
__

Macintosh Technical Notes 
#212: The Joy of Being 32-Bit Clean

See also: Inside Macintosh, Volume V, Compatibility Guidelines
A/UX Toolbox: Macintosh ROM Interface
Technical Note #2: Compatibility Guidelines
Technical Note #117: Compatibility: Why & How
Technical Note #129: _SysEnvirons: System 6.0

and Beyond
Technical Note #213: _StripAddress: The Untold Story

Written by: Andrew Shebanow October 1, 1988
__

What to do (and what not to do) to make your programs run under A/UX and
future versions of the Macintosh System Software.
__

Introduction

Many programs available today will not run in a 32-bit world. Currently the Macintosh OS
runs in a 24-bit world, where the hardware ignores the high byte of all memory addresses
(including pointers and handles). Under A/UX (and future versions of the Macintosh OS),
programs must run in a 32-bit world, where the entire address is significant. This Technical
Note presents guidelines which you should follow to make your program work under A/UX
and future versions of the Macintosh OS. Following these guidelines means a little extra
work, but it is this extra work now which will bring you the joy of being 32-bit clean when the
world changes and you don’t have to rewrite your program.

Note: Much of the information presented here has already been discussed in one or more of
the documents referenced above, but it is being repeated here because of the
importance of the subject matter.

Keep in mind that the rules presented here are not graven in stone. Although you may find it
necessary to break some of these rules to achieve specific functionality in your program, it is
important to remember that in doing so, you will cause your program to break in the future.
Keeping your program compatible is your responsibility as well as Apple’s.

If you are unsure about a particular programming technique or feel that you must break a
rule to accomplish your goals, contact Macintosh Developer Technical Support to see if there
is another solution to your problem or a sanctioned way of working around a particular rule.
If you don’t ask, you will never know.

Technical Note #212 page of 5 The Joy of Being 32-Bit Clean1

General Rules

The following are some general rules that you should follow to make your program more
robust:

• Always code defensively. Check the error code after you make a call to the Toolbox. Make
sure your handles and pointers are not NIL. Do not assume that calls will always succeed.
See Technical Note #117 for more information.

• Use _SysEnvirons (and, if absolutely necessary, HwCfgFlags) to determine your
system’s configuration. When checking for the processor type, make allowances for newer
Motorola processors like the 68030. See Technical Note #129 for more information on
_SysEnvirons.

• Do not check to see if MultiFinder is running (you can’t tell anyway); your application should
work properly with and without MultiFinder.

• Do not make assumptions about the maximum size of a piece of memory or a resource.
Do not assume that the maximum distance between two objects in memory is less than 232

bytes. Do not store less than 32 bits for the size of an object (e.g., PICTs) in your data
structures unless you create them.

• Call _NGetTrapAddress for any traps you use that are not available under A/UX, such as
the Time Manager traps. For a complete list of traps available under A/UX, see A/UX
Toolbox: Macintosh ROM Interface.

• Always use the latest version of your development system and documentation. Even
though you do everything “correctly,” earlier versions may have bugs or inaccuracies that
could break your program.

To summarize: don’t make any assumptions, even if those assumptions are currently true.
The future will change.

Hardware & CPUs

• Do not assume that you are running in the processor’s supervisor mode. Do not use TRAP
instructions or exception vectors that are reserved for future use by Apple or Motorola. See
the Compatibility Guidelines chapter of Inside Macintosh, Volume V for more information.

• Never try to bypass existing interfaces to hardware devices. Direct hardware access is not
available under A/UX. Use the Serial Driver to talk to the SCC. Use the File Manager to
manipulate disks. Use the SCSI Manager to talk to your non-disk devices like scanners
and printers. Use QuickDraw to draw to your screen.

• Do not use timing loops. Different CPUs execute them at different speeds.

Memory Manager

Memory Manager abuse is the leading cause of death under A/UX. Here are some crucial
points to remember:

• Do not set bits in master pointers directly. Use Memory Manager traps (e.g., _HLock,
_HGetState, and _HSetState) instead.

• Do not use fake handles under any circumstances. See Technical Note #117 for more
information on Handle etiquette.

Technical Note #212 page of 5 The Joy of Being 32-Bit Clean2

• When you compare master pointers, use _StripAddress to convert them to the correct
format. See the OS Utilities chapter of Inside Macintosh, Volume V and Technical Note
#213 for more information.

• Do not make assumptions about the contents of Memory Manager data structures,
including master pointers and zone headers. These structures have changed under A/UX,
and they will change again in the future.

Resource Manager

Here are some guidelines for using the Resource Manager:

• Avoid opening resource files read-only unless the resource file is on an AppleShare
volume. If another application (including DAs and other types of code) opens (or already
has open) the resource file for writing, you could end up with a corrupted resource map. If
you do open a resource file read-only, you should load the resources you need into
memory immediately.

• Do not set resource attribute bits directly. Use the supplied _GetResAttrs and
_SetResAttrs traps.

• Do not make assumptions about the contents of Resource Manager data structures and,
especially, the resource map. Do not try to walk the resource map.

WDEFs and CDEFs

In earlier versions of the System Software, the Window Manager and the Control Manager
both stored the variant code (which defines how the window or control looks) in the high byte
of the defProc field. You should use the _GetWVariant and _GetCVariant traps to get
the variant code. If writing your own WDEF or CDEF, you should use the variant parameter
that is passed to you.

If you are writing your own CDEF, you have to be very careful. Currently, there is no way to
make a CDEF fully 32-bit clean, since the calcCRgns message uses the high bit of the
region handle as a flag. Inside Macintosh, Volume I-331 says to “clear the high byte (not just
the high bit) of the region handle before attempting to update the region.” This is wrong.
You should clear just the high bit, or your code will not run under A/UX or future versions of
the Macintosh OS. Apple will implement a new, cleaner interface for this call in a future
System Software release, but until then, all you can do is pray your CDEF still works. If you
would like more reassurance than prayer can provide, your best bet is to avoid the Control
Manager altogether and do it all yourself; see Technical Note #203 for more information.

File System

Avoid building path names into your application. A/UX uses the slash (/) as a pathname
separator instead of the colon (:), and external file systems implemented by Apple and by
third parties may have other restrictions. For the same reason, avoid hard-coding volume
and file names in your program. Try to avoid creating your own working directories. Do not
assume any particular maximum length for file names; A/UX limits them to 14 characters
while the Macintosh OS limits them to 31.

Technical Note #212 page of 5 The Joy of Being 32-Bit Clean3

The easiest way to avoid intimate knowledge of the file system is to let _SFPutFile and
_SFGetFile manage file names for you. Refer to Inside Macintosh, Volume I, The
Standard File Package for details on these two calls.

Low-Memory Globals

A/UX does not support all of the low-memory globals, and future systems may provide even
less support. Unfortunately, there are some things you just cannot do on a Macintosh
without using low-memory globals, so it is currently impossible to avoid them entirely. Here
are some guidelines:

• Avoid writing to or reading from low-memory globals unless absolutely necessary.
• Do not use low-memory globals that are labeled private, reserved for future use, or that are

undocumented.
• Do not use low-memory globals when there is a trap or library routine which accomplishes

the same task. For example, A/UX does not support the low-memory global Ticks, but it
does support the _TickCount trap.

Trap Patches

Patching traps is one of the easiest ways to break your program. It is very difficult to write a
trap patch that does not make bad assumptions about the way things work. Many current
applications patch traps unnecessarily. If a trap does not work the way you want, implement
your own code instead of trying to patch the required functionality into the trap. Here are a
few guidelines to follow if you absolutely must patch a trap:

• Do not assume that A5 is valid when you call the patch.
• Do not bypass the Trap Dispatcher to call traps directly. The performance gains are small,

and there may be serious side effects.
• Do not use the Memory Manager if your patch could conceivably be called at interrupt time

or if the trap you are patching can move memory.

Make sure that any patch you do write is not a tail patch. A tail patch is a patch which looks
at the results returned by the original patch and modifies them to suit its own purposes. If
you call the original trap routine with a JSR instead of a JMP, you have created a tail patch.

You need to avoid tail patches because many of Apple’s System Software patches check the
return address on the stack to see who called them. If you write a tail patch, you defeat
these checks and may cause things to break in strange and less than wonderful ways.

Technical Note #212 page of 5 The Joy of Being 32-Bit Clean4

Sound

If your program needs to make sounds, use the Sound Manager. A/UX (and the good old
Mac XL/Lisa) does not support sound (yet), so your program should avoid relying on it if
maximum compatibility is deemed desirable – we think it is.

Technical Note #212 page of 5 The Joy of Being 32-Bit Clean5

