
Macintosh Technical Notes 
#207: Styled TextEdit Changes in System 6.0

See Also: Inside Macintosh, TextEdit
Technical Note #31, TextEdit Bugs

Written by: Chris Derossi August 1, 1988
Revised by: Chris Derossi December 1988

Some changes were made to TextEdit in System 6.0 to provide more
functionality and to make life easier for the programmer using TextEdit. This
Note documents those changes and enhancements.
Changes since August 1, 1988: Corrected an error in TEDispatchRec in the
figure on page 8.

TextEdit Changes

In order to improve the usability of styled TextEdit, some routines have been changed, and
some new routines have been added. These changes exist in System Software 6.0 and later.
If you intend to rely on any of these changes or new routines, it is important that you call
_SysEnvirons first to make sure you are running under System Software 6.0 or later.

_SysEnvirons is documented in Inside Macintosh, Volume V and Technical Note #129,
_SysEnvirons: System 6.0 and Beyond. To check for the styled TextEdit changes, you might
do the following:

VAR
theWorld: SysEnvRec;
anErr : OSErr;

BEGIN
anErr := SysEnvirons(1, theWorld);
IF (anErr = noErr) AND (theWorld.systemVersion >= $0600) THEN …

{System 6.0 or later}
END;

Changes to Existing Routines

_TEKey and _TEDelete have been changed so that backspacing to the beginning of a style
no longer deletes that style. Instead, the style is saved in the nullScrap to be applied to
subsequently typed characters. As soon as the user has backspaced past the beginning of
the style, or clicked in some other area of the text, the style is removed.

GetStylScrap now returns a handle to a valid style scrap record when called for an insertion
point (selStart = selEnd). NIL is still returned when GetStylScrap is called with an old
style TEHandle.

Technical Note #207 page of 8 Styled TextEdit Changes in System 6.01

TESetStyle now accepts an additional mode, doToggle (= 32). When doToggle is
specified along with doFace, TESetStyle operates as follows: If a style specified in the
given TextStyle parameter exists across the entire selected range, that style is removed
(turned off). Otherwise, all of the selected text is set to include that style. When a particular
style is set for an entire selection range, that style is said to be continuous over the selection.

For example, given that the following text is the current selection:

then the style bold is continuous over the selection range and the italic style is not. If
TESetStyle were called with a mode of doFace + doToggle and a TextStyle tsFace
field of [bold], then the resulting selection would be:

On the other hand, if TESetStyle had been called with a mode of doFace + doToggle and
a TextStyle tsFace field of [italic], then the selected text would have become:

Technical Note #207 page of 8 Styled TextEdit Changes in System 6.02

New TextEdit Routines

Some new routines have been added to TextEdit, TEContinuousStyle, SetStylScrap,
TECustomHook, and TENumStyles. These routines are described in detail below.

Assembly language note: The new TextEdit routines are called via the
_TEDispatch trap. Following are the decimal selectors for the new
routines:

TEContinuousStyle 10
SetStylScrap 11
TECustomHook 12
TENumStyles 13

TEContinuousStyle

FUNCTION TEContinuousStyle(VAR mode : Integer; VAR aStyle : TextStyle;
 hTE : TEHandle) : Boolean;

TEContinuousStyle gives you information about the attributes of the current selection. The
mode parameter, which takes the same values as in TESetStyle, specifies which attributes
should be checked. When TEContinuousStyle returns, the mode parameter indicates
which of the checked attributes is continuous over the selection range and the aStyle
parameter is set to reflect the continuous attributes.

TEContinuousStyle returns TRUE if all of the attributes to be checked are continuous and
FALSE if not. In other words, if the mode parameter is the same before and after the call, then
TEContinuousStyle returns TRUE.

For example, TEContinuousStyle is useful for marking the style menu items based on the
current selection.

mode := doFace;
IF TEContinuousStyle(mode, aStyle, myTE) THEN BEGIN
{ There is at least one face that is continuous over the
 selection. Note that it might be plain which is actually
 the absence of all styles. }

CheckItem(styleMenu, plainItem, aStyle.tsFace = []);
CheckItem(styleMenu, boldItem, bold IN aStyle.tsFace);
CheckItem(styleMenu, italicItem, italic IN aStyle.tsFace);
...etc.

END ELSE BEGIN
{ No text face is common to the entire selection. }

CheckItem(styleMenu, plainItem, FALSE);
CheckItem(styleMenu, boldItem, FALSE);
CheckItem(styleMenu, italicItem, FALSE);
...etc.

END;

This function can also be used to determine the actual values for those attributes that are
continuous for the selection. Note that a field in the TextStyle record is only valid if the
corresponding bit is set in the mode variable; otherwise the field contains garbage. For
example, to determine the font, face, size, and color of the current selection:

Technical Note #207 page of 8 Styled TextEdit Changes in System 6.03

mode := doFont + doFace + doSize + doColor;
continuous := TEContinuousStyle(mode, aStyle, myTE);
IF BitAnd(mode, doFont) <> 0 THEN

{ Font for selection = aStyle.tsFont. }
ELSE

{ More than one font in selection. };

IF BitAnd(mode, doFace) <> 0 THEN
{ aStyle.tsFace contains the text faces (or plain) that are
 common to the selection. }

ELSE
{ No text face is common to the entire selection. };

IF BitAnd(mode, doSize) <> 0 THEN
{ Size for selection = aStyle.tsSize. }

ELSE
{ More than one size in selection. };

IF BitAnd(mode, doColor) <> 0 THEN
{ Color for selection = aStyle.tsColor. }

ELSE
{ More than one color in selection. };

The aStyle.tsFace field is a bit tricky. When TEContinuousStyle returns a mode that
contains doFace, and an aStyle.tsFace field that contains [bold,italic], it means that
the selected text is all bold and all italic, but may contain other text faces as well. None of the
other faces will apply to all of the selected text, or they would have been included in the
tsFace field. But if the tsFace field is the empty set ([] = plain), then all of the selected text is
plain.

If the current selection range is an insertion point, TEContinuousStyle returns the style
information for the next character to be typed. TEContinuousStyle will always return TRUE
in this case, and each field of the TextStyle record will be set if the corresponding bit in the
mode parameter was set.

SetStylScrap

PROCEDURE SetStylScrap(rangeStart, rangeEnd : LongInt;
 newStyles : StScrpHandle; hTE : TEHandle);

SetStylScrap performs the opposite function of GetStylScrap. The newStyles
parameter is a handle to a style scrap record which will be applied over the given range of
text. The current selection range is not changed. If newStyles is NIL or hTE is a handle to
an old style TERecord, SetStylScrap does nothing.

SetStylScrap will terminate without error if it prematurely reaches the end of the range or if
there are not enough scrap style elements to cover the whole range. In the latter case, the
last style in the scrap record will be applied to the remainder of the range.

Technical Note #207 page of 8 Styled TextEdit Changes in System 6.04

TENumStyles

FUNCTION TENumStyles(rangeStart, rangeEnd : LongInt;
 hTE : TEHandle) : LongInt;

This function returns the number of style changes contained in the given range, counting one
for the start of the range. Note that this does not necessarily represent the number of unique
styles for the range, because some styles may be repeated. For old-style TextEdit records,
this function always returns 1.

This function is useful for calculating the amount of memory that would be required for a
contemplated _TECut or _TECopy. Since the style scrap record is linear in nature, with one
element for each style change, you can multiply the result returned by TENumStyles by
SizeOf(ScrpSTElement) and add 2 to get the amount of memory that will be needed.

TECustomHook

PROCEDURE TECustomHook(which : TEHook; VAR addr : ProcPtr;
 hTE : TEHandle);

This procedure lets applications customize the functions of TextEdit by setting the TextEdit
bottleneck routines. The which parameter specifies which bottleneck routine to replace, and
is of type TEHook (described below). When TECustomHook returns, the addr parameter
contains the address of the previous bottleneck routine specified by which. This is returned
so that bottleneck routines can be daisy-chained.

TYPE
TEHook = (intEOLHook, intDrawHook, intWidthHook, intHitTestHook);

The internally used fields, recalBack and recalLines now form a handle to the list of
TextEdit bottleneck routines. Each TERecord has its own set of bottleneck routines to provide
for maximum flexibility. The TECustomHook procedure should always be used to change the
bottleneck routines instead of modifying the edit record directly.

Also, it is important to note that you should not clone a TERec. Doing so would duplicate the
handle stored in recalBack and recalLines. When one of the TextEdit records was
disposed, the handle stored in the copy would be invalid, and TextEdit would crash.

There are four bottleneck routines, TEEOLHook, TEWidthHook, TEDrawHook, and
TEHitTestHook, described individually below. When replacing these routines, note that all
registers except those specified as containing return values must be preserved. Registers A3
and A4 contain a pointer and a handle to the TextEdit record respectively. Line start positions
can be obtained from the lineStarts array in the edit record.

None of these bottleneck routines are called from _TextBox.

Technical Note #207 page of 8 Styled TextEdit Changes in System 6.05

TEEOLHook

This routine tests a given character and returns with the appropriate status flags set in the
status register. The default action is to merely compare the character with $0D (a carriage
return) and return.

On entry: D0 character to compare (byte)
A3 pointer to the TextEdit record (long)
A4 handle to the TextEdit record (long)

On exit: z flag clear if end-of-line character, set otherwise

TEWidthHook

This routine is called any time the width of various components of a line are calculated. The
appropriate font, face, and size characteristics have already been set into the current port by the
time this routine is called. The default action is to call _Char2Pixel and return.

On entry: D0 length of text to measure (word)
D1 offset into text (word)
A0 pointer to text to measure (long)
A3 pointer to the TextEdit record (long)
A4 handle to the TextEdit record (long)

On exit: D1 width of measured text (word)

TEDrawHook

This routine is called any time the various components of a line are drawn. The appropriate
font, face, and size characteristics have already been set into the current port by the time this
routine is called. The default action is to call _DrawText and return.

On entry: D0 offset into text (word)
D1 length of text to draw (word)
A0 pointer to text to draw (long)
A3 pointer to the TextEdit record (long)
A4 handle to the TextEdit record (long)

Technical Note #207 page of 8 Styled TextEdit Changes in System 6.06

TEHitTestHook

This routine is called to determine the character position in a line given the horizontal offset, in
pixels, from the beginning of a line. The default action is to call _Pixel2Char and return.
For more information, see the description of _Pixel2Char in the Script Manager chapter of
Inside Macintosh, Volume 5 and the Inside Macintosh Interim Chapter Draft, Script Manager
2.0.

On entry: D0 length of text to hit test (word)
D1 pixel offset from start of text (word)
A0 pointer to start of text (long)
A3 pointer to the TextEdit record (long)
A4 handle to the TextEdit record (long)

On exit: D0 pixel width to last offset (low word)
Boolean = TRUE if a character (high word)
offset corresponding to the
pixel width was found.

D1 character offset (word)
D2 Boolean = TRUE if the pixel (word)

offset falls within the left side
of the character.

TextEdit Data Structures

The illustration on the following page is a graphic representation of the TextEdit data
structures. You should use this information only for debugging and so you understand what is
going on. For reading or writing these data structures, the TextEdit routines should be used.
This will help ensure future compatibility.

Technical Note #207 page of 8 Styled TextEdit Changes in System 6.07

TEStyleRec
0

2

4

8

C

10

14

18

nRuns

nStyles

styleTab

lhTab

teRefCon

nullStyle

[0…nRuns]

array of
StyleRun

runs

NullStRec
0

4

teReserved

nullScrap

STElement
0

2

4

8

C

12

stCount

stHeight

stAscent

stFace

(array of)

stFont

stSize

stColor

6

A

[0…nStyles]

One each per unique style in
record. styleIndex (in StyleRun

array elements) is an index
into this array.

StyleRun
0

2

4

startChar

styleIndex

[0…nRuns]

One each per style change.
Kept in ascending order of
offsets into record (sorted

by startChar).

One each per line in record.
Line number is a direct
index into this array.

(Only if lineHeight = -1)

[0…nLines]

LHElement
0

2

4

lhHeight

lhAscent

(array of)

TERecord
0

8

10

18

1A

1C

20

22

24

26

2A

2E

32

34

38

3A

3C

3E

42

44

46

48

4A

4C

4E

50

52

56

5A

5E

60

destRect

viewRect

selRect

lineHeight

fontAscent

selPoint

selStar

selEnd

active

wordBreak

clikLoop

clickTime

clickLoc

caretTime

caretState

just

teLength

hText

recalBack

recalLines

clikStuff

crOnly

txFont

txFace

txMode

txSize

inPort

highHook

caretHook

nLines

array of
Integer

[0…nLines]

lineStarts

teDispatchH

teStylesH
(if txSize = -1)

StScrpRec
0

2

scrpNStyles

[0…scrpNStyles]

16

C array of
ScrpSTElement

scrpStyleTab

One each per sequential
style change in
associated text.

ScrpSTElement
0

4

8

C

scrpStartChar

scrpHeight

scrpFont

scrpAscent

scrpFace

scrpColor

6

A

[0…scrpNStyles]

scrpSize

14

E

TextStyle
0

4

tsFont

tsSize

tsColor

6

tsFace2

8

C

TEWidthHook

TEHitTestHook

TEDispatchRec
0

4

TEEolHook

TEDrawHook

clikStuff

one word (16 bits)

Handle

KeyConstants:
doFont = 1;
doFace = 2;
doSize = 4;
doColor = 8;
doAll = 15;
addSize = 16;

teJustLeft = 0;
teJustCenter = 1;
teJustRight = -1;
teForceLeft = -2;

Technical Note #207 page of 8 Styled TextEdit Changes in System 6.08

