Postgres Architecture and Historical Lore
1. Introduction

In the beginning, there was Ingres. And then, after ways to improve the relational model made them-
selves known, and as ways to implement object-oriented techniques of data organization without com-
pletely throwing out time-honored ways of doing things became necessary, Postgres came into being.

The original release of Postgres was partially written in Franz Lisp and partially written in C. How-
ever, this proved to be a rather difficult environment in which to work and debug, and was quite a problem
for any potential users - it was painfully slow, and required expensive third-party licenses for the Lisp
environment. Because of this, Postgres was ported to C, and the first C-only release went out in late 1988.

Subsequent releases of the Postgres software have stressed improvements and complete rewrites of
various features including the Postgres rule system, the transaction system, the executor, access methods,
aswell as severa portsto different machines.

In the following discussions, a general overview of the interna structure of Postgres will be
presented, together with references to directories where these structures may be found. Thisisintended to
be a rather quick "tour" of the Postgres code, stressing general principles and ideas rather than details such
as function names. For that level of detail, the code itself is the best (and only) reference. It must be
admitted here that precision is being avoided as much to keep this document from rapidly getting out of
date as much as anything else.

2. General overview of Postgres at the communication level
The three main programs in the Postgres environment are the following:

User Applications
The "postmaster"
The Postgres backend

2.1. User Applications

A User Application is any program that uses LIBPQ to send and recieve data from a Postgres back-
end. A User Application can run on any host that can access the Postgres server from a TCP-IP network.
User applications included in the Postgres distribution include the terminal monitor (monitor), the database
creation program (createdb), and the database deletion program (destroydb).

2.2. Thepostmaster

The Postmaster handles most of the network initialization and connection activities. Once the Post-
master has handled the network stuff for a user application, it forks off a Postgres backend. Once thisis
done, the Postmaster is no longer involved, and goes back to waiting for connections from new user appli-
cations.

The first time the Postmaster is invoked, it alocates shared memory and semaphores used by
Postgres backends for locking and buffer pools.

The postmaster and the backend have to run on the database server, and the database directories
should be on local disks.

2.3. The Postgres backend

The Postgres backend is the true database engine. Once it has been forked by a postmaster, it is
ready to recieve queries from and send back answers to the user application.

For every user application, there is one Postgres backend forked by the Postmaster.
3. Overview of the Postgres Main Modules

In this section, the general program flow in Postgres will be discussed, with a brief description of
each program module, together with instructions on where to find the source code for that module. All
modules discussed here are part of the Postgres backend, and are relatively tightly coupled at this time.
The Postgres main modules include:

0 The Parser
0 The Query Rewrite Rule System

0 The Planner/Optimizer

0 The Executor

0 Thelnstance Level Rule System

0 The Access Methods

0 Housekeeping functions

0 Lock managers, cache utilities, and other miscellaneous functions.

In the execution of a Retrieve query, the following general flow is followed. Appends and other
gueries that access data (as opposed to "housekeeping" queries such as createdb, copy, etc) follow asimilar
flow.

(Initial Query Parse Tree)

< ———

+ +
| 2. Query Rewrite Rule System |
+ +

(Re-written Query Parse Tree)

< ————

+ +
| 3. Planner/Optimizer |
+ +

(Execution Plan Tree)

o +

| 4. Executor |

o +
(Open request)

S — + S +
| 5. Access Methods |<------------- | 4. Executor |
S + S +

| R
| (instance)
| | (instance)
v |
+ + |
| 6. Instance Level Rule System |--------- +
+ +
3.1. The Par ser

The Parser parses a Postquel query and generates a parse-tree. Aslong asa correct parse-tree is gen-
erated, other parsers for other query languages (ie SQL) can be "dropped in" to the Postgres system. The
Postquel query parser livesin:

“Isrclparser

3.2. TheQuery Rewriterule system

The Query Rewrite rule system is essentialy part of the parser. It generally works in the following
manner: If there is a query-rewrite rule on this class of instances, add the rule to the initial user query
through the use of boolean algebra. If not, just let the query go through.

The Query Rewrite rule system is used to implement not only obvious rules, but also versions, views,
and postquel procedures. The Query Rewrite system livesin:

“[src/rewrite

3.3. ThePlanner/Optimizer

The Planner/Optimizer takes a parse-tree and, using various cost functions and heuristics, generates
an execution plan. The Planner/Optimizer also "drives' the executor in that it calls it once to initiaize
things and then calls it subsequently to fetch instances. The planner livesin:

“Isrc/planner

3.4. The Executor

The first time the Executor isinvoked by the Planner, it initializes itself, the access methods, and the
instance-level rule system. In subsequent calls by the Planner, it walks the execution plan, fetching
instances by calling the access methods and checking them against the query qualification (which is part of
the execution plan) to see if they are part of the "answer” to the user query. Before doing this, however, it
checksto see if afetched instance triggers ainstance-level rule. The Executor livesin:

“/src/executor

3.5. The Access M ethods

These are the low-level routines that hit the disk and handle any indices (ie btrees, rtrees) that the
user may have defined. The Heap access method is used as the primary access method, and other access
methods are defined on indices. The Executor calls these routines to fetch instances - the Access Methods
then use a scanning mechanism defined by the Planner to get them and fetch them back to the executor.
The Access Methods primarily livein:

“Isrclaccess’common (Code used by all access methods)
“Isrclaccess/heap (Heap access method - the lowest level)

“Isrclaccess/{index index-btree index-ftree index-rtree}
(Code to handle indices, and
Various different types of indices)

“Isrclaccess/transam (The Postgres Transaction System)

3.6. Thelnstance-level Rule System

The Instance-level rule system operates in the following manner: in the "system data’ part of each
instance, there is afield for instance level "rule locks'. If afetched instance has arule lock, the associated
rule(s) is executed. Each instance-level rule has an associated execution plan, so the executor will be ran
from within the instance-level rule system. The modified instance, if any, is then handed back to the exe-
cutor for further processing. The Instance-level Rule System livesin:

“Isrc/rules/prs2 (Postgres Rule System 2 - the bulk of the rule system)
“Isrc/rules/stubs

3.7. Housekeeping Functions

For queries that are not directly related to retrieving or appending, such as creating databases,
defining new operators, rules, and registering user functions, the parser simply bypasses the planner and
executor and directly calls utility routines to handle these special commands. The code for these routinesis

“/src/commands

3.8. Lock managers, cache utilities, and other miscellaneous functions

There are numerous other functions that are used in Postgres; these include functions to manage sys-
tem attributes, lock managers, buffer and cache managers, hash table handlers, as well as the system built-
in functions for pre-defined types. For lack of anything better to call these, these live in the UTIL module,
and livein:

“Isrc/utilsg/adt (built-in functions)

“Isrc/utils/cache (cache handlers)

“Isrc/utilgerror (error handlers)

“Isrc/utils/fmgr (the "Function Manager" - handles ADT’ s and user functions)
“Jsrc/utils/hash (hash table handlers)

“Isrc/utilg/init (initialization code)

“/src/utilYmmgr (memory manager code)

“/src/utilg/sort (sort code)

“Isrc/utilstime (time range qualification handlers)

3.9. '"Main’ Programs
The "main programs"' for the Postgres backend, the Postmaster, and other utilities like the vacuum
daemon, etc livein

“Isrc/support (everything but the backend)
“Isrcltcop (the backend main program - in postgres.c)

4. Postgresinternal data structures

Since Postgres was originally written in Lisp, and for a time was a Lisp-C hybrid, many of itsinter-
nal data structures are rather opaque to the C programmer. However, they are not overly difficult to under-
stand and use once the basic ideas behind them are made clear. The discussion in this section will attempt
to make these ideas clear, without dwelling excessively on details and trivia.

4.1. The CONS-cell abstraction

Internally, Postgres passes data about primarily in trees made of Lisp-like CONS-cell structures.
These CONS-cells can point to interesting data only, to interesting data and another CONS-cell, or to two
other CONS-cells. In particualar, parse-trees and execution plans are encoded in these CONS-cell struc-
tures. Ultility functions for handling the Lisp-like structures are in

“Isrellib/C

4.2. The Postgres Node System

A collection of data structures that is central to most Postgres operations is the Postgres "node sys-
tem". Thisisacollection of data structures that encode various directives for the executor and planner, as
well as numerous other "utility” purposes. Nodes are declared using a C++-like syntax that is used by a
shell script to generate initialization and accessor functions. C preprocessor magic is used to ultimately
turn this declaration into an ordinary C typedef.

4.2.1. An Example Node
An example of a Postgres node is the following:
class (Oper) public (Expr) {

[* private: */
inherits(Expr);
Instanceld opno;
Instanceld opid;
bool oprelationlevel;
Instanceld opresulttype;

int opsize;

FunctionCachePtr op_fcache;
[* public: */
h

(this particular node is from “/src/lib/H/nodes/primnodes.h)

This particular node is used in execution plans to indicate that an operator must be executed. The
"inherits’ macro is used to inherit fields from the previously defined Expr (expression) node, and the expli-
cit fields are fields that are unique to the Oper node itself. Declarations for all Postgres nodes are in header
filesin

“Isrc/lib/H/nodes

As stated earlier, shell scripts read the node declarations and generate initializer and accessor func-
tions for them. Aslong as the above declaration scheme is used, these scripts will work for new nodes as
well. These scriptsarein

“Isrc/lib/Gen

4.2.2. Usage of the Node System

The different nodes are primarily used to give directives to the Executor in the execution plan.
Nodes are used to indicate the scan type to be used, whether sorting is to be used or not, and are used to
indicate how query qualifications are to be handled.

4.2.3. Printing Nodes and Node Structures

The best place to figure out what a structure using nodes and CONS-cells is like is to look carefully
at the codein

“Isrcllib/C

The code in this directory prints node structures into strings and dumps them into strings. This code
is primarily used by the Instance Level Rule System to save and restore execution plans that are associated
with rules, which it stores on disk in a system classin string format. The function

LispDisplay(CONS-cell, 0)

displays the contents of a CONS-cell structure in a human readable but rather unfriendly format.
4.3. Other Important Data Structures

Aside from the CONS-cell and Node structures, there are very few other important global data struc-
tures, athough there are numerous local structures that are important if one is modifying variosu functions.
One exception is the HeapTuple data structure and its associated structures, since it is the type returned by
virtualy al the access methods, including those that handle system classes. The declaration for the Heap-
Tupletypeisin

“Isrclaccess/htup.h

5. The Postgres Function M anager

An integral part of Postgres is its ability to use user-defined functions and operators. The Postgres
Function Manager is responsible for handling this aspect of Postgres.

5.1. TheFunction Manager

The Function Manager is used by all parts of Postgres that examine the internals of user data. It con-
sists of severa parts:

0 The Function Manager Interface
o Data structures containing information about dynamically loaded files
0 The dynamic loader

5.1.1. TheFunction Manager Interface

The basic reason for the existance of the Function Manager is that due to the nature of user-defined
functions, calls to them cannot be hardcoded anywere in the Postgres backend. A mechanism must exist
which obtains addresses of user-defined and builtin functions (there is very little difference between these),
handles the task of calling user-defined functions with appropriate arguments, and returning an appropriate
value. The Function Manager Interface provides the abstraction from the details of calling user-defined
functions from the rest of Postgres. The source to the Function Manager Interfaceisin

“Isrclutils/fmgr/fmgr.c

5.1.2. Data Structuresused for Function Execution

In the Function Manager, there are two in-memory data structures used for looking up function
addresses. Oneis an array of builtin functions that is sorted by function OID. Another isalist of dynami-
cally loaded files, which contains the addresses of each function in these files. Functions that populate and
access these data structures are in

“Isrclutils/fmgr/dfmgr.c
“/src/port/* /dynloader.c
and the data structures themselves are defined in

“Isrc/lib/H/utils/dynamic_loader.h
“Isrcl/lib/H/utils/fmgr.h
“Jsrc/lib/H/utilsg/builtins.h
“Isrcl/lib/H/catalog/pg_type.h

and
“Isrclutilsifmgr/fmgr.c

5.1.3. The Dynamic L oader

The Dynamic Loader loads a user-defined function from a file and determines the names and
addresses of each function in that file. It then populates appropriate data structures with this information.
The source to the Dynamic Loader isin

“Isrclutils/fmgr/dfmgr.c
“/src/port/* /dynloader.c

5.2. General Algorithm

The Postgres Function Manager uses the following general algorithm for determining the addresses
of functions. Once the address is found, the Function Manager Interface has functions which actually call
the function.

Generalagorithm
Isfunctionin builtin list? If itis, return its address from thislist

If the function is not in the list of builtins, it is a dynamically loaded function. If so, look for the
function name in the list of dynamically loaded functions. If itis, return its address.

If the function has not yet been found, dynamically load it and determine its address. Return this
address.

6. How does a user-defined function get executed?

The program flow discussed in Section 3 - with the exception of the rule systems - is essentially simi-
lar to that of any data manager. How, then, is Postgres so different? The main differences between
Postgres and other data managers is in its concept of what data is. In Postgres, data is whatever the user
saysit is - the Postgres backend itself imposes no arbitrary definitions on data other than that it is a blob of
memory of aknown size.

The user defines what data is by defining functions and binding them to various operators. These
operators are then bound to user-defined types, and thus the system is complete. In this section, how a
user-defined function is executed will be discussed.

For the sake of this discussion (since operators will be discussed later), assume that Postgres is
operating on the following query

* retrieve (emp.all) where overpaid(emp.salary)
and that overpaid(x) is a user-defined function taking an integer as an argument.

Initially, the Parser will walk this query, and generate a parse tree. While doing this, it will examine
the following system classes:

0 PG_PROC - information about Postgres functionsis stored here.
0 PG_TYPE - information about Postgres typesis stored here.

PG_PROC contains information about the C file containing the function (if any), its return value, its
number of arguments, its argument types, and other information. The Parser will also check PG_TYPE to
make sure that emp.salary is an appropriate argument for overpaid(). Once everything has been found to
be proper, appropriate nodes containing information about the function will be inserted into the parsetree.

After the Planner has turned the parsetree into an execution plan, the Executor will walk the plan,
executing overpaid() on each instance fetched from the "emp" class.

The first time overpaid() is executed, the Executor will call the Postgres Function Manager to obtain
the address of the function. (See discussion in Section 5 for details on the Function Manager). In subse-
quent calls, it will simply give Function Manager the address of the function so it can be called.

A user function like overpaid() is "registered" in Postgres using the Postquel
DEFINE C FUNCTION

query.
7. How doesa User Defined Operator get executed?

When a user defines an operator, a user-defined function is associated with it. Therefore, execution
of an operator is little different than execution of a function, with only one major exception: the Planner
knows how to optimize operator queries but does not know how to deal with functions.

The major system class dealing with operatorsis
PG_OPERATOR
Additionally, the same classes discussed in Section 6 are used in the execution of operators. Binding
of user functions to operators is handled with the Postquel
DEFINE OPERATOR

query.
8. How isa User Defined Type handled?

A User Defined Type minimally consists of two functions, the input function for the type, and the
output function for the type. Additionally, ordering (less than, greater than) and equality functions are
necessary if the type isto be used in qualified queries, or if an index isto be defined on the type.

In the system class
PG TYPE

isinformation related to user-defined types, such as
0 The names of the registered functions for input and output of the type.
0 Thesize of the type

The Postquel query
DEFINE TYPE

populates the PG_TYPE class.

