Macintosh Technical Notes [l

#192: Surprises in LaserWriter 5.0 and newer

See also: The Printing Manager
LaserWriter Reference Manual

Written by: Scott “ZZ” Zimmerman April 2, 1988

This note describes some changes in the 5.0 and newer releases of the
LaserWriter driver.

With the release of LaserWriter 5.0 and background printing, a few changes had to be made
to the LaserWriter driver. Although these changes were transparent to most applications,
some have had problems. Most of these problems were related to use of unsupported
features. Here is a partial list of the changes:

No mo’ low

Because of the problems with supporting both the high-level and low-level interface in the
background, the low-level interface has been all but removed. Instead of the low-level
PrCtlCalls being executed by the device driver, the PrCt1Call procedure now converts
the call into its high-level equivalent before execution. This way, the LaserWriter driver has a
common entry point for both the low-level and high-level interfaces. Because of this
conversion, the low-level calls may not be faster than using the high-level equivalents. In
some cases, they may even be slower.

Are you convertible?

Whereas the conversion of the low-level calls should have been transparent, there are some
assumptions made by the conversion routines. The conversion routines require a context in
which to operate. The Printing Manager maintains a certain state while executing commands,
and the conversion routines need access to that state to be able to perform the conversion. To
provide this context, the application must have opened a document and a page. This means
that the original method of using the low-level interface documented on page 11-164 of Inside
Macintosh will no longer work, as in this example:

PrDrvrOpen;

PrCtlCall (iPrDevCtl, 1PrReset, 0, 0);

{ Send data to be printed. }

PrCtlCall (iPrDevCtl, 1PrPageEnd, 0, 0);
PrDrvrClose;

Instead, you should use the following:

Technical Note #192 page of 4 Suprises in LaserWriter Drivers1



PrDrvrOpen;

PrCtlCall (iPrDevCtl, 1PrDocOpen, 0, 0);
PrCtlCall (iPrDevCtl, 1PrPageOpen, 0, 0);
{ Send data to be printed. }

PrCtlCall (iPrDevCtl, 1PrPageClose, 0, 0);
PrCtlCall (iPrDevCtl, 1PrDocClose, 0, 0);
PrDrvrClose;

This provides the Printing Manager with the context it needs to convert the calls.

Really unsupported features

Sending data to the printer in between the PrOpenDoc/1PrDocOpen and PrOpenPage/
1PrPageOpen calls is not currently, and has never been supported. This data was interpreted
by the LaserWriter drivers before 5.0, but this data will be ignored by the 5.0 and future
LaserWriter drivers. If you would like to download some PostScript code with each document,
you should use the “PREC 103” method described in the “Providing your own PostScript
dictionary” section of the LaserWriter Reference Manual.

A little less control

Four of the original six PrCt1Calls supported by the LaserWriter driver have been
discontinued due to lack of use. Also, they were difficult to support with background printing.
These control calls were only supported by the LaserWriter driver, and only documented in the
LaserWriter Reference Manual. The calls are:

% fill °e® hexBuf °° printR °° printF

In addition to these calls, the stdBuf call has also been affected. There are two versions of
the stdBuf call depending on the sign of the bytes parameter. If bytes is negative, the text
passed to the stdBuf call is converted to PostScript text before being sent to the LaserWriter.
This means that special PostScript characters in the text would be preceded by a PostScript
escape character. Also, characters with an ASCII value greater than 128 would be converted
to octal before being sent to the LaserWriter. This version of the call is no longer supported.

If the bytes parameter is positive, the text passed to the call will be sent as-is to the
LaserWriter, and interpreted as PostScript instructions. This version of the call is still
supported, but there is still one more problem. When you first open the low-level driver (via
PrDrvrOpen) with background printing enabled, no clip region is defined. If your application
then begins sending PostScript to the driver via the stdBuf call, all of the output will be
clipped, and only a blank page will be printed.

Technical Note #192 page of 4 Suprises in LaserWriter Drivers2



To prevent this, you must force a clip region to be sent to the LaserWriter. The region will be
sent by the driver when it receives its first drawing command. Unfortunately, the driver does
not consider the stdBuf call to be a drawing command. To force the clip region on the printer,
you can use the iPrBitsCtl PrCt1Call to print a small bitmap outside the printable area of
the page. This will not have any effect on the document, but will fire the bottleneck routine, and
cause the clip region to become defined.

Since the clip region is reinitialized at each call to 1PrPageOpen, you should send the bitmap
once at the start of each page. If any other Prct1Calls precede the stdBuf call, you do not
need to send the bitmap.

Background preparations

The “PREC 201" mechanism described in the “Providing your own PostScript dictionary”
section of the LaserWriter Reference Manual will only work when background printing is
disabled. This is because of difficulties finding the PREC resource under MultiFinder. Since the
option will only work in the foreground, and since there is no way for an application to know if
background printing is enabled, you should avoid using this feature.

Headin’ for trouble

There is a minor bug in version 5.0 of the LaserWriter driver that will only affect applications
that parse the PostScript header downloaded by the driver with each document. This header
contains some PostScript comments that provide information about the current job. One of
these comments is IncludeProcSet. This comment takes three arguments; a PostScript
dictionary name, a major version number, and a minor version number. In the 4.0 version of
the LaserWriter driver, the comment line looked like this:

%% IncludeProcSet: (Appledict md) 65 0

Unfortunately, in the 5.0 version of the LaserWriter driver, the last argument was removed.
This caused the comment line to look like this:

%% IncludeProcSet (Appledict md) 66
Since Adobe has defined the comment to take three arguments, it is reasonable for
applications that parse the comments to expect three arguments. Because of this, the 5.1

version of the LaserWriter driver will contain the correct version of the comment:

%% IncludeProcSet (Appledict md) 67 0

Technical Note #192 page of 4 Suprises in LaserWriter Drivers3



No go with zero

Some applications want to force a font to be downloaded to the LaserWriter without actually
printing characters with the font. This can be done easily in three steps:

1. Save the current pen position.

2. Use any text drawing routine to draw a space character.

3. Move the pen back to the saved position.
Some applications have used DrawString with a empty string— DrawString ('')—to
force the font downloading. Although this worked in LaserWriter drivers up to 5.0, these calls

will be ignored by the 5.1 and later drivers. The main reasons for this change were
optimization of performance, and a reduction in the size of spool files.

Technical Note #192 page of 4 Suprises in LaserWriter Drivers4



