INTRODUCTION 5/02/90 INTRODUCTION

SECTION 1 — INTRODUCTION

OVERVIEW

This document is the reference for the POSTGRES database system under development at
the University of California, Berkeley. It is intended to be a supplement to the POST-
GRES Manual, which is included in this distribution. The POSTGRES project, led by Pro-
fessor Michael Stonebraker is sponsored by the Defense Advanced Research Projects
Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc.

POSTGRES is distributed in source code format and is the property of the Regents of the
University of California. However, the University will grant unlimited commercializa-
tion rights for any derived work on the condition that it obtain an educational license to
the derived work. For further information, consult the Berkeley Campus Software Office,
295 Evans Hall, University of California, Berkeley, CA 94720. Moreover, there is no
organization who can help you with any bugs you may encounter or with any other prob-
lems. In other words, this is unsupported software.

POSTGRES DISTRIBUTION

This reference describes Version 4.0 of POSTGRES. The POSTGRES software is about
200,000 lines of C code, and is available for SUN 4 class machines, for DECstation 3100
and 5000 machines and for the SEQUENT Symmetry machine. Information on obtaining
the source code for these computers is available from:

Chandra Ghosh

Computer Science Division
521 Evans Hall

University of Califiornia
Berkeley, CA 94720

(510) 642-4662

Version 4.0 has been tuned modestly. Hence on the Wisconsin benchmark, one should
expect performance about twice that of the public domain, University of California Ver-
sion of INGRES, a relational prototype from the late 1970s.

POSTGRES DOCUMENTATION

This reference describes the functionality of Version 4.0 and contains notations where
appropriate to indicate which features are not implemented in Version 4.0. Application
developers should note that this reference contains only the specification for the low-level
call-oriented application program interface, LIBPQ.

The remainder of this reference is structured as follows. In Section 2 (UNIX), we discuss
the POSTGRES capabilities that are available directly from the operating system. Section
3 (BUILT-INS) describes POSTGRES internal data types, functions, and operators.

INTRODUCTION 5/02/90 INTRODUCTION

Section 4 (COMMANDS) then describes POSTQUEL, the language by which a user inter-
acts with a POSTGRES database. Then, Section 5 (LIBPQ) describes a library of low
level routines through which a user can formulate POSTQUEL queries from a C program
and get appropriate return information back to his program. Next, Section 6 (FAST
PATH) continues with a description of a method by which applications may execute func-
tions in POSTGRES with very high performance. Section 7 (LARGE OBIJECTS)
describes the internal POSTGRES interface for accessing large objects. The reference
concludes with Section 8 (FILES), a collection of file format descriptions for files used
by POSTGRES.

ACKNOWLEDGEMENTS

POSTGRES has been constructed by a team of undergraduate, graduate, and staff pro-
grammers. The contributors (in alphabetical order) consisted of James Bell, Jennifer
Caetta, Jolly Chen, Ron Choi, Jeffrey Goh, Joey Hellerstein, Wei Hong, Anant Jhingran,
Greg Kemnitz, Case Larsen Jeff Meredith, Michael Olson, Lay-Peng Ong, Spyros
Potamianos, Sunita Sarawagi, and Cimarron Taylor.

For Version 4.0, Jeff Meredith served as chief programmer and was responsible for over-
all coordination of the project and for individually implementing the "everything else"
portion of the system.

This reference was collectively written by the above implementation team, assisted by
Michael Stonebraker, Chandra Ghosh and Claire Mosher.

FOOTNOTES
UNIX is a trademark of AT&T.

UNIX

6/14/90 UNIX

SECTION 2 — UNIX COMMANDS (UNIX)

OVERVIEW

This section contains information on the interaction between POSTGRES and the operat-
ing system. In particular, the pages of this section describe the POSTGRES support pro-
grams which are executable as UNIX commands.

TERMINOLOGY

In the following documentation, the term sife may be interpreted as the host machine on
which POSTGRES is installed. But since it is possible to install more than one set of
POSTGRES databases on a single host, this term more precisely denotes any particular set
of installed POSTGRES binaries and databases.

The POSTGRES super user is the user named postgres (usually), who is the owner of the
POSTGRES binaries and database files. As the super user, all protection mechanisms may
be bypassed and any data accessed arbitrarily. In addition, the POSTGRES super user is
allowed to execute some support programs which are generally not available to all users.
Note that the postgres super user is not the same as root, and should have a non-zero
userid.

The database base administrator or DBA is the person who is responsible for installing
POSTGRES to enforce a security policy for a site. The DBA will add new users by the
method described below, change the status of user-defined functions from untrusted to
trusted as explained in define function(commands), and maintain a set of template
databases for use by createdb(unix).

The postmaster is a process which acts as a clearing house for requests to the POSTGRES
system. Basically, frontend applications connect with the postmaster which keeps tracks
of any system errors and communication between the backend processes. The postmaster
(POSTMASTER (UNIX)) takes from zero to seven arguments to tune its behavior. Sup-
plying arguments is necessary only if you intend to run multiple sites or a non-default
site.

The POSTGRES backend (.../bin/postgres) may be executed directly from the shell by the
postgres super user (with the database name as an argument). However, doing this
bypasses the shared buffer pool and lock table associated with a postmaster/site, so this is
not recommended in a multiuser site.

NOTATION

“..I” at the front of file names is used to represent the path to the postgres user’s home
directory. Anything in brackets (“[” and “]”) is optional. Anything in braces (“{” and
“}”) can be repeated 0 or more times. Parentheses (“(” and *)”) are used to group
boolean expressions. “|” is the boolean operator OR.

INFORMATION (UNIX) 6/14/90 INFORMATION (UNIX)

USING POSTGRES FROM UNIX

All POSTGRES commands which are executed directly from a UNIX shell are found in
the directory “.../bin.” Including this directory in your search path will make executing
the commands easier.

There is a collection of system catalogs that exist at each site. These include a USER
class which contains an instance for each valid POSTGRES user. In the instance is a col-
lection of POSTGRES privileges, the most relevant of which is whether or not creation of
POSTGRES databases is allowed. A UNIX user can do nothing at all with POSTGRES
until an appropriate record is installed in this system catalog class. Further information
on the system catalogs is available by running queries on the appropraiate classes.

CREATEDB (UNIX) 6/14/90 CREATEDB (UNIX)

NAME

createdb — create a database

SYNOPSIS

createdb [-p port] [-h host] username

DESCRIPTION

Createdb creates a new database. The person who executes this command becomes the
database administrator (DBA) for this database. The DBA has special powers not granted
to ordinary users. Namely, they can destroy the database they created.

Dbname is the name of the database to be created. The name must be unique among all
POSTGRES databases.

The argument port and hostname are the same as in the terminal monitor - they are used
to connect to the postmaster using the TCP/IP port port running on the database server
hostname. The defaults are to the local machine (localhost) and to the default port
(4321).

SEE ALSO

destroydb(unix), initdb(unix), createdb(commands).

DIAGNOSTICS

Error: Failed to connect to backend (host=xxx, port=xxx)

createdb could not attach to the postmaster on the specified host and port. If you see this
message, check that the postmaster is running on the proper host and that the proper port
is specified.

You are not a valid POSTGRES user
You do not have a users file entry, and can not do anything with POSTGRES at all.

<dbname> already exists

The database already exists.

CREATEUSER (UNIX) 6/14/90 CREATEUSER (UNIX)

NAME

createuser — create a POSTGRES user

SYNOPSIS

createuser [-p port] [-h host] username

DESCRIPTION

Createuser creates a new POSTGRES user. Only users with “usesuper” set in the
pg_user class can create new POSTGRES users. As shipped, the user “postgres’ can cre-
ate users.

Username is the name of the POSTGRES user to be created. The name must be unique
among all POSTGRES users.

The arguments port and hostname are the same as in the terminal monitor - they are used
to connect to the postmaster using the TCP/IP port port running on the database server
hostname. The defaults are to the local machine (localhost) and to the default port
(4321).

INTERACTIVE QUESTIONS

Once invoked with the above options createuser will guide the person adding the new
POSTGRES user through a series of questions. These questions describe the security
capabilities of the POSTGRES user. The new user’s POSTGRES userid must be the user’s
Unix userid.

SEE ALSO

destroyuser(unix).

DIAGNOSTICS

BUGS

You are not a valid POSTGRES user
You do not have a users file entry, and can not do anything with POSTGRES at all.

<user> already exists

The user already exists.

POSTGRES userid’s and usernames should not have anything to do with the constraints of
UNIX.

DESTROYDB (UNIX) 6/14/90 DESTROYDB (UNIX)

NAME

destroydb — destroy an existing database

SYNOPSIS

destroydb [-p port] [-h host] username

DESCRIPTION

Destroydb removes all reference to an existing database named dbname. The directory
containing this database and all associated files are removed.

To execute this command, the user must be the DBA for this database. After the database
is destroyed, a UNIX shell prompt will reappear; no confirmation message will be dis-
played.

Destroydb needs to connect to a running postmaster to accomplish its tasks. If no post-
master is running then one must be started before destroydb is run.

COMMAND OPTIONS

-p port indicates that destroydb should attempt to connect to a postmaster listening to the
specified port.

-h hostname indicates that destroydb should attempt to connect to a postmaster running
on the specified host machine.

EXAMPLE

/* destroy the demo database */
destroydb demo

/* destroy the demo database using the postmaster on host
eden, port 1234 */
destroydb —-p 1234 -h eden demo

DIAGNOSTICS

FILES

Error: Failed to connect to backend (host=xxx, port=xxx)

destroydb could not attach to the postmaster on the specified host and port. If you see
this message, check that the postmaster is running on the proper host and that the proper
port is specified.

.../data/base/*

SEE ALSO

createdb(unix), postmaster(unix), destroydb(commands).

DESTROYUSER (UNIX) 6/14/90 DESTROYUSER (UNIX)

NAME

destroyuser — destroy a POSTGRES user

SYNOPSIS

destroyuser [-p port] [-h host] username

DESCRIPTION

Destroyuser destroys an existing POSTGRES user. Only users with “usesuper” set in the
pg_user class can destroy POSTGRES users. As shipped, the user “postgres” can destroy
users.

Username is the name of the POSTGRES user to be destroyed.

The argument port and hostname are the same as in the terminal monitor - they are used
to connect to the postmaster using the TCP/IP port port running on the database server
hostname. The defaults are to the local machine (localhost) and to the default port
(4321).

INTERACTIVE QUESTIONS

Once invoked with the above options destroyuser will warn the person destroying the
POSTGRES user about the databases that will be destroyed in the process. If the
databases should not be destroyed, destroyuser can be aborted.

SEE ALSO

createuser(unix).

DIAGNOSTICS
You are not a valid POSTGRES user

You do not have a users file entry, and can not do anything with POSTGRES at all.

<user> does not exist

The user does not exist.

INITDB (UNIX) 6/14/90 INITDB (UNIX)

NAME

initdb — initalize the database templates and primary directories

SYNOPSIS
initdb [-v]

DESCRIPTION

initdb sets up the initial template databases. It is normally executed as part of the instal-
lation process. The template database is created under the directory specified by the the
environment variable, POSTGRESHOME. For example,

setenv POSTGRESHOME /usr/postgres

POSTGRES also supports data striping by allowing a database spread across multiple
directories. The user can specify multiple directories in POSTGRESHOME separated by

setenv POSTGRESHOME /usrl/postgres:/usr2/postgres

The -v option specifies that initdb should be run in "verbose mode", meaning that it will
print messages stating where the directories are being created, etc.

SEE ALSO

createdb(unix).

IPCCLEAN (UNIX) 6/14/90 IPCCLEAN (UNIX)

NAME

ipcclean — clean up shared memory and semaphores from aborted backends

SYNOPSIS

ipcclean

DESCRIPTION

BUGS

Ipcclean cleans up shared memory and semaphore space from aborted backends. Only
the DBA should execute this program, as it can cause bizarre behavior if run during
multi-user execution. This program should be ran if errors such as semget: No space left
on device are encountered in starting up programs like the Postmaster or POSTGRES
backend.

If this command is run while a Postmaster or backend is running, the shared memory and
semaphores allocated by the postmaster will be deleted. This will result in a general fail-
ure of the backends which are currently running.

10

MONITOR (UNIX) 6/14/90 MONITOR (UNIX)

NAME

monitor — run the interactive terminal monitor

SYNOPSIS

monitor [-h hostname] [-p port] [-t tty_device] [-N] [-T]
[-c query] [-d path] [-q] [-0 options] dbname

DESCRIPTION

The interactive terminal monitor is a simple frontend to POSTGRES. It enables one to
formulate, edit and review queries before issuing them to POSTGRES. If changes must be
made, a UNIX editor may be called called to edit the query buffer, which the terminal
monitor manages. The editor used is determined by the value of the EDITOR environ-
ment variable. If EDITOR is not set, then vi is used by default.

The terminal monitor requires that the postmaster be running, and the ports (specified
with the "-p" option or by the PGPORT environment variable) must be identical to those
specified to the postmaster.

COMMAND OPTIONS

-h host specifies host machine on which the POSTGRES backend is running; default is
your local machine (localhost).

-p port specifies the well known TCP/IP port used for network communication between
the terminal monitor and the postmaster.

-t tty_device specifies the path name to the tty device (or regular UNIX file) which you
want the backend debugging messages to be sent to; default is /dev/null. -N specifies that
query results will be dumped to the screen without any attempt at formatting. This is use-
ful in conjunction with the -c option in shell scripts.

-T specifies that attribute names will not be printed - only the data itself. This is useful in
conjunction with the -c¢ option in shell scripts.

-c query specifies that the monitor is to run one query and exit. This is useful for shell
scripts, typically in conjunction with the -N and -T options. Examples of shell scripts in
the POSTGRES distribution using monitor-c are createdb, destroydb, createuser, and
destroyuser.

-d path specifies the path name of the file or tty which you want the frontend debugging
messages to be written to; the default is not to generate any debugging messages.

-g specifies that the monitor should do its work quietly. By default, it prints welcome and
exit messages and the queries it sends to the backend. If the -g flag is used, none of this

happens.

-o options specifies additonal options for the POSTGRES backend. This is only intended

11

MONITOR (UNIX)

6/14/90 MONITOR (UNIX)

for use by POSTGRES developers.

You may set environment variables to avoid typing the above options. See the ENVI-

RONMENT VARIABLES section below.

MESSAGES AND PROMPTS

The terminal monitor gives a variety of messages to keep the user informed of the status

of the monitor and the query buffer.

When the terminal monitor is executed, it gives the current date and time, usually fol-

lowed by the information in the dayfile (files).

The terminal monitor displays two kinds of messages:

g0

The query buffer is empty and the terminal monitor is ready
for input. Anything typed will be added to the buffer.

This prompt is typed at the beginning of each line when the
terminal monitor is waiting for input.

TERMINAL MONITOR COMMANDS

\e
\g
\h
\i filename
\p
\q
\r

\s

\t
\w filename

A\l

Enter the editor to edit the query buffer

Submit query buffer to POSTGRES for execution
Get on-line help

Include the file filename into the query buffer
Print contents of the query buffer

Exit from the terminal monitor

Reset (clear) the query buffer

Escape to a UNIX subshell. To return to the
terminal monitor, type “exit” at the shell prompt.

Print current time

Store the query buffer to an external file

Produce a single backslash at the current location in query buffer

12

MONITOR (UNIX) 6/14/90 MONITOR (UNIX)

ENVIRONMENT VARIABLES
You may set environment variables to avoid specifying command line options. These are
as follows:
hostname: PGHOST
port: PGPORT
tty: PGTTY
options: PGOPTION

If PGOPTION is specified, then the options it contains are parsed before any command-
line options.

RETURN VALUE

When executed with the -cquery option monitor returns 0O to the shell on successful query
completion, 1 otherwise.

SEE ALSO

backend(unix), postmaster(unix), createdb(unix), destroydb(unix), createuser(unix),
destroyuser(unix).

13

PAGEDOC (UNIX) 8/18/92 PAGEDOC (UNIX)

NAME

pagedoc — POSTGRES page doctor

SYNOPSIS

pagedoc [—h|b|r] [—d level] filename

DESCRIPTION

The pagedoc program understands the layout of data on POSTGRES pages, and can be
used to view contents of relations in case a database gets corrupted. Contents are printed
to standard output, and probable errors are flagged with four asterisks (““******) and a
description of the problem.

Several levels of detail are available. Level zero prints only a single summary line per
data page in the relation. The summary line includes the number of items on the page,
some allocation information, and whatever additional detail is appropriate for the relation
type being examined. Level one also prints a single summary line for each tuple that
appears on each page. The tuple summary includes the tuple’s position on the page, its
length, and some allocation information. Level two (or higher) prints all of the informa-
tion printed by level one, and prints tuple headers for every tuple on the page. The
header information displayed depends on the type of relation being viewed; either Heap-
Tuple or IndexTuple structure entries are possible.

If the relation’s contents are badly damaged, then only level zero is likely to work. Finer
levels of detail assume that more page structure is correct, and so are more sensitive to
corruption.

ARGUMENTS

—h|b|r
The type of the relation. Type 4 is heap, b is btree, and r is rtree. The default is /.

—d level
The detail level to use in displaying pages.

filename
The name of the file containing the relation.

EXAMPLES

BUGS

To print page and line pointer summaries and tuple headers for a btree index named
pg_typeidind,
pagedoc —b —d2 pg_typeidind

To show the default (level zero) summary of a heap relation named pg_user,

pagedoc pg_user

Finer levels of detail produce a lot of output.

14

PAGEDOC (UNIX) 8/18/92 PAGEDOC (UNIX)

There’s no way to skip forward to a page that shows some corruption.

You can only examine contents, you can’t actually fix them.

15

POSTGRES (UNIX) 6/14/90 POSTGRES (UNIX)

NAME

postgres — run the Postgres backend directly

SYNOPSIS

postgres [-Q] [databasename] [-d debug_level]

DESCRIPTION

This command executes the POSTGRES backend directly. This should be done only
while debugging by the DBA, and should not be done while other POSTGRES backends
are being managed by a postmaster on this set of databases.

COMMAND OPTIONS

-Q indicates "Quiet" mode. By default, the POSTGRES backend prints the parse tree gen-
erated by the parser, the plan generated by the planner and many debugging message.
Specifying this flag eliminates much of this.

databasename is the name of the database to be used. If this is not specified, database-
name defaults to the value of the environment variable USER.

UNDOCUMENTED COMMAND OPTIONS

There are several other options that may be specified, used mainly for debugging pur-
poses. These are listed here only for the use of POSTGRES system developers.

-0 indicates that the backend should not use the transaction system. All commands run
in the same transaction and all commands can see the results of prior commands.

-M nnn indicates that the backend should fork nnn slave backend processes and then exe-
cute queries in parallel. This is only useful on shared-memory multiprocessor systems
(e.g. Sequent) and is still in experimental and research stage. It is especially unreliable
for large joins. Full support for intra-query as well inter-query parallelism have been
planned for Version 4.

-S indicates that the transaction system can run with the assumption of stable main mem-
ory thus avoiding the necessary flushing of data and log pages to disk at the end of each
transaction system. This is only used for performance comparisons for stable vs. non-
stable storage. Do not use this in other cases, as recovery after a system crash may be
impossible when -S is specified in the absence of stable main memory.

-s indicates that time information and other statistics are to be displayed at the end of
each query. This is useful for benchmarking or for use in tuning the number of buffers.

-B nnn indicates the number of shared buffers to use. The default number of buffers is
64.

16

POSTGRES (UNIX) 6/14/90 POSTGRES (UNIX)

-s POSTGRES will report execution statistics such as elapse time, buffer hit rate, etc for
each query execution.

-L this flag will turn off locking.
DIAGNOSTICS
semget: No space left on device

If you see this message, you should run the ipcclean command. After doing this, try run-
ning POSTGRES again. If this still doesn’t work, you will need to configure your kernel
for shared memory and semaphores as described in the installation notes.

SEE ALSO

monitor(unix), postmaster(unix), ipcclean(unix).

17

POSTMASTER (UNIX) 6/14/90 POSTMASTER (UNIX)

NAME

postmaster — run the POSTGRES postmaster

SYNOPSIS

postmaster [-p port | [-b backend_pathname] [-d debug_level] [-s][-n] &

DESCRIPTION

The postmaster manages the communication between frontends and backends, as well as
allocating the shared buffer pool and semaphores (on machines without TAS). The post-
master does not itself interact with the user so it should be started as a background pro-
cess. Only one postmaster should be run on a machine!

COMMAND OPTIONS

port is the well known TCP/IP port used for network communication between a libpq
application and the backend. If you specify a port other than the default port then you
must specify the same port when starting any libpq application including the terminal
monitor. Alternatively you may set the environment variable PGPORT to the specified
port and all libpq applications will use it instead of the default.

backend_pathname is the full pathname of the POSTGRES backend you wish to use.

deug_level determines the amount of debugging output the backend will produce. Speci-
fying any level will cause the postmaster to print out a few terse debugging output mes-
sages to the tty on which it was started.

The —s and —n options control the behavior of the postmaster when a backend dies
abnormally. The ordinary strategy for this situation is to notify all other backends that
they must terminate, and to reinitialize shared memory and semaphores. This is because
an errant backend, before dumping core, could have contaminated some shared state.

If the —s option is supplied, then the postmaster will stop all other backends, but will not
cause them to terminate. This permits system programmers to collect core dumps from
all concurrent backends by hand.

If the —n command-line option is supplied, then the postmaster does not reinitialize
shared data structures. A knowledgable system programmer can use the shmemdoc pro-
gram to examine shared memory and semaphore state, in order to debug the problem.

Neither —s nor —n is intended for use in ordinary operation.

EXAMPLES

postmaster &

This command will start up a postmaster on the default port (4321) and will expect to use
the default path to the POSTGRES backend ($POSTGRESHOME/bin/postgres) or
/usr/postgres/bin/postgres. This is the simplest and most common way to start the post-
master.

18

POSTMASTER (UNIX) 6/14/90 POSTMASTER (UNIX)

postmaster —-p 1234 -b /a/postgres/bin/postgres &

This command will start up a postmaster communicating through the port 1234, and will
expect to use the backend located at /a/postgres/bin/postgres. Note: to connect to this
postmaster using the terminal monitor, you would need to specify -p 1234 on the com-
mand line invoking the terminal monitor.

DIAGNOSTICS
semget: No space left on device

If you see this message, you should run the ipcclean command. After doing this, try
starting the postmaster again. If this still doesn’t work, you will need to configure your
kernel for shared memory and semaphores as described in the installation notes.

StreamServerPort: cannot bind to port

If you see this message, you should be certain that there is no other postmaster program
already running. The easiest way to determine this is by the command "ps -ax | grep
postmaster”. If you are sure there is no other postmaster running and you still get this
error try specifying a different port using the -p option. You may also get this error if you
terminate the postmaster and immediately restart it using the same port; in this case, you
should simply wait until the operating system closes the port.

SEE ALSO

postgres(unix), monitor(unix), ipcclean(unix), shmemdoc(unix).

19

SHMEMDOC (UNIX) 8/11/92 SHMEMDOC (UNIX)

NAME

shmemdoc — POSTGRES shared memory doctor

SYNOPSIS

shmemdoc [—p port | [—B nbuffers]

DESCRIPTION

The shmemdoc program understands the layout of POSTGRES data in shared memory,
and can be used to examine shared structures. This program is intended only for debug-
ging POSTGRES, and should not be used in normal operation.

When some backend dies abnormally, the postmaster normally reinitializes shared mem-
ory and semaphores, and forces all peers of the dead backend to exit. If the postmaster is
started with the —n flag, then shared memory will not be reinitialized, and shmemdoc can
be used to examine shared state after the crash.

A simple command interpreter reads user commands from standard input and prints
results on standard output. The available commands, and their actions, are:

semstat
Show the status of system semaphores. Status includes semaphore names and val-
ues, the process id of the last process to change each semaphore, and a count of pro-
cesses sleeping on each semaphore.

semset 1 val
Set the value of semaphore number n (with zero being the first ssmaphore named by
semstat) to val. This is really only useful for resetting system state maually after a
crash, and you don’t want to do it.

bufdescs
Print the contents of the shared buffer descriptor table.

bufdesc n
Print the shared buffer descriptor table entry for buffer n.

buffer n type level
Print the contents of buffer number 7 in the shared buffer table. The buffer is inter-
preted as a page from a type relation, where type may be heap, btree, or rtree. The
level argument controls the amount of detail presented. Level zero prints only page
headers, level one prints page headers and line pointer tables, and level two (or
higher) prints headers, line pointer tables, and tuples.

linp n which
Print line pointer table entry which of buffer n.
tuple n type which

Print tuple which of buffer n. The buffer is interpreted as a page from a type rela-
tion, where type may be heap, btree, or rtree.

setbase ptr
Set the logical base address of shared memory for shmemdoc to ptr. Normally,
shmemdoc uses the address of each structure in its own address space when

20

SHMEMDOC (UNIX) 8/11/92 SHMEMDOC (UNIX)

interpreting commands and printing results. If setbase is used, then on input and
output, addresses are translated so that the shared memory segment appears to start
at address ptr.

This is useful when a debugger is examining a core file produced by POSTGRES
and you want to use the shared memory addresses that appear in the core file. The
base of shared memory in POSTGRES is stored in the variable ShmemBase, which
may be examined by a debugger.

Ptr may be expressed in octal (leading zero), decimal, or hexadecimal (leading 0x).

shmemstat
Print shared memory layout and allocation statistics.

whatis prrP
Identify the shared memory structure pointed at by ptr.

help Print a brief command summary.

quit Exit shmemdoc.

ARGUMENTS

BUGS

—B nbuffers
The number of buffers used by the backend. This value is ignored in the present
implementation of shmemdoc, but is important if you choose to change the number
allocated by POSTGRES. In that case, you're out of luck for now.

—p port
The port on which the postmaster was listening. This value is used to compute the

shared memory key used by the postmaster when shared memory was initialized.

Probably doesn’t work on anything but DECstations.

All of the sizes, offsets, and values for shared data are hardwired into this program; it
shares no code with the ordinary POSTGRES system, so changes to shared memory layout
will require changes to this program, as well.

21

BUILT-INS 6/14/90 BUILT-INS

SECTION 3 — WHAT COMES WITH POSTGRES (BUILT-INS)

DESCRIPTION

This section describes both built-in and system data types. Built-in types are required for
POSTGRES to run. System types are installed in every database, but are not strictly
required. Built-in types are marked with asterisks in the table below.

Users may add new types to POSTGRES using the define type command described in this
manual. User-defined types are not described in this section.

POSTGRES Type Meaning Required
abstime absolute date and time *
bool boolean *
box 2-dimensional rectangle

bytea variable length array of bytes

char character *
charl6 array of 16 characters *
cid command identifier type *
int2 two-byte signed integer *
int28 array of 8 int2 *
int4 four-byte signed integer *
float4 single-precision floating-point number *
float8 double-precision floating-point number *
Iseg 2-dimensional line segment

oid object identifier type *
0id8 array of 8 oid *
path variable-length array of Iseg

point 2-dimensional geometric point

regproc registered procedure *
reltime relative date and time *
text variable length array of characters

tid tuple identifier type *
tinterval time interval *
uint2 two-byte unsigned integer *
uint4 four-byte unsigned integer *
xid transaction identifier type *

These types all have obvious formats except for the three time types, explained in the fol-
lowing.

22

DATE AND TIME (BUILT-INS) 7/11/92 DATE AND TIME (BUILT-INS)

ABSOLUTE TIME
Absolute time is specified using the following syntax:
Month Day [Hour : Minute : Second] Year [Timezone]
where Month is Jan, Feb, ..., Dec

Dayis 1,2, .., 31

Houris 01, 02, ..., 24
Minute is 00, 01, ..., 59
Second is 00, 01, ..., 59
Year is 1970, 1971, ..., 2038

Valid dates are, therefore, Jan 1 00:00:00 1970 GMT to Jan 1 00:00:00 2038 GMT. As of
Version 3.0, times are no longer read and written using Greenwich mean time; the input
and output routines default to the local time zone.

The special absolute time “now” is provided as a convenience. The special absolute time
“epoch” means Jan 1 00:00:00 1970 GMT.

RELATIVE TIME
Relative time is specified with the following syntax:

@ Quantity Unit [Direction]

where Quantity is ‘17, 27, ...
Unit is ““second”, “minute”, “hour”, “day”, “week”,
“month” (30-days), or ““year” (365-days),
or PLURAL of these units.
Direction is “ago”
(Note: Valid relative times are less than or equal to 68 years)

In addition, the special relative time ‘““Undefined RelTime™ is provided.

TIME RANGES

Time ranges are specified as:

[abstime, abstime]
[, abstime]

[abstime, “7]
[

A\ /4 A\ /4 :|
14

where abstime 1s a time in the absolute time format. “”’ will cause the time interval to
either start or end at the least or greatest time allowable, that is, either Jan 1 00:00:00

1902 or Jan 1 00:00:00 2038, respectively.

23

OPERATORS (BUILT-INS)

7/11/89 OPERATORS (BUILT-INS)

OPERATORS

POSTGRES provides a large number of built-in operators on system types. These opera-
tors are declared in the system catalog pg_operator. Every entry in pg_operator includes
the object ID of the procedure that implements the operator.

Users may invoke operators using the operator name, as in
retrieve (emp.all) where emp.salary < 40000

Alternatively, users may call the functions that implement the operators directly. In this
case, the query above would be expressed as

retrieve (emp.all) where int4lt (emp.salary, 40000)

The rest of this section provides a list of the built-in operators and the functions that
implement them. Binary operators are listed first, followed by unary operators.

Binary Operators

This list was generated from the POSTGRES system catalogs with the query

retrieve (argtype = tl.typname, o.oprname,

t0.typname, p.proname,
ltype=tl.typname, rtype=t2.typname)

from p in pg_proc, t0 in pg_type, tl in pg_type,
t2 in pg_type, o in pg_operator

where p.prorettype = t0.o0id
and RegprocToOid(o.oprcode) = p.oid
and p.pronargs = 2
and o.oprleft = tl.oid
and o.oprright = t2.o0id

The list is sorted by the built-in type name of the first operand. The function prototype
column gives the return type, function name, and argument types for the procedure that
implements the operator. (Note that these function prototypes are POSTGRES function

prototypes and they are not equivalent to C function prototypes.)
Type Operator POSTGRES Function Prototype Operation

abstime |= bool abstimene(abstime, abstime) inequality

+ abstime timepl(abstime, reltime) addition
- abstime timemi(abstime, reltime) subtraction
<= bool abstimele(abstime, abstime) less or equal
<> bool ininterval(abstime, tinterval) abstime in tinterval?
< bool abstimelt(abstime, abstime) less than
= bool abstimeeq(abstime, abstime) equality
>= bool abstimege(abstime, abstime) greater or equal
> bool abstimegt(abstime, abstime) greater than

bool = bool booleq(bool, bool) equality

box && bool box_overlap(box, box) boxes overlap

24

OPERATORS (BUILT-INS)

7/11/89

OPERATORS (BUILT-INS)

&< bool box_overleft(box, box) box A overlaps box B, but does
not extend to right of box B
&> bool box_overright(box, box) box A overlaps box B, but does
not extend to left of box B
<< bool box_left(box, box) A is left of B
<= bool box_le(box, box) area less or equal
< bool box_It(box, box) area less than
= bool box_eq(box, box) area equal
>= bool box_ge(box, box) area greater or equal
>> bool box_right(box, box) A isright of B
> bool box_gt(box, box) area greater than
@ bool box_contained(box, box) A is contained in B
= bool box_same(box, box) box equality
- bool box_contain(box, box) A contains B
charl6 != bool charl6ne(charl6, char16) inequality
I bool charl6regexne(charl6, char16) A does not match regular ex-
pression B (POSTGRES uses the
libc regexp calls for this opera-
tion)
<= bool charl6le(charl6, charl6) less or equal
< bool char16lt(char16, char16) less than
= bool charl6eq(charl6, char16) equality
>= bool charl6ge(charl6, char16) greater or equal
> bool char16gt(char16, charl6) greater than
- bool charl6regexeq(charl6, char16) A matches regular expression B
(POSTGRES uses the libc regexp
calls for this operation)
char != bool charne(char, char) inequality
N bool charmul(char, char) multiplication
+ bool charpl(char, char) addition
- bool charmi(char, char) subtraction
/ bool chardiv(char, char) division
<= bool charle(char, char) less or equal
< bool charlt(char, char) less than
= bool chareq(char, char) equality
>= bool charge(char, char) greater or equal
> bool chargt(char, char) greater than
float4d != bool float4ne(float4, float4) inequality
* float4 floatdmul(float4, float4) multiplication
+ float4 floatdpl(float4, float4) addition
- float4 floatdmi(float4, float4) subtraction
/ float4 floatddiv(float4, float4) division
<= bool float4le(float4, float4) less or equal
< bool float4lt(float4, float4) less than
= bool floatd4eq(float4, float4) equality
>= bool float4ge(float4, float4) greater or equal
> bool floatdgt(float4, float4) greater than

25

OPERATORS (BUILT-INS) 7/11/89 OPERATORS (BUILT-INS)
float8 != bool float8ne(float8, float8) inequality
* float8 float8mul(float8, float8) multiplication
+ float8 float8pl(float8, float8) addition
- float8 float8mi(float8, float8) subtraction
/ float8 float8div(float8, float8) division
<= bool float8le(float8, float8) less or equal
< bool float8lt(float8, float8) less thanl
= bool float8eq(float8, float8) equality
>= bool float8ge(float8, float8) greater or equal
> bool float8gt(float8, float8) greater than
- float8 dpow(float8, float8) exponentiation
int2 = bool int2ne(int2, int2) inequality
I= int4 int24ne(int2, int4) inequality
% int2 int2mod(int2, int2) modulus
% int4 int24mod(int2, int4) modulus
* int2 int2mul(int2, int2) multiplication
* int4 int24mul(int2, int4) multiplication
+ int2 int2pl(int2, int2) addition
+ int4 int24pl(int2, int4) addition
- int2 int2mi(int2, int2) subtraction
- int4 int24mi(int2, int4) subtraction
/ int2 int2div(int2, int2) division
/ int4 int24div(int2, int4) division
<= bool int2le(int2, int2) less or equal
<= int4 int24le(int2, int4) less or equal
< bool int2lt(int2, int2) less than
< int4 int241t(int2, int4) less than
= bool int2eq(int2, int2) equality
= int4 int24eq(int2, int4) equality
>= bool int2ge(int2, int2) greater or equal
>= int4 int24ge(int2, int4) greater or equal
> bool int2gt(int2, int2) greater than
> int4 int24gt(int2, int4) greater than
int2 int2inc(int2) increment
int4 !l= bool int4notin(int4, charl6) This is the relational “not in”
operator, and is not intended for
public use.
I= bool int4ne(int4, int4) inequality
I= int4 int42ne(int4, int2) inequality
) int4 int42mod(int4, int2) modulus
% int4 int4mod(int4, int4) modulus
N int4 int42mul(int4, int2) multiplication
* int4 int4mul(int4, int4) multiplication
+ int4 int42pl(int4, int2) addition
+ int4 int4pl(int4, int4) addition
- int4 int42mi(int4, int2) subtraction
- int4 int4mi(int4, int4) subtraction

26

OPERATORS (BUILT-INS) 7/11/89 OPERATORS (BUILT-INS)
/ int4 int42div(int4, int2) division
/ int4 int4div(int4, int4) division
<= bool int4le(int4, int4) less or equal
<= int4 int42le(int4, int2) less or equal
< bool int4lt(int4, int4) less than
< int4 int421t(int4, int2) less than
= bool intdeq(int4, int4) equality
= int4 int42eq(int4, int2) equality
>= bool intdge(int4, int4) greater or equal
>= int4 int42ge(int4, int2) greater or equal
> bool intdgt(int4, int4) greater than
> int4 int421t(int4, int2) less than
int4 int4inc(int4) increment
oid !l= bool oidnotin(oid, charl6) This is the relational “not in”
operator, and is not intended for
public use.
I= bool oidneq(oid, oid) inequality
1= bool oidneq(oid, regproc) inequality
<= bool int4le(oid, oid) less or equal
< bool int4lt(oid, oid) less than
= bool oideq(oid, oid) equality
= bool oideq(oid, regproc) equality
>= bool int4ge(oid, oid) greater or equal
> bool int4gt(oid, oid) greater than
point !< bool point_left(point, point) Ais left of B
> bool point_right(point, point) A isright of B
" bool point_above(point, point) A is above B
1l bool point_below(point, point) A is below B
== bool point_eq(point, point) equality
-—-> bool on_pb(point, box) point inside box
- bool on_ppath(point, path) point on path
<---> int4 pointdist(point, point) distance between points
polygon&& bool poly_overlap(polygon, polygon) polygons overlap
&< bool poly_overleft(polygon, polygon) A overlaps B but does not ex-
tend to right of B
&> bool poly_overright(polygon, polygon) A overlaps B but does not ex-
tend to left of B
<< bool poly_left(polygon, polygon) Aisleftof B
>> bool poly_right(polygon, polygon) Ais right of B
bool poly_contained(polygon, polygon)A is contained by B
= bool poly_same(polygon, polygon) equality
- bool poly_contain(polygon, polygon) A contains B
regproc !|= bool oidneq(regproc, oid) inequality
= bool oideq(regproc, oid) equality
reltime != bool reltimene(reltime, reltime) inequality
<= bool reltimele(reltime, reltime) less or equal

27

OPERATORS (BUILT-INS) 7/11/89 OPERATORS (BUILT-INS)
< bool reltimelt(reltime, reltime) less than
= bool reltimeeq(reltime, reltime) equality
>= bool reltimege(reltime, reltime) greater or equal
> bool reltimegt(reltime, reltime) greater than
text = bool textne(text, text) inequality
I~ bool textregexne(text, text) A does not contain the regular
expression B. POSTGRES uses
the libc regexp interface for this
operator.
<= bool text_le(text, text) less or equal
< bool text_lt(text, text) less than
= bool texteq(text, text) equality
>= bool text_ge(text, text) greater or equal
> bool text_gt(text, text) greater than
- bool textregexeq(text, text) A contains the regular expres-
sion B. POSTGRES uses the libc
regexp interface for this opera-
tor.
tinterval#!= bool intervallenne(tinterval, reltime) interval length not equal to rel-
time.
#<= bool intervallenle(tinterval, reltime) interval length less or equal rel-
time
#< bool intervallenlt(tinterval, reltime) interval length less than reltime
= bool intervalleneq(tinterval, reltime) interval length not equal to rel-
time
#>= bool intervallenge(tinterval, reltime) interval length greater or equal
reltime
#> bool intervallengt(tinterval, reltime) interval length greater than rel-
time
&& bool intervalov(tinterval, tinterval) intervals overlap
<< bool intervalct(tinterval, tinterval) A contains B

bool intervaleq(tinterval, tinterval)

Unary Operators

equality

The tables below give right and left unary operators. Left unary operators have the oper-
ator precede the operand; right unary operators have the operator follow the operand.

Right Unary Operators

Type Operator POSTGRES Function Prototype Operation

float8 % float8 dround(float8) round to nearest integer
Left Unary Operators

28

OPERATORS (BUILT-INS)

7/11/89

OPERATORS (BUILT-INS)

Type Operator POSTGRES Function Prototype Operation

box @@ point box_center(box) center of box

float4 @ float4 float4abs(float4) absolute value

float§ @ float8 float8abs(float8) absolute value
% float8 dtrunc(float8) truncate to integer
|/ float8 dsqrt(float8) square root
|% float8 dcbrt(float8) cube root
: float8 dexp(float8) exponential function
; float8 dlog1(float8) natural logarithm

tinterval | abstime intervalstart(tinterval) start of interval
SEE ALSO

For examples on specifying literals of built-in types, see postquel(commands).

BUGS

The lists of types, functions, and operators are accurate only for Version 4.0. The lists
will be incomplete and contain extraneous entries in future versions of POSTGRES.

29

COMMANDS 6/14/90 COMMANDS

SECTION 4 — POSTQUEL COMMANDS (COMMANDS)

DESCRIPTION

The following is a description of the general syntax of POSTQUEL. Individual
POSTQUEL statements and commands are treated separately in the document; this section
describes the syntactic classes from which the constituent parts of POSTQUEL statements
are drawn.

Comments

A comment is an arbitrary sequence of characters bounded on the left by “/*”” and on the
right by “*/”, e.g:

/* This is a comment */

Names

Names in POSTQUEL are sequences of not more than 16 alphanumeric characters, start-
ing with an alphabetic. Underscore (_) is considered an alphabetic.

Keywords

The following identifiers are reserved for use as keywords and may not be used other-

wise:
abort delete key remove
addattr demand leftouter rename
after descending light replace
all destroy load retrieve
always destroydb merge returns
and do move rewrite
append empty never rightouter
arch_store end new rule
archive execute none sort
arg fetch nonulls stdin
ascending forward not stdout
attachas from NULL store
backward function on to
before heavy once transaction
begin in operator type
binary index or union
by indexable output_proc unique
cfunction inherits parallel using
close input_proc pfunction vacuum
cluster instance portal variable
copy instead postquel version
create intersect priority view
createdb into purge where

30

POSTQUEL (COMMANDS) 6/14/90 POSTQUEL (COMMANDS)

current intotemp quel with
define is relation

In addition, all POSTGRES classes have several predefined attributes used by the system.
For a list of these, see the section Fields, below.

Constants

There are six types of constants for use in POSTQUEL. They are described below.

Character Constants

Single character constants may be used in POSTQUEL by surrounding them by single
quotes, e.g., ‘n’.

String Constants

Strings in POSTQUEL are arbitrary sequences of ASCII characters bounded by double
quotes (" "). Upper case alphabetics within strings are accepted literally. Non-printing
characters may be embedded within strings by prepending them with a backslash, e.g.,
“n’. Also, in order to embed quotes within strings, it is necessary to prefix them with \’ .
The same convention applies to ‘\’ itself. Because of the limitations on instance sizes,
string constants are currently limited to a length of a little less than 8K bytes. Larger
objects may be created using the POSTGRES Large Object interface.

Integer Constants

Integer constants in POSTQUEL are collection of ASCII digits with no decimal point.
Legal values range from —2147483647 to +2147483647. This will vary depending on the
operating system and host machine.

Floating Point Constants

Floating point constants consist of an integer part, a decimal point, and a fraction part or
scientific notation of the following format:

{<dig>} .{<dig>} [e [+-] {<dig>}]
Where <dig> is a digit. You must include at least one <dig> after the period and after the

[+-] if you use those options. An exponent with a missing mantissa has a mantissa of 1
inserted. There may be no extra characters embedded in the string. Floating constants

are taken to be double-precision quantities with a range of approximately -10°® t0 10
and a precision of 17 decimal digits. This will vary depending on the operating system
and host machine.

Constants of POSTGRES User Defined Types

A constant of an arbitrary type can be entered using the notation:
"string"::type—-name

In this case the value inside the string is passed to the input conversion routine for the
type called type-name. The result is a constant of the indicated type.

31

POSTQUEL (COMMANDS) 6/14/90 POSTQUEL (COMMANDS)

Array constants

Array constants are arrays of any POSTGRES type, including other arrays, string con-
stants, etc. The general format of an array constant is the following:

"{<vall><delim><val2><delim>}"

An example of an array constant is

"{{1,2,3},{4,5},1{6,7,8,9}}"

This constant is an array consisting of three sub-arrays of integers.

Fields

A field is one of the following:

attribute name in a given class

all

oid

tmin

tmax

xmin

Xmax

cmin

cmax

vtype
As in INGRES, all is a shorthand for all normal attributes in a class, and may be used
profitably in the target list of a retrieve statement. Oid stands for the unique identifier of
an instance which is added by POSTGRES to all instances automatically. Oids are not
reused and are 32 bit quantities.
Tmin, tmax, xmin, cmin, xmax and cmax stand respectively for the time that the instance
was inserted, the time the instance was deleted, the identity of the inserting transaction,
the command identifier within the transaction, the identity of the deleting transaction and
its associated deleting command. For further information on these fields consult
[STON87]. Times are represented internally as instances of the “abstime” data type.
Transaction identifiers are 32 bit quantities which are assigned sequentially starting at
512. Command identifiers are 16 bit objects; hence, it is an error to have more than
65535 POSTQUEL commands within one transaction.

Attributes

An attribute is a construct of the form:
Instance-variable{.composite_field}.field ‘[’number‘]’

Instance-variable identifies a particular class and can be thought of as standing for the
instances of that class. An instance variable is either a class name, a surrogate for a class
defined by means of a from clause, or the keyword new or current. New and current can
only appear in the action portion of a rule, while other instance variables can be used in
any POSTQUEL command. Composite_field is a field of of one of the POSTGRES com-
posite types indicated in the information(commands) section, while successive compos-
ite fields address attributes in the class(s) to which the composite field evaluates. Lastly,

32

POSTQUEL (COMMANDS) 6/14/90 POSTQUEL (COMMANDS)

field is a normal (base type) field in the class(s) last addressed. If field is of type array,
then the optional number designator indicates a specific element in the array. If no num-
ber is indicated, then all array elements are returned.

Operators

Any built-in system, or user defined operator may be used in POSTQUEL. For the list of
built-in and system operators consult built-in types (commands) and b. system types
(commands). For a list of user defined operators consult your system administrator or run
a query on the pg_operator class. Parentheses may be used for arbitrary grouping of
operators.

Expressions (a_expr)
An expression is one of the following:

(a_expr)

constant

attribute

a_expr binary_operator a_expr
left_unary_operator a_expr
parameter

functional expressions
aggregate expressions

set expressions

class expression (notin Version 4.0)

We have already discussed constants and attributes. The two kinds of operator expres-
sions indicate respectively binary and left_unary expressions. The following sections dis-
cuss the remaining options.

Parameters

A parameter is used to indicate a parameter in a POSTQUEL function. Typically this is
used in POSTQUEL function definition statement. The form of a parameter is:

S’ number

For example, consider the definition of a function, DEPT, as

define function DEPT
(language="postquel", returntype = dept)
arg is (charlé6) as
retrieve (dept.all) where dept.name = $1

Functional Expressions

A functional expression is the name of a legal POSTQUEL function, followed by its argu-
ment list enclosed in parentheses, e.g.:

fn—-name (a_expr{ , a_expr})
For example, the following computes the square root of an employee salary.

sqgrt (emp.salary)

33

POSTQUEL (COMMANDS) 6/14/90 POSTQUEL (COMMANDS)

Aggregate Expression

An aggregate expression represents a simple aggregate (i.e one which computes a single
value) or an aggregate function (i.e. one which computes a set of values). The syntax is
the following:

aggregate_name ‘{’ [unique [using] opr] a_expr
[from from_list]
[where qualification] ‘}’

Here, aggregate_name must be a previously defined aggregate. The from_list indicates
the class to be aggregated over while qualification gives restrictions which must be satis-
fied by the instances to be aggregated. Next, the a_expr gives the expression to be aggre-
gated while the unique tag indicates whether all values should be aggregated or just the
unique values of a_expr. Two expressions, a_exprl and a_expr2 are the same if a_exprl
opr a_expr2 evaluates to true.

In the case that all instance variables used in the aggregate expression are defined in the
from list, a simple aggregate has been defined. For example, to sum employee salaries
whose age is greater than 30, one would write:

retrieve (total = sum {e.salary from e in emp
where e.age > 30})

or
retrieve (total = sum {EMP.salary where emp.age > 30})

In either case, POSTGRES is instructed to find the instances in the from_list which satisfy
the qualification and then compute the aggregate of the a_expr indicated.

On the other hand, if there are variables used in the aggregate expression that are not
defined in the from list, e.g:

avg {emp.salary where emp.age = e.age}

then this aggregate has a value for each possible value taken on by e.age. For example,
the following complete query finds the average salary of each possible employee age over
18:

retrieve (e.age, avg {emp.salary where emp.age = e.age}l)
from e in emp
where e.age > 18

Such aggregate functions are not supported in Version 4.0. Furthermore, in this version,
only the a_expr and the where-qualification clause are supported. Therefore, for the
above simple sum aggregate, the supported query would be the latter. One other note:
the qualification will support inheritance, but the expression to be aggregated will not.

Set Expressions
Set expressions are not supported in Version 4.0.

A set expression defines a collection of instances from some class and uses the following
syntax:

{target_list from from_list where qualification}

34

POSTQUEL (COMMANDS) 6/14/90 POSTQUEL (COMMANDS)

For example, the set of all employee names over 40 is:
{emp.name where emp.age > 40}

In addition, it is legal to construct set expressions which have an instance variable which
is defined outside the scope of the expression. For example, the following expression is
the set of employees in each department:

{emp.name where emp.dept = dept.dname}

Set expressions can be used in class expressions which are defined below.

Class Expression
Class expressions are not supported in Version 4.0.

A class expression is an expression of the form:

class_constructor binary_class_operator class_constructor
unary_class_operator class_constructor

where binary_class_operator is one of the following:

union union of two classes
intersect intersection of two classes

- difference of two classes

>> left class contains right class
<< right class contains left class

== right class equals left class
and unary_class_operator can be:
empty right class is empty

A class_constructor is either an instance variable, a class name, the value of a composite
field or a set expression.

An example of a query with a class expression is one to find all the departments with no
employees:

retrieve (dept.dname)
where empty {emp.name where emp.dept = dept.dname}

Target_list

A target list is a parenthesized, comma-separated list of one or more elements, each of
which must be of the form:

[result_attname =] a_expr

Here, result_attname is the name of the attribute to be created (or an already existing
attribute name in the case of update statements.) If result_attname is not present, then
a_expr must contain only one attribute name which is assumed to be the name of the
result field. In Version 4.0 default naming is only used if the a_expr is an attribute.

Qualification

A qualification consists of any number of clauses connected by the logical operators:

not

35

POSTQUEL (COMMANDS) 6/14/90 POSTQUEL (COMMANDS)

and
or

A clause is an a_expr that evaluates to a Boolean over a set of instances.

From List
The from list is a comma-separated list of from expressions.

Each from expression is of the form:

instance_variable-1 {, instance_variable-2}
in class_reference

where class_reference is of the form
class_name [time_expression] [*]

The from expression defines one or more instance variables to range over the class indi-
cated in class_reference. Adding a time_expression will indicate that a historical class is
desired. One can also request the instance variable to range over all classes that are
beneath the indicated class in the inheritance hierarchy by postpending the designator “*’.

Time Expressions

A time expression is in one of two forms:

[date]
[date-1, date-2]

The first case requires instances that are valid at the indicated time. The second case
requires instances that are valid at some time within the date range specified. If no time
expression is indicated, the default is “now”.

In each case, the date is a character string of the form
[MON-FRI] "MMM DD [HH:MM:SS] YYYY" [Timezone]

where MMM is the month (Jan — Dec), DD is a legal day number in the specified month,
HH:MM:SS is an optional time in that day (24-hour clock), and YYYY is the year. If the
time of day HH:MM:SS is not specified, it defaults to midnight at the start of the speci-
fied day. In addition, all times are interpreted as GMT.

For example,

["Jan 1 1990"]
["Mar 3 00:00:00 1980", "Mar 3 23:59:59 1981"]

are valid time specifications.

SEE ALSO

append(commands), delete(commands), execute(commands), replace(commands),
retrieve(commands), monitor(unix).

BUGS

The following constructs are not available in Version 4.0:

class expressions
set expressions

36

POSTQUEL (COMMANDS) 6/14/90 POSTQUEL (COMMANDS)

NAME

abort — abort the current transaction

SYNOPSIS

abort

DESCRIPTION

This command aborts the current transaction and causes all the updates made by the
transaction to be discarded.

SEE ALSO

begin(commands), end(commands).

37

ADDATTR (COMMANDS) 6/14/90 ADDATTR (COMMANDS)

NAME

addattr — add attributes to a class

SYNOPSIS

addattr (attnamel = typel {, attname-i = type-i})
to classname{*}

DESCRIPTION

The addattr command causes new attributes to be added to an existing class, classname.
The new attributes and their types are specified in the same style and with the the same
restrictions as in create(commands).

The new attributes will not be added to any classes which inherit attributes from class-
name, unless the “*” is present.

The initial value of each added attribute for all instances is “null.”

For efficiency reasons, default values for added attributes are not placed in existing
instances of a class. If default values are desired, a subsequent replace(commands) query
should be run.

EXAMPLE

/* add the date of hire to the emp class */

addattr (hiredate = abstime) to emp

SEE ALSO

create(commands).

BUGS

"*" is not supported in Version 4.0.

38

APPEND (COMMANDS) 6/14/90 APPEND (COMMANDS)

NAME

append — append tuples to a relation

SYNOPSIS
append classname
(att_namel = expressionl {, att_name-i = expression-i})
[from from_list] [where qual]
DESCRIPTION

Append adds instances which satisfy the qualification, qual, to classname. Classname
must be the name of an existing class. The target list specifies the values of the fields to
be appended to classname. The fields may be listed in any order. Fields of the result
class which do not appear in the target list are default a null value. If the expression for
each field is not of the correct data type, automatic type coercion will be attempted.

The keyword all can be used when it is desired to append all domains of a class to
another class.

EXAMPLE

/* Make a new employee Jones work for Smith */

append emp (newemp.name, newemp.salary, mgr = "Smith",
bdate = 1990 - newemp.age)
where newemp.name = "Jones"

/* same command using the from list clause */
append emp (n.name, n.salary, mgr = "Smith",
bdate = 1990 - n.age)

from n in newemp

where n.name = "Jones"
/* Append the newempl class to newemp */
append newemp (newempl.all)

SEE ALSO

postquel(commands), retrieve(commands), define type(commands).

39

ATTACHAS (COMMANDS) 6/14/90 ATTACHAS (COMMANDS)

NAME

attachas — reestablish communication using an exising portal

SYNOPSIS

attachas name

DESCRIPTION

This command allows application programs to use a logical name, name, in interactions
with POSTGRES. Suppose the user of an application program specifies a collection of
rules that retrieve data and that the program fails for some reason. Then, under ordinary
circumstances, all the rules would need to be reentered when the program is restored.
Alternatively, the attachas command may be used before defining the rules the first time.
Then, upon restoring the program, the attachas command will reattach the user to the
active rules.

BUGS

This command is not implemented in Version 4.0.

40

BEGIN (COMMANDS) 6/14/90 BEGIN (COMMANDS)

NAME

begin — begins a transaction

SYNOPSIS
begin

DESCRIPTION

This command begins a user transaction which POSTGRES will guarantee is serializable
with respect to all concurrently executing transactions. POSTGRES uses two-phase lock-
ing to perform this task. If the transaction is committed, POSTGRES will ensure that all
updates are done or none of them are done. Transactions have the standard ACID
(atomic, consistent, isolatable, and durable) property.

SEE ALSO

end(commands), abort(commands).

41

CLOSE (COMMANDS) 6/14/90 CLOSE (COMMANDS)

NAME

close — close a portal

SYNOPSIS

close [portal_name]

DESCRIPTION

Close frees the resources associated with a portal, portal_name. After this portal is
closed, no subsequent operations are allowed on it. A portal should be closed when it is
no longer needed. If portal_name is not specified, then the blank portal is closed.

EXAMPLE
/* close the portal FOO */

close FOO

SEE ALSO

retrieve(commands), fetch(commands), move(commands).

42

CLUSTER (COMMANDS) 6/14/90 CLUSTER (COMMANDS)

NAME

cluster — give storage clustering advice to POSTGRES

SYNOPSIS

cluster classname on attname [using operator]

DESCRIPTION

This command instructs POSTGRES to keep the class specified by classname approxi-
mately sorted on attname using the specified operator to determine the sort order. The
operator must be a binary operator and both operands must be of type attname and the
operator must produce a result of type boolean. If no operator is specified, then “<” is
used by default.

A class can be reclustered at any time on a different attribute and/or with a different oper-
ator.

POSTGRES will try to keep the heap data structure which stores the instances of this class
approximately in sorted order. If the user specifies an operator which does not define a
linear ordering, this command will produce unpredictable orderings.

Also, if there is no index for the clustering attribute, then this command will have no
effect.

EXAMPLE

BUGS

/* cluster employees in salary order */

cluster emp on salary

Cluster has no effect in Version 4.0.

43

COPY (COMMANDS) 6/14/90 COPY (COMMANDS)

NAME

copy — copy data to or from a class from or to a UNIX file.

SYNOPSIS

copy [binary] classname direction ("filename" | stdin | stdout)

DESCRIPTION

Copy moves data between POSTGRES classes and standard UNIX files. The keyword
binary change the behavior of field formatting, as described below. Classname is the
name of an existing class. Direction is either to or from. Filename is the UNIX path-
name of the file. In place of a filename, stdin and stdout can be used so that input to copy
can be written by a LIBPQ application and output from the copy command can be read
by a LIBPQ application. The binary keyword will force all data to be stored/read as
binary objects rather than as ASCII text. It is somewhat faster than the normal copy
command, but is not generally portable, and the files generated are somewhat larger,
although this factor is highly dependent on the data itself.

FORMAT

When copy is used without the binary keyword, the file generated will have each
instance on a line, with each attribute separated by tabs (). Embedded tabs will be pre-
ceeded by a backslash character (\). The attribute values themselves are strings generated
by the output function associated with each attribute type. The output function for a type
should not try to generate the backslash character - this will be handled by copy itself.

Note that on input to copy backslashes are considered to be special control characters,
and should be doubled if you want to embed a backslash, ie, the string "12\19\88" will be
converted by copy to "121988". The actual format for each instance is

<attrl><tab><attr2><tab>...<tab><attrn><newline>

If copy is sending its output to standard output instead of a file, it will send a period (.)
followed immediately by a newline, on a line by themselves, when it is done. Similarly,
if copy is reading from standard input, it will expect a period (.) followed by a newline,
as the first two characters on a line, to denote end-of-file. However, copy will terminate
(followed by the backend itself) if a true EOF is encountered.

NULL attributes are handled simply as null strings, that is, consecutive tabs in the input
file denote a NULL attribute.

In the case of copy binary, the first four bytes in the file will be the number of instances
in the file. If this number is zero, the copy binary command will read until end of file is
encountered. Otherwise, it will stop reading when this number of instances has been
read. Remaining data in the file will be ignored.

The format for each instance in the file is as follows. Note that this format must be fol-
lowed EXACTLY. Unsigned four byte integer quantities are called uint32 in the below
description.

uint32 totallength (not including itself),

44

COPY (COMMANDS) 6/14/90 COPY (COMMANDS)

uint32 number of null attributes

[uint32 attribute number of first null attribute
uint32 attribute number of nth null attribute],
<data>

Alignment of binary data

On Sun 3’s, 2 byte attributes are aligned on two-byte boundaries, and all larger attributes
are aligned on four-byte boundaries. Character attributes are aligned on single-byte
boundaries. On other machines, all attributes larger than 1 byte are aligned on four-byte
boundaries. Note that variable length attributes are preceeded by the attribute’s length;
arrays are simply contiguous streams of the array element type.

SEE ALSO

BUGS

append(commands), create(commands), vacuum(commands), libpq.

Files used as arguments to the copy command must reside on or be accessable to the the
database server machine by being either on local disks or a networked file system.

Copy stops operation at the first error. This should not lead to problems in the event of a
copy from, but the target relation will, of course, be partially modified in a copy to. The
“vacuum’ query should be used to clean up after a failed copy.

Because POSTGRES operates out of a different directory than the user’s working direc-
tory at the time POSTGRES is invoked, the result of copying to a file “foo” (without addi-
tional path information) may yield unexpected results for the naive user. The full path-
name should be used when specifying files to be copied.

Copy has virtually no error checking, and a malformed input file will likely cause the
backend to crash. Humans should avoid using copy for input whenever possible.

45

CREATE (COMMANDS) 6/14/90 CREATE (COMMANDS)

NAME

create — create a new class

SYNOPSIS

create classname (attributename = type { , attributename = type})
[key (attributename [[using] operator]
{, attributename [[using] operator] })]
[inherits (classname {, classname})]
[archive = archive_mode]
[store = ““smgr name”’]
[arch_store = “smgr name™’]

DESCRIPTION

Create will enter a new class into the current data base. The class will be “owned” by
the user issuing the command. The name of the class is classname and the attributes are
as specified in the list of attributenames: attributename, attributename, etc. The
attributes are created with the type specified by type.

The key clause is used to specify that a field or a collection of fields is unique. If no key
clause is specified, POSTGRES will still give every instance a unique object-id (OID).
This clause allows other fields to be additional keys. Moreover, the “using operator” part
of the clause allows the user to specify what operator should be used for the uniqueness
test. For example, integers are all unique if = is used for the check, but not if < is used
instead. If no operator is specified, = is used by default. Any specified operator must be
a binary operator returning a boolean. If there is no compatible index to allow the key
clause to be rapidly checked, POSTGRES defaults to not checking rather than performing
an exhaustive search on each key update.

The inherits clause specifies a collection of class names from which this class automati-
cally inherits all fields. If any inherited field name appears more than once, POSTGRES
reports an error. Moreover, POSTGRES automatically allows the created class to inherit
functions on classes above it in the inheritance hierarchy. Inheritance of functions is
done according to the conventions of the Common Lisp Object System (CLOS).

In addition, classname is automatically created as a type. Therefore, one or more
instances from the class are automatically a type and can be used in addattr or other cre-
ate statements. See introduction (commands) for a further discussion of this point.

The store and arch_store keywords may be used to specify a storage manager to use for
the new class. The released version of POSTGRES supports only ‘“‘magnetic disk™ as a
storage manager name; the research system at Berkeley provides additional storage man-
agers. Store controls the location of current data, and arch_store controls the location of
historical data. Arch_store may only be specified if archive is also specified. If either
store or arch_store is not declared, it defaults to ‘““magnetic disk.”

The class is created as a heap with no initial data. A class can have no more than 1600
domains (realistically, this is limited by the fact that tuple sizes must be less than 8K), but
this limit may be configured lower at some sites. A class cannot have the same name as a
system catalog class.

46

CREATE (COMMANDS) 6/14/90 CREATE (COMMANDS)

Archive specifies whether historical data is to be saved or discarded. Arch_mode may be
one of:

none: no historical access is supported
light: historical access is allowed and optimized for light update activity
heavy: historical access is allowed and optimized for heavy update activity

and defaults to none. For details of the optimization, see [STONS87]. Once the archive
status is set, there is no way to change it.
EXAMPLE

/* Create class emp with attributes name, sal and bdate */

create emp (name = charl6, salary = floatd, bdate = abstime)
/* Create class permemp with pension information

* inheriting all fields of emp */

create permemp (plan = charl6) inherits (emp)

/* Create a class foo on mag disk,
* and archive historical data */

create foo (bar = int4) archive = heavy
store = "magnetic disk"
SEE ALSO
destroy(commands).

BUGS
Key is not implemented in Version 4.0.

Optional specifications (inherits, archive, store) must be supplied in the order given
above, if they are supplied at all.

47

CREATEDB (COMMANDS) 8/11/91 CREATEDB (COMMANDS)

NAME

createdb — create a new database

SYNOPSIS

createdb dbname

DESCRIPTION

Createdb creates a new POSTGRES database. The creator becomes the administrator of
the new database. This command was added to POSTQUEL in Version 4.0 and is intended
to be used by the createdb script.

SEE ALSO
destroydb(commands), initdb(unix), createdb(unix), destroydb(unix).
BUGS

This command should NOT be executed by humans. The createdb(unix) script should
be used instead.

48

CREATE VERSION (COMMANDS) 6/14/90 CREATE VERSION (COMMANDS)

NAME

create version — construct a version class

SYNOPSIS

create version classnamel from classname2 [[abstime |]

DESCRIPTION

This command creates a version class classnamel which is related to its parent class,
classname?. lInitially, classnamel has the same contents as classname2. As updates to
classnamel occur, however, the contents of classnamel diverges from classname2. On
the other hand, any updates to classname2 show transparently through to classnamel,
unless the instance in question has already been updated in classnamel.

If the optional abstime clause is specified, then the version is constructed relative to a
snapshot of classname?2 as of the time specified.

POSTGRES uses the query rewrite rule system to ensure that classnamel is differentially
encoded relative to classname2. Moreover, classnamel is automatically constructed to
have the same indexes as classname2. It is legal to cascade versions arbitrarily, so a tree
of versions can ultimately result. The algorithms that control versions are explained in
[ONG90].

EXAMPLE
/* create a version foobar from a snapshot of */

/* barfoo as of January 17, 1990 */

create version foobar from barfoo ["Jan 17 1990"]

SEE ALSO
merge(commands), define view(commands), postquel(commands).
BUGS

Snapshots (i.e. the optional abstime specifications) have not yet been implemented.

49

DEFINE AGGREGATE (COMMANDS) 6/14/90 DEFINE AGGREGATE (COMMANDS)

NAME

define aggregate — define a new aggregate

SYNOPSIS

define aggregate agg-name [as]
(sfuncl = state-transition-functionl,
sfunc2 = state-transition-func2,
finalfunc = final-function,
initcond1 = initial-condition],
initcond?2 = initial-condition2)

DESCRIPTION

An aggregate requires three functions, two state transition functions, X1 and X2:

X1(internal-statel, next-data_item) ---> next-internal-statel
X2(internal-state2) ---> next-internal-state2

and a final calculation function, F:

F(internal-statel, internal-state2) ---> aggregate-value

These functions are required to have the following three properties:

(1) The return type of each state-transition-function and the arguments of the final-
calculation-function must be the same type (¢).

(2) The return type of the final-calculation-function must be a POSTGRES base type.

(3) The first argument to state-transition-functionl must be of type ¢, while the sec-
ond argument must match the data type of the object being aggregated.

Aggregates also require two initial conditions, one for each transition function.

EXAMPLE

The average aggregate would consist of two state transition functions, a summer and an
incrementer. These would hold the internal state of the aggregate through a running sum
and and the number of values seen so far. It might accept a new employee salary, incre-
ment the count, and add the new salary to produce the next state. The state transition
functions must be passed correct initialization values. The final calculation then divides
the sum by the count to produce the final answer.

/* Define an aggregate for intdaverage */

define aggregate avg (sfuncl = int4add, sfunc2 = int4inc
finalfunc = int4div, initcondl = "0", initcond2 = "0O")

50

DEFINE FUNCTION (COMMANDS) 7/9/92 DEFINE FUNCTION (COMMANDS)

NAME

define function — define a new function

SYNOPSIS

define function function_name (
language = {"c" | "postquel"},
returntype = type-r
[, percall_cpu = "costly{!*}"]
[, perbyte_cpu = "costly{!*}"]
[, outin_ratio = percentage]
[, byte_pct = percentage]
)
arg is (type-1 {,type-n })
as {"/full/path/filename.o" | "list-of-postquel-queries" }

DESCRIPTION

With this command, a POSTGRES user can register a function with POSTGRES. Subse-
quently, this user is treated as the owner of the function.

When defining the function, the input data types, type-1, type-2, ..., type-n, and the return
data type, type-r must be specified, along with the language, which may be "c” or
"postquel”. The input types may be base or complex types. The output type may be
specified as a base type, complex type, or setof <type>. The setof modifier indicates that
the function will return a set of items, rather than a single item. The as clause of the

command is treated differently for C and POSTQUEL functions, as explained below.

C FUNCTIONS

Functions written in C can be defined to POSTGRES, which will dynamically load them
into its address space. The loading happens either via the load command, or automati-
cally the first time the function is necessary for execution. Repeated execution of a func-
tion will cause negligible additional overhead, as the function will remain in a main
memory cache.

The percall_cpu, perbyte_cpu, outin_ratio, and byte_pct flags are provided for C func-
tions to give a rough estimate of the function’s running time, allowing the query opti-
mizer to postpone applying expensive functions used in a query’s where clause. The per-
call_cpu flag captures the overhead of the function’s invocation (regardless of input size),
while the perbyte_cpu flag captures the sensitivity of the function’s running time to the
size of its inputs. The magnitude of these two parameters is determined by the number of
exclamation points appearing after the word costly: specifically, each exclamation point
can be thought of as another order of magnitude in cost, i.e., cost =
JQnumber-of-exclamation-points - The default value for percall_cpu and perbyte_cpu is 0.
Examples of reasonable cost values may be found in the system catalog pg_proc; most
simple functions on base types have costs of 0.

The outin_ratio is provided for functions which return variable-length types, such as text
or bytea. It should be set to the size of the function’s output as a percentage of the size of
the input. For example, a function which compresses its operands by 2 should have

51

DEFINE FUNCTION (COMMANDS) 7/9/92 DEFINE FUNCTION (COMMANDS)

outin_ratio = 50. The default value is 100.

The byte_pct flag should be set to the percentage of the bytes of the arguments that actu-
ally need to be examined in order to compute the function. This flag is particularly useful
for functions which generally take a large object as an argument, but only examine a
small fixed portion of the object. The default value is 100.

The body of a C function following as should be the FULL PATH of the object code (.0
file) for the function, bracketed by quotation marks. (POSTGRES will not compile a func-
tion automatically -- it must be compiled before it is used in a define function command.)

C functions with base type arguments can be written in a straightforward fashion. The C
equivalents of built-in POSTGRES types are accessible in a C file if $POST-
GRESHOME/src/lib/H/utils/builtins.h is included as a header file. This
can be achieved by having

#include <utils/builtins.h>

at the top of the C source file and by compiling all C files with the following include
options:

—-ISPOSTGRESHOME/src/lib/H
—ISPOSTGRESHOME/src/port/$PORTNAME
—-I$POSTGRESHOME/O/1ib/H

before any ".c" programs in the "cc" command line, e.g.:

cc —-ISPOSTGRESHOME/src/lib/H \
—ISPOSTGRESHOME/src/port/SPORTNAME \
—ISPOSTGRESHOME/O/1lib/H \
—C progname.c

The directory $SPOSTGRESHOME/O/1ib/H contains "tags.h", which is generated in
the build process. The directory $SPOSTGRESHOME/src/port/$PORTNAME con-
tains "machine.h". Typical values for PORTNAME are sunos4 and ultrix4.

The convention for passing arguments to and from the user’s C functions is to use pass-
by-value for data types that are 32 bits (4 bytes) or smaller, and pass-by-reference for
data types that require more than 32 bits. The following table gives the C type required
for parameters in the C functions that will be loaded into POSTGRES. The "Defined In"
column gives the actual header file (in the $SPOSTGRESHOME/src/1ib/H directory)
that the equivalent C type is defined. However, if you include "utils/builtins.h", these
files will automatically be included.

Equivalent C Types for Built-In POSTGRES Types

Built-In Type C Type Defined In
abstime AbsoluteTime utils/nabstime.h
bool bool tmp/c.h

box (BOX *) utils/geo-decls.h
bytea (bytea *) tmp/postgres.h
char char N/A

52

DEFINE FUNCTION (COMMANDS) 7/9/92

DEFINE FUNCTION (COMMANDS)

charl6 Char16 or (charl6 *) tmp/postgres.h

cid CID tmp/postgres.h

int2 int2 tmp/postgres.h

int28 (int28 *) tmp/postgres.h

int4 int4 tmp/postgres.h

float4 float32 or (float4 *) tmp/c.h or tmp/postgres.h
float8 float64 or (float8 *) tmp/c.h or tmp/postgres.h
Iseg (LSEG *) tmp/geo-decls.h

oid oid tmp/postgres.h

0id8 (0id8 *) tmp/postgres.h

path (PATH *) utils/geo-decls.h

point (POINT *) utils/geo-decls.h

regproc regproc or REGPROC tmp/postgres.h

reltime RELTIME tmp/postgres.h

text (text *) tmp/postgres.h

tid ItemPointer storage/itemptr.h
tinterval Timelnterval tmp/nabstime.h

uint2 uint16 tmp/c.h

uint4 uint32 tmp/c.h

xid (XID *) tmp/postgres.h

Complex arguments to C functions are passed into the C function as a special C type,
TUPLE, defined in $POSTGRESHOME /src/lib/H/tmp/libpg-fe.h. Given a
variable t of this type, the C function may extract attributes from the function using the
function call:

GetAttributeByName (t, "fieldname", &isnull)

where isnull is a pointer to a bool, which the function sets to true if the field is null. The
result of this function should be cast appropriately as shown in the examples below.

POSTQUEL FUNCTIONS

POSTQUEL functions execute an arbitrary list of POSTQUEL queries, returning the results
of the last query in the list. POSTQUEL functions in general return sets. If their return-
type is not specified as a setof, then an arbitrary element of the last query’s result will be
returned. The expensive function parameters percall_cpu, perbyte_cpu, outin_ratio, and
byte_pct are not used for POSTQUEL functions; their costs are determined dynamically
by the planner.

The body of a POSTQUEL function following as should be a list of queries separated by
whitespace characters and bracketed within quotation marks. Note that quotation marks
used in the queries must be escaped, by preceding them with two backslashes (i.e. \").

Arguments to the POSTQUEL function may be referenced in the queries using a $n syn-
tax: $1 refers to the first argument, $2 to the second, and so on. If an argument is com-
plex, then a "dot" notation may be used to access attributes of the argument (e.g. $1.emp),
or to invoke functions via a nested dot syntax.

53

DEFINE FUNCTION (COMMANDS) 7/9/92 DEFINE FUNCTION (COMMANDS)

EXAMPLES: C Functions

The following command defines a C function, overpaid, of two basetype arguments.

define function overpaid

(language = "c", returntype = bool)
arg is (float8, int4)
as "/usr/postgres/src/adt/overpaid.o"

The C file "overpaid.c" might look something like:

#include <utils/builtins.h>

bool overpaid(salary, age)

}

float8 *salary;
int4 age;

if (*salary > 200000.00)
return (TRUE) ;

if ((age < 30) && (*salary > 100000.00))
return (TRUE) ;

return (FALSE)

The overpaid function can be used in a query, e.g:

retrieve (EMP.name)

where overpaid (EMP.salary, EMP.age)

One can also write this as a function of a single argument of type EMP:

define function overpaid_2

(language = "c", returntype = bool)
arg is (EMP)
as "/usr/postgres/src/adt/overpaid_2.0o"

The following query is now accepted:

retrieve (EMP.name) where overpaid_2 (EMP)

In this case, in the body of the overpaid_2 function, the fields in the EMP record must be
extracted. The C file "overpaid_2.c" might look something like:

#include <utils/builtins.h>
#include <tmp/libpg-fe.h>

bool overpaid_2(t)
TUPLE t;

{

float8 *salary;

int4 age;

bool salnull, agenull;

salary = (float8 *)GetAttributeByName (t, "salary",
&salnull);

age = (int4)GetAttributeByName (t, "age", &agenull);

54

DEFINE FUNCTION (COMMANDS) 7/9/92 DEFINE FUNCTION (COMMANDS)

if (!salnull && *salary > 200000.00)
return (TRUE) ;
if ('agenull && (age<30) && (*salary > 100000.00))
return (TRUE) ;
return (FALSE)
}

EXAMPLES: POSTQUEL Functions

To illustrate a simple POSTQUEL function, consider the following, which might be used
to debit a bank account:

define function TP1
(language = "postquel", returntype = int4)
arg is (int4, float8)
as "replace BANK (balance = BANK.balance - $2)
where BANK.accountno = $1
retrieve(x = 1)"

A user could execute this function to debit account 17 by $100.00 as follows:
retrieve (x = TP1(17,100.0))

The following more interesting examples take a single argument of type EMP, and
retrieve multiple results:

define function hobbies
(language = "postquel", returntype = setof HOBBIES)
arg is (EMP)
as "retrieve (HOBBIES.all)
where $1.name = HOBBIES.person"

define function children
(language = "postquel", returntype = setof KIDS)
arg is (EMP)
as "retrieve (KIDS.all)
where $1.name = KIDS.dad
or $l.name = KIDS.mom"

Then the following query retrieves overpaid employees, their hobbies, and their children:

retrieve (name=name (EMP), hobby=name (hobbies (EMP)),
kid=name (children (EMP)))
where overpaid_2 (EMP)

Note that attributes can be projected using function syntax (e.g. name(EMP)), as well as
the traditional dot syntax (e.g. EMP.name).

An equivalent expression of the previous query is:

retrieve (EMP.name, hobby=EMP.hobbies.name,
kid=EMP.children.name)
where overpaid_2 (EMP)

This "nested dot" notation for functions can be used to cascade functions of single

55

DEFINE FUNCTION (COMMANDS)

7/9/92 DEFINE FUNCTION (COMMANDS)

arguments. Note that the function after a dot must have only one argument, of the type
returned by the function before the dot.

POSTGRES flattens the target list of the queries above. That is, it produces the cross-
product of the hobbies and the children of the employees. For example, given the

schema:
create BANK (accountno = int4, balance = float8)
append BANK (accountno = 17,
balance = "10000.00"::float8)
create EMP (name = charl6, salary = floats,
dept = charl6, age = int4)
create HOBBIES (name = charl6, person = charl6)
create KIDS (name = charl6, dad = charl6, mom = charl6)
append EMP (name = "joey", salary = "100000.01"::floats,
dept = "toy", age = 24)
append EMP (name = "jeff", salary = "100000.01"::floats,
dept = "shoe", age = 23)
append EMP (name = "wei", salary = "100000"::floats8,
dept = "tv", age = 30)
append EMP (name = "mike", salary = "500000"::floats,
dept = "appliances", age = 30)
append HOBBIES (name = "biking", person = "jeff")
append HOBBIES (name = "jamming", person = "joey")
append HOBBIES (name = "basketball", person = "wei")
append HOBBIES (name = "swimming", person = "mike")
append HOBBIES (name = "philately", person = "mike")
append KIDS (name = "matthew", dad = "mike",
mom = "teresa")
append KIDS (name = "calvin", dad = "mike",
mom = "teresa")
the query above returns
name hobby kid
jeff Dbiking (null)
joey Jjamming (null)
mike swimming matthew
mike philately matthew
mike swimming calvin
mike philately calvin

Note that flattening preserves the name and hobby fields even when the kid field is null.

SEE ALSO

information(unix), load(commands), remove function(commands).

56

DEFINE FUNCTION (COMMANDS) 7/9/92 DEFINE FUNCTION (COMMANDS)

NOTES

The percall_cpu and perbyte_cpu flags can take integers surrounded by quotes instead of
the "costly{!*}" syntax described above. This allows a finer grain of distinction between
function costs, but is not encouraged since such distinctions are difficult to estimate accu-
rately.

On Ultrix, all .o files that POSTGRES is expected to load dynamically must be compiled
under cc with the "-G 0" option turned on.

RESTRICTIONS

BUGS

The name of the C function must be a legal C function name, and the name of the func-
tion in C code must be exactly the same as the name used in define function.

Function names must be unique per database, except for the fact that there may be
attributes of the same name as a function. In the case that a there is an ambiguity
between a function on a complex type and an attribute of the complex type, the attribute
will always be used.

C functions cannot return a set of values.

The dynamic loader for DECstation Ultrix has exceedingly bad performance.

57

DEFINE INDEX (COMMANDS) 6/14/90 DEFINE INDEX (COMMANDS)

NAME

define index — construct a secondary index

SYNOPSIS
define [archive] index index-name
on classname using am-name
(attname—1 type_class—1 { , attname—i type_class—i })
DESCRIPTION

This command constructs an index called index-name. If the archive keyword is absent,
the classname class is indexed. When archive is present, an index is created on the
archive class associated with the classname class.

Am-name is the name of the access method which is used for the index.

The key fields for the index are specified as a collection of attribute names and associated
operator classes. An operator class is used to specify the operators to be used for a par-
ticular index. For example, a btree index on four-byte integers would use the int4_ops
class; this operator class includes comparison functions for four-byte integers.

POSTGRES Version 4.0 provides btree and rtree access methods for secondary indices.
The operator classes defined on btrees are

int2_ops char_ops
int4_ops charlé_ops
int24_ops oid_ops
int42_ops text_ops
floag4_ops abstime_ops
float8_ops

The int24_ops operator class is useful for constructing indices on int2 data, and doing
comparisons against int4 data in query qualifications. Similarly, int42_ops support
indices on int4 data that is to be compared against int2 data in queries.

The POSTGRES query optimizer will consider using b-tree indices in a scan whenever an
indexed attribute is involved in a comparison using one of

< <= = >= >

The operator classes defined on rtrees are

box_ops poly_ops
bigbox_ops

Both of these support indices on the “box” datatype in POSTGRES. The difference
between them is that bighbox_ops scales box coordinates down, to avoid floating point
exceptions from doing multiplication, addition, and subtraction on very large floating-
point coordinates. If the field on which your rectangles lie is about 20,000 units square or
larger, you should use bighbox_ops. The poly_ops operator class supports rtree indices on
“polygon” data.

The POSTGRES query optimizer will consider using an r-tree index whenever an indexed
attribute is involved in a comparison using one of

58

DEFINE INDEX (COMMANDS) 6/14/90 DEFINE INDEX (COMMANDS)

<< &< &> >> @ = &&

EXAMPLES

Create a btree index on the emp class using the age attribute.

define index empindex on emp using btree (age int4_ops)

Create a btree index on employee name.

define index empname
on emp using btree (name charl6_ops)

Create an rtree index on the bounding rectangle of cities.

define index cityrect
on city using rtree (boundbox box_ops)

BUGS
Archive indices are not supported in Version 4.0.
There should be an access method designers guide.

Indices may only be defined on a single key.

59

DEFINE OPERATOR (COMMANDS) 6/14/90 DEFINE OPERATOR (COMMANDS)

NAME

define operator — define a new user operator

SYNOPSIS
define operator operator_name
(argl = type-1
[,arg2 = type-2]
, procedure = func_name
[, precedence = number]
[, associativity = (left | right | none | any)]
[, commutator = com_op]
[, negator = neg_op |
[, restrict = res_proc]
[, hashes]
[, join = join_proc]
[, sort = sor_opl {, sor_op2 }]
)
DESCRIPTION

This command defines a new user operator, operator_name. The user who defines an
operator becomes its owner.

The name of the operator, operator_name, can be composed of symbols only. Also, the
Jfunc_name procedure must have been previously defined using define function and must
have one or two arguments. The types of the arguments for the operator and the type of
the answer are as defined by the function. Precedence refers to the order that multiple
instances of the same operator are evaluated. The next several fields are primarily for the
use of the query optimizer.

The associativity value is used to indicate how an expression containing this operator
should be evaluated when precedence and explicit grouping are insufficient to produce a
complete order of evaluation. Left and right indicate that expressions containing the
operator are to be evaluated from left to right or from right to left, respectively. None
means that it is an error for this operator to be used without explicit grouping when there
is ambiguity. And any, the default, indicates that the optimizer may choose to evaluate
an expression which contains this operator arbitrarily.

The commutator operator is present so that POSTGRES can reverse the order of the
operands if it wishes. For example, the operator area-less-than, >>>, would have a com-
mutator operator, area-greater-than, <<<. Suppose that an operator, area-equal, ===,
exists, as well as an area not equal, !==. Hence, the query optimizer could freely convert:

"0,0,1,1"::box >>> MYBOXES.description
to
MYBOXES.description <<< "0,0,1,1"::box

This allows the execution code to always use the latter representation and simplifies the
query optimizer somewhat.

60

DEFINE OPERATOR (COMMANDS) 6/14/90 DEFINE OPERATOR (COMMANDS)

The negator operator allows the query optimizer to convert
not MYBOXES.description === "0,0,1,1"::box
to

MYBOXES.description !== "0,0,1,1"::box

If a commutator operator name is supplied, POSTGRES searches for it in the catalog. If it
is found and it does not yet have a commutator itself, then the commutator’s entry is
updated to have the current (new) operator as its commutator. This applies to the negator,
as well.

This is to allow the definition of two operators that are the commutators or the negators of
each other. The first operator should be defined without a commutator or negator (as
appropriate). When the second operator is defined, name the first as the commutator or
negator. The first will be updated as a side effect.

The next two specifications are present to support the query optimizer in performing
joins. POSTGRES can always evaluate a join (i.e., processing a clause with two tuple
variables separated by an operator that returns a boolean) by iterative substitution
[WONG76]. In addition, POSTGRES is planning on implementing a hash-join algorithm
along the lines of [SHAP86]; however, it must know whether this strategy is applicable.
For example, a hash-join algorithm is usable for a clause of the form:

MYBOXES.description === MYBOXES2.description
but not for a clause of the form:
MYBOXES.description <<< MYBOXES2.description.

The hashes flag gives the needed information to the query optimizer concerning whether
a hash join strategy is usable for the operator in question.

Similarly, the two sort operators indicate to the query optimizer whether merge-sort is a
usable join strategy and what operators should be used to sort the two operand classes.
For the === clause above, the optimizer must sort both relations using the operator, <<<.
On the other hand, merge-sort is not usable with the clause:

MYBOXES.description <<< MYBOXES2.description

If other join strategies are found to be practical, POSTGRES will change the optimizer and
run-time system to use them and will require additional specification when an operator is
defined. Fortunately, the research community invents new join strategies infrequently,
and the added generality of user-defined join strategies was not felt to be worth the com-
plexity involved.

The last two pieces of the specification are present so the query optimizer can estimate
result sizes. If a clause of the form:

MYBOXES.description <<< "0,0,1,1"::box

is present in the qualification, then POSTGRES may have to estimate the fraction of the
instances in MYBOXES that satisfy the clause. The function res_proc must be a regis-
tered function (meaning it is already defined using define function) which accepts one
argument of the correct data type and returns a floating point number. The query

61

DEFINE OPERATOR (COMMANDS) 6/14/90 DEFINE OPERATOR (COMMANDS)

optimizer simply calls this function, passing the parameter "0, 0,1, 1" and multiplies
the result by the relation size to get the desired expected number of instances.

Similarly, when the operands of the operator both contain instance variables, the query
optimizer must estimate the size of the resulting join. The function join_proc will return
another floating point number which will be multiplied by the cardinalities of the two
classes involved to compute the desired expected result size.

The difference between the function

my_procedure_1 (MYBOXES.description, "0,0,1,1"::box)
and the operator

MYBOXES.description === "0,0,1,1"::box

is that POSTGRES attempts to optimize operators and can decide to use an index to
restrict the search space when operators are involved. However, there is no attempt to
optimize functions, and they are performed by brute force. Moreover, functions can have
any number of arguments while operators are restricted to one or two.

EXAMPLE

/* The following command defines a new operator, */
/* area-equality, for the BOX data type. */

define operator === (

argl = boxk,

arg2 = box,

procedure = area_equal_procedure,
precedence = 30,

associativity = left,

commutator = ===,

negator = !==,

restrict = area_restriction_procedure,
hashes,

join = area-join-procedure,

sort = <<, <<X)

SEE ALSO

remove operator(commands), define function(commands).

BUGS
Operator names cannot be composed of alphabetic characters in Version 4.0.

Operator precedence and associativity are not implemented in Version 4.0.

62

DEFINE RULE (COMMANDS) 6/14/90 DEFINE RULE (COMMANDS)

define rule — Define a new rule

SYNOPSIS

define [instance | rewrite] rule rule_name
[as exception to rule_name_2]
is on event
to object [[from clause] where clause]
do [instead]
[action | nothing | ’[* action ... ’]’]

DESCRIPTION

Define rule is used to define a new rule. There are two implementations of the rules sys-
tem, one based on query rewrite and the other based on instance-level processing. In
general, the instance-level system is more efficient if there are many rules on a single
class, each covering a small subset of the instances. The rewrite system is more efficient
if large scope rules are being defined. The user can optionally choose which rule system
to use by specifying rewrite or instance in the command. If the user does not specify
which system to use, POSTGRES defaults to using the instance-level system. In the long
run POSTGRES will automatically decide which rules system to use and the possibility of
user selection will be removed.

Here, event is one of:

retrieve
replace
delete
append

Moreover, object is either:

a class name
or
class.column

The FROM clause, the WHERE clause, and the action are respectively normal
POSTQUEL FROM clauses, WHERE clauses and collections of POSTQUEL commands
with the following change:

new or current can appear instead of an instance variable
whenever an instance variable is permissible in
POSTQUEL.

The semantics of a rule is that at the time an individual instance is accessed, updated,
inserted or deleted, there is a current instance (for retrieves, replaces and deletes) and a
new instance (for replaces and appends). If the event specified in the ON clause and the
condition specified in the WHERE clause are true for the current instance, then the action
part of the rule is executed. First, however, values from fields in the current instance
and/or the new instance are substituted for:

current.attribute—name

63

DEFINE RULE (COMMANDS) 6/14/90 DEFINE RULE (COMMANDS)

new.attribute—-name

The action part of the rule executes with same command and transaction identifier as the
user command that caused activation.

A note of caution about POSTQUEL rules is in order. If the same class name or instance
variable appears in the event, where clause and the action parts of a rule, they are all con-
sidered different tuple variables. More accurately, new and current are the only tuple
variables that are shared between these clauses. For example the following two rules
have the same semantics:

on replace to EMP.salary where EMP.name = "Joe"
do replace EMP (...) where

on replace to EMP-1l.salary where EMP-2.name = "Joe"
do replace EMP-3 (...) where

Each rule can have the optional tag "instead". Without this tag the action will be per-
formed in addition to the user command when the event in the condition part of the rule
occurs. Alternately, the action part will be done instead of the user command. In this
later case, the action can be the keyword nothing.

When choosing between the rewrite and instance rule systems for a particular rule appli-
cation, remember that in the rewrite system ’current’ refers to a relation and some quali-
fiers whereas in the instance system it refers to an instance (read tuple).

EXAMPLES

/* Make Sam get the same salary adjustment as Joe */

define rule example_1 is

on replace to EMP.salary where current.name = "Joe"
do replace EMP (salary = new.salary)
where EMP.name = "Sam"

At the time Joe receives a salary adjustment, the event will become true and Joe’s current
instance and proposed new instance are available to the execution routines. Hence, his
new salary is substituted into the action part of the rule which is subsequently executed.
This propagates Joe’s salary on to Sam.

/* Make Bill get Joe’s salary when it is accessed */

define rule example_2 1is
on retrieve to EMP.salary

where current.name = "Bill"
do instead
retrieve (EMP.salary) where EMP.name = "Joe"

/* Deny Joe access to the salary of employees in */ /* the
shoe department. Note: pg_username () */ /* returns the
name of the current user */

define rule example_3 is
on retrieve to EMP.salary

64

DEFINE RULE (COMMANDS) 6/14/90 DEFINE RULE (COMMANDS)

where current.dept = "shoe"
and pg_username () = "Joe"
do instead nothing

/* Create a view of the employees working in */ /* the toy
department. */

create TOYEMP (name = charlé6, salary = int4)

define rule example_4 is
on retrieve to TOYEMP
do instead retrieve (EMP.name, EMP.salary)
where EMP.dept = "toy"

/* All new employees must make 5,000 or less */

define rule example_5 is
on append to EMP where new.salary > 5000
do replace new(salary = 5000)

SEE ALSO

postquel(commands).

BUGS
Exceptions are not implemented in Version 4.0.
The object in a POSTQUEL rule cannot be an array reference and cannot have parameters.
The WHERE clause can not have a FROM clause.

Only one POSTQUEL command can be specified in the action part of a tuple rule and it
can only be a replace, append, retrieve or delete command.

The rewrite rule system does support multiple action rules surrouas long as the event is
not retrieve.

The query rewrite rule system now supports most rule semantics, and closely parallels the
tuple system. It also attempts to avoid odd semantics by running instead rules before
non-instead rules.

65

DEFINE TYPE (COMMANDS) 6/14/90 DEFINE TYPE (COMMANDS)

NAME

define type — define a new base data type

SYNOPSIS

define type typename (externallength = (number | variable),
[externallength = (number | variable),]
input = input_function,
output = output_function
[, element = typename]
[, delimiter = <character>]
[, default = "string"]
[, send = procedure]
[, receive = procedure]
[, passedbyvalue])

DESCRIPTION

Define type allows the user to register a new user data type with POSTGRES for use in
the current data base. The user who defines a type becomes its owner. Typename is the
name of the new type and must be unique within the types defined for this database.

Define type requires the registration of two functions (using define function) before
defining the type. The representation of a new base type is determined by the function
input, which converts the type’s external representation to an internal representation
usable by the operators and functions defined for the type. Naturally, output performs the
reverse transformation.

New base data types can be fixed length, in which case infernal length is a positive inte-
ger, or variable length, in which case POSTGRES assumes that the new type has the same
format as the POSTGRES-supplied data type, text. To indicate that a type is variable
length, set internal length to -1 Moreover, the external representation is similarly speci-
fied using external length.

To indicate that a type is an array and to indicate that a type has array elements, indicate
the type of the array element using the element attribute. For example, to define an array
of 4 byte integers (int4), set the element attribute equal to int4.

To indicate the delimiter to be used on arrays of this type, the delimiter attribute can be

9

set to a specific character. The default delimiter is the comma (““,””) character.

A default value is optionally available in case a user wants some specific bit pattern to
mean ‘“data not present.”

The optional functions send and receive are used when the application program request-
ing POSTGRES services resides on a different machine. In this case, the machine on
which POSTGRES runs may use a different format for the data type than used on the
remote machine. In this case it is appropriate to convert data items to a standard form on
output send and convert from the standard format to the machine specific format on input
receive. If these functions are not specified, then it is assumed that the internal format of
the type is acceptable on all relevant machine architectures (for example, single

66

DEFINE TYPE (COMMANDS) 6/14/90 DEFINE TYPE (COMMANDS)

characters do not have to be converted if passed from a Sun 3 to a DECstation).

The optional passedbyvalue flag indicates that operators and functions which use this data
type should be passed an argument by value rather than by reference. Note that only
types whose internal representation is smaller than sizeof(char *), which is typically four
bytes, may be passed by value.

For new base types, a user can define operators, functions and aggregates using the
appropriate facilities described in this section.

ARRAY TYPES

Two generalized builtin functions, array_in and array_out, exist for quick creation of
variable length array types. These functions operate on any existing POSTGRES type.

LARGE OBJECT TYPES

A "regular" POSTGRES type can only be 8K bytes in length. If you need a larger type,
then you will want to create a Large Object type. The interface for these types is dis-
cussed at length in Section 7, the Large Object Backend Interface. The length of all large
object types is always variable, meaning the internallength for large objects is always -1.

EXAMPLES
/*
* This command creates the box data type and then uses the

* type in a class definition

*/

define type box (internallength = 8,
input = my_procedure_1, output = my_procedure_2)

create MYBOXES (id = int4, description = box)

/*
* This command creates a variable length array type with
* integer elements.

*/

define type intédarray
(input = array_in, output = array_out,

internallength = variable, element int4)

create MYARRAYS (id = int4, numbers = intdarray)

/*
* This command creates a large object type and uses it in
* a class definition.

*/

define type bigobj
(input = lo_filein, output = lo_fileout,

67

DEFINE TYPE (COMMANDS) 6/14/90 DEFINE TYPE (COMMANDS)

internallength = wvariable)

create BIG_OBJS (id = int4, obj = bigobij)

SEE ALSO

define function(commands), define operator(commands), remove type(commands), Large
Object Backend Interface.

68

DEFINE VIEW (COMMANDS) 6/14/90 DEFINE VIEW (COMMANDS)

NAME

define view — construct a virtual class

SYNOPSIS
define view view_name
([dom_name_1 =] expression_1
{, [dom_name_i =] expression_i})
[from from_list]
[where qual]
DESCRIPTION

Define view will define a view of a class. This view is not physically materialized;
instead the rule system is used to support view processing as in [STON90]. Specifically,
a query rewrite retrieve rule is automatically generated to support retrieve operations on
views. Then, the user can add as many update rules as he wishes to specify the process-
ing of update operations to views. See [STON90] for a detailed discussion of this point.
EXAMPLE
/* define a view consisting of toy department employees */
define view toyemp (e.name)

from e in emp
where e.dept = "toy"

/* Specify deletion semantics for toyemp */
define rewrite rule examplel is

on delete to toyemp
then do instead delete emp where emp.OID = current.OID

SEE ALSO

postquel(commands), create(commands), define rule(commands).

69

DELETE (COMMANDS) 6/14/90 DELETE (COMMANDS)

NAME

delete — delete instances from a class
SYNOPSIS

delete instance_variable [from from_list] [where qual]

DESCRIPTION

Delete removes instances which satisfy the qualification, gual, from the class specified by
instance_variable. Instance_variable is either a class name or a variable assigned by
from_list. If the qualification is absent, the effect is to delete all instances in the class.
The result is a valid, but empty class.

EXAMPLE

/* Remove all employees who make over $30,000 */
delete emp where emp.sal > 30000

/* Clear the hobbies class */

delete hobbies

SEE ALSO

destroy(commands).

70

DESTROY (COMMANDS) 6/14/90 DESTROY (COMMANDS)

NAME

destroy — destroy existing classes

SYNOPSIS

destroy classname-1 { , classname-i }

DESCRIPTION

Destroy removes classes from the data base. Only its owner may destroy a class. A
class may be emptied of instances, but not destroyed, by using the delete statement.

If a class being destroyed has secondary indices on it, then they will be removed first.
The removal of just a secondary index will not affect the indexed class.

This command may be used to destroy a version class which is not a parent of some other
version. Destroying a class which is a parent of a version class is disallowed. Instead,
the merge command should be used. Moreover, destroying a qclass whose fields are
inherited by other classes is similarly disallowed. An inheritance hierarchy must be
destroyed from leaf level to root level.

The destruction of classes is not reversable. Thus, a destroyed class will not be recovered
if a transaction which destroys this class fails to commit. In addition, historical access to
instances in a destroyed class is not possible.

EXAMPLE

/* Destroy the emp class */
destroy emp
/* Destroy the emp and parts classes */

destroy emp, parts

SEE ALSO

delete(commands), remove index(commands), merge(commands).

71

DESTROYDB (COMMANDS) 8/11/91 DESTROYDB (COMMANDS)

NAME

destroydb — destroy an existing database

SYNOPSIS
destroydb dbname

DESCRIPTION

Destroydb removes the catalog entries for an existing database and deletes the directory
containing the data. It can only be executed by the database administrator (see creat-
edb(commands) for details).

SEE ALSO
createdb(commands), destroydb(unix).

BUGS

This query should NOT be executed by humans. The destroydb(unix) script, should be
used instead.

72

END (COMMANDS) 6/14/90 END (COMMANDS)

NAME

end — commit the current transaction

SYNOPSIS

end

DESCRIPTION

This commands commits the current transaction. All changes made by the transaction
become visible to others and are guaranteed to be durable if a crash occurs.

SEE ALSO

begin(commands), abort(commands).

73

FETCH (COMMANDS) 6/14/90 FETCH (COMMANDS)

NAME

fetch — fetch instance(s) from a portal

SYNOPSIS

fetch [(forward | backward)] [(number | all)] [in portal_name]

DESCRIPTION

Fetch allows a user to retrieve instances from a portal named portal_name. The number
of instances retrieved is specified by number. If the number of instances remaining in the
portal is less than number, then only those available are fetched. Substituting the key-
word all in place of a number will cause all remaining instances in the portal to be
retrieved. Instances may be fetched in both forward and backward directions. The
default direction is forward.

Updating data in a portal is not supported by POSTGRES, because mapping portal updates
back to base classes is impossible in general as with view updates. Consequently, users
must issue explicit replace commands to update data.

Portals may only be used inside of begin/end transaction blocks, since the data that they
store spans multiple user queries.
EXAMPLE

/* set up and use a portal */
begin \g
retrieve portal myportal (pg_user.all) \g
fetch 2 in myportal \g
fetch all in myportal \g
close myportal \g
end \g

/* Fetch all the instances available in the portal FOO */
fetch all in FOO

/* Fetch 5 instances backward in the portal FOO */
fetch backward 5 in FOO

SEE ALSO

retrieve(commands), close(commands), move(commands).

BUGS

Currently, the smallest transaction in POSTGRES is a single POSTQUEL command. It
should be possible for a single fetch to be a transaction.

74

LISTEN (COMMANDS) 3/25/92 LISTEN (COMMANDS)

NAME

listen — Listen for notification on a relation

SYNOPSIS

listen relation_name

DESCRIPTION

listen is used to register the current backend as a listener on the relation relation_name.
When the command notify relation_name is called either from within a rule or at the
query level, the frontends corresponding to the listening backends are notified.

SEE ALSO

retrieve(commands), notify(commands), definerule(commands), libpq.

BUGS

75

LOAD (COMMANDS) 6/14/90 LOAD (COMMANDS)

NAME

load — dynamically load an object file

SYNOPSIS

load "filename"

DESCRIPTION

Load loads an object (or ".0") file into POSTGRES’s address space. Once a file is loaded,
all functions in that file can be accessed. This function is used in support of ADT’s.

If a file is not loaded using the load command, the file will be loaded automatically the
first time the function is called by POSTGRES. Load can also be used to reload an object
file if it has been edited and recompiled. Only objects created from C language files are
supported at this time.

EXAMPLE

/* Load the file /usr/postgres/demo/circle.o */

load "/usr/postgres/demo/circle.o"

CAVEATS

Functions in loaded object files should not call functions in other object files loaded
through the load command, meaning, for example, that all functions in file A should call
each other, functions in the standard or math libraries, or in POSTGRES itself. They
should not call functions defined in a different loaded file B. This is because if B is
reloaded, the POSTGRES loader is not "smart" enough to relocate the calls from the func-
tions in A into the new address space of B. If B is not reloaded, however, there will not
be a problem.

On diskless platforms or when running across NFS, load can take two or three minutes or
more, depending on network traffic. On diskful platforms, load takes from a few seconds
on Suns and Sparcs to several minutes on DECstations.

On DECstations, you must use the "-G O" option when compiling object files to be
loaded.

Note that if you are porting POSTGRES to a new platform, the load command will have
to work in order to support ADT’s.

76

MERGE (COMMANDS) 6/14/90 MERGE (COMMANDS)

NAME

merge — merge two classes

SYNOPSIS

merge classnamel into classname2

DESCRIPTION

Merge will combine a version class, classnamel, with its parent, classname2. If class-
name?2 is a base class, then this operation merges a differently encoded offset, class-
namel, into its parent. On the other hand, if classname?2 is also a version, then this oper-
ation combines two differentially encoded offsets together into a single one. In either
case any children of classnamel becomes children of classname?.

It is disallowed for a version class to be merged into its parent class when the parent class
is also the parent of another version class.

Moreover, merging in the reverse direction is also allowed. Specifically, merging the par-
ent, classnamel, with a version, classname?2, causes classname2 to become disassociated
from its parent. As a side effect, classnamel will be destroyed if is not the parent of
some other version class.

EXAMPLE

/* Combine office class and employee class */

merge office into employee

SEE ALSO

destroy(commands), create version(commands).

BUGS

Merge has not yet been implemented.

77

MOVE (COMMANDS) 6/14/90 MOVE (COMMANDS)

NAME

move — move the pointer in a portal

SYNOPSIS
move [(forward | backward)]
[(number | all | to (number | record_qual))]
[in portal_name]
DESCRIPTION

Move allows a user to move the instance pointer within the portal named portal_name.
Each portal has an instance pointer, which points to the previous instance to be fetched.
It always points to before the first instance when the portal is first created. The pointer
can be moved forward or backward. It can be moved to an absolute position or over a
certain distance. An absolute position may be specified by using to; distance is specified
by a number. Record_qual is a qualification with no instance variables, aggregates, or set
expressions which can be evaluated completely on a single instance in the portal.

EXAMPLE

/* Move backwards 5 instances in the portal FOO */
move backward 5 in FOO
/* Move to the 6th instance in the portal FOO */

move to 6 in FOO

SEE ALSO

retrieve(commands), fetch(commands), close(commands).

BUGS

This command is not yet available. The pointer may be moved using the fetch command,
and ignoring its return values.

78

NOTIFY (COMMANDS) 3/25/92 NOTIFY (COMMANDS)

NAME

notify — Signal all frontends and backends listening on a relation

SYNOPSIS

notify relation_name

DESCRIPTION

notify is used to awaken all backends and consequently all frontends listening on the
relation relation_name.

This can be used either within a tuple level rule as part of the action body or from a nor-

mal query. When used from within a normal query, this can be thought of as IPC. When
used from within a rule, this can be thought of as the alerter mechanism.

SEE ALSO

definerule(commands), listen(commands), libpg.

BUGS

79

PURGE (COMMANDS) 6/14/90 PURGE (COMMANDS)

NAME

purge — discard historical data

SYNOPSIS

purge classname [before abstime] [after reltime]

DESCRIPTION

Purge allows a user to specify the historical retention properties of a class. The date
specified is an absolute time such as Jan 1 1987, and POSTGRES will discard tuples
whose validity expired before the indicated time. Purge with no before clause is equiva-
lent to “purge before now.” Until specified with a purge command, instance preservation
defaults to “forever.”

The user may purge a class at any time as long as the purge date never decreases. POST-
GRES will enforce this restriction, silently.

EXAMPLE

/* Always discard data in the EMP class */
/* prior to January 1, 1989 */

purge EMP before "Jan 1 1989"
/* Retain only the current data in EMP */

purge EMP

BUGS

Error messages are quite unhelpful. A complaint about "inconsistent times" followed by
several nine-digit numbers indicates an attempt to "back up" a purge date on a relation.

80

REMOVE AGGREGATE (COMMANDS) 6/14/90 REMOVE AGGREGATE (COMMANDS)

NAME

remove aggregate — remove the definition of an aggregate

SYNOPSIS

remove aggregate aggname

DESCRIPTION

Remove aggregate will remove all reference to an existing aggregate definition. To exe-
cute this command the current user must be the the owner of the aggregate.

EXAMPLE

/* Remove the average aggregate */

remove aggregate avg

SEE ALSO

define aggregate(commands).

81

REMOVE FUNCTION (COMMANDS) 6/14/90 REMOVE FUNCTION (COMMANDS)

NAME

remove function — remove a user defined C function

SYNOPSIS

remove function functionname

DESCRIPTION

Remove function will remove all references to an existing C function. To execute this
command the user must be the owner of the function.

EXAMPLE

/* this command removes the square root function */

remove function sqrt

SEE ALSO

define function(commands).

BUGS
No support is provided for removing POSTQUEL functions.

82

REMOVE INDEX (COMMANDS) 6/14/90 REMOVE INDEX (COMMANDS)

NAME

remove index — removes an index from POSTGRES
SYNOPSIS

remove index index_name

DESCRIPTION

This command drops an existing index from the POSTGRES system. To execute this
command you must be the owner of the index.

EXAMPLE

/* this command will remove the EMP-INDEX index */

remove index emp_index

83

REMOVE OPERATOR (COMMANDS) 6/14/90 REMOVE OPERATOR (COMMANDS)

NAME

remove operator — remove an operator from the system

SYNOPSIS

remove operator opr_desc

DESCRIPTION

This command drops an existing operator from the database. To execute this command
you must be the owner of the operator.

Opr_desc is the name of the operator to be removed followed by a parenthesized list of
the operand types for the operator.

EXAMPLE

/* Remove power operator a’n for 4 byte integers */

remove operator ~ (int4, int4)

SEE ALSO

define operator(commands).

84

REMOVE RULE (COMMANDS) 6/14/90 REMOVE RULE (COMMANDS)

NAME

remove rule — removes a current rule from POSTGRES

SYNOPSIS

remove [instance | rewrite] rule rule_name

DESCRIPTION

This command drops the rule named rule_name from the specified POSTGRES rule sys-
tem. POSTGRES will immediately cease enforcing it and will purge its definition from
the system catalogs.

EXAMPLE
/* This example drops the rewrite rule example_1 */

remove rewrite rule example_1

SEE ALSO

define rule (commands).

BUGS

Once a rule is dropped, access to historical information the rule has written may disap-
pear.

85

REMOVE TYPE (COMMANDS) 6/14/90 REMOVE TYPE (COMMANDS)

NAME

remove type — remove a user-defined type from the system catalogs

SYNOPSIS

remove type typename

DESCRIPTION

This command removes a user type from the system catalogs. Anyone is allowed to
remove a type, and removal of types in use by a class will not be refused. Be careful not
to remove a built-in type.

It is the user’s responsibility to remove any operators and functions that use a deleted
type.

EXAMPLE

/* remove the box type */

remove type box

SEE ALSO

introduction(commands), definetype(commands), removeoperator(commands).

BUGS

This command should only be available to the definer of the type.

86

RENAME (COMMANDS) 6/14/90 RENAME (COMMANDS)

NAME

rename — rename a class or an attribute in a class

SYNOPSIS

rename classnamel to classname?
rename attnamel in classname to attname?2

DESCRIPTION

The rename command causes the name of a class or attribute to change without changing
any of the data contained in the affected class. Thus, the class or attribute will remain of
the same type and size after this command is executed.

EXAMPLE

/* change the emp class to personnel */
rename emp to personnel
/* change the sports attribute to hobbies */

rename sports in emp to hobbies

BUGS

Execution of historical queries using classes and attributes whose names have changed
will produce incorrect results in many situations.

Renaming of types, operators, rules, etc. should also be supported.

87

REPLACE (COMMANDS) 6/14/90 REPLACE (COMMANDS)

NAME

replace — replace values of attributes in a class

SYNOPSIS
replace instance_variable (att_namel = expressionl {, att_name-i = expression-i })
[from from_list]
[where qual]
DESCRIPTION

Replace changes the values of the attributes specified in the target_list for all instances
which satisfy the qualification, gual. Only attributes which are to be modified need
appear in the target_list.

EXAMPLE

/* Give all employees who work for Smith a 10% raise */

replace emp(sal = 1.1 * emp.sal)
where emp.mgr = "Smith"

88

RETRIEVE (COMMANDS) 6/14/90 RETRIEVE (COMMANDS)

NAME

retrieve — retrieve instances from a class

SYNOPSIS

retrieve
[(into classname [archive_mode] | portal portal_name) | iportal portal_name]
[unique]
([attr_namel =] expressionl {, [attr_name-i =] expression-i})
[from from_list]
[where qual]
[sort by attr_name—1 [using operator] { , attr_name-j [using operator] }]

DESCRIPTION

Retrieve will get all instances which satisfy the qualification, qual, compute the value of
each element in the target list, and either return them to an application program through
one of two different kinds of portals or store them in a new class.

If classname is specified, the result of the query will be stored in a new class with the
indicated name. If an archive specification, archive_mode of light, heavy, or none is not
specifed, then it defaults to light archiving. (This default may be changed at a site by the
DBA.) The current user will be the owner of the new class. The class will have attribute
names as specified in the res_target_list. A class with this name owned by the user must
not already exist. The keyword all can be used when it is desired to retrieve all fields of a
class.

If no result classname is specified, then the result of the query will be available on the
specified portal and will not be saved. If no portal name is specified, the blank portal is
used by default. For a portal specified with the iportal keyword, retrieve passes data to
an application without conversion to external format. For a portal specified with the por-
tal keyword, retrieve passes data to an application after first converting it to the external
representation. For the blank portal, all data is converted to external format. Duplicate
instances are not removed when the result is displayed through a portal unless the
optional unique tag is appended, in which case the instances in the res_target_list are
sorted according to the sort clause and duplicates are removed before being returned.

Instances retrieved into a portal may be fetched in subsequent queries by using the fetch
command. Since the results of a retrieve portal span queries, retrieve portal may only
be executed inside of a begin/end transaction block. Attempts to use named portals out-
side of a transaction block will result in a warning message from the parser, and the query
will be discarded.

The sort clause allows a user to specify that he wishes the instances sorted according to
the corresponding operator. This operator must be a binary one returning a boolean.
Multiple sort fields are allowed and are applied from left to right.

EXAMPLE

/* Find all employees who make more than their manager */

retrieve (e.name)

89

RETRIEVE (COMMANDS) 6/14/90 RETRIEVE (COMMANDS)

from e, m in emp
where e.mgr = m.name
and e.sal > m.sal

/*
* Retrieve all fields for those employees who make
* more than the average salary

*/
retrieve into avgsal (ave = float8ave {emp.sal}) \g

retrieve (e.all)
from e in emp
where e.sal > avgsal.ave \g

/* retrieve employees’s names sorted */

retrieve unique (emp.name)
sort by name using <

/* retrieve all employees’s names that were valid on 1/7/85
in sorted order */

retrieve (e.name)
from e in emp["January 7 1985"]
sort by name using <

/* construct a new class, raise, containing 1.1 */
/* times all employee’s salaries */

retrieve into raise (salary = 1.1 * emp.salary)

/* do a retrieve into a portal */

begin \g
retrieve portal myportal (pg_user.all) \g
fetch 2 in myportal \g
fetch all in myportal \g
close myportal \g

end \g

SEE ALSO

postquel(commands), fetch(commands), close(commands), create(commands).

BUGS
“Retrieve into” does not delete duplicates in Version 4.0.

“Archive_mode” is not implemented in Version 4.0.

90

RETRIEVE (COMMANDS) 6/14/90 RETRIEVE (COMMANDS)

If the backend crashes in the course of executing a “Retrieve into,” the class file will
remain on disk. It can be safely removed by the database DBA, but a subsequent
retrieve into to the same name will fail with a cryptic error message about "BlockEx-
tend". A solution to this problem is being investigated and will be released in later ver-
sion.

“Retrieve iportal” returns data in an architecture dependent format, namely that of the
server on which the backend is running. A standard data format should be adopted, most
likely XDR. At that point, there will be no need to distinguish among external and inter-
nal data.

Aggregate functions must appear in the target list.

91

VACUUM (COMMANDS) 8/11/91 VACUUM (COMMANDS)

NAME

vacuum — vacuum a database

SYNOPSIS

vacuum

DESCRIPTION

Vacuum is the POSTGRES vacuum cleaner. It opens every class in the database, moves
deleted records to the archive for archived relations, cleans out records from aborted
transactions, and updates statistics in the system catalogs. The statistics maintained
include the number of tuples and number of pages stored in all classes. Running vacuum
periodically will increase POSTGRES’ speed in processing user queries.

The open database is the one that is vacuumed. This is a new POSTQUEL command in
Version 4.0; earlier versions of POSTGRES had a separate program for vacuuming
databases. That program has been replaced by the vacuum shell script; see vac-
uum(unix) for details.

We recommend that production databases be vacuumed nightly, in order to keep statistics
relatively current. The vacuum query may be executed at any time, however. In particu-
lar, after copying a large class into POSTGRES or deleting a large number of records, it
may be a good idea to issue a vacuum query. This will update the system catalogs with
the results of all recent changes, and allow the POSTGRES query optimizer to make better
choices in planning user queries.

SEE ALSO

vacuum(unix).

92

LIBPQ

NAME

6/14/90 LIBPQ

SECTION 5 — LIBPQ

libpq — programmer’s interface to POSTGRES

DESCRIPTION

LIBPQ is the programmer’s interface to POSTGRES. LIBPQ is a set of library routines
which allow queries to pass to the POSTGRES back-end and instances to return through
an IPC channel.

This version of the documentation is based on the C library.

CONTROL AND INITIALIZATION

VARIABLES

The following five environment variables can be used to set up default values for an envi-
ronment and to avoid hard-coding database names into an application program:

e PGHOST sets the default server name.
« PGDATABASE sets the default POSTGRES database name.
* PGPORT sets the default communication port with the POSTGRES back-

end.

* PGTTY sets the tty on the PQhost back-end on which debugging messages
are displayed.

The following internal variables of libpq can be accessed by the programmer:

char

char

char

char

char

int

int

*PQhost;

*PQport = NULL;

*PQtty;

*PQoption;

*PQdatabase;

PQportset = 0;

PQOxactid = 0;

/*

/*

/*

/*

/*

/*

/*

the server on which POSTGRES
back-end is running. */

The communication port with the
POSTGRES back-end. */

The tty on the PQhost back-end on
which back-end messages are

displayed. */

Optional arguements to the back-end */

Back—-end database to access */

1 if communication with
back-end is established */

Transaction ID of the current
transaction */

93

LIBPQ 6/14/90 LIBPQ

int PQtracep = 0; /* 1 to print out front-end
debugging messages */

int PQAsyncNotifyWaiting = 0; /* 1 if one or more asynchronous
notifications have been
triggered */

QUERY EXECUTION FUNCTIONS

The following routines control the execution of queries from a C program.
PQsetdb — Make the specified database the current database,

void PQsetdb (dbname)
char *dbname;

PQsetdb also resets communication via PQreset (see below).
PQdb — Return the current database being accessed.

char * PQdb ()

Returns the name of the POSTGRES database being accessed, or NIL if no database is
open. Only one database can be accessed at a time. The database name is a string limited
to 16 characters.

PQreset — Reset the communication port with the back-end in case of errors.

void PQreset ()

This function will close the IPC socket connection to the backend thereby causing the
next PQexec() call to ask for a new one from the postmaster. When the backend notices
the socket was closed it will exit, and when the postmaster is asked for the new connec-
tion it will start a new back-end.

PQfinish — Close communication ports with the back-end.

void PQfinish ()

Terminates communications and frees up the memory taken up by the libpq buffer.
PQfn — Send a function call to the POSTGRES backend.

char *PQfn(fnid, result_buf, result_len,
result_is_int, args, nargs)

int fnid;
int *result_buf; /* can’t use void, the */
int result_len; /* compiler complains */

int result_is_int;
PQArgBlock *args;

94

LIBPQ

6/14/90 LIBPQ

int nargs;

PQfn provides access to the POSTGRES fastpath facility, a trapdoor into the system inter-
nals. See FASTPATH.

PQexec — Submit a query to POSTGRES.

char * PQexec (query)
char * query;

This function returns a status indicator or an error message. If the query returns data (e.g.
fetch), PQexec returns a string consisting of P’ followed by the name of the portal
buffer. When the query does not return instances, PQexec will return a string consisting
of ’C’ followed by the command tag (e.g. "CREPLACE"). If an error occured during the
execution of the query PQexec will return (for historical reasons) an "R".

PORTAL FUNCTIONS

A portal is a POSTGRES buffer from which instances can be fetched. Each portal has a
string name (currently limited to 16 bytes). A portal is initialized by submitting a retrieve
statement using the PQexec function, for example:

retrieve portal foo (EMP.all)

The programmer can then move data from the portal into LIBPQ by executing a fetch
statement, e.g:

fetch 10 in foo

fetch all in foo

If no portal name is specified in a query, the default portal name is the string "blank",
known as the "blank portal." All qualifying instances in a blank portal are fetched imme-
diately, without the need for the programmer to issue a seperate fetch command.

Data fetched from a portal into LIBPQ is moved into a portal buffer. Portal names are
mapped to portal buffers through an internal table. Each instance in a portal buffer has an
index number locating its position in the buffer. In addition, each field in an instance has
a name and a field number.

A single retrieve command can return multiple types of instances. This can happen if a
POSTGRES function is executed in the evaluation of a query or if the query returns multi-
ple instance types from an inheritance hierarchy. Consequently, the instances in a portal
are set up in groups. Instances in the same group are guaranteed to have the same
instance format.

Portals that are associated with normal user commands are called synchronous. In this
case, the application program is expected to issue a retrieval followed by one or more
fetch commands. The functions that follow can now be used to manipulate data in the
portal.

PQnportals — Return the number of open portals.

95

LIBPQ

6/14/90 LIBPQ

int PQnportals (rule_p)
int rule_p ;

If rule_p is not 0, then only return the number of asynchronous portals.

PQpnames — Return all portal names.

void PQpnames (pnames, rule_p)
char *pnames [MAXPORTALS];
int rule_p ;

If rule_p is not 0, then only return the names of asynchronous
portals.

PQparray — Return the portal buffer given a portal name.

PortalBuffer * PQparray (pname)
char *pname;

PQclear — free storage claimed by named portal.

void PQclear (pname)
char *pname;

PQntuples — Return the number of instances in a portal buffer.

int PQntuples (portal)
PortalBuffer *portal;

PQngroups — Return the number of instance groups in a portal buffer.

int PQngroups (portal)
PortalBuffer *portal

PQntuplesGroup — Return the number of instances in an instance group.
int PQntuplesGroup (portal, group_index)
PortalBuffer *portal;
int group_index;
PQnfieldsGroup — Return the number of fields in an instance group.
int PQnfieldsGroup (portal, group_index)
PortalBuffer *portal;

int group_index;

PQfnameGroup — Return the field name given the group and field index.

96

LIBPQ

6/14/90 LIBPQ

char * PQfnameGroup (portal, group_index, field_number)

PortalBuffer *portal;
int group_index;
int field_number;

PQfnumberGroup — Return the field number (index) given the group index and field name.

int PQfnumberGroup (portal, group_index, field_name)

PortalBuffer *portal;
int group_index;
char *field_name;

PQgetgroup — Returns the index of the group that a particular instance is in.
int PQgetgroup (portal, tuple_index)
PortalBuffer *portal;
int tuple_index;
PQnfields — Return the number of fields in an instance.
int PQnfields (portal, tuple_index)
PortalBuffer *portal;
int tuple_index;

PQfnumber — Return the field index of a given field name within an instance.

int PQfnumber (portal, tuple_index, field_name)

PortalBuffer *portal;
int tuple_index;
char *field_name;

PQfname — Return the name of a field.

char * PQfname (portal, tuple_index, field number)

PortalBuffer *portal;
int tuple_index;
int field_number;

PQftype — Return the type of a field.

int PQftype (portal, tuple_index, field_number)

PortalBuffer *portal;
int tuple_index;
int field_number;

The type returned is an internal coding of a type.

PQsametype — Return 1 if two instances have the same attributes.

97

LIBPQ 6/14/90 LIBPQ

int PQsametype (portal, tuple_indexl, tuple_index2)
PortalBuffer *portal;
int tuple_indexl, tuple_index2;

PQgetvalue — Return an attribute (field) value.

char * PQgetvalue (portal, tuple_index, field_ number)

PortalBuffer *portal;
int tuple_index;
int field_number;

PQgetlength — Return the length of an attribute (field)

value in bytes

If the field is a varlena, the length of the attribute returned here

does not include the longword size field of the wvarlena,
bytes less.

char * PQgetlength (portal, tuple_index, field_number)

PortalBuffer *portal;
int tuple_index;
int field_number;
PQONotifies — Return the list of relations on which notification has oc

PONotifyList *PQNotifies()

PQRemoveNotify — Remove the notification from the list of unhandled

notifications.

PQONotifyList *PQRemoveNotify (pgNotify)
PONotifyList *pgNotify;

If the portal is blank, or specified with the portal keyword, all values are returned as
strings. It is the programmer’s responsibility to convert them to the correct type. If the
portal is specified with the iportal keyword, all values are returned in internal format,
namely in the format generated by the input function specified through the definetype
command. Again, it is the programmer’s responsibility to convert the data to the correct

type.

ASYNCHRONOUS PORTALS/NOTIFICATION

Asynchronous portals, query results of rules, are implemented using two mechanisms:
relations and notification. The query result is transferred through a relation. The notifica-
tion is done with special postquel commands and frontend/backend protocol.

Referring to the second sample program, after executing "listen relation_name" in the

frontend process, periodically check PQAsyncNotifyWaiting. If it is non-zero, then the
"notify relation_name" command has been executed by some backend. Immediately

98

LIBPQ 6/14/90 LIBPQ

clear PQAsyncNotifyWaiting, then do a NULL query, i.e. PQexec(" "), to retrieve the
actual notification data. Then call PQNotifies() to get the list of relations on which notifi-
cation has occurred. After handling the notification, do PQRemoveNotify on each ele-
ment of the list that has been handled to prevent further handling by you.

FUNCTIONS ASSOCIATED WITH THE COPY COMMAND

The copy command in POSTGRES has options to read from or write to the network con-
nection used by LIBPQ. Therefore, functions are necessary to access this network con-
nection directly so applications may take full advantage of this capability.

For more information about the copy command, see copy(commands).

PQgetline (string, length) — Reads anull-terminated line into string.

char *string; int length

PQputline (string) — Sends a null-terminated string.

char *string;

int PQendcopy () — Syncs with the back-end.

This function waits until the backend has finished processing the copy. It should either be
issued when the last string has been sent to the backend using PQputline() or when the
last string has been received from the backend using PGgetline(). It must be issued or the
backend may get "out of sync" with the frontend. Upon return from this function, the
backend is ready to receive the next query.

The return value is O on successful completion, nonzero otherwise.

For Example:

PQexec ("create foo (a=int4, b=charl6, d=float8)");

PQexec ("copy foo from stdin");
PQputline ("3<TAB>hello world<TAB>4.50);

PQputline ("4<TAB>goodbye world<TAB>7.11");
PQputline (".\n");
PQendcopy () ;

TRACING FUNCTIONS

PQtrace — Enable tracing.
void PQtrace ()
The routine sets the PQtracep variable to 1 which causes debug messages to be printed.

You should note that the messages will be printed to stdout by default. If you would like
different behavior you must set the variable FILE *debug_port to the appropriate stream.

99

LIBPQ 6/14/90 LIBPQ

PQuntrace — Disable tracing.

void PQuntrace ()

BUGS

The query buffer is only 8192 bytes long, and queries over that length will be silently
truncated.

SAMPLE PROGRAM

/*
* testlibpg.c —
* Test the C version of Libpg, the POSTGRES frontend library.
*/

#include <stdio.h>

#include "libpg.h"

main ()
{
int i, 3j, k, g, n, m, t;
PortalBuffer *p;
char pnames [MAXPORTALS] [portal_name_length];

/* Specify the database to access. */
PQsetdb ("pic_demo");

/* Start a transaction block for eportal */
PQexec ("begin");

/* Fetch instances from the EMP class. */
PQexec ("retrieve portal eportal (EMP.all)");
PQexec ("fetch all in eportal");

/* Examine all the instances fetched. */
p = PQparray ("eportal");

g = POngroups (p);

t = 0;

for (k = 0; k < g; k++) {
printf ("\nA new instance group:\n");
n = PQOntuplesGroup (p, k);
m = PQOnfieldsGroup (p, k);

/* Print out the attribute names. */
for (i = 0; i < m; i++)

printf ("%-15s", PQfnameGroup (p, k, 1));
printf ("\n");

100

LIBPQ 6/14/90 LIBPQ

/* Print out the instances. */
for (i = 0; 1 < n; i++) {
for (j = 0; J < m; J++)
printf ("$-15s", PQgetvalue (p, t+i, 3J));
printf ("\n");

}
t += n;

/* Close the portal. */
PQexec ("close eportal");

/* End the transaction block */
PQexec ("end") ;

/* Try out some other functions. */

/* Print out the number of portals. */
printf ("\nNumber of portals open: %d.\n",
PQOnportals ());

/* If any tuples are returned by rules, print out

* the portal name. */
if (PQnportals (1)) {

printf ("Tuples are returned by rules. \n");

PQpnames (pnames, 1);

for (i = 0; i < MAXPORTALS; i++)

if (pnames[i] != NULL)
printf ("portal used by rules: %$s\n", pnames[i]);

/* finish execution. */
PQfinish ();

SAMPLE PROGRAM 2
/*

* Testing of asynchronous portal interface.

Do the following at the monitor:

b

= int4) \g
= int4) \g

create testl

(i
create testla (i

define rule rl is on append to testl do
[append testla (i = new.i)

101

LIBPQ

6/14/90 LIBPQ

notify testlal]

* Then start up this process.
append testl (i = 10) \g

* The value i=10 should be printed by this process.

#include "tmp/simplelists.h"
#include "tmp/libpg.h"

void main ()

{

extern int PQAsyncNotifyWaiting;
PONotifyList *1;

PortalBuffer *portalbuf;

char *res;

int ngroups, tupno, grpno, ntups, nflds;
PQsetdb (getenv ("USER")) ;

PQexec ("listen testla");

while (1) |
sleep(l);
if (PQAsyncNotifyWaiting) ({
PQAsyncNotifyWaiting = 0;

PQexec (" ");
1 = PQnotifies();
if (1 != NULL) {

printf ("notification on relation %s\n",
1->relname) ;
res = PQexec ("retrieve (testla.i)");
if (*res == 'E’) {
fprintf (stderr, "$s\nfailed", ++res);
goto exit_error;
}
if (*res != 'P") {
fprintf (stderr, "$s\nno portal", ++res);
}
/* get tuples in relation */
portalbuf = PQparray (++res);
ngroups = PQngroups (portalbuf) ;
for (grpno = 0; grpno < ngroups; grpnot+) {
ntups = PQOntuplesGroup (portalbuf, grpno);
nflds = PQnfieldsGroup (portalbuf, grpno);
if (nflds != 1) {

102

LIBPQ 6/14/90 LIBPQ

fprintf (stderr,
"expected 1 attributes, got %d\n",
nflds);
goto exit_error;
}
for (tupno = 0; tupno < ntups; tupno++) {
printf ("got i=%s\n",
PQgetvalue (portalbuf, tupno,0));
}
}

break;

PQfinish () ;
exit (0);
exit_error:
PQfinish () ;
exit (1) ;

SAMPLE PROGRAM 3
/*

* Testing of new binary portal interface.

Do the following at the monitor:

b

create testl (i = int4,d = float4,p = polygon) \g
append testl (i 7, d=3.567,p="(1.0,2.0,3.0,4.0)"::polygon)

—-— Anything else you can think of.
* Start up this program.
* The correct contents of testl should be printed

*/

#include "tmp/simplelists.h"
#include "tmp/libpg.h"
#include "utils/geo-decls.h"

void main ()

{
extern int PQAsyncNotifyWaiting;

PONotifyList *1;
PortalBuffer *portalbuf;

103

\g

LIBPQ

6/14/90 LIBPQ

char *res;
int ngroups, tupno, grpno, ntups, nflds;
PQsetdb (getenv ("USER")) ;

PQexec ("begin") ;

res = (char *)PQexec("retrieve iportal junk (testl.all)");

if (*res == 'E’) {
fprintf (stderr, "$s\nfailed", ++res);
goto exit_error;
}
res = (char *)PQexec("fetch all in junk");
if (*res != ’'P’) {
fprintf (stderr, "\nno portal");
goto exit_error;
}
/* get tuples in relation */
portalbuf = PQparray (++res);
ngroups = PQngroups (portalbuf) ;
for (grpno = 0; grpno < ngroups; grpnot+) {
ntups = PQOntuplesGroup (portalbuf, grpno);

if ((nflds = PQnfieldsGroup (portalbuf, grpno)) != 3) {
fprintf (stderr, "expected 3 attributes, got %d\n", nflds);

goto exit_error;
}
for (tupno = 0; tupno < ntups; tupno++) {
int *blal;
char *bla2;
POLYGON *bla3;
blal = (int *)PQgetvalue (portalbuf, tupno,0);
bla2 PQgetvalue (portalbuf, tupno, 1) ;
bla3 PQgetvalue (portalbuf, tupno, 2) —-4;

printf ("got 1i=%d(%d bytes), d=(%f) (%d bytes)|
Polygon (%d bytes)\
%$d points (%f,%f,%f,%f)\n",
*blal,PQgetlength (portalbuf, tupno,0),
*((float *)bla2),
PQgetlength (portalbuf, tupno, 1),
*bla2, * (bla2+1l), * (bla2+2), * (bla2+3),
PQgetlength (portalbuf, tupno, 2),
bla3->npts,
bla3->boundbox.xh,bla3->boundbox.yh,
bla3->boundbox.x1,bla3->boundbox.yl) ;

PQexec ("end") ;
PQfinish () ;

104

$x|%x|%x|%x\n\

LIBPQ 6/14/90 LIBPQ

exit (0);

exit_error:
PQexec ("end") ;
PQfinish () ;
exit (1) ;

105

FAST PATH 6/14/90 FAST PATH

SECTION 6 — FAST PATH

NAME

fast path — trap door into system internals

SYNOPSIS

“retrieve (retval = function([arg { ,arg }])”

DESCRIPTION

POSTGRES allows any valid POSTGRES function to be called in this way. Prior imple-
mentations of fast path allowed user functions to be called directly. For now, the above
syntax should be used, with arguments cast into the appropriate types. By executing the
above type of query, control transfers completely to the user function; any user function
can access any POSTGRES function or any global variable in the POSTGRES address
space.

There are six levels at which calls can be performed:

1) Traffic cop level
If a function wants to execute a POSTGRES command and pass a string
representation, this level is appropriate.

2) Parser
A function can access the POSTGRES parser, passing a string and
getting a parse tree in return.

3) Query optimizer
A function can call the query optimizer, passing it a parse tree
and obtaining a query plan in return.

4) Executor
A function can call the executor and pass it a query plan to be executed.

5) Access methods
A function can directly call the access methods if it wishes.

6) Function manager
A function can call other functions using this level.

Documentation of layers 1-6 will appear at some future time. Meanwhile, fast path users
must consult the source code for function names and arguments at each level.

It should be noted that users who are concerned with ultimate performance can bypass the
query language completely and directly call functions that in turn interact with the access

106

FAST PATH 6/14/90 FAST PATH

methods. On the other hand, a user can implement a new query language by coding a
function with an internal parser that then calls the POSTGRES optimizer and executor.
Complete flexibility to use the pieces of POSTGRES as a tool kit is thereby provided.

107

LARGE OBJECTS 6/14/90 LARGE OBJECTS

NAME

SECTION 7 — LARGE OBJECTS

Large Object Interface — interface to POSTGRES large objects

DESCRIPTION

In POSTGRES, data values are stored in tuples, and individual tuples cannot span multiple
data pages. Since the size of a data page is 8192 bytes, the upper limit on the size of a
data value is relatively low. To support the storage of larger atomic values, POSTGRES
provides a large object interface. This interface provides file-oriented access to user data
that has been explicitly declared to be a large type.

Version 4 of POSTGRES supports two different implementations of large objects. These
two implementations allow users to trade off speed of access against transaction protec-
tion and crash recovery on large object data. Applications that can tolerate lost data may
store object data in conventional files that are fast to access, but cannot be recovered in
the case of system crashes. For applications that require stricter guarantees of durability,
a transaction-protected large object implementation is available. This section describes
the two implementations and the programmatic and query language interfaces to large
object data.

Unlike the BLOB support provided by most commercial relational database management
systems, POSTGRES allows users to define specific large object types. POSTGRES large
objects are first-class objects in the database, and any operation that can be applied to a
conventional (small) abstract data type (ADT) may also be applied to a large one. For
example, two different large object types, such as image and voice, may be created.
Functions that operate on image data, and other functions that operate on voice data, may
be declared to the database system. The data manager will distinguish between image
and voice data automatically, and will allow users to invoke the appropriate functions on
values of each of these types. In addition, indices may be created large data values, or on
functions of them. Finally, operators may be defined that operate on large values. Users
may invoke these functions and operators from the query language. The database system
will enforce type restrictions on large object data values.

The POSTGRES large object interface is modeled after the Unix file system interface,
with analogs of open(), read(), write(), Iseek(), etc. User functions call these routines to
retrieve only the data of interest from a large object. For example, if a large object type
called existed that stored photographs of faces, then a function called could be declared
on data. could look at the lower third of a photograph, and determine the color of the
beard that appeared there, if any. The entire large object value need not be buffered, or
even examined, by the function. As mentioned above, POSTGRES supports functional
indices on large object data. In this example, the results of the function could be stored in
a B-tree index to provide fast searches for people with red beards.

108

LARGE OBJECTS 6/14/90 LARGE OBJECTS

UNIX FILES AS LARGE OBJECT ADTS

The simplest large object interface supplied with POSTGRES is also the least robust. It
does not support transaction protection, crash recovery, or time travel. On the other hand,
it can be used on existing data files (such as word-processor files) that must be accessed
simultaneously by the database system and existing application programs.

This implementation stores large object data in a UNIX file, and stores only the file
name in the database. Importing a large object into the database is as simple as storing
the file name in a distinguished “large object name” relation. Interface routines allow the
database system to open, seek, read, write, and close these UNIX files by an internal large
object identifier.

The functions and convert between UNIX filenames and internal large object identifiers.
These functions are POSTGRES registered functions, meaning they can be used directly in
Postquel queries as well as from dynamically loaded C functions. If you are defining a
simple large object ADT, these functions can be used as your “input” and “output” func-
tions (see define type and the POSTGRES Manual sections concerning user-defined types
for details).

char *lo_filein(filename)
char *filename;

Import a new UNIX file storing large object

data into the database system. This routine stores
the filename in a large object naming relation and
assigns it a unique large object identifier.

char * lo_fileout (object)
LargeObject *object;

This routine returns the UNIX filename associated
with a large object.

The file storing the large object must be accessible on the machine on which POSTGRES
is running. The data is not copied into the database system, so if the file is later removed,
it is unrecoverable.

Large objects are accessible from both the POSTGRES backend, using dynamically-
loaded functions, and from the front-end, using the LIBPQ interface. These interfaces
will be described in detail below.

INVERSION LARGE OBJECTS

In contrast to UNIX files as large objects, the Inversion large object implementation guar-
antees transaction protection, crash recovery, and time travel on user large object data.
This implementation breaks large objects up into “chunks” and stores the chunks in
tuples in the database. A B-tree index guarantees fast searches for the correct chunk
number when doing random access reads and writes.

If a transaction that has made changes to an Inversion large object subsequently aborts,
the changes are backed out in the normal way. Inversion large objects are stored in the
database, and so are not directly accessible to other programs. Only programs that use

109

LARGE OBJECTS 6/14/90 LARGE OBJECTS

the POSTGRES data manager can read and write Inversion large objects.

To use Inversion large objects, a new large object should be created using the LOcreat()
interface, defined below. Afterwards, the name of the large object can be stored in an
ordinary tuple.

The next section describes the programmatic interface to both UNIX and Inversion large
objects.

BACKEND INTERFACE TO LARGE OBJECTS

Large object data is accessible from front-end programs linked with the LIBPQ library,
and from dynamically-loaded routines that execute in the POSTGRES backend. This sec-
tion describes access from dynamically loaded C functions.

Creating New Large Objects
The routine

int LOcreat (path, mode, objtype)
char *path;
int mode;
int objtype;
creates a new large object.

The pathname is a slash-separated list of components, and must be a unique pathname in
the POSTGRES large object namespace. There is a virtual root directory (““/’) in which
objects may be placed.

The parameter can be one of or which are symbolic constants defined in
“postgres/src/lib/H/catalog/pg_lobj.h
The interpretation of the argument depends on the selected.

For UNIX files, is the mode used to protect the file on the UNIX file system. On creation,
the file is open for reading and writing.

For Inversion large objects, is a bitmask describing several different attributes of the new
object. The symbolic constants listed here are defined in

“postgres/src/lib/H/tmp/libpg-fs.h

The access type (read, write, or both) is controlled by OR’ing together the bits
INV_READ and INV_WRITE. If the large object should be archived — that is, if histor-
ical versions of it should be moved periodically to a special archive relation — then the
INV_ARCHIVE bit should be set. The low-order sixteen bits of are the storage manager
number on which the large object should reside'. For sites other than Berkeley, these bits
should always be zero. At Berkeley, storage manager zero is magnetic disk, storage man-
ager one is a Sony optical disk jukebox, and storage manager two is main memory.

"' In the distributed version of POSTGRES, only the magnetic disk storage manager is supported. For users running POSTGRES at
UC Berkeley, additional storage managers are available.

110

LARGE OBJECTS 6/14/90 LARGE OBJECTS

The commands below open large objects of the two types for writing and reading. The
Inversion large object is not archived, and is located on magnetic disk:

unix_fd = LOcreat ("/my_unix_obj", 0600, Unix);

inv_fd = LOcreat ("/my_inv_obj",
INV_READ|INV_WRITE, Inversion);

Opening Large Objects
Existing large objects may be opened for reading or writing by calling the routine

int LOopen (path, mode)
char *path;
int mode;

The argument specifies the large object’s pathname, and is the same as the pathname used
to create the object. The argument is interpreted by the two implementations differently.
For UNIX large objects, values should be chosen from the set of mode bits passed to the
system call; that is, O_CREAT, O_RDONLY, O_WRONLY, O_RDWR, and O_TRUNC.
For Inversion large objects, only the bits INV_READ and INV_WRITE have any mean-
ing.

To open the two large objects created in the last example, a programmer would issue the
commands

unix_fd = LOopen ("/my_unix_obj", O_RDWR);

inv_fd = LOopen ("/my_inv_obj", INV_READ | INV_WRITE) ;

If a large object is opened before it has been created, then a new large object is created
using the UNIX implementation, and the new object is opened.

Seeking on Large Objects

The command
int
LOlseek (fd, offset, whence)
int fd;
int offset;
int whence;

moves the current location pointer for a large object to the specified position. The param-
eter is the file descriptor returned by either or is the byte offset in the large object to
which to seek. The only legal value for in the current release of the system is as defined
in <sys/files.h>.

UNIX large objects allow holes to exist in objects; that is, a program may seek well past
the end of the object and write bytes. Intervening blocks will not be created; reading
them will return zero-filled blocks. Inversion large objects do not support holes.

The following code seeks to byte location 100000 of the example large objects:

111

LARGE OBJECTS 6/14/90 LARGE OBJECTS

unix_status = LOlseek (unix_fd, 100000, IL_SET);

inv_status = LOlseek (inv_fd, 100000, L_SET);

On error, returns a value less than zero. On success, the new offset is returned.

Writing to Large Objects
Once a large object has been created, it may be filled by calling
int
LOwrite (fd, wbuf)
int fd;
struct varlena *wbuf;

Here, is the file descriptor returned by or and describes the data to write. The structure in
POSTGRES consists of four bytes in which the length of the datum is stored, followed by
the data itself. The four length bytes include themselves.

For example, to write 1024 bytes of zeroes to the sample large objects:

struct varlena *vl;

vl = (struct varlena *) palloc(1028);
VARSIZE (v1l) = 1028;
bzero (VARDATA (v1), 1024);

nwrite_unix = LOwrite (unix_fd, vl);
nwrite_inv = LOwrite (inv_£fd, vl);

returns the number of bytes actually written, or a negative number on error. For Inver-
sion large objects, the entire write is guaranteed to succeed or fail. That is, if the number
of bytes written is non-negative, then it equals VARSIZE(v]).

The VARSIZE() and VARDATA() macros are declared in the file
“postgres/src/lib/H/tmp/postgres.h

Reading from Large Objects

Data may be read from large objects by calling the routine

struct varlena *
LOread (fd, 1len)
int fd;
int len;
This routine returns the byte count actually read and the data in a varlena structure. For
example,

112

LARGE OBJECTS 6/14/90 LARGE OBJECTS

struct varlena *unix_vl, *inv_vl;
int nread_ux, nread_inv;
char *data_ux, *data_inv;

unix_vl = LOread (unix_fd, 100);
nread_ux = VARSIZE (unix_vl);
data_ux = VARDATA (unix_vl);

inv_vl = LOread(inv_fd, 100);

nread_inv = VARSIZE (inv_vl);

data_inv = VARDATA (inv_vl);
The returned varlena structures have been allocated by the POSTGRES memory manager
and may be when they are no longer needed.

Closing a Large Object Once a large object is no longer needed, it may be closed by calling
int
LOclose (fd)
int fd;

where is the file descriptor returned by or On success, returns zero. A negative return
value indicates an error.

For example,
if (LOclose (unix_fd) < 0)
/* error */;

if (LOclose (inv_fd) < 0)
/* error */

LIBPQ LARGE OBJECT INTERFACE

Large objects may also be accessed from database client programs that link the LIBPQ
library. This library provides a set of routines that support opening, reading, writing,
closing, and seeking on large objects. The interface is similar to that provided via the
backend, but rather than using varlena structures, a more conventional UNIX-style buffer
scheme is used.

In version 4 of POSTGRES, large object operations must be enclosed in a transaction
block. This is true even for UNIX large objects, which are not transaction-protected. This
is due to a shortcoming in the memory management scheme for large objects, and will be
rectified in version 4.1. The end of this section shows a short example program that cor-
rectly transaction-protects its file system operations.

This section describes the LIBPQ interface in detail.

Creating a Large Object

The routine

113

LARGE OBJECTS 6/14/90 LARGE OBJECTS

int

p_creat (path, mode, objtype)
char *path;
int mode;
int obijtype;

creates a new large object. The argument specifies a large-object system pathname.

The parameter can be one of or which are symbolic constants defined in
“postgres/src/lib/H/catalog/pg_lobj.h
The interpretation of the argument depends on the selected.

For UNIX files, is the mode used to protect the file on the UNIX file system. On creation,
the file is open for reading and writing.

For Inversion large objects, is a bitmask describing several different attributes of the new
object. The symbolic constants listed here are defined in

"postgres/src/lib/H/tmp/libpg-£fs.h

The access type (read, write, or both) is controlled by OR’ing together the bits
INV_READ and INV_WRITE. If the large object should be archived — that is, if histor-
ical versions of it should be moved periodically to a special archive relation — then the
INV_ARCHIVE bit should be set. The low-order sixteen bits of are the storage manager
number on which the large object should reside. For sites other than Berkeley, these bits
should always be zero. At Berkeley, storage manager zero is magnetic disk, storage man-
ager one is a Sony optical disk jukebox, and storage manager two is main memory.

The commands below open large objects of the two types for writing and reading. The
Inversion large object is not archived, and is located on magnetic disk:
unix_fd = p_creat ("/my_unix_obj", 0600, Unix);

inv_fd = p_creat ("/my_inv_obij",
INV_READ | INV_WRITE, Inversion);

Opening an Existing Large Object
To open an existing large object, call
int
p_open (path, mode)

char *path;
int mode;

The argument specifies the large object pathname for the object to open. The mode bits
control whether the object is opened for reading, writing, or both. For UNIX large objects,
the appropriate flags are O_CREAT, O_RDONLY, O_WRONLY, O_RDWR, and
O_TRUNC. For Inversion large objects, only INV_READ and INV_WRITE are recog-
nized.

If a large object is opened before it is created, it is created by default using the UNIX file
implementation.

114

LARGE OBJECTS 6/14/90 LARGE OBJECTS

Writing Data to a Large Object
The routine
int
p_write(fd, buf, len)
int fd;
char *buf;
int len;

writes bytes from to large object The argument must have been returned by a previous or

The number of bytes actually written is returned. In the event of an error, the return value
is negative.

Reading Data from a Large Object
The routine
int
p_read(fd, buf, nbytes)
int fd;
char *buf;
int nbytes;

reads bytes into buffer from the large object descriptor The number of bytes actually read
is returned. In the event of an error, the return value is less than zero.

Seeking on a Large Object

To change the current read or write location on a large object, call
int
p_lseek (fd, offset, whence)
int fd;
int offset;
int whence;

This routine moves the current location pointer for the large object described by to the
new location specified by For this release of , only is a legal value for

Closing a Large Object
A large object may be closed by calling
int
p_close (£d)
int fd;

where is a large object descriptor returned by or On success, returns zero. On error, the
return value is negative.
SAMPLE LARGE OBJECT PROGRAMS

The POSTGRES large object implementation serves as the basis for a file system (the
“Inversion” file system) built on top of the data manager. This file system provides time
travel, transaction protection, and fast crash recovery to clients of ordinary file system

115

LARGE OBJECTS 6/14/90 LARGE OBJECTS

services. It uses the Inversion large object implementation to provide these services.

The programs that comprise the Inversion file system are included in the POSTGRES
source distribution, in directories

SPOSTGRESHOME/test/postfs
SPOSTGRESHOME/test/postfs.usr.bin

These directories contain a set of programs for manipulating files and directories. These
programs are based on the Berkeley Software Distribution NET-2 release.

These programs are useful in manipulating inversion files, but they also serve as exam-
ples of how to code large object accesses in LIBPQ. All of the programs are LIBPQ
clients, and all use the interfaces that have been described in this section.

Interested readers should refer to the files in the postfs directories for in-depth examples
of the use of large objects. Below, a more terse example is provided. This code fragment
creates a new large object managed by Inversion, fills it with data from a UNIX file, and
closes it.

116

LARGE OBJECTS

6/14/90 LARGE OBJECTS

#include "tmp/c.h"

#include "tmp/libpg-fe.h"
#include "tmp/libpg-fs.h"
#include "catalog/pg_lobj.h"

#define MYBUF'SIZ 1024

main ()

{

int inv_fd;

int fd;

char *qgry_result;
char buf [MYBUFSIZ];
int nbytes;

int tmp;

PQOsetdb ("mydatabase") ;

/* large object accesses must be */

/* transaction-protected */
gry_result = PQexec ("begin");
if (*gqry_result == 'E’) /* error */

exit (1);

/* open the unix file */
fd = open("/my_unix_file", O_RDONLY, 0666);
if (fd < 0) /* error */

exit (1);

/* open the inversion file */

inv_fd = p_open("/inv_file", INV_WRITE, Inversion);

if (inv_fd < 0) /* error */
exit (1);

/* copy the unix file to the inversion */

/* large object */
while ((nbytes = read(fd, buf, MYBUFSIZ)) > 0)
{

tmp = p_write(inv_£fd, buf, nbytes);
if (tmp < nbytes) /* error */
exit (1);

(void) close (fd);
(void) close(inv_£d);

/* commit the transaction */

117

LARGE OBJECTS 6/14/90 LARGE OBJECTS

gry_result = PQexec ("end");

if (*gry_result == 'E’) /* error */
exit (1);

/* by here, success */
exit (0);

BUGS

Shouldn’t have to distinguish between Inversion and UNIX large objects when you open

an existing large object. The system knows which implementation was used. The flags
argument should be the same in these two cases.

SEE ALSO

define type(commands), define function(commands), load (commands).

118

FILES 6/14/90 FILES

SECTION 8 — FILES

OVERVIEW

This section describes some of the important files used by POSTGRES.

NOTATION

“..I” at the front of file names represents the path to the postgres user’s home directory.
Anything in square brackets (‘[and “]”) is optional. Anything in braces (“{”” and *}”’)
can be repeated 0 or more times. Parentheses (“(”” and “)”) are used to group boolean
expressions. | is the boolean operator OR.

BUGS

The descriptions of .../ .postgresrc, .../data/PG_VERSION,
.../data/*/PG_VERSION, the temporary sort files, and the database debugging
trace files are absent.

119

BKI (FILES) 6/14/90 BKI (FILES)

NAME

.../src/support/{local,dbdb}.bki — template scripts

DESCRIPTION

Backend Interface (BKI) files are scripts that describe the contents of the initial POST-
GRES database. This database is constructed during system installation, by the initdb
command. Initdb executes the POSTGRES backend with a special set of flags, that cause
it to consume the BKI scripts and bootstrap a database.

These files are automatically generated from system header files during installation.
They are not intended for use by humans, and you do not need to understand their con-
tents in order to use POSTGRES. These files are copied to ../files/locall.bki and
../files/globall.bki during system installation.

All new user databases will be created by copying the template database that POSTGRES
constructs from the BKI files. Thus, a simple way to customize the template database is
to let the POSTGRES initialization script create it for you, and then to run the terminal
monitor to make the changes you want.

The POSTGRES backend interprets BKI files as described below. This description will be
easier to understand if the example in .../files/globall.bki is at hand.

Commands are composed of a command name followed by space separated arguments.
Arguments to a command which begin with a “$” are treated specially. If “$$” are the
first two characters, then the first “$” is ignored and the argument is then processed nor-
mally. If the “$” is followed by space, then it is treated as a NULL value. Otherwise, the
characters following the “$” are interpreted as the name of a macro causing the argument
to be replaced with the macro’s value. It is an error for this macro to be undefined.

Macros are defined using "define macro macro_name = macro_value" and are undefined
using "undefine macro macro_name" and redefined using the same syntax as define.

Lists of general commands and macro commands follow.

GENERAL COMMANDS

open classname
Open the class called classname for further manipulation.
close [classname]

Close the open class called classname. It is an error if classname is not already opened.
If no classname is given, then the currently open class is closed.

print
Print the currently open class.

insert [oid= oid_value] ' (! valuel value2 ...")’

120

BKI (FILES) 6/14/90 BKI (FILES)

Insert a new instance to the open class using valuel, value2, etc. for its attribute values
and oid_value for it’s OID. If oid is not “0”, then this value will be used as the instance’s
object identifier. Otherwise, it is an error. To let the system generate a unique object
identifier (as opposed to the "well-known" object identifiers which we specify) use insert
’(C valuel, value2, ... valuen ’)’ .

create classname ' (’ namel = typel,
name2 = type2, ...name n = type n ')’

Create a class named classname with the attributes given in parentheses.

open ’ ('namel = typel, name2 = type2,...name n = type n ")’
as classname

Open a class named classname for writing but do not record its existence in the system
catalogs. (This is primarily to aid in bootstrapping.)

destroy classname
Destroy the class named classname.

define index <index—name> on <class—-name> using <amname>
(<opclass> <attr> \ function ({attr}))

Create an index named index_name on the class named classname using the amname
access method. The fields to index are called namel, name2, etc. and the operator collec-
tions to use are collection_1, collection_2, etc., respectively.

MACRO COMMANDS

define function macro_name
as rettype function_name (args)

Define a function prototype for a function named macro_name which has its value of
type rettype computed from the execution function_name with the arguments args
declared in a C-like manner etc.

define macro macro_name from file filename

Define a macro named macname which has its value read from the file called filename.

EXAMPLE

The following set of commands will create the OPCLASS class containing the int_ops
collection as object 421, print out the class, and then close it.

121

BKI (FILES) 6/14/90 BKI (FILES)

create pg_opclass (opcname=charl6)
open pg_opclass

insert 0id=421 (int_ops)

print

close pg_opclass

SEE ALSO

initdb(unix), createdb(unix), createdb(commands), template(files).

122

PAGE (FILES) 6/14/90 PAGE (FILES)

NAME

../data/... — database file default page format

DESCRIPTION

This section provides an overview of the page format used by POSTGRES classes. Dia-
gram 1 shows how pages in both normal POSTGRES classes and POSTGRES index
classes (eg., a B-tree index) are structured. User-defined access methods need not use
this page format.

In the following explanation, a “byte” is assumed to contain 8 bits. In addition, the term
“item” refers to data which is stored in POSTGRES classes. Diagram 1 shows a sample
page layout. Running “.../bin/dumpbpages” or “.../src/support/dumpbpages” as the post-
gres superuser with the file paths associated with (heap or B-tree index) classes,
“.../data/base/<database-name>/<class-name>,” will display the page structure used by
the classes. Specifying the “-r” flag will cause the classes to be treated as heap classes
and for more information to be displayed.

PageHeaderData ItemIdData
- - - - - L
| | |
| | |
| | |
1 1 1
Unallocated Space
ItemContinuationData
- L
T T
| |
itemPointerData : filler : itemData...
,,,,,,,,,,,,,,,,,, I
“ItemData 2”
“ItemData 1”
Special Space

Diagram 1: Sample Page Layout

The first 8 bytes of each page consists of a page header (PageHeaderData). Within the
header, the first three 2-byte integer fields, lower, upper, and special, represent byte off-
sets to the start of unallocated space, to the end of unallocated space, and to the start of
“special space.” Special space is a region at the end of the page which is allocated at page
initialization time and which contains information specific to an access method. The last
2 bytes of the page header, opaque, encode the page size and information on the internal
fragmentation of the page. Page size is stored in each page because frames in the buffer

123

PAGE (FILES) 6/14/90 PAGE (FILES)

BUGS

pool may be subdivided into equal sized pages on a frame by frame basis within a class.
The internal fragmentation information is used to aid in determining when page reorgani-
zation should occur.

Following the page header are item identifiers (ItemldData). New item identifiers are
allocated from the first four bytes of unallocated space. Because an item identifier is
never moved until it is freed, its index may be used to indicate the location of an item on
a page. In fact, every pointer to an item (ItemPointer) created by POSTGRES consists of
a frame number and an index of an item identifier. An item identifier contains a byte-
offset to the start of an item, its length in bytes, and a set of attribute bits which affect its
interpretation.

The items, themselves, are stored in space allocated backwards from the end of unallo-
cated space. Usually, the items are not interpreted. However when the item is too long to
be placed on a single page or when fragmentation of the item is desired, the item is
divided and each piece is handled as distinct items in the following manner. The first
through the next to last piece are placed in an item continuation structure (ItemContinu-
ationData). This structure contains itemPointerData which points to the next piece and
the piece itself. The last piece is handled normally.

The page format may change in the future to provide more efficient access to large
objects. This section contains insufficient detail to be of any assistance in writing a new
access method.

124

TEMPLATE (FILES) 6/14/90 TEMPLATE (FILES)

NAME
../files/globall.bki — global database template
../files/locall_XXX.bki — local database template
DESCRIPTION

BUGS

These files contain scripts which direct the construction of databases. Note that the
globall.bki and templatel_local.bki files are installed automatically when the postgres
superuser runs initdb. These files are copied from “.../src/support/{dbdb,local } .bki.”

The databases which are generated by the template scripts are normal databases. Conse-
quently, you can use the terminal monitor or some other frontend on a template database
to simplify the customization task. That is, there is no need to express everything about
your desired initial database state using a BKI template script, because the database state
can be tuned interactively.

The system catalogs consist of classes of two types: global and local. There is one copy
of each global class that is shared among all databases at a site. Local classes, on the
other hand, are not accessible except from their own database.

../files/globall.bki specifies the process used in the creation of global (shared) classes by
createdb. Similarly, the .../files/locall_XXX.bki files specify the process used in the cre-
ation of local (unshared) catalog classes for the “XXX” template database. “XXX” may
be any string of 16 or fewer printable characters. If no template is specified in a created-
bcommand, then the template in .../files/locall_templatel.bki is used.

The .bki files are generated from C source code by an inscrutable set of C preprocessor
macros.

POSTGRES Version 4.0 does not permit users to have separate template databases.

SEE ALSO

bki(files), initdb(unix), createdb(unix).

125

REFERENCES 6/18/90 REFERENCES

REFERENCES

The following technical reports are referred to in this document. For information on ordering
technical reports, see the installation notes that accompany the POSTGRES distribution.

[ONG90]
Ong, L. and Goh, J., "A Unified Framework for Version Modeling Using Production Rules

in a Database System," Electronics Research Laboratory, University of California, Berkeley,
ERL Memo M90/33, April 1990.

[ROWES7]
Rowe, L. and Stonebraker, M., “The POSTGRES Data Model,” Proc. 1987 VLDB Confer-
ence, Brighton, England, Sept. 1987.

[SHAPS6]
Shapiro, L., “Join Processing in Database Systems with Large Main Memories,” ACM-
TODS, Sept. 1986.

[STONS7]
Stonebraker, M., “The POSTGRES Storage System,” Proc. 1987 VLDB Conference,
Brighton, England, Sept. 1987.

[STON90]
Stonebraker, M. et. al., "On Rules, Procedures, Caching and Views in Database Systems,"
Proc. 1990 ACM-SIGMOD Conference on Management of Data, Atlantic City, N.J., June
1990.

[WONG76]
Wong, E., “Decomposition: A Strategy for Query Processing,” ACM-TODS, Sept. 1976.

126

Table of Contents

Section 1 — INrOAUCHIONooovvviiiiiiiiiiiiiii s
Section 2 — UNIX Commands (UNIX)c.ccoeeveeeeiiireeiiieeeeiieeessreeeessreeesssseeesssseeens

General Information

CIEALEAD ..ottt e e e e e e e e e et reee e e e e e e et aaa e
CIEALEUSETiiieeiiieeeeee et e e e e ettt e e e e e e e e e ettt e e e s ee e e et taa e asaeseeeeesasanaannnns

Destroydb
Destroyuser
Initdb ..o
ipccleanc..c......
Terminal Monitor ..

The POSTGRES BaCKENAoovvviviiiiiiiiiiiiiiee e
The POSTGRES POSTMASLET ...evvvvviiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e
Section 3 — What comes with POSTGRES (BUILT-INS)ccoeeiiiiiiiiiieeeiieceiiee,

Built-in and System

TYPES e

Syntax of date and time tYPEScoceereerierierienienienee ettt

Built-in operators and fUnCioNScccceveereriieniinienieeeceeeeeeeee e

Binary operators
Unary operators

Section 4 — POSTQUEL Commands (COMMANDS)coooviiiiiiiieecieeeeieee e

General Information

Define AGEIEZAteoocuiiiiiiiiiieiieiiee ettt ettt

Define Function
Define Index
Define Operator
Define Rule
Define Type
Define View

O 00 1 O Lt W W =

DA DDA BB B DR DR PR PR DWW W W WD NN NDNDNRE = ==
O QN LW O 00— O O 00 N H W~ O VOV XX IO O 0 B WD DN DD N~ O

PUTZE e

RemOVEe AZEIEALeceoviiiiiiiiiiieiieeeeeeec ettt

ReEMOVE FUNCHON .coiiiiiieeeieeeeeeeeeeeee ettt e e e e e ettt eeaaaaes

REMOVE INAEX ..ottt e e e e e e et s e e eaaaes

RemMOVE OPEIaOreovuiiiiiiiiiiieiieiteeeeee ettt

REMOVE RULE ...ttt e e e e et eeeaaaes

REMOVE TYPE .o

RENAMIE .oeeeiiiieeeeee ettt ettt e e et e e et e e e eaae e e saaaeeeesanas

REPIACE .t

REITIEVE .ot e e ettt eee e s e e e e e etaaarrsaeeeaaees

/110 11§ o' TR

SECION 5 — LADPQ -eeouviriiiiiiiieeieee ettt e
Section 6 — Fast Path ..o
Section 7 — Large ODJECEScocueriiriiriirieriieieeteete ettt ettt s s

SECHION 8 —— FIIES .ottt e e e e e e e et s areseeaeaaaes

General INTOIMAtIONoooviiiiiiieee e e ettt e e e e e et aaa s
Backend Interface — BKIoeeiiiiiiiiieeee e

Page SIIUCTUIEeoniiiiiiiiieieeeeeee ettt ettt et

TEMPIALE ..eveiniieiieiteiteee ettt ettt et et e

References

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
&5
86
87
88
&9
92
93
106
108
119
119
120
123
125
126

