Macintosh Technical Notes [l

#91: Optimizing for the LaserWriter—Picture Comments

See also: The Print Manager
QuickDraw
Technical Note #72—
Optimizing for the LaserWriter—Techniques
Technical Note #27—MacDraw Picture Comments
PostScript Language Reference Manual, Adobe Systems
PostScript Language Tutorial and Cookbook,
Adobe Systems
LaserWriter Reference Manual

Written by: Ginger Jernigan November 15, 1986
Modified by: Ginger Jernigan March 2, 1987
Updated: March 1, 1988

This technical note is a continuation of Technical Note #72. This technical note
discusses the picture comments that the LaserWriter driver recognizes.

This technical note has been modified to include corrected descriptions of the
SetLineWidth, PostScriptFile and ResourcePS comments and to include
some additional warnings.

The implementation of QuickDraw’s picComment facility by the LaserWriter driver allows you
to take advantage of features (like rotated text) which are available in PostScript but may not
be available in QuickDraw.

Warning: Using PostScript-specific comments will make your code printer-dependent and
may cause compatibility problems with non-PostScript devices, so don’t use them unless you
absolutely have to.

Some of the picture comments below are designed to be issued along with QuickDraw
commands that simulate the commented commands on the Macintosh screen. When the
comments are used, the accompanying QuickDraw comments are ignored. If you are
designing a picture to be printed by the LaserWriter, the structure and use of these comments
must be precise, otherwise nothing will print. If another printer driver (like the ImageWriter /Il
driver) has not implemented these comments, the comments are ignored and the
accompanying QuickDraw commands are used.

Technical Note #91 page of 18 LaserWriter Picture Comments1

Below are the picture comments that the LaserWriter driver recognizes:

Type Kind Data Size Data Description
TextBegin 150 6 TTxtPicRec Begin text function
TextEnd 151 0 NIL End text function
StringBegin 152 0 NIL Begin pieces of original string
StringEnd 153 0 NIL End pieces of original string
TextCenter 154 8 TTxtCenter Offset to center of rotation
* LineLayoutOff 155 0 NIL Turns LaserWriter line layout off
* LineLayoutOn 156 0 NIL Turns LaserWriter line layout on
PolyBegin 160 0 NIL Begin special polygon
PolyEnd lol 0 NIL End special polygon
PolyIgnore 163 0 NIL Ignore following poly data
PolySmooth 164 1 PolyVerb Close, Fill, Frame
picPlyClo 165 0 NIL Close the poly
* DashedLine 180 - TDashedLine Draw following lines as dashed
* DashedStop 181 0 NIL End dashed lines
* SetLineWidth 182 4 Point Set fractional line widths
* PostScriptBegin 190 0 NIL Set driver state to PostScript
* PostScriptEnd 191 0] NIL Restore QuickDraw state
* PostScriptHandle 192 - PSData PostScript data in handle
*tPostScriptFile 193 - FileName FileName in data handle
* TextIsPostScript 194 0 NIL QuickDraw text is sent as PostScript
*tResourcePS 195 8 Type/ID/Index PostScript data in a resource file
**RotateBegin 200 4 TRotation Begin rotated port
**RotateEnd 201 0 NIL End rotation
**RotateCenter 202 8 Center Offset to center of rotation
**FormsPrinting 210 0 NIL Don’t clear print buffer after each page
**EndFormsPrinting 211 0 NIL End forms printing after PrClosePage

These comments are only implemented in LaserWriter driver 3.0 or later.
* These comments are only implemented in LaserWriter driver 3.1 or later.
T These comments are not available when background printing is enabled.

Each of these comments are discussed below in six groups: Text, Polygons, Lines, PostScript,
Rotation, and Forms. Code examples are given where appropriate. For other examples of how
to use picture comments for printing please see the Print example program in the Software
Supplement (currently available through APDA as “Macintosh Example Applications and
Sources 1.0%).

Note: The examples used in the LaserWriter Reference Manual are incorrect. Please use the
examples presented here instead.

Technical Note #91 page of 18 LaserWriter Picture Comments2

Text

In order to support the What-You-See-Is-What-You-Get paradigm, the LaserWriter driver uses
a line layout algorithm to assure that the placement of the line on the printer closely
approximates the placement of the line on the screen. This means that the printer driver gets
the width of the line from QuickDraw, then tells PostScript to place the text in exactly the same
place with the same width.

The TextBegin comment allows the application to specify the layout and the orientation of
the text that follows it by specifying the following information:

TTxtPicRec = PACKED RECORD

tJus: Byte; {0,1,2,3,4 or greater => none, left, center, right, full
justification }
tFlip: Byte; {0,1,2 => none, horizontal, vertical coordinate flip }
tRot: INTEGER; {0..360 => clockwise rotation in degrees }
tLine: Byte; {1,2,3.. => single, 1-1/2, double.. spacing }
tCmnt: Byte; {Reserved }
END; { TTxtPicRec }

Left, right or center justification, specified by tJust, tells the driver to maintain only the left,
right or center point, without recalculating the interword spacing. Full justification specifies that
both endpoints be maintained and interword spacing be recalculated. This means that the
driver makes sure that the specified points are maintained on the printer without caring
whether the overall width has changed. Full justification means that the overall width of the
line has been maintained. tF1ip and tRot specify the orientation of the text, allowing the
application to take advantage of the rotation features of PostScript. tLine specifies the
interline spacing. When no TextBegin comment is used, the defaults are full justification, no
rotation and single-spaced lines.

String Reconstruction

The stringBegin and StringEnd comments are used to bracket short strings of text that
are actually sections of an original long string. MacDraw, for instance, breaks long strings into
shorter pieces to avoid stack overflow problems with QuickDraw in the 64K ROM. When these
smaller strings are bracketed by StringBegin and StringEnd, the LaserWriter driver
assumes that the enclosed strings are parts of one long string and will perform its line layout
accordingly. Erasing or filling of background rectangles should take place before the
StringBegin comment to avoid confusing the process of putting the smaller strings back
together.

Text Rotation

In order to rotate a text object, PostScript needs to have information concerning the center of
rotation. The TextCenter comment provides this information when a rotation is specified in
the TextBegin comment. This comment contains the offset from the present pen location to
the center of rotation. The offset is given as the y-component, then the x-component, which
are declared as fixed-point numbers. This allows the center to be in the middle of a pixel. This
comment should appear after the TextBegin comment and before the first following
StringBegin comment.

Technical Note #91 page of 18 LaserWriter Picture Comments3

The associated comment data looks like this:

TTxtCenter = RECORD
y,x: Fixed; {offset from current pen location to center of rotation}
END; { TTxtCenter }

Right after a TextBegin comment, the LaserWriter driver expects to see a TextCenter
comment specifying the center of rotation for any text enclosed within the text comment calls.
It will ignore all further CopyBits calls, and print all standard text calls in the rotation specified
by the information in TTxtPicRec. The center of rotation is the offset from the beginning
position of the first string following the TextCenter comment. The printer driver also expects
the string locations to be in the coordinate system of the current QuickDraw port. The printer
driver rotates the entire port to draw the text so it can draw several strings with one rotation
comment and one center comment. It is good practice to enclose an entire paragraph or
paragraphs of text in a single rotation comment so that the driver makes the fewest number of
rotations.

The printer driver can draw non-textual objects within the bounds of the text rotation
comments but it must unrotate to draw the object, then re-rotate to draw the next string of text.
To do this the printer driver must receive another TextCenter comment before each new
rotation. So, rotated text and unrotated objects can be drawn inter-mixed within one
TextBegin/TextEnd comment pair, but performance is slowed.

Note that all bit maps and all clip regions are ignored during text rotation so that clip regions
can be used to clip out the strings on printers that can’t take advantage of these comments.
This has the unfortunate side effect of not allowing rotated text to be clipped.

Rotated text comments are not associated with landscape and portrait orientation of the
printer paper as selected by the Page Setup dialog. These are rotations with reference to the
current QuickDraw port only.

All of the above text comments are terminated by a TextEnd comment.

Turning Off Line Layout

If your application is using its own line layout algorithm (it uses its own character widths or
does its own character or word placement), the printer driver doesn’t need to do it too. To turn
off line layout, you can use the LineLayoutOff comment. LineLayoutOn turns it on again.
Turning on FractEnable for the 128K ROMs has the same effect as LineLayoutOff.
When the driver detects that FractEnable has been turned on, line layout is not performed.

The driver assumes that all text being printed is already spaced correctly for the LaserWriter
and just sends it as is.

Technical Note #91 page of 18 LaserWriter Picture Comments4

Polygons

The polygon comments are recognized by the LaserWriter driver because they are used by
MacDraw as an alternate method of defining polygons.

The PolyBegin and PolyEnd comments bracket polygon line segments, giving an alternate
way to specify a polygon. All stdLine calls between these two comments are part of the
polygon. The endpoints of the lines are the vertices of the polygon.

The picPlyClo comment specifies that the current polygon should be closed. This comes
immediately after PolyBegin, if at all. It is not sufficient to simply check for begPt = endPt,
since MacDraw allows you to create a “closed” polygon that isn’t really closed. This comment
is especially critical for smooth curves because it can make the difference between having a
sharp corner or not in the curve.

These comments also work with the stdPoly call. If a Fi11Rgn is encountered before the
PolyEnd comment, then the polygon is filled. Unlike QuickDraw polygons, comment polygons
do not require an initial MoveTo call within the scope of the polygon comment. The polygon
will be drawn using the current pen location at the time the polygon comment is received. The
pen must be set before the polygon comment is called.

Splines

A spline is a method used to determine the smallest number of points that define a curve. In
MacDraw, splines are used as a method for smoothing polygons. The vertices of the
underlying unsmoothed polygon are the control nodes for the quadratic B-spline curve which
is drawn. PostScript has a direct facility for cubic B-splines and the LaserWriter translates the
quadratic B-spline nodes it gets into the appropriate nodes for a cubic B-spline that will exactly
emulate the original quadratic B-spline.

The PolySmooth comment specifies that the current polygon should be smoothed. This
comment also contains data that provides a means of specifying which verbs to use on the
smoothed polygon (bits 7 through 3 are not currently assigned):

TPolyVerb = PACKED RECORD
£7, fe6, £5, f4, £3, fPolyClose, fPolyFill, fPolyframe : Boolean;
END; { TPolyVerb }

Although the closing information is redundant with the picP1yClo comment, it is included for
the convenience of the LaserWriter.

The LaserWriter uses the pen size at the time the PolyBegin comment is received to frame
the smoothed polygon if framing is called for by the TPolyVerb information. When the
PolyIgnore comment is received by the LaserWriter driver, all further StdLine calls are
ignored until the PolyEnd comment is encountered. For polygons that are to be smoothed,
set the initial pen width to zero after the PolyBegin comment so that the unsmoothed
polygon will not be drawn by other printers not equipped to handle polygon comments. To fill
the polygon, call stdRgn with the fill verb and the appropriate pattern set, as well as
specifying fill in the PolySmooth comment.

Technical Note #91 page of 18 LaserWriter Picture Comments5

Lines

The DashedLine and DashedLineStop comments are used to communicate PostScript
information for drawing dashed lines.

The DashedLine comment contains the following additional data:

TDashedLine = PACKED RECORD
offset: SignedByte; {Offset as specified by PostScript}
centered: SignedByte; {Whether dashed line should be
centered to begin and end points}
dashed: Array[0..1] of SignedByte; {lst byte is # bytes following}
END; { TDashedLine }

The printer driver sets up the PostScript dashed line command, as defined on page 214 of
Adobe’s PostScript Language Reference Manual, using the parameters specified in the

comment. You can specify that the dashed line be centered between the begin and end points

of the lines by making the centered field nonzero.

The setLineWidth comment allows you to set the pen width of all subsequent objects

drawn. The additional data is a point. The vertical portion of the point is the numerator and the

horizontal portion is the denominator of the scaling factor that the horizontal and vertical

components of the pen are then multiplied by to obtain the new pen width. For example, if you
have a pen size of 1,2 and in your line width comment you use 2 for the horizontal of the point

and 7 for the vertical, the pen size will then be (7/2)*1 pixels wide and (7/2)*2 pixels high.

Below is an example of how to use the line comments:

PROCEDURE LineTest;

{This procedure shows how to do dashed lines and how to change the line width}
CONST

DashedLine = 180;

DashedStop = 181;

SetLineWidth = 182;

TYPE
DashedHdl = "“DashedPtr;
DashedPtr = “TDashedLine;
TDashedLine = PACKED RECORD
offset: SignedByte;
Centered: SignedByte;
dashed: Array[0..1] of SignedByte; { the 0th element is the length }
END; { TDhashedLine }
widhdl = “widptr;
widptr = “widpt;
widpt = Point;

VAR
arect . rect;
Width : Widhdl;

dashedln : DashedHdl;

Technical Note #91 page of 18 LaserWriter Picture Comments6

BEGIN {LineTest}

Dashedln := dashedhdl (NewHandle (sizeof (tdashedline)));
Dashedln””*.offset := 0; { No offset}
Dashedln””.centered := 0; { don’t center}
Dashedln””.dashed[0] := 1; { this is the length }
Dashedln””.dashed[1] := 8; { this means 8 points on, 8 points off }
Width := widhdl (NewHandle (sizeof (widpt)))
Width*"*.h := 2; { denominator is 2}
wWidth*"*.v = 7; { numerator is 7}
myPic := OpenPicture (theWorld);

SetPen(1l,2); { Set the pen size to 1 wide x 2 high }

ClipRect (theWorld) ;

MoveTo (20, 20) ;

DrawString ('Do line test');

PicComment (DashedLine, GetHandleSize (Handle (dashedln)), Handle (dashedln)) ;
PicComment (SetLineWidth, 4, Handle (width)) ; {SetLineWidth}

SetRect (arect,100,100,500,500) ;

FrameRect (aRect) ;

MoveTo (500, 500) ;

Lineto(100,100);

PicComment (DashedStop,0,nil); {DashedStop}
ClosePicture;
DisposHandle (handle (width)); {Clean up}
DisposHandle (handle (dashedln));
PrintThePicture; {print it please}

KillPicture (MyPic) ;
END; {LineTest}

Technical Note #91 page of 18 LaserWriter Picture Comments7

PostScript

The PostScript comments tell the printer driver that the application is going to be
communicating with the LaserWriter directly using PostScript commands instead of
QuickDraw. The driver sends the accompanying PostScript to the printer with no
preprocessing and no error checking. The application can specify data in the comment handle
itself or point to another file which contains text to send to the printer. When the application is
finished sending PostScript, the PostScriptEnd comment tells the printer driver to resume
normal QuickDraw mode.

Any Quickdraw drawing commands made by the application between the PostScriptBegin
and PostScriptEnd comments will be ignored by PostScript printers. In order to use
PostScript in a device independent way, you should always include two representations of
your document. The first representation should be a series of Quickdraw drawing commands.
The second representation of your document should be a series of PostScript commands,
sent to the Printing Manager via picture comments. This way, when you are printing to a
PostScript device, the picture comments will be executed, and the Quickdraw commands
ignored. When printing to a non-PostScript device, the picture comments will be ignored, and
the Quickdraw commands will be executed. This method allows you to use PostScript, without
having to ask the device if it supports it. This allows your application to get the best results
with any printer, without being device dependent.

Here are some guidelines you need to remember:

» The graphic state set up during QuickDraw calls is maintained and is not affected by
PostScript calls made with these comments.

* The header has changed a number of parameters so sometimes you won’t get the results
you expect. You may want to take a look at the header listed in The LaserWriter Reference
Manual available through APDA.

» The header changes the PostScript coordinate system so that the origin is at the top-left
corner of the page instead of at the bottom-left corner. This is done so that the QuickDraw
coordinates that are used don’t have to be remapped into the standard PostScript coordinate
system. If you don’t allow for this, all drawing is printed upside down. Please see the
PostScript Language Reference Manual for details about transformation matrices.

* Don'’t call showpage. This is done for you by the driver. If you do, you won'’t be able to switch
back to QuickDraw mode and an additional page will be printed when you call
PrClosePage.

* Don't call exitserver. You may get very strange results.

* Don't call initgraphics. Graphics states are already set up by the header.

* Don’t do anything that you expect to live across jobs.

* You won'’t be able to interrogate the printer to get information back through the driver.

Technical Note #91 page of 18 LaserWriter Picture Comments8

The PostScriptBegin comment sets the driver state to prepare for the generation of
PostScript by the application by calling gsave to save the current state. PostScript is then
sent to the printer by using comments 192 through 195. The QuickDraw state of the driver is
then restored by the PostScriptEnd comment. All QuickDraw operations that occur outside
of these comments are performed; no clipping occurs as with the text rotation comments.

PostScript From a Text Handle

When the PostScriptHandle comment is used, the handle PSData points to the PostScript
commands which are sent. PSData is a generic handle that points to text, without a length
byte. The text is terminated by a carriage return. This comment is terminated by a
PostScriptEnd comment.

Note: Due to a bug in the 3.1 LaserWriter driver, PostScriptEnd will not restore the
QuickDraw state after the use of a PostScriptHandle comment. The workaround is to only
use this comment at the end of your drawing, after you have made all the QuickDraw calls you
need. This problem is fixed in more recent versions of the driver.

Here’s an example of how to use this comment:

PROCEDURE PostHd1;

{this procedure shows how to use PostScript from a text Handle}
CONST

PostScriptBegin = 190;

PostScriptEnd = 191;

PostScriptHandle = 192;

VAR
MyString : Str255;
tempstr : String[l];
MyHandle : Handle;
err : OSErr;

BEGIN { PostHdl }
MyString := '/Times-Roman findfont 12 scalefont setfont 230 600 moveto
(Hello World) show';
tempstr:="' ';
tempstr[l] := chr(13); {has to be terminated by a carriage return }
MyString := Concat (MyString, tempstr); { in order for it to execute}
err := PtrToHand (Pointer (ord(@myString)+1l), MyHandle, length (MyString));
MyPic := OpenPicture (theWorld) ;
ClipRect (theWorld) ;
MoveTo (20, 20) ;
DrawString ('PostScript from a Handle');

PicComment (PostScriptBegin,O,nil); {Begin PostScript}
PicComment (PostScriptHandle, length (mystring) ,MyHandle) ;
PicComment (PostScriptEnd, 0,nil) ; {PostScript End}
ClosePicture;
DisposHandle (MyHandle) ; {Clean up}
PrintThePicture; {print it please}

KillPicture (MyPic) ;
END; { PostHdl }

Technical Note #91 page of 18 LaserWriter Picture Comments9

Defining PostScript as QuickDraw Text

All QuickDraw text following the TextIsPostScript comment is sent as PostScript. No
error checking is performed. This comment is terminated by a PostScriptEnd comment.

Here is an example:

PROCEDURE PostText;

{Shows how to use PostScript in strings in a QuickDraw picture}
CONST

PostScriptBegin = 190;

PostScriptEnd = 191;

TextIsPostScript = 194;

BEGIN { PostTest }
MyPic := OpenPicture (theWorld) ;
ClipRect (theWorld) ;
MoveTo (20, 20) ;
DrawString ('TextIsPostScript Comment');

PicComment (PostScriptBegin, O0,nil); {Begin PostScript}

PicComment (TextIsPostScript,0,nil); {following text is PostScript}
DrawString ('O 728 translate'); {move the origin and rotate the}
DrawString ('l -1 scale'); {coordinate system}

DrawString ('newpath');
DrawString ('100 470 moveto');
DrawString ('500 470 lineto');
DrawString ('100 330 moveto');
DrawString ('500 330 lineto');
DrawString

’

(
()
(')
()
(')
('230 600 moveto');
DrawString ('230 200 lineto');
(')
(')
(\J
('
('
(

DrawString ('370 600 moveto');
DrawString ('370 200 lineto');
DrawString ('1l0 setlinewidth');
DrawString ('stroke');
DrawString ('/Times-Roman findfont 12 scalefont setfont');
DrawString ('230 600 moveto');
DrawString (' (Hello World) show');
PicComment (PostScriptEnd, 0,nil) ; {PostScriptEnd}
ClosePicture;
PrintThePicture; {print it please}

KillPicture (MyPic);
END; { PostText }

Technical Note #91 page of 18 LaserWriter Picture Comments10

PostScript From a File

The PostScriptFile and ResourcePS comments allow you to send PostScript to the
printer from a resource file. Before these comments are described there are some restrictions
you need to follow:

* Don’t ever copy a picture containing these comments to the clipboard. If it is pasted into
another application and the specified file or resource is not available, printing will be aborted
and the user won’t know what went wrong. This could be very confusing to a user. If you
want the PostScript information to be available when printed from another application, use
one of the other comments and include the information in the picture.

* Don’t keep the PostScript in a separate file from the actual data file. If the data file ever gets
moved without the PostScript file, when the picture is printed the data file may not be found
and the print job will be aborted, again without the user knowing what went wrong. Keeping
the data and PostScript in the same file will forestall many headaches for you and the user.

Now, a description of the comments:

The PostScriptFile comment tells the driver to use the POST type resources contained in
the file FileNameString. FileNameString is declared as a Str255.

When this comment is encountered, the driver calls OpenResFile using the file name
specified in FileNameString. It then calls GetResource ('POST', theID) ; repeatedly,
where theID begins at 501 and is incremented by one for each GetResource call. If the
driver gets a ResNotFound error, it closes the specified resource file. If the first byte of the
resource is a 3, 4, or 5 then the remaining data is sent and the file is closed.

The format of the POST resource is as follows: The IDs of the resources start at 501 and are
incremented by one for each resource. Each resource begins with a 2 byte data field
containing the data type in the first byte and a zero in the second. The possible values for the
first byte are:

ignore the rest of this resource (a comment)

data is ASCII text

data is binary and is first converted to ASCII before being sent

AppleTalk end of file. The rest of the data, if there is any, is interpreted as ASCII text
and will be sent after the EOF.

open the data fork of the current resource file and send the ASCII text there

end of the resource file

WN -0

oA~

The second byte of the field must always be zero. Resources should be kept small, around
2K. Text and binary should not be mixed in the same resource. Make sure you include either a
space or a return at the end of each PostScript string to separate it from the following
command.

Technical Note #91 page of 18 LaserWriter Picture Comments11

Here’s an example:

PROCEDURE PostFile;

{This procedure shows how to use PostScript from a specified FILE}

CONST
PostScriptBegin = 190;
PostScriptFile = 193;
PostScriptEnd = 191;

VAR
MyString : Str255;
MyHandle : Handle;
err : OSErr;

BEGIN { PostFile }

{You should never do this in a real program. This is only a test.}

MyString := 'HardDisk:MPW:Print Examples:PSTestDoc';
err := PtrToHand (pointer (MyString),MyHandle,length (MyString) + 1);
MyPic := OpenPicture (theWorld) ;

ClipRect (theWorld) ;
MoveTo (20, 20) ;

DrawString ('PostScriptFile Comment');

PicComment (PostScriptBegin,0,nil); {Begin PostScript}
PicComment (PostScriptFile, GetHandleSize (MyHandle) ,MyHandle) ;
PicComment (PostScriptEnd,0,nil); {PostScriptEnd}

MoveTo (50, 50) ;

DrawString ('PostScriptEnd has terminated');

ClosePicture;
DisposHandle (MyHandle) ;

{Clean up}

PrintthePicture; {print it please}

KillPicture (MyPic) ;
END; { PostFile }

Here are the resources:

type 'POST' {
switch {
case Comment:
key bitstring[8]
fill byte;
string;

/* this is just ASCII text */

key bitstring[8]
fill byte;
string;

/* this is binary */
key bitstring[8]
fill byte;
string;

case ATEOF:
key bitstring[8]
fill byte;
string;

Technical Note #91

/* this is a comment */

= 0;
case ASCII:
= 1;
case Bin:
= 2;

/* this is an AppleTalk EOF */
= 3;

page of 18 LaserWriter Picture Comments12

case DataFork: /* send the text in the data fork */

key bitstring([8] = 4;
fill byte;
case EOF: /* no more */
key bitstring[8] = 5;
fill byte;

}s
}s

resource 'POST' (501) {
ASCII{"0 728 translate "}};

resource 'POST' (502) {
ASCII{"1 -1 scale "}};

resource 'POST' (503) {
ASCII{"newpath "}};

resource 'POST' (504) {
ASCII{"100 470 moveto "}};

resource 'POST' (505) {
ASCII{"500 470 lineto "}};

resource 'POST' (506) {
ASCII{"100 330 moveto "}};

resource 'POST' (507) {
ASCII{"500 330 lineto "}};

resource 'POST' (508) {
ASCII{"230 600 moveto "}};

resource 'POST' (509) {
ASCII{"230 200 lineto "}};

resource 'POST' (510) {
ASCII{"370 600 moveto "}};

resource 'POST' (511) {
ASCII{"370 200 lineto "}};

resource 'POST' (512) {
ASCII{"10 setlinewidth "}};

resource 'POST' (513) {
ASCII{"stroke "}};

resource 'POST' (514) {
ASCII{"/Times-Roman findfont 12 scalefont setfont "}};

resource 'POST' (515) {
ASCII{"230 600 moveto "}};

resource 'POST' (516) {
ASCII{" (Hello World) show "}};

Technical Note #91 page of 18 LaserWriter Picture Comments13

/* It will stop reading and close the file after 517 */
resource 'POST' (517) {
EOF
{r1s

/* it never gets here */
resource 'POST' (518) {
DataFork
{1}

When the ResourcePS comment is encountered, the LaserWriter driver sends the text
contained in the specified resource as PostScript to the printer. The additional data is defined
as

PSRsrc = RECORD
PSType : ResType;

PSID : INTEGER;
PSIndex: INTEGER;
END;

The resource can be of type STR or STR#. If the Type is STR then the index should be 0.
Otherwise an index should be given.

This comment is essentially the same as the PrintF control call to the driver. The imbedded
command string it uses is ' “r~n"', which basically tells the driver to send the string specified
by the additional data, then send a newline. For more information about printer control calls
see the LaserWriter Reference Manual.

Here’'s an example:

PROCEDURE PostRSRC;
{This procedure shows how to get PostScript from a resource FILE}
CONST
PostScriptBegin = 190;
PostScriptEnd = 191;
ResourcePS = 195;

TYPE
theRSRChdl ~“theRSRCptr;
theRSRCptr = "theRSRC;
theRSRC = RECORD
theType: ResType;
theID: INTEGER;
Index: INTEGER;

END;

VAR
temp : Rect;
TheResource : theRSRChdl;
i, : INTEGER;
myport : GrafPtr;
err : INTEGER;
atemp : Boolean;

Technical Note #91 page of 18 LaserWriter Picture Comments14

BEGIN { PostRSRC }
TheResource := theRSRChdl (NewHandle (SizeOf (theRSRC))) ;
TheResource””.theID := 500;
TheResource”™”.Index 0;
TheResource™”.theType := 'STR ';
HLock (Handle (TheResource)) ;
MyPic := OpenPicture (theWorld);
DrawString ('ResourcePS Comment') ;
PicComment (PostScriptBegin, 0,nil); {Begin PostScript}
PicComment (ResourcePS, 8, Handle (TheResource)); {Send postscript}
PicComment (PostScriptEnd, 0,nil); {PostScriptEnd}
ClosePicture;
DisposHandle (Handle (TheResource)); {Clean up}
PrintthePicture; {print it please}
KillPicture (MyPic) ;

END; { PostRSRC }

Here’s the resource:

resource 'STR ' (500)

{"0 728 translate 1 -1 scale newpath 100 470 moveto 500 470 lineto 100 330
moveto 500 330 lineto 230 600 moveto 230 200 lineto 370 600 moveto 370 200
lineto 10 setlinewidth stroke /Times-Roman findfont 12 scalefont setfont 230
600 moveto (Hello World) show"

}i

Technical Note #91 page of 18 LaserWriter Picture Comments15

Rotation

The concept of rotation doesn’t apply to text alone. PostScript can rotate any object. The
rotation comments work exactly like text rotation except that all objects drawn between the two
comments are drawn in the rotated coordinate system specified by the center of rotation
comment, not just text. Also, no clipping of CopyBits calls occurs. These comments only
work on the 3.1 and newer LaserWriter drivers.

The RotateBegin comment tells the driver that the following objects will be drawn in a
rotated plane. This comment contains the following data structure:

Rotation = RECORD
Flip: INTEGER; {0,1,2 => none, horizontal, vertical coordinate flip }
Angle: INTEGER; {0..360 => clockwise rotation in degrees }

END; { Rotation }

When you are finished, the RotateEnd comment returns the coordinate system to normal,
terminating the rotation.

The relative center of rotation is specified by the RotateCenter comment in exactly the
same manner as the TextCenter comments. The difference, however, is that this
comment must appear before the RotateBegin comment. The data structure of the
accompanying handle is exactly like that for the TextCenter comment.

Here’s an example of how to use rotation comments:

PROCEDURE Test;

{This procedure shows how to do rotations}
CONST

RotateBegin = 200;

RotateEnd = 201;

RotateCenter = 202;

TYPE
rothdl = "“rotptr;
rotptr = “trot;
trot = RECORD
flip : INTEGER;
Angle : INTEGER;

END; { trot }
centhdl = “centptr;
centptr = “cent;

Cent = PACKED RECORD
yInt: INTEGER;
yFrac: INTEGER;
xInt: INTEGER;
xFrac: INTEGER;

END; { Cent }
VAR
arect : Rect;
rotation : rothdl;
center : centhdl;

Technical Note #91 page of 18 LaserWriter Picture Comments16

BEGIN { Test }

rotation := rothdl (NewHandle (sizeof (trot)));

rotation””*.flip := 0; {no flip}
rotation®”.angle := 15; {15 degree rotation}

center := centhdl (NewHandle (sizeof (cent)));

center™”.xInt := 50; {center at 50,50}
center"”.yInt := 50;

center””.xFrac := 0; {no fractional part}
center~”.yFrac := 0;

myPic := OpenPicture (theWorld) ;

ClipRect (theWorld) ;
MoveTo (20, 20) ;
DrawString ('Begin Rotation');

{set the center of Rotation}

PicComment (RotateCenter, GetHandleSize (Handle (center)), Handle (center)) ;
{Begin Rotation}
PicComment (RotateBegin, GetHandleSize (Handle (rotation)),Handle (rotation));
SetRect (arect,100,100,500,500) ;

FrameRect (aRect) ;

MoveTo (500,500) ;

Lineto (100,100);

PicComment (RotatekEnd, 0, nil) ; {RotateEnd}
ClosePicture;
DisposHandle (handle (rotation)); {Clean up}
DisposHandle (handle (center)) ;
PrintThePicture; {print it please}

KillPicture (MyPic);
END; { Test }

Technical Note #91 page of 18 LaserWriter Picture Comments17

Forms

The two form printing comments allow you to prepare a template to use for printing. When the
FormsBegin comment is used, the LaserWriter’s buffer is not cleared after PrClosePage.
This allows you to download a form then change it for each subsequent page, inserting the
information you want. FormsEnd allows the buffer to be cleared at the next PrClosePage.

Technical Note #91 page of 18 LaserWriter Picture Comments18

