
Macintosh Technical Notes 
#44: HFS Compatibility

See also: The File Manager

Written by: Jim Friedlander October 9, 1985
Modified by: Scott Knaster December 5, 1985

Jim Friedlander
Updated: March 1, 1988

This technical note tells you how to make sure that your applications run under
the Hierarchical File System (HFS).

The Hierarchical File System (HFS) provides fast, efficient management of larger volumes
than the original Macintosh File System (MFS). Since HFS is hierarchical, HFS folders have a
meaning different from MFS folders. In MFS, a folder has only graphical significance—it is
only used by the Finder as a means of visually grouping files. The MFS directory structure is
actually flat (all files are at the ‘root’ level). Under HFS, a folder is a directory that can contain
files and other directories.

A folder is accessed by use of a WDRefNum (Working Directory reference number). Calls that
return a vRefNum when running under MFS may return a WDRefNum when running under
HFS. You may use a WDRefNum wherever a vRefNum may be used.

In order to provide for compatibility with software written for MFS, the HFS calls that open files
search both the default directory and the directory that contains the System and the Finder
(HFS marks this last directory so it always knows where to look for the System and the
Finder).

Your goal should be to write programs that are file system independent. Your programs should
not only be able to access files on other volumes, but also files that are in other directories.
Accomplishing this is not difficult—most applications that were written for MFS work correctly
under HFS. If you find that your current applications do not run correctly under HFS, you
should check to see if you are doing any of the following five things:

Are you using Standard File?

This is very important to ensure that your application will run correctly under HFS. HFS uses
an extended Standard File, which allows the user to select from files in different directories.
This increased functionality was implemented without changing Standard File’s external
specification—the only difference is that SFReply.vRefNum can now be a WDRefNum.
Please note that using Standard File’s dialog hook and filter procs or adding controls of your
own will not cause compatibility problems with HFS.

Existing applications that use Standard File properly run without modification under HFS.
Applications that take the SFReply.vRefNum and convert that to a volume name, then
append it to SFReply.fName (as in #2 below) do not function correctly under HFS—the user
can only open files in the root directory. If you call Open with SFReply.vRefNum and

Technical Note #44 page of 2 HFS Compatibility Issues1

SFReply.fName, everything will work correctly. Remember, SFReply.vRefNum may be a
WDRefNum . Using Standard File will virtually guarantee that your application will be
compatible with MFS, HFS, and future file systems.

Technical Note #44 page of 2 HFS Compatibility Issues2

Are you concatenating volume names to file names, i.e. using file names of
the form VOLUME:fileName?

Applications that do this do not work correctly under HFS (in fact, they do not even run
correctly under MFS). Instead of this, use a vRefNum to access a volume or a directory. Fully
qualified pathnames (such as volume:folder1:folder2:filename) work correctly, but
we don’t recommend that you use them. Please don’t ever make a user type in a full
pathname!

Are you searching directories for files using a loop such as FOR
index:= 1 to ioVNmFls DO ...
where ioVNmFls was returned from a PBGetVinfo call?

This technique should not be used. Instead, use repeated calls to PBGetFInfo using
ioFDirIndex until fnfErr is returned. Indexed calls to PBGetFInfo will return files in the
directory specified by the vRefNum that you put in the parameter block.

Are you assuming that a vRefNum will actually refer to a volume?

A vRefNum can now be a WDRefNum. A WDRefNum indicates which working directory (folder) a
file is in, not which volume the file is on. Don’t think of a vRefNum as a way to access a
volume, but rather as a means of telling the file system where to find a file.

Are you walking through the VCB queue?

You should let us do the walking for you. Using indexed calls to PBGetVInfo will allow you to
get information about any mounted volume. You shouldn’t walk through the VCB queue
because it changed for HFS and might change in the future. The routines that we supply will
correctly access information in the VCB queue.

Are you using the file system’s “IMMED” bit? (assembly language only)

Inside Macintosh describes bit 9 of the trap word as the immediate bit. In fact, setting this bit
under MFS did not work as documented; it did not have the desired effect of bypassing the file
I/O queue. Under HFS, this bit is used; it distinguishes HFS varieties of calls from MFS
varieties. For example, the PBOpen call has this bit clear; PBHOpen has it set. Therefore, you
must be sure that your file system calls do not use this bit as the immediate bit.

Technical Note #44 page of 2 HFS Compatibility Issues3

