
Macintosh Technical Notes 
#202: Resetting the Event Mask

See also: Inside Macintosh, Volume II, The Event Manager

Written by: Chris Knepper August 1, 1988
Revised by: Chris Knepper December 1988

As of System 4.2 and Finder 6.0, applications which alter the event mask must
now restore the original event mask when quitting.
Changes since August 1, 1988: Added a related MultiFinder anomaly.

In most cases, applications should not modify the system event mask, which means they
should avoid calling SetEventMask and not alter the low-memory global SysEvtMask.
Modifying the event mask is of no use to most applications, and the only situation in which an
application might need to modify it is to detect key-up events. Only those developers creating
applications which must detect key-up events need to know the information presented in this
Technical Note. Other developers should avoid altering the system event mask at all costs.

Since the system event mask normally prevents key-up events from being posted, those
applications which need to detect key-up events call SetEventMask during initialization to
enable key-up events. This process might be as follows:

myMask := EveryEvent;
SetEventMask(myMask);

Applications which make this call during initialization, must save the event mask prior to
calling SetEventMask and restore the event mask when quitting. Given the following
definitions and declarations in MPW Pascal:

CONST SysEvtMask = $144;
TYPE IntPtr = ^INTEGER;
VAR saveMask: INTEGER;

MaskPtr: IntPtr;

you save the event mask as follows:

{ set up our event mask pointer }
MaskPtr := IntPtr(SysEvtMask);
{ save the event mask }
saveMask := MaskPtr^;

and restore the event mask as follows:

{ restore the event mask }
MaskPtr^ := saveMask;

Technical Note #202 page of 2 Resetting the Event Mask1

Finder Anomaly

When MultiFinder is disabled, users will notice a strange behavior in the Finder (versions 6.0
and later) after quitting applications which fail to restore the event mask. If an application
failed to restore the event mask when quitting and had set the event mask to mask out mouse-
up events, all mouse-up events would continue to be masked out, and the user would notice
that the Finder no longer recognizes double clicks.

MultiFinder Anomaly

With the current Macintosh architecture, the interrupt handlers which service hardware
interrupts call _PostEvent to post events in the event queue, so events are inserted in the
queue unless they are masked out by SysEvtMask. If an event is masked out by
SysEvtMask, then _PostEvent returns a evtNotEnb error and does not insert the event in
the queue.

Applications normally retrieve events which have been successfully posted to the event queue
by calling _GetNextEvent or _WaitNextEvent. If the event being retrieved is not masked
out by the event mask (mask) which is supplied to these routines, then the routines will return
TRUE.

Under MultiFinder, SysEvtMask is an application-specific global variable which is switched
during context switches; therefore, under MultiFinder, if an application must alter
SysEvtMask, it must also be prepared to handle all events, even those which normally would
be masked out by SysEvtMask.

This anomaly occurs when MultiFinder switches out SysEvtMask during a “minor switch” (i.e.,
switching from foreground to background to service background applications). Interrupt
service routines operating at interrupt time call _PostEvent to post events, and _PostEvent
masks out events using the mask in SysEvtMask to determine whether or not to post the
event. This scheme means that events are posted as they occur, regardless of whether the
current value of SysEvtMask belongs to the foreground application or a background
application; therefore, it is possible for the event queue to not contain key-up events, even
though the foreground application enabled them, because the background application could
mask them out.

A future version of the System Software will account for this problem by using the foreground
application’s event mask when events are posted (even if a background application is running
when the interrupt service routine is called).

Technical Note #202 page of 2 Resetting the Event Mask2

