
__

Macintosh Technical Notes 
#211: Palette Manager Changes in System 6.0.2

See also: Inside Macintosh: The Palette Manager

Written by: Guillermo Ortiz October 1, 1988
__

This Technical Note describes the changes and enhancements to the Palette
Manager in System Software 6.0.2 and future versions.
__

Application Palette

Applications now have the ability to define a default palette for the system to use when it
needs to define the color environment (i.e., when it creates a color window without an
associated palette or displays a dialog box).

The application palette feature is especially cool in cases where a color application uses old-
style dialogs and alerts because without an application palette, the system will use the
default palette to define the color environment. Since the system uses the default palette,
the color environment may change (will change in 16-color mode) to cause some “cosmic”
colors to appear in the active window. Defining a default application palette with two colors,
black and white, solves this problem.

If the system needs a palette to define a color environment, it looks in the resource fork of
the application for the 'pltt' ID = 0 resource and uses the palette which it contains. If
the system cannot find this resource in the application’s resource fork, it will use its own
default palette (resource 'pltt' ID = 0 in the System file) if present, or, if necessary, it
will use the Palette Manager’s built-in palette.

Once an application has set its color environment (by calling _InitMenus, or
_InitPalettes in weird instances when there are no menus) it can find the default palette
by calling GetPalette (WindowPtr (-1)) or change the default palette by calling
SetPalette (WindowPtr (-1), newDefPltt, true). Note that the initialization
of the Palette Manager with a call to _InitMenus is contrary to the way Inside Macintosh,
Volume V, The Palette Manager documents it.

One Palette, Many Ports

You can now associate one palette with many CGrafPort and CWindow records, thus
simplifying the use of a single palette with multiple ports and windows; System Software 6.0
and earlier require copies of the palette to use it with different windows.

Although this ability to associate one palette with multiple ports and windows will allow the
use of calls like _PmForeColor and _PmBackColor, calling _ActivatePalette with an
off-screen port does nothing, and as a result, calling it with an off-screen port will associate

Technical Note #211 page of 3 Palette Manager Changes in System 6.0.21

the palette with the port but will not cause any change in the color environment.

Technical Note #211 page of 3 Palette Manager Changes in System 6.0.22

One important implication of this feature is that DisposeWindow (_DisposWindow) will not
dispose of the associated palette automatically since it may be allocated to other ports or
windows. The only exception to this behavior is when an application has used
_GetNewCWindow to create the window, there is a 'pltt' resource with the same ID as
the window, and the application has not called _GetPalette for the window.

Color Updates

System version 6.0.2 also introduces a new call, _NSetPalette, which complements
_SetPalette. _NSetPalette has the same functionality as _SetPalette, but the
CUpdates parameter has been modified from a Boolean to an Integer as follows:

PROCEDURE NSetPalette (dstWindow: WindowPtr; srcPalette: PaletteHandle;
nCUpdates: INTEGER);

INLINE $AA95;

_NSetPalette changes the palette associated with dstWindow to srcPalette. It also
records whether the window wants to receive updates as a result of a change to its color
environment. If you want dstWindow to be updated whenever its color environment
changes, set nCUpdates to pmAllUpdates. If you are only interested in updates when
dstWindow is the active window, set nCUpdates to pmFgUpdates. If you are only
interested in updates when dstWindow is not the active window, set nCUpdates to
pmBkUpdates.

{ NSetPalette Update Constants }

pmNoUpdates = $8000; {no updates}
pmBkUpdates = $A000; {background updates only}
pmFgUpdates = $C000; {foreground updates only}
pmAllUpdates = $E000; {all updates}

_SetPalette retains its syntax and function:

PROCEDURE SetPalette (dstWindow: WindowPtr; srcPalette: PaletteHandle;
CUpdates: Boolean);

INLINE $AA95;

Note: The trap words for _NSetPalette and _SetPalette are identical.

CopyPalette

PROCEDURE CopyPalette (srcPalette, dstPalette: PaletteHandle;
srcEntry,dstEntry,dstLength: INTEGER);

INLINE $AAA1;

Technical Note #211 page of 3 Palette Manager Changes in System 6.0.23

_CopyPalette is a utility procedure that copies dstLength entries from the source palette
into the destination palette; the copy begins at srcEntry and dstEntry, respectively.
_CopyPalette will resize the destination palette when the number of entries after the copy
is greater than the original.

_CopyPalette does not call _ActivatePalette, so the application is free to do a
number of palette changes without causing a series of intermediate changes to the color
environment; the application should call _ActivatePalette after completing all palette
changes.

If either of the palette handles are NIL, _CopyPalette does nothing.

Technical Note #211 page of 3 Palette Manager Changes in System 6.0.24

