
Macintosh Technical Notes 
#221: NuBus Interrupt Latency (I was a teenage DMA junkie)

See also: Inside Macintosh, Volume V, The Device Manager
Inside Macintosh, Volume V, The Vertical Retrace Manager
Macintosh Family Hardware Reference
Designing Cards and Drivers For Macintosh II

and Macintosh SE

Written by: Cameron Birse, Mark Baumwell &
Rich Collyer December 1988

This Technical Notes discusses NuBus interrupt latency and why, contrary to
popular belief, the Macintosh is not a real-time machine.

The Macintosh is not a real-time machine. The Macintosh does not support DMA. There are
many variables in the Macintosh that make it impossible to deterministically figure out exactly
when things are going to happen. Despite these facts, there are those who must push the
envelope. For these courageous adventurers, we provide the following information in the
hope that it will speed your journey.

According to empirical evidence gathered by Apple engineering, typical NuBus to Macintosh
transaction times fall in the 800 ns to 1 microsecond range. Although the NuBus specification
points to faster accesses, you should consider these times realistic since there will always be
some overhead. Synchronizing the NuBus and Macintosh clocks, for example, can cost a
NuBus cycle.

One technique that can help optimize NuBus transfers is implementing bus locking. The bus
can be locked for a small set of transactions (we recommend a maximum of four transfers),
then unlocked for rearbitration. In order to allow fairness, it is important to lock the bus for as
short a time as possible.

All processor interrupts and slot interrupts may be held off for various amounts of time by
different parts of the system, so you must never count on instant interrupt response. To help
deal with these delays, you should consider your data rate and include ample buffering on
your card for your data. The following are just a few of the many system variables which affect
interrupt latency:

• Floppy disk accesses turn off interrupts for “significant” (read “milliseconds”)
amounts of time. For instance, some disk accesses (i.e., block reads) can disable
interrupts for as much as 15 milliseconds. Inserting a blank floppy disk turns off
interrupts for up to 25 milliseconds.

• Formatting a floppy disk turns off interrupts for up to 300 milliseconds.

• LocalTalk accesses can disable interrupts for up to 22 milliseconds.

Technical Note #221 page of 3 NuBus Interrupt Latency1

• Assuming your interrupt handler is going to want to access your card immediately,
there is also the arbitration for mastership of the bus, which could be in use at the
time, and worst case, lock the bus, holding you off from accessing your card.

• All slot interrupts, including slot VBL interrupts, hold off other slot interrupts. This
means another card’s interrupt routine (installed via _SIntInstall) or a slot
VBL interrupt routine (installed via _SlotVInstall) will run to completion with
interrupts of the slot level and below disabled. VBL tasks may be of varying
length, since applications, as well as drivers, can and do, install VBL tasks.

• Cursor updating (performed during slot VBL time) time ranges from around
700µSec - 900µSec for one-bit to eight-bit depth. Since this is done at slot VBL
time, it holds off all other slot interrupts until it is finished.

The following code will let you defer the cursor updating routine by having it run at
the “pseudo-VBL time.” This changes the cursor update to a lower priority
interrupt, which then will allow slot interrupts to occur. It should be noted that there
is a slightly visible flickering of the cursor as a result of using this technique.

Warning: The numbers cited above are based on our current implementations, and are
not guaranteed to be the same in future machines.

**

*** Defer Cursor
*** This program defers the cursor updating that normally happens
*** during slot VBL time. Since the cursor updating can take as
*** long as 900µSec, and holds off other slot interrupts, it is
*** handy to be able to defer the updating to a more civilized time.
*** This program replaces the normal jCrsrTask with an RTS, and installs
*** a VBL task that calls jCrsrTask routine every VBL.

*** Since the normal VBLs are a level of interrupt lower than slot
*** interrupts, the cursor updating will not hold off slot interrupts.

*** This is a one way street. A real implementation should restore
*** the regular jCrsrTask when this scheme is no longer needed.

**

 STRING ASIS
 PRINT OFF
 INCLUDE 'Traps.a'
 INCLUDE 'SysEqu.a'
 PRINT ON

******************************** Entry *************************************

Entry MAIN
 ALIGN 2
 bra.s Entry2
****************************** MyVBLTask *****************************

Technical Note #221 page of 3 NuBus Interrupt Latency2

TaskBegin
MyVBLTask

 move.w #1,vblCount(a0)
 move.l TaskEnd,a0
 jmp (a0)

***************************** MyjCrsrTask ****************************

MyjCrsrTask
 rts
TaskEnd

******************************** Entry2 ******************************

TaskSize EQU TaskEnd-TaskBegin
VBLEntry EQU TaskSize+4 ;keep the old jCrsrTask pointer between the
 ; tasks and VBLTask record

Entry2
 move.l #TaskSize+18,d0 ;18 bytes = 1 Pointer + VBLTask record
 _NewPtr ,SYS,CLEAR ;make a block in the system heap
 bne.s Abort
 move.l a0,a2 ;save the pointer
 move.l a0,a1 ;a0 = source, a1 = destination
 lea MyVBLTask,a0 ;now copy the two tasks over
 move.w #TaskSize,d0
 _BlockMove

 move.l a2,a0 ;restore the pointer
 move.l jCrsrTask,TaskSize(a0) ;put the system jCrsrTask pointer before
 ; the VBL record
 adda.l #MyjCrsrTask-TaskBegin,a0 ;make a pointer to our jCrsrTask
 move.l a0,jCrsrTask ; and install it

 adda.l #VBLEntry,a2 ;now point to the VBLTask Record
 move.w #vType,qType(a2) ;look for qType, etc. in AIncludes
 move.l a1,vblAddr(a2) ;point to our task
 move.w #1,vblCount(a2) ;do it once every 1/60th second
 move.w #0,vblPhase(a2) ;no phase
 move.l a2,a0 ;a0 must point to VBL task record
 _VInstall

abort rts ;all's well that ends...
 END

• Note, as an aside, that while using MacsBug, interrupts are disabled.

In summary, you cannot depend on real-time performance when transferring data between
NuBus and the Macintosh. It is important to provide sufficient buffering on the card to allow for
the variance in interrupt latency. Driver calls can be used to determine the amount of data
available to be transferred, and transfers can be made on a periodic basis.

Remember too, since the entire system is so heavily interrupt-driven, it is very unfriendly for
anyone to disable interrupts and take over the machine for long periods of time. Doing so will
generally result in a sluggish user interface, something which is usually not well received by
the end user.

Technical Note #221 page of 3 NuBus Interrupt Latency3

