
Macintosh Technical Notes 
#180: MultiFinder Miscellanea

See also: Technical Note #126—Sublaunching
Technical Note #158—
 Frequently Asked MultiFinder Questions

Written by: Jim Friedlander November 2, 1987
Updated: March 1, 1988

This Technical Note discusses MultiFinder issues of which programmers should
be aware.

Desk Accessories and MultiFinder

There is a persistent rumor that DAs no longer function under MultiFinder. While we are
certainly encouraging people who write DAs to write small applications instead (it’s a lot easier
to write a small application than a DA), MultiFinder 1.0 does indeed support the standard desk
accessory model. The world of the DA has changed somewhat, though, under MultiFinder.

The major change is that DAs are now loaded into the system heap, instead of the application
heap. This fact means that certain DAs will not work under MultiFinder 1.0, though we’ve
gone to great lengths to make sure that most DAs will work correctly. DAs that are “self-
sufficient” will work just fine.

Self-sufficient DAs

“Self-sufficient DAs” are DAs that don’t rely on a specific application being present in order to
function, that is, they don’t rely on being in a specific application’s heap in order to do what
they do. A self-sufficient DA also doesn’t care about global context at accEvent or accRun
time (not guaranteed under MultiFinder) since it is only drawing to its own window and dealing
with its own storage. Under MultiFinder, a DA has no way of knowing who called it.

Non self-sufficient DAs

So, you’re probably wondering, what in the heck is a DA that isn’t self-sufficient. A good
example of a DA that won’t work very well under MultiFinder is a spell checker. Spell check
DAs generally rely on posting events to get word processors to save to the scrap so the DA
can then get the text from the scrap and scan it for speling erors. Unfortunately, at accEvent
or accRun time, you don’t know which MultiFinder partition called you, so you can’t post an
event (you don’t know where it will go) so you can’t get the text, so you get hopelessly
confused and give up.
Error checking

Technical Note #180 page of 11 MultiFinder Miscellanea1

DAs still need to do robust error checking to see if they have enough memory to load, even
though MultiFinder loads DAs into the system heap, and will automatically grow the system
heap if it can. A DA can’t know if MultiFinder has loaded it, or (even if MultiFinder has loaded
it) if there is room to grow the system heap. A DA can check to see if there is room for it to
load by actually trying to allocate all the memory it needs and then backing out gracefully if it
can’t get it.

Switching

For conceptual clarity, it is best to think of MultiFinder 1.0 as using three types of switching:
major, minor and update. All switching occurs at a very well defined time, namely when either
WaitNextEvent, GetNextEvent or EventAvail is called.

Major switching is a complete context switch, that is, an application’s windows are moved
from the background to the foreground or rice-a-roni. A5 worlds are switched and the
application’s low-memory world is switched. If the application accepts Suspend/Resume
events, it is so notified at major switch time.

Major switching will not occur when a modal dialog is the frontmost window of the front layer,
though minor and update switching will. To determine this, MultiFinder looks to see (among
other things) if the window definition procedure of that window is dBoxProc. If it is, then it
won’t allow a switch via the user clicking on another application. dBoxProcs are specifically
reserved for modal dialogs—when most users see a dBoxProc, they are expecting a modal
situation. If you are using a dBoxProc for a non-modal window, we’d strongly recommend that
you change it to some other window type, or risk the wrath of the User-Interface Thought
Police (UITP).

Minor switching occurs when an application needs to be switched out in order to give time to
background processes. In a minor switch, A5 worlds are switched, as are low-memory worlds,
but the application’s layer of windows is not switched, and the application won’t be notified of
the switch via Suspend/Resume events.

Update switching occurs when MultiFinder detects that one or more of the windows of an
application that is not frontmost needs updating. This happens whether or not the application
has the canBackground bit in the SIZE -1 resource. This switch is very similar to minor
switching, except that update events are sent to the application whose window(s) need
updating.

Both minor and update switches should be transparent to the frontmost application.

Suspend/Resume events

If your application does not accept Suspend/Resume events (as set in the SIZE –1 resource),
then if a mouseclick occurs in a window that isn’t yours, MultiFinder will send your application
a mouse-down event with code inMenuBar (with menuID equal to the ID of the Apple menu
and menuItem set to “About MultiFinder ...”). The reason that MultiFinder does this is to force
your application to think that a DA is coming up, so that it will convert any private scrap that it
might be keeping. MultiFinder is expecting your application to call MenuSelect—if you don’t,
it will currently issue a few more mouseDowns in the menu bar and then finally give up. This
isn’t really a problem, but a lot of developers have run into it, especially in quick and dirty
applications.

Technical Note #180 page of 11 MultiFinder Miscellanea2

If you are switching menu bars with SetMenuBar (and switching the Apple Menu) during the
execution of your application, then you should definitely make sure that your application
accepts Suspend/Resume events. MultiFinder records the ID of the original Apple menu that
you use and won’t keep track of any changes that you make to the Apple menu. So, in the
above situation, MultiFinder will give you a mouseDown in the menuBar with the menuItem
set to the item number of “About MultiFinder...” that was in the original Apple menu, which
could be quite a confusing situation. If you set the MultiFinder friendly bit in the SIZE
resource, MultiFinder will never give you these mouse down events.

Referencing global data (A5 and MultiFinder)

MultiFinder maintains a separate A5 world for each application. MultiFinder will switch A5
worlds as appropriate so most applications don’t have to worry about A5 at all (except to make
sure that it points to a valid QuickDraw global record at GNE/WNE time). MultiFinder also
switches low-memory globals for you, so, if you need to get at CurrentA5, you should be OK.

If an application uses routines that execute at interrupt time, then it does need to be
concerned about A5. There are four basic types of interrupt routines that are affected by
MultiFinder:

• VBL tasks
• Completion routines
• Time manager tasks
• Interrupt service routines

from VBL tasks

If an application installs a VBL task into its application heap, MultiFinder will currently “unhook”
that VBL routine when it switches that application out (using either a major or a minor switch).
It will “rehook” it when the application is switched back in. A VBL task that is installed in the
system heap will always receive time, that is, it will never be “unhooked.” Given this, it is
technically not necessary for a VBL task that is in the application’s heap to worry about its A5
context, since it will only be running when that application’s partition is switched in. However,
we would still like to encourage you to set up A5 by carrying the value for CurrentA5 around
with you, since we may change the way this works in future versions of MultiFinder (and even
without MultiFinder the VBL could trigger at a time when A5 is not correct).

The following short MPW examples show how to do this using INLINEs. Please note that this
technique does not involve writing into your code segment (we’ll get to that later), we just put
our value of CurrentA5 in a position where we can find it from our VBLtask. These
examples relys on the fact that we know that A0 points to our VBLTask. Since we store our
CurrentA5 into the 4 bytes before our VBLTask, we know that we can get our CurrentA5
from -4(A0).

Technical Note #180 page of 11 MultiFinder Miscellanea3

This example also serves to demonstrate how one might write a completion routine for an
asynchronous Device Manager call. It is not intended to be a complete program, nor to
demonstrate optimal techniques for displaying information. In MPW Pascal:

PROGRAM InlineVBL;

USES
{$PUSH} {save current compiler options}
{$LOAD PasDump.dump} {load symbol table dump}
Memtypes,QuickDraw,OSIntf,ToolIntf,PackIntf,MacPrint,WLW,JimLib;
{$LOAD} {turn off LOAD}
{$POP} {restore compiler options}
{$D+} {debug symbols}

CONST
Interval = 6; {how often we want our VBL called, in ticks}
CurrentA5 = $904; {low-memory global}

TYPE
MyVBLType = RECORD

CurA5: Longint; {put CurA5 where we can find it}
MyVBL: VBLTask; {the actual VBLTask}

 END; {MyVBLType}

VAR
Err : Integer;
MyVBLRec : MyVBLType;
Counter : Integer;
MyEvent : EventRecord;

PROCEDURE _DataInit;
EXTERNAL;

PROCEDURE PushA5;
INLINE $2F0D; {MOVE.L A5,-(SP)} {Push A5 onto the Stack}

PROCEDURE PopA5;
INLINE $2A5F; {MOVE.L (SP)+,A5} {Pop the stack into A5}

PROCEDURE GetMyA5;
INLINE $2A68,$FFFC; {MOVE.L -4(A0),A5} {Get the value of A5 we’ve

stored before the parameter block and put
it in A5. Since we know that when

 VBL task is called, A0 will
point to our parameter block, we
also know that the value of CurrentA5 that
we stored will be at -4(A0)}

{--}

PROCEDURE DoVBL; {our whizzy VBL task}

BEGIN {DoVBL}

{First, we’ll make sure that we have our A5, that we stored before our
parameter block}

PushA5; {Push the value of A5 onto the stack}
GetMyA5; {Get our A5 from right before the parameter block}

Technical Note #180 page of 11 MultiFinder Miscellanea4

{now we can access our globals: }
MyVBLRec.MyVBL.vblCount := Interval; {we wish to run again}
Counter := Counter + 1; {to show we can set a global}

{since we’re leaving, put back the A5 that was there before we changed it}
PopA5; {put back original A5}

END; {DoVBL}

{--}

BEGIN {main PROGRAM}
MaxApplZone; {grow the heap to ApplLimit}
UnloadSeg(@_DataInit); {unload data init code before any allocations}
InitMac; {initialize Macintosh managers}
InitWW(NIL); {initialize WritelnWindow with default window}

Counter := 0; {initialize this}
WITH MyVBLRec,MyVBL DO BEGIN

CurA5 := LongPtr(CurrentA5)^;{Get the current value of CurrenA5}
vblAddr := @DoVBL; {point to our task}
vblCount := Interval; {set up the interval at which we’ll be called}
qType := ORD(vType); {this to is necessary}
vblPhase := 0;

END; {With}

Err := VInstall(@MyVBLRec.MyVBL); {Install our VBLTask}
writeln('VInstall err = ',Err);

REPEAT
writeln(Counter); {write out counter}

UNTIL GetNextEvent(mDownMask,MyEvent); {this allows a switch}

Err := VRemove(@MyVBLRec.MyVBL);{we’re done, remove the task}
writeln('VRemove err = ',Err);

beep; {show ’em we’re done}
END.

In MPW C (with assembly):
First, the assembly routines:

CASE ON ; for C

;--
PushA5 PROC EXPORT ;pushes A5 onto the stack -- BE CAREFUL NOT TO DISTURB A0 here,

; since GetMyA5 relies on it MOVE.L (SP)+,A1 ; get return
address off the stack

MOVE.L A5,-(SP) ; push A5
JMP (A1) ; return to caller
ENDP

;---
PopA5 PROC EXPORT

MOVE.L (SP)+,A1 ; get return address off the stack
MOVE.L (SP)+,A5 ; pop into A5
JMP (A1) ; return to caller
ENDP

Technical Note #180 page of 11 MultiFinder Miscellanea5

;---
GetMyA5 PROC EXPORT

MOVE.L (SP)+,A1 ; get return address off the stack
MOVE.L -4(A0),A5 ; get our saved value of A5 and put it in A5
JMP (A1) ; return to caller
ENDP
END

Now the MPW C programette:

#include <types.h>
#include <quickdraw.h>
#include <resources.h>
#include <fonts.h>
#include <windows.h>
#include <menus.h>
#include <textedit.h>
#include <events.h>
#include <retrace.h>
#include <packages.h>

extern void PushA5(); /* MOVE.L A5,-(SP) */ /*Push A5 onto the Stack*/
extern void PopA5(); /* MOVE.L (SP)+,A5 */ /*Pop the stack into A5*/
extern void GetMyA5(); /* MOVE.L -4(A0),A5 */

/*Get the value of A5 we’ve
stored before the parameter block and put

it in A5. Since we know that when
VBL task is called, A0 will
point to our parameter block, we
also know that the value of CurrentA5 that
we stored will be at -4(A0)
*/

void DoVBL();

typedef struct MyVBLType {
long CurA5; /* put CurA5 where we can find it */
VBLTask MyVBL; /* the actual VBLTask */

} MyVBLType;

MyVBLType MyVBLRec; /* a variable of the above type */
short Counter; /* this needs to be global so the VBL task can get to it */

main()
{
#define Interval 6 /*how often we want our VBL called, in ticks*/
#define CurrentA5 0x904 /*low-memory global*/

WindowPtr MyWindow;
Rect myWRect,rectToErase;
OSErr err;
EventRecord MyEvent;
char myStr[40]; /* this should be enough room */

InitGraf(&qd.thePort);
InitFonts();
FlushEvents(everyEvent, 0);
InitWindows();
InitMenus();
TEInit();

Technical Note #180 page of 11 MultiFinder Miscellanea6

SetRect(&myWRect,50,260,150,340);
MyWindow = NewWindow(nil,&myWRect,"\pVBL",true,0,(WindowPtr)-1,false,0);
SetPort(MyWindow);

Counter = 0; /*initialize this*/

MyVBLRec.CurA5 = *(long *)(CurrentA5);/* Get the current value of CurrentA5 */
MyVBLRec.MyVBL.vblAddr = DoVBL; /* point to our task */
MyVBLRec.MyVBL.vblCount = Interval;

/* set up the interval at which we’ll be called */
MyVBLRec.MyVBL.qType = vType; /* this too is necessary */
MyVBLRec.MyVBL.vblPhase = 0;

err = VInstall(&MyVBLRec.MyVBL);/* Install our VBLTask */

PenMode(patXor); /* so we can see the drawing flicker */
SetRect(&rectToErase,60,20,100,50);
MoveTo(10,76);
DrawString("\pClick to quit");

while (!GetNextEvent(mDownMask,&MyEvent)) /* this allows a switch */
{

MoveTo(20,20); /* draw a box */
LineTo(20,50);LineTo(50,50);LineTo(50,20);LineTo(20,20);LineTo(50,50);
MoveTo(20,50);LineTo(50,20);MoveTo(60,43);

EraseRect(&rectToErase); /* erase the last number */
NumToString(Counter,myStr);
DrawString(myStr); /* draw the current value of Counter */

}

err = VRemove(&MyVBLRec.MyVBL); /* we’re done, remove the task */
if (err != noErr) debugger();

/* wait around until the user clicks before exiting */
while (!Button());
while (Button());

} /*main*/

void DoVBL() /* our whizzy VBL task */
{ /* DoVBL */

/* First, we’ll make sure that we have our A5, that we stored before our
parameter block */
PushA5(); /* Push the value of A5 onto the stack */
GetMyA5(); /* Get our A5 from right before the parameter block */

/* now we can access our globals: */
MyVBLRec.MyVBL.vblCount = Interval;/* we wish to run again */
Counter += 1; /* to show we can set a global */

/* since we’re leaving, put back the A5 that was there before we changed it */
PopA5(); /* put back original A5 */

} /*DoVBL*/

from Completion routines

Currently, MultiFinder will not do a major, minor, or update switch if an asynchronous File
Manager call is pending, so an application doesn’t really need to worry about whether or not
its A5 or low-memory globals are correct, but we still recommend that you use the above
technique to save A5 for asynchronous File Manager calls. MultiFinder will, however, switch if
an asynchronous Device Manager call is pending. When the call completes, the completion
routine has no way of knowing whose partition is active, that is, it doesn’t know if A5 is valid (it
needs A5 if it wants to set a global) or even if the value of CurrentA5 is valid. Sounds pretty
hopeless, huh?

Technical Note #180 page of 11 MultiFinder Miscellanea7

Well, actually this one is quite easy, you just need to put the value of CurrentA5 that
“belongs” to your partition in a place where you can find it from your completion routine. Since
it is guaranteed that A0 will be pointing to your parameter block when your completion routine
is called, you can put the value of CurrentA5 at a known offset from the beginning of your
parameter block and then reference it off of A0. Completion routines are normally written in
assembly language, though you can also write them in a high-level language. A simple
example of how to do this from MPW Pascal can be found in the previous section about VBL
tasks (it was easier to provide a clear, concise example for VBLs than for asynchronous
Device Manager completion routines).

from Time Manager Tasks

You might think that you could use the same technique for Time Manager tasks as for VBL
tasks, but, unfortunately you can’t. Unlike VBL tasks (and completion routines), a Time
Manager task is not called with A0 pointing to the task block (A0 points to the task’s routine
instead). So, if you need to get at your application’s globals from your Time Manager task,
you’ll have to actually write the value of CurrentA5 into your code segment at a time when
you know that CurrentA5 is valid and then use that value to set up A5 when your Time
Manager task is called. (I know, I know: Technical Note #2 says not to do this, but there’s no
alternative in this case).

from Interrupt service routines

If your application needs to get to its application globals and it replaces the standard 68xxx
interrupt vectors (levels 1-7) with pointers to its own routines, it must also write CurrentA5
into its code (since there is no parameter block for interrupt service routines).

Note: WDEFs should also carry around a copy of A5 in the same fashion as Time Manager
tasks and set up A5 when called; WDEFs should also be non-purgeable.

Launching and MultiFinder

Technical Note #126 discusses the sublaunching feature of Systems 4.1 and newer. If you are
running MultiFinder and you use the technique demonstrated in that technical note, your
application will be able to launch the desired application and remain open. Note: MultiFinder
does not support Chain; your application should never call this trap.

The application that you launch will become the foreground application. Unlike non-MultiFinder
systems, when the user quits the application that you have sublaunched, control will not
necessarily return to your application, but rather to the next frontmost layer.

Technical Note #180 page of 11 MultiFinder Miscellanea8

Unlike non-MultiFinder systems, if you set both high bits of LaunchFlags, your application
will continue to execute after calling Launch, so be prepared! Calling Launch with both high
bits of LaunchFlags set can be thought of as a request to sublaunch. The actual launch
(and hence suspend of your application) won’t happen in the Launch trap, but at a later time
(after calls to GNE/WNE/EventAvail).

Launch under MultiFinder currently will return an error if there isn’t enough memory to launch
the desired application, if the desired application can’t be located or if the desired application
is already open. In the latter case, that application will not be made active—if you
sublaunched, control will return to your application, if you didn’t sublaunch, your application
will be terminated and the next frontmost layer will become active. If you didn’t sublaunch and
an error occurred, MultiFinder will do a SysBeep, since your application will be terminated. If
you sublaunched, MultiFinder will not beep and it is up to your application to report the error to
the user.

Launch now returns an error in register D0 if you are sublaunching. You can check for D0<0
after the sublaunch to see if the Launch failed. If D0>=0 then the application will be launched.

Note: The warnings in Technical Note #126 about using Sublaunching still apply, but, if you
still wish to use Sublaunching, we strongly recommend that you set both high bits of
LaunchFlags.

The Scrap and MultiFinder

MultiFinder 1.0 keeps separate scrap variables for each partition. MultiFinder only checks to
see whether or not to increment the other partitions’ scrapCounts in response to a user-
initiated Cut or Copy. To do this, it watches the SystemEdit call to determine whether an
official Cut or Copy has been issued.

When an application calls PutScrap or ZeroScrap in response to a Cut or Copy menu
selection, the other partitions’ scrapCounts will be incremented (the other partitions will
know that something new has been put in the scrap).

System Resources and MultiFinder

MultiFinder is a shared environment. Resources that were formerly loaded into the application
heap can now be loaded into the system heap for use by all applications. Basically, if a
resource came from the System file, then it will be loaded into the system heap, even if the
resSysHeap bit isn’t set.

Since other applications may need to use system resources, applications should not call
ReleaseResource or DetachResource on system resources, such as cursors and fonts,
nor should they change resource attributes or modify the resource data directly. Applications
should also not make assumptions about where a resource has been loaded (system heap or
application heap).

Technical Note #180 page of 11 MultiFinder Miscellanea9

UnmountVol and MultiFinder

UnmountVol was changed in System 4.2 so that it would work better in a shared
environment. In systems 4.1 and prior, UnmountVol would successfully unmount a volume
even if files were open on that volume. Under MultiFinder, that would be disastrous, since one
application could unmount a volume that another application was using (this exact problem
could occur under UniFinder if a DA unmounted a volume “out from under” an application).

System 4.2 changes the behavior of UnmountVol (whether or not MultiFinder is running) so
that it will return a -47 (FBsyErr) error if any files are open on the volume you wish to
unmount. Since the Finder always has a DeskTop file open for each volume, it is asked to
close the DeskTop file by UnmountVol, so you won’t get an error back if the only file open on
a volume is the DeskTop file.

Putting up a splash screen

Some applications like to put up a “splash screen” to give the user something to look at while
the application is loading. If your application does this and has the canBackground bit set in
the size resource, then it must call GetNextEvent several times (or WaitNextEvent or
EventAvail) before putting up the splash screen, or the splash screen will come up behind
the frontmost layer. If the canBackground bit is set, MultiFinder will not move your layer to
the front until you call GNE/WNE/EventAvail.

The Apple Menu and MultiFinder

Applications should avoid doing anything untoward with the Apple menu. For example, if your
application puts an icon next to the “About MyApplication...” item, MultiFinder may
unceremoniously write over it.

Interprocess Communication

MultiFinder 1.0 doesn’t have full-fledged interprocess communication facilities (that is planned
for MultiFinder 2.0). There is no standard way to communicate between applications in
MultiFinder 1.0. One of MultiFinder 1.0’s design goals was to not change the programming
model (that is, so that as few applications as possible would have to be altered to run under
MultiFinder); this made it impossible to add meaningful IPC.

There are, though, a couple of ways to communicate between applications. You can
communicate through a file or through the clipboard (not guaranteed to be successful, since
an intervening application might do a ZeroScrap) or you could use a bulletin-board type
driver, where one application sends a message to the driver, which records the message and
another application can query the driver to see if any messages have arrived. You can also do
IPC with AppleTalk. If you’re running AppleTalk drivers version 48 or later you have the
capability to send packets to your own node. This feature is enabled by making a
SetSelfSend call. With AppleTalk self sending enabled, two applications on the same
machine can send packets to each other. If you want to ensure that the socket you’re sending
data to is on your local machine, (as opposed to another machine on the network), you can
check the node portion of the socket’s address you look up with NBP. Note: it is most
definitely to your advantage to wait until we implement real IPC.

Technical Note #180 page of 11 MultiFinder Miscellanea10

Running as a Background Application

For applications that run in the background (i.e. applications that have the canBackground
bit set in the SIZE resource), the programming model changes somewhat. Since background
applications aren’t guaranteed any time, an application that is running in the background
should not count on being able to communicate with the user at any time. For example, a
background application should not put up a modal dialog to inform the user that something
that requires immediate attention has occurred (in fact, the modal dialog will not come up in
the foreground, but rather behind other layers and the user might not be able to see the dialog
at all). If an application does require urgent attention of the user, then it probably should not
run in the background, or, at the least, should not perform any operation that may require
urgent attention while it is in the background until notification services are provided in system
software.

Background applications also should not do anything that might affect the foreground
application such as changing the cursor or altering the menu bar.

Background applications do not receive user events of any kind. This includes application-
defined events. If an application posts an application-defined event from the background, it will
be sent to the foreground application (which will probably confuse that application). Rather
than post an application-defined event, an application that is running in the background could
set a global that is checked at Main Event Loop time to indicate a change in program status.

Miscellaneous Miscellanea

The sound glue that shipped with MPW 1.0 and 2.0 is not MultiFinder compatible and should
not be used. Instead, applications should make direct calls to the sound driver.

All code needs to be aware of the shared environment; this includes ScreenSavers.
ScreenSavers should make sure that background processing continues. A simple scenario for
a ScreenSaver that’s an INIT might be: patch PostEvent at INIT time, put up a full-screen
black window spider, call WaitNextEvent, and watch PostEvent to see if an event that
should cause the ScreenSaver to go away has occurred.

Technical Note #180 page of 11 MultiFinder Miscellanea11

