Run Time Executor - Implementation Notes
by
Chin-Heng Hong
University of California, Berkeley

(Printed October 29, 1990)

1. Introduction

This document gives an overview of the Run Time Executor (RTE) and its implementation details. It
shows where and how the RTE fits into the POSTGRES data base system, and the data structures used by
it. The algorithms used to process the nodes in the query plan are also presented. It is hoped that this
document will allow someone to understand the implementation details of the RTE without having to go
through the painful process of deciphering the actual codes. This document describes the first prototype of
the RTE running in August 1986. It should be updated to reflect any changes made to the RTE since then
so that it will remain helpful and accurate.

2. An Overview

The Run Time Executor (RTE) is the module in the POSTGRES that executes the query plan pro-
duced by Query Optimizer. It accepts the query plan from the Traffic Cop, initializes it, retrieves and pro-
cessed tuples according to the query plan, and then returns a stream of tuples to the Traffic Cop. During the
execution of the query plan, the RTE makes calls to the Access Method to retrieve tuples from relations, to
the Tuple Rule Manager to process record level rules, and to the Function Manager to evaluate expres-
sions. It may also call some of the utility routines to create or sort arelation. Figure 1 shows the interac-
tions of the RTE with other modules in the POSTGRES.

2.1. Call Interface

The RTE accepts the following list from the Traffic Cop':

(commandType queryFeatures inputTree queryPlan queryState)
where

commandType = (retrieve/append/update resultRelation pipe)
queryFeature = (tupleCount owner time direction)

inputTree = not used by the RTE
queryPlan =the query plan
querySate = (initFlag xactlD subPlanTuples)

The first element of the commandType is a string of "RETRIEVE", or "APPEND" or "UPDATE" to
indicate the type of command. ResultRelation isthe relation ID of arelation where the tuples retrieved will
goto. If thetuplesare to be passed back to afront-end, pipe will contain a socket ID.

The tupleCountR in queryFeature is the number of tuples that is needed by the front-end. In the case
that all the tuples are to be processed, itisset to 0. The other fields are parameters needed by the AMI.

1 Not well defined yet.



User Process

Traffic Cop
\ Planner
' Rule Manager
R Executor 4 Function Manager
A Utilities
Access Methods

Figure 1. The Run Time Executor and Other POSTGRES modules

The queryState contains some global state information used by the RTE. Other modules should not
try to manipulate it. 1t should be set to aempty list [(nil)] when the query plan isfirst constructed, and RTE
will initialize it with necessary information.

2.2. Control Flow

The main routine of the Run Time Executor (RTE) accepts the parameter list from the Traffic Cop
and processes the query plan to retrieve the required number of tuples. The tuples returned from the pro-
cessing of the plan are treated differently for different commands:

(2) retrieve The tuples are either passed to the front-end through a pipe or inserted to the result rela-
tion indicated. Tuples are passed to the front-end as a formated stream of bytes?.
(2) append The tuples are simply inserted to the result relation.
(3) update (;I’elhe etéjpl& are inserted to the result relation, and the corresponding old tuples are
eted.

The main routine of the RTE is ExecMain():

2Refer to the document on the front-end library -- pglib.



ExecMain((commandType queryFeature inputTree queryPlan queryState))

initialize query plan if called first time;
while (moreTuples) {
[* process query plan */
tuple = ExecProcNode(queryPlan);
if (tuple=null) {
do necessary cleaning up;
return;
}else{
if (retrieveCommand and returnToFrontEnd) {
format and pass tuple down the pipe;
}else{
update result relation;
}

}

number Tuples++;

if (numberTuples == tupleCount) {
do necessary cleaning up;
return;

}

3. Module Organization
The source files for the Run Time Executor (RTE) are organized as follow:

execlnt.h main internal header file, contains global definitions.
execMain.l main routine.

execnode.| routines to process the node.

execnode.h header file for the node.

execProcNodell routine to call the right node routine.
execlnit.| routine to initialize query plan.

execQual .| routines to evaluate the qualification.
execTargetList.l routines to evaluate the target list.

execPipell,c routines to communicate with the front-end.
execCStruct.c C routines handling C structures.

execCStruct.| lisp code to load in C routines in execCStruct.c.

The hierarchical relationship of the routinesin RTE module is shown in Figure 2.

4. Data Structures

The Run Time Executor (RTE) keeps some state information in the query plan so that it can pick up
the query plan at any point and continue from where it has | eft off. Thisallows the the front-end to retrieve
some number of tuples into a portal, process them, and then ask for more tuples using to the same query
plan.

The RTE needs to keep track of the tuples formed at different subplans. This is because the query
plan is composed of one or more subplans as shown in Figure 3. Nodes in lower subplans may reference



ExecMain

ExeclnitNode ExecProcNode

ExeclnitScan ExeclnitResult ExecScan ExecResult

ExecQual ExecTargetList

Figure 2. Hierarchical Relaionship of RTE Routines

the tuples formed at higher level of subplans. Therefore, an array of containing tuples formed at each sub-
plan is maintained. This allows fast access to these tuples without the need of traversing the query plan to
find the particular subplan interested. This structure is stored in the state variable subPlanTuples.

Also, some of the global variables are defined so that other routines can readily accessed some of the
fields from the parameter list passed to the RTE from the Traffic Cop. These global variables are exec-
Direction, execTime, execOwner and execSPlaninfo. The suffixes of these variables indicates the fileds
they represent. The global variable, execErrorMssg, is set by the error handling routine to indicate an error
condition. Ancther global variable (execRepl TID) is used only for replace command. execReplTID is set
by a SCAN node to keep track of the TID (tuple ID) of the tuple passed to higher nodes for modifications.
An update is done at the highest level by inserting the modified tuple and then deleting the old tuple. The
highest level routine finds the TID of the old tuple from execRepl TID.

Besides the global structures and variables, the Query Optimizer also reserves a slot in every nodes
in the query plan for the RTE to store state information local to each node. The RTE then initializes the
slot reserved to contain the necessary state variables during the initiaization phase®. These state variables
are updated during the execution of the query plan. For example, the SCAN node contains a flag to indi-
cate whether the Tuple Rule Manager has been activated. The flag is set and cleared appropriately to
reflect the state of the SCAN node.

5. Node Processing

The execution of the query plan isvery simple. The RTE starts at the root of the query plan and calls
the right and left subtrees for tuples. The subtrees recursively calls their subtrees for tuples and process the
tuples according to the type of the node. Therefore, there is one principal routine per node type, and the
corresponding routine for anode is Execnode(). The general format of such a principal routineisafollow:

*The RTE initializes the query plan once prior to actual processing. Each node has its own initialization routine because dif-
ferent node needs different state information.



Subplan Tuples

™~ Globa variales

Figure 3. Data Structures Maintained by the RTE

Execnode(node)

leftTuple = ExecProcNode?(GetL eftTree(node));
rightTuple = ExecProcNode(GetRightTree(node));
do processing specific to the node;
if (sucessful) {

return(tuple formed according to target list);
} else{

return(Execnode(node));
}

}

5.1. Sequential and Index Scans

Sequntial and index scans are very similar. The main difference is that they use different access
methods; the access method for the index scan retrieve tuples using some indices while sequntia scan does
so sequentially calling the AMI’s getnext(). Once atuple is retrieved, the processing is the same for both
type of scans. Therefore, ageneral scan routine iswritten:

ExecScan(node, accessMethod, direction, lock)

4 ExecProcNode() in the above code segment is a routine that checks the type of a node, and calls the corresponding principal
routine to processit.



This general routine call the accessMethod() to retrieve tuples and then process the tuples retrieved
independent of the type of scan. We will first examine the ExecScan(), and then the accessMethod() for
both the sequential and index scans.

The main task of ExecScan() is calling the Tuple Rule Manager when necessary. Whenever atuple
is retrieved, it is checked for locks set by tuple level rules (ExecRuleLocks()). if such lock is found, the
tuple is passed to the Tuple Rule Manager and the rule descriptor returned is kept. The rule descriptor is
used to retrieve tuples resulted from the set of rules activated for the original tuple. The set of rules
activated may produce 0 or more tuples. A flag is set to indicate that some rules have been activated and
that the Tuple Rule Manager should be called to retrieve such tuples. Thisflag is kept as part of the state
information associated with the node so that it can be examined during subsequent calls.

Of course, the tuple retrieved from a relation or from the Tuple Rule Manager is always checked
against the qualification associated with the node. If the tuple satisfies the qualification, then a new tuple
formed from it according to the target list is returned. Otherwise, the whole process is repeated to find a
qualifying tuple. In fact, checking a tuple against the qualification (ExecQual()) and forming a new tuple
according to the target list (ExecTargetList()) is universal to all nodes. These 2 operations will be exam-
ined in more details in the next section.

If the query is an update operation and the currently scanned tuple is to be eventually modified, the
updateFlag in the SCAN node is set by the Query Optimizer. In this case, the TID of the tupleis stored in
the global variable execRepl TID so that higher level nodes can access it when doing the update.

Another interesting point is that tuples can be retrieved in either forward or backward directions.
The direction of scanning can be changed at any point and is indicated by the global variable execDirec-
tion. The AMI supports scanning in both directions, and it is assumed that the Tuple Rule M anager
provides similar support. This means that the Tuple Rule Manager must maintain the order of tuple pro-
duced from a set of rules.



ExecScan(node, accessM ethod)

if (rulesActivated) {
[* get tuple from Tuple Rule Manager */
tuple = RuleM grGetTupl e(ruleDescriptor);
if (tuple=nil) {
ruleActivated = false
return(ExecScan(node, accessM ethod);
}
} else{
[* use the access method to get tuple from relation */
tuple = accessM ethod(node);
if (tuple = nil) return(nil); /* no moretuple*/
if (ExecRulelLocks(tuple)) {
/* process tuple level rules*/
rulesActivated = true;
ruleDescriptor = RuleM anagerGetDesc(tuple);
return(ExecScan(node, accessM ethod));

}

* check tuple against qualification */
if (ExecQual(qual, tuple)) {
[* keep track of TID if the tuple isto be updated */
if (updateFlag = true) {
execRepl TID = getTID(tuple);

return(ExecTargetList(targetList tuple);

} else{
return(ExecScan(node, accessM ethod));
}

}

5.1.1. Sequential Scan

The ExecSegScan() scans a relation sequntially calling ExecScan() and passing the AMI’ s getnext()
as the access method. One subtle point about ExecSeqScan() is that it may need to sort or hash a relation
before scanning. Thisisindicated by the presence of aleft subtree (HASH or SORT node). If the left sub-
treeis presence, it is processed first and the resulting relation is then scanned by the ExecSegScan().

5.1.2. Index Scan

An access method (IndexNext()) is written to use a list of indices to retrieve tuples from a relation.
The list of indices is constructed by the Query Optimizer, and it may contain both primary and secondary
indices. The indices is used one by one according to their order in the index list. Secondary indices are
different from primary indices in that one more level of indirection isinvolved. Secondary indices provide
the TID of atuple, and the tuple is then retrieved directly from arelation using the AMI’ s getunique().

When an INDEX node is initialized, the index relations are opened for scanning, and the index



qualifications associated with each index are used to restrict to scanning®. It is possible that index
qualifications contain join clauses. This happens when an index is defined on an inner join relation. In this
case, the values from the outer tuple has to be substituted into the join clauses for each outer tuple.

Currently, thisfeatureis not supported by the RTES.

IndexNext(node)

currentlndex = GetIndexld(indices);
case (currentlndex) {
nil: return(nil); /* noindex to use */
PRIMARY:: tuple = getnext(currentindex);
if (tuple <> nil) return(tuple);
SECONDARY: Tid = getnext(indexRelation);
if (Tid <> nil)
return(getunique(Tid);

* no tuple from current index, use next index */
advance index pointer to point to next index;
return(lndexNext(node));

5.2. Sort

As mentioned earlier, arelation may need to be sorted prior to scanning. The relation to be sorted is
scanned calling the |eft subtree of the SORT node. The keys used to sort the relation is found in the target
list. More than one keys may be used to sort the relation and their relative order of significanceisfound in
the RESDOM primitive node prepared by the Query Optimizer.

The ExecSort() calls the left subtree for tuples and put them in atemporary relation. It then callsthe
sort utility routine to sort the temporary relation. The ID of the sorted relation is returned to upper level
node. The parameter to the sort utility routine is a vector containing entries of (key, sort operator). This
vector parameter is prepared by ExeclnitSort() by scanning the target list. The most significant key appears
first in the vector parameter.

5The SKEY structures are formed from the qualifications and is used by the AMI’s getnext to restrict scanning. See OpenScan-
Indices() and CreateSkeys() in execlndexScan.l.

Need to change the constants in the skey structures and do a "beginscan” with the modified skeys.



ExecSort(node)
{
create temporary relation;
While ((tuple = ExecProcNode(GetL eftTree(node))) <> nil)
insert(tempRelation, tuple);
}

sortUtility(tempRelation, keys);
return(sorted relation’s ID);

5.3. Nested-L oop Join

Nested-loop join is done by iteratively retrieving a tuple from the outer relation (left subtree), joining
it with all the tuples from the inner relation (right subtree). The inner relation is scanned once for each
outer tuple. A new outer tuple is retrieved if there is no inner tuple satisfying the join clauses with the
current tuple or a complete scan of the inner relation is done. The join can be done in either forward or
backward direction at any point. No special code is needed to support this feature because the subtrees
return the outer and inner tuples in the direction specified by the global variable execDirection. Asaresult,
the join will invariably be done in the direction desired.

ExecNestL oop(node)
{
innerTuple = ExecProcNode(GetRightTree(node));
if (innerTuple = nil) {
[* complete scan of inner relation, get a new outer tuple */
outerTuple = ExecProcNode(GetL eftTree(node));
if (outerTuple = nil) return(nil);
ExecBeginScan(GetRightTree(node));
innerTuple = ExecProcNode(GetRightTree(node));
}
* join the inner and outer tuples */
if (ExecQual(qual, outerTuple, innerTuple)) {
return(ExecTargetList(targetList, outerTuple, innerTuple));
} else{
return(ExecNestL oop(node));
}

}

5.4. Merge-Join

Merge-join is used if the outer and inner relations are sorted in ascending or descending order using
the merge-sort operator in the OPERATOR relation. The user must specify "<" or ">" as merge-sort

operator for ascending and descending orders respectively’. Merge-join is done by joining the inner

"For performance reason, "<=" and ">=" are used as merge-sort operators because a "<" comparison would then have to be
turned into "<=" and "not =" comparisons.



-10-

and outer tuples satisfying the join clauses of the form ((outerKey = innerKey) ...). Thejoin clausesis pro-
vided by the query planner and may contain more than one (outerKey = innerKey) clauses.

However, the query executor needs to know whether an outer tuple is "greater/smaller” than an inner
tuple so that it can "synchronize" the two relations. For example, consider the following relations:

outer: (0"112555667) current tuple: 1
inner: (1°355556) current tuple: 3

To continue the merge-join, the executor needs to scan both the inner and outer relations until the
matching tuples "5". It needs to know that currently inner tuple "3" is "greater" than outer tuple "1" and
therefore it should scan the outer relation first to find a matching tuple and so on.

Therefore, when initializing the merge-join node, the executor creates the "smaller/greater" clause by
substituting the "=" operator in the join clauses with the merge-sort operator to form (outerKey sortOp
innerKey) clauses. The sort operator is"<" if the relations are in ascending order; otherwise, itis">" if the
relations are in descending order. The opposite "greater/smaller" clause is formed by reversing the outer
and inner keysto form (innerKey sortOp outerKey) clauses.

It is sometimes necessary to reposition the "cursor” of inner relation to do merge-join. Take the
above relations for example, after joining the inner "5's" with the first outer "5", we need to reposition the
inner "cursor" at the first inner "5" again to join with the second outer "5". Currently, this is done by
scanning the inner relation in the reverse direction. A more efficient method is to make use of the AMI
routine to mark and reposition the "cursor” at the appropriate point in the inner relation.

The main routine for merge-join is ExecMergeJoin(). It first tries to join the next inner tuple with the
current outer tuple, if that fails, it then call MergeSync() to synchronize the relations to next matching

tuples. The matching outer and inner tuples are then checked against the other qualification®.

ExecMergeJoin(node)
{
innerTuple = ExecProcNode(GetRightTree(node));
if (innerTuple <> nil and ExecQual(joinQual, outerTuple, innerTuple)) {
* resynchronizes relations. Returns inner tuple.
Matching outer tupleisreturned as one of the state
variable of the node.
*/
innerTuple = MergeSync(node);

if (innerTuple = nil) then return(nil)
eseif (ExecQual(qual, outerTuple, innerTuple))
/* matching tuples satisfy qualification */
return(ExecTargetList(targetList, outerTuple, innerTuple);
else
return(ExecM ergeJoin(node));

8The qualification for the node is separated into one used for doing the merge-join and another that contains the rest of the
clauses. Thereason isthat only certain attributes can be used to do merge-join.



-11-

5.5. Subplans|nterconnection

Subplans are interconnected by RESULT nodes. The subplan on the left of the RESULT node is of
higher level than those on the right. An implicit nested-loop join is done at this node: for every tuple
retrieved from the left subtree, it isjoined with tuples retrieved from the right subtree. The reason is that
the subplans of the right subtree may reference and materialize fields from the tuple produced by the higher
subplan of the left subtree; therefore, for a tuple from the left subtree, there may be zero or more tuples
resulted from the right subtree. If there is no right subtree, only tuples from the right subtree is scanned
and returned.

The tuple produced by the left subtree is kept in a global structure so that it can be referenced easily
by lower subplans. The routine ExecSetSPlanTuple(levelNo, tuple) is called to set the tuple produced by
subplan of level "levelNo" in the global structure. Tuple produced by subplans can then be referenced by
calling ExecGetSPlanTuple(levelNo). To get and set the corresponding type information on the tuple, call
ExecGetSPlanType(levelNo) and ExecSPlanType(levelNo, type) respectively.

The tuples from left and right subtree are checked against the qualifications associated with the node.
If the tuples satisfy the qualifications, a tuple formed according to the target list is returned.

ExecResult(node)
{
/* get next tuple from left subtree if necessary */
if ((leftTuple = nil) or (no right subtree) or
((rightTuple = ExecProcNode(GetRightTree(node))) = nil))
{

leftTuple = ExecProcNode(GetL eftTree(node));

if (IeftTuple = nil) return(nil);

ese{
ExecSetSPlanTuple(levelNo, leftTuple);
rightTuple = ExecProcNode(GetRight Tree(node));
if (rightTuple = nil) return(ExecResult(node));

}

* check qualifications*/
if (ExecQual(qual, leftTuple, rightTuple)
return(ExecTargetList(targetList leftTuple rightTuple));
else
return(ExecResult(node));

6. Qualification and Target List

The routines ExecQual () and ExecTargetList() are very important modules of the Run Time Executor
(RTE). ExecQual() checks tuples against a qualification clause, and it returns a boolean value as the result
of the test. ExecTargetList(), on the other hand, constructs a new tuple from some tuples according to a
target list. Both routines have to call the Function Manager to evaluate expressions and certain C routines
to manipulate tuple fields.



-12 -

6.1. ExecQual

ExecQual() checks the currently scanned tuple (Scan nodes) or the inner/outer tuples (Join nodes)
against the qualification associated with a node. A qualification is expressed in conjunctive normal form.

It consists of zero or more or-clauses "anded" together. The syntax of the qualification is as follow®:

qualification = {expr}

expr = ("OR" expr expr {expr}) | ("NOT" expr)
| (op expr expr) | (func {expr})
| var | const | param

orExpr = ("OR" expr expr {expr}) | expr

The module for evaluating the qualification falls nicely into 3 main routines: ExecQual(), ExecEvalOr, and
ExecExpr:

ExecQual(qualification scanTuple innerTuple outerTuple)

while (more expr) {
expr = next expr in qualification;
if (ExecEvalOr(expr) == nil) return(nil);

return(true);

}
ExecExpr(expr)

case (type of expr) {
orExpr: ExecOrExpr(orExpr);
oper:  cal function manager;
var: evaluate the variables;

}
}

ExecOrExpr(orExpr)

if (single expression) return(ExecEval Expr(orExpr));
dse{
while (more expr) {
expr = next expr in orExpr;
if (ExecEvalExpr(expr) == true) return(true);

return(false);

®Literals are represented in bolds. {} means 0 or more. "Var", "const", "param", "oper" and "func" are primitive nodes defined
in the Planner Specifications.



-13-

6.2. ExecTargetList

ExecTargetList() constructs a new tuple either from the currently scanned tuple or the inner/outer
tuples according to the target list associated with a node. A target list is a list of one or more (resdom
expr). The return value of expr is stored in the attribute specified by the resdom structure. ExecTarget-
List() calls ExecEvalExpr() to evaluate expressions in al the (resdom expr) pairs and stored the addresses
of the values in an list according to their attribute number. This list of attribute values and other informa-
tion are then passed to a C routine that constructs a new tuple containing the values.

ExecTargetList(targetlist, attributeType)
{
/* evaluate the exp in al (resdom expr) pairsin the
target list.
*/
for al (resdom expr) intarget list {
value = ExecEva Expr(expr);
insert value in attList;
}
[* construct the tuple */
return(formTuple(numberAttr, attributel nfo, attList));

7. Error Handling

When an error occurs during the execution of the query plan, the error handling routine,
| ExecError(errorMssg), is called. The convention adopted for the error message is as follow:

"RoutineName: the cause of error."

The error handling routine set the global variable, execErrorMssg, to indicate the type of error and then
forces control to the main routine using (err)R call. The err routine causes control to be passed to the pre-
vious call of errset with the return value nil. The error message is intercepted in the main routine which
call errset before executing the query plan:

if (errset(execute query plan) == nil) {
handle error condition;

}else{
return successfully;

}




