(** (*myCGrafPtr) .portPixMap) .pmTable = ourCMHandle;
SetPort ((GrafPtr) myCGrafPtr);

/**/

/* */
/* function for setting the wanted color */
/* */

/**/

RGBColor FillInColor(r,qg,b)
int r,g,b;

{ /*FillInColor*/
RGBColor theColor;

theColor.red = r;
theColor.green = g;
theColor.blue = b;
return (theColor);

hAhkhkhkkhkkhkhkhkhkkhkhhkhhkkhkhkhhkhkhkkhhkrhkhkhkhohkhhkkhhkrhkkhkkhkhhrhhkkhhkrhkkhkkhkhhrhkhkhkxx
/ /
/* */
/* Drawing routine which makes the background blue */
/* then draws a red oval, white oval, and green oval */
/* After drawing to the off-screen it CopyBits to the */
/* screen */
/* */
khkkhkkhkhkhkkhkhkhkhkhhkkhhkhrhkkhkkhkhkhkhhkhhkhrhkhkkhkhdhhhkkhhkhrhkkhkhkhhkhkkhkkhhkrhkkhkkhkhhhkhk*x
/ /

volid DrawIt ()
Rect OvalRect;
RGBColor myRed, myBlue, myWhite, myGreen, myBlack;

myRed = FillInColor(-1,0,0);
myBlue = FillInColor(0,0,-1);

myGreen = FillInColor(0,-1,0);
myWhite = FillInColor(-1,-1,-1);
myBlack = FillInColor(0,0,0);

PenMode (patCopy) ;
RGBBackColor (&myBlue) ;

Technical Note #120 page of 7 Drawing Into an Off-Screen PixMap6

EraseRect (& (*gd.thePort) .portRect) ;
RGBBackColor (&myWhite) ;
RGBForeColor (&myRed) ;

SetRect (&0valRect, 30,30,190,150);
PaintOval (&0valRect) ;

InsetRect (&OvalRect, 1,20);
EraseOval (&OvalRect) ;

RGBForeColor (&myGreen) ;
InsetRect (&OvalRect,40,1);
PaintOval (&0OvalRect) ;
RGBForeColor (&myBlack) ;

SetPort ((WindowPtr) myWindow) ;
SetGDevice (oldDevice) ;

destRect = bRect;
OffsetRect (&destRect,OffLeft,0ffTop) ;
CopyBits ((BitMapPtr) * (*myCGrafPtr) .portPixMap,
& (*myWindow) .portBits, &bRect, &destRect, 0, nil);

return;

These are used to help clean up when you are done with the off-screen pixMap.

CloseCPort (myCGrafPtr) ;
DisposPtr (myBits) ;
DisposHandle ((Handle) ourCMHandle) ;

Note: For optimal performance, you will want to make sure that the source PixMap and
destination PixMap are aligned.

Technical Note #120 page of 7 Drawing Into an Off-Screen PixMap7

