
POSTGRES INSTALLATION INSTRUCTIONS
C-Only Release 4.0.1

Document Overview

Document Overview
Introduction
Site Requirements

Hardware
Software
Distribution Tape
Expertise
Configuration

Operating System
Disk Partition
Swap Partition
Kernel
Lisp

Installing POSTGRES

Overview
Preparation

Finding Space for POSTGRES

Creating /usr/postgres
Creating the ‘‘postgres’’ user

Loading
Loading POSTGRES

Configuration
Kernel reconfiguration
Configuring POSTGRES

Compiling
Compiling POSTGRES

Creating the initial database
Testing

Testing POSTGRES

Running POSTGRES

The POSTGRES Postmaster
The POSTGRES Terminal Monitor
The POSTGRES Backend
POSTGRES Support Programs

Optional Installation
Installing LIBPQ, the POSTGRES frontend library
Performance Tuning
Demo Database
Minimal Installation

Documentation
Printing the Manual and Reference

If you do not have a Postscript printer
Printing the Technical Reports and Tutorials

If the directory has a makefile
Miscellaneous

Bug Reports
Known Bug List
Consulting
Postgres BBS



1. Introduction

This document gives installation instructions for the POSTGRES database system under development
at the University of California, Berkeley. POSTGRES is distributed in source code format and is the property
of the Regents of the University of California. However, the University will grant unlimited commerciali-
zation rights for any derived work on the condition that it obtain an educational license to the derived work.
For further information, consult the Berkeley Campus Software Office, 295 Evans Hall, University of Cali-
fornia, Berkeley, CA 94720.

The University and the POSTGRES development group provide no warranty as to the fitness of the
code for any purpose whatsoever, and cannot guarantee to assist in fixing problems. This is *unsupported*
software.

2. Site Requirements

2.1. Hardware

POSTGRES currently has been tested by the Postgres development team on Sun Microsystems 3/xx
family of processors with SunOS 3.4, or 3.5, and 4.0, and Sparc architecture machines (Sparcstation and
Sun 4) running SunOS 4.0 and higher. Postgres is also supported on DECstations 3100’s and 5000’s run-
ning Ultrix 4.0 and higher. Tested but unsupported ports for DECstation Ultrix lower than 4.0 are
included. These ports are unsupported for the following reasons: the old Ultrix dynamic loader is quite
buggy. In order to use POSTGRES, your machine should have at least 8 megabytes of memory and you will
require at least 45 megabytes of disk space to hold source, binaries, and user databases. If you choose to
compile POSTGRES for source-level debugging, you will need roughly twice as much disk space. See the
section on compilation for details.

The DECstation version requires a kernel which allows 4 megabytes of shared memory.

2.2. Software

This implementation of POSTGRES is completely in C. The distribution contains no Lisp or C++ code.

2.3. Distribution tape

These instructions assume you have a POSTGRES Version 4.0.1 distribution tape (in either 9 track,
SCSI cartridge, or TK50 cartridge format) or a POSTGRES tar file.

2.4. Expertise

Once a site is properly configured and POSTGRES is properly installed, very little UNIX expertise is
required to maintain things. However, initially setting things up for your site to run POSTGRES may be
difficult and we advise that the person installing POSTGRES be familiar with the various system administra-
tion procedures. Also note that various steps require superuser authority on the system, so we advise that
your site’s system administrator read this document also.

2.5. Configuration

This section briefly describes the configuration you need to run POSTGRES. Read this to familiarize
yourself with the procedure. Detailed instructions for making appropriate modifications to your system are
given later in this document.

2.5.1. Operating System

POSTGRES expects things to be configured for BSD by default. If the default on your site is to use the
SunOS SysV compiler and libraries then you may have to make some changes to this procedure before
compiling POSTGRES.

One exception to this rule is that we use Sun’s SysV-compatible make to build the system. This is
the version of make that is installed in both the BSD and SysV environments on Suns, so this should pose
no problems on these platforms. We have no problems on DECstations either.

2



2.5.2. Disk Partition

POSTGRES requires 45 megabytes of disk space, preferably on a single partition. If you don’t have
enough space, it is still possible to compile and run POSTGRES but you will have to modify the installation
scripts.

2.5.3. Kernel

POSTGRES makes use of the optional System V shared memory operations provided by SunOS, DEC
Ultrix, and Dynix, which require a properly configured kernel which is in general different than the
factory-shipped "generic" kernel. See the section on kernel configuration for details.

3. Installing POSTGRES

POSTGRES installation consists of the following steps:

g Preparation

g Loading

g Configuration

g Compilation

g Testing

Each of these steps is described below. It is advised that you read over each of these steps carefully before
beginning the installation.

3.1. Step 1 −− Preparation

Some of the tasks involved in this step normally fall in the domain of the site’s system administrator
and may require superuser authority. If possible, we advise you to have your system administrator perform
these steps.

3.1.1. Find a good place for POSTGRES

You should locate a disk partition with at least 45 megabytes of free space available for POSTGRES.
If you haven’t any single partition with 25 megabytes free, you might have to spread apart the POSTGRES

directories across several partitions, and glue them together with symbolic links.

3.1.2. Creating the POSTGRES directory

Once you have located a partition with enough space, create a directory called ‘‘postgres’’ some-
place on this partition. Then cd to this directory and type pwd. This is the full path of the directory you
will install postgres in. Write it down in preparation for the next step. For example:

# df
Filesystem kbytes used avail capacity Mounted on
/dev/xy0a 8421 6703 875 88% /
/dev/xy0f 10829 6743 3003 69% /pub.MC68020
/dev/xy2h 110811 81181 18548 81% /usr3
/dev/xy2g 221279 167405 31746 84% /b
/dev/xy1g 221279 138365 60786 69% /public
/dev/xy1a 8179 944 6417 13% /tmp
/dev/xy0h 119999 101623 6376 94% /usr.MC68020
/dev/xy0g 156033 135499 4930 96% /usr2
/dev/rf0d 539421 465026 20452 96% /a

/public looks like a good place (it has 60 megs free) so we decide
to create the postgres directory there...

# cd /public
# mkdir postgres
# cd postgres

3



# pwd
/public/postgres
#

3.2. Creating /usr/postgres

POSTGRES expects to be logically installed in a directory called ‘‘/usr/postgres’’, so you must create a
symbolic link from /usr/postgres to whatever directory you created in the previous step. In our example,
we would now type:

# ln -s /public/postgres /usr/postgres

3.3. Creating the ‘‘postgres’’ user

Finally, we need to create a user called ‘‘postgres’’ whose shell is /bin/csh and whose home directory
is /usr/postgres. This can be done using the "adduser" procedures particular to your platform and site. See
your system administration manual for details.

Note:

Due to a bug in this release, the "postgres" user must be user 6 (six). Otherwise, you may encounter
problems with backends hanging, etc. See the Release Notes (described in Section 6.2 of this document)
for instructions on how to get around this problem if it causes problems at your site. If it is not convienent
for you to make the "postgres" user userid 6, complete the below instructions on Loading POSTGRES, but
read the Release Notes notes on how to get around this problem before continuing on to the
Configuration section.

3.4. Step 2 - Loading POSTGRES

After completing step 1 (Preparation), you should be ready to load the POSTGRES files onto your sys-
tem. To do this, you will need either a distribution tape or a POSTGRES tar file.

If you are loading POSTGRES from a tape, follow these instructions; if you are loading from a tar file
obtained via FTP, skip to the section "Loading POSTGRES from a Tar File".

3.4.1. Loading POSTGRES from a Tape

Login as postgres.

3. Run "tar" with the "extract, verbose, file" options:

% tar xvf <tape-device>

where <tape-device> is the name for your tape device, i.e., /dev/rmt0, /dev/rst8, etc.

The file "postgres-v4r0r1.tar.Z" will appear in your POSTGRES home directory. You may need to re-
wind your tape to get it out of your tape drive - see your system administrator for instructions.

Please proceed to the section "Loading POSTGRES from a Tar File".

3.5. Loading POSTGRES from a Tar File

If you are not logged in as POSTGRES already, log in as POSTGRES. Make sure your current working
directory is the POSTGRES home directory, and that the POSTGRES tar file is there. For the purpose of this
discussion, the POSTGRES tar file will be called

postgres-v4r0r1.tar.Z

Uncompress the tar file.

% uncompress postgres-v4r0r1.tar.Z

A larger file should now be in the POSTGRES home directory, and the ’.Z’ ending should be gone, so it
is now named

postgres-v4r0r1.tar

4



Extract POSTGRES from the tar file, using the "extract, verbose, file" options:

% tar xvf postgres-v4r0r1.tar

Lots of file names and such should appear on the screen. This step may take several minutes.

Now do an "ls":

The output of the ls should look something like:

COPYRIGHT bench/ demo/ newconf/ src/
README doc/ ref/ test/ sample/ video/

At this point you have loaded the POSTGRES files. Other directories will be created by the installation
process.

3.6. Step 3 - Configuration

This step requires familiarity with configuring a UNIX kernel. If you are unfamiliar with this pro-
cedure, we advise you to read the section on configuring a kernel in the SunOS or DEC system administra-
tion manual carefully. This task requires superuser authority and should probably not be done without the
assistance of your system administrator. We assume that whoever undergoes this procedure has an under-
standing of the process and procedures involved.

POSTGRES uses shared memory segments which must be compiled into the kernel of the host which
will act as the POSTGRES server. If you try to run a postgres backend process on a machine without enough
shared memory, the backend will abort with an error message.

This is by far the most complicated part of the installation so these steps should be performed by
someone with system administration experience. Again, we advise you to consult the system administra-
tion section of your manual before doing this step.

For a brief discussion of shared memory, you may want to consult the Man pages for shmget(),
shmop(), shmctl(), etc. Now proceed to the appropriate section for your machine.

3.6.1. Kernel reconfiguration for Suns and Sparcs

In order to reconfigure Sun or Sparc kernel, you will have to become root and add some lines to
/usr/sys/conf (your kernel config file) and /usr/sys/conf/param.c (your kernel parameters file). We strongly
advise you to make a spare copy of your system’s original config and parameter files before you make any
changes.

The following lines should be added to /usr/sys/conf/KERNEL:

options IPCMESSAGE # SystemV IPC Message Facility
options IPCSEMAPHORE # SystemV IPC Semaphore Facility
options IPCSHMEM # SystemV IPC Shared-Memory Facility
options EMOREIPCS # more semaphores and shared memory (for 8M)

At Berkeley, we substitute the line:

options EMOREIPCS # more semaphores and shared memory (for 8M)

with the line:

options TTMOREIPCS # more semaphores and shared memory (for 32M)

to allocate more shared memory so that we can run more POSTGRES backends at the same time. Either of
the lines will result in a kernel that has enough shared memory allocated.

Also add the following lines to the top of /usr/sys/conf/param.c:

/*
* LOCAL DEFINITIONS START

5



*/

#ifdef EMORESEMS
#define EMOREIPCS
#endif /* defined(EMORESEMS) */

#ifdef TTMORESEMS
#define TTMOREIPCS
#endif /* defined(TTMORESEMS) */

#ifdef EMOREIPCS
#define SEMMNI 30 /* # of semaphore identifiers */
#define SEMMNS 180 /* # of semaphores in system */
#define SEMUME 10 /* max # of undo entries per process */
#define SEMMNU 30 /* # of undo structures in system */

#define SHMPOOL 1536 /* max total shared memory system wide (in Kbytes) */
#define SHMSEG 6 /* max attached shared memory segments per process */
#define SHMMNI 100 /* # of shared memory identifiers */
#endif /* defined(EMOREIPCS) */

#ifdef TTMOREIPCS
#define SEMMNI 60 /* # of semaphore identifiers */
#define SEMMNS 384 /* # of semaphores in system */
#define SEMUME 10 /* max # of undo entries per process */
#define SEMMNU 30 /* # of undo structures in system */

#define SHMPOOL 8192 /* max total shared memory system wide (in Kbytes) */
#define SHMSEG 6 /* max attached shared memory segments per process */
#define SHMMNI 100 /* # of shared memory identifiers */
#endif /* defined(TTMOREIPCS) */

/*
* LOCAL DEFINITIONS END
*/

After adding these lines, run config over the config file, install the new kernel, and reboot.

3.6.2. Kernel reconfiguration for DECs

In order to reconfigure your DECstation 3100 or 5000 Ultrix kernel, you will have to become root
and add some lines to /usr/sys/conf (your kernel config file).

The following lines should be added to /usr/sys/conf/KERNEL:

smmax 256
smseg 12
smbrk 1024

After adding these lines, run config over the configuration file, install the new kernel, and reboot.

3.7. Configuring POSTGRES

This release of POSTGRES may require some configuration. For performance reasons, Postgres is by
default compiled with the optimizer enabled and internal debugging assertions disabled. If you plan to
modify Postgres, you may want to enable debugging (note that this will take Postgres up to about 50 megs

6



from about 45 megs otherwise), and enable internal debugging assertions.

To enable compiler directives, read the file ./newconf/CONFIG/README for instructions on what
to change. Now to edit the configuration file,

% cd /usr/postgres/newconf/CONFIG

% vi config.mk.<port>

where <port>is

dec − DS3100 running Ultrix LOWER than 4.0
ultrix4 − DS3100, 5000, 5500, etc. running Ultrix 4.0 or higher
sun − Sun 3 running SunOS 3.4 or 3.5
sunos4 − Sun 3 running SunOS 4.0 or higher
sparc − Sparcstation or Sun 4

The only thing we recommend changing is the GCFLAGS variable. Remember the port name used here
as it is necessary for Step 4.

3.8. Step 4 - Compiling and Installing POSTGRES Now you are ready to install Postgres. To do so, sim-
ply execute the following commands:

% cd ˜postgres/newconf
% setenv POSTGRESHOME ˜postgres
% ./Make install

Make install will ask you for the port you wish to use. Use the port name that you used in Configuring
POSTGRES. You will also be asked for the name of the object tree directory; the default is
˜postgres/obj.<port>. (throughout the rest of this document obj.<port> refers to the object tree directory).
This step will take from about 40 minutes on Sparc II or DEC 5000 class machines to several hours on Sun
3’s. The POSTGRESHOME environment variable is the home directory of the Postgres user. In the
course of the installation process, the Postgres bin and data directories will be created and populated.

Make is a C shell script that runs make with Makefiles that are constructed on the fly. If you have
problems at this point, it is possible that your .cshrc file does strange things — changes directories, sets or
unsets environment variables, and so on.

You should see no errors during this phase, except possibly for warnings (which can be ignored)
when compiling the output of yacc and lex.

3.8.1. Creating the initial database

POSTGRES databases are stored in the directory ˜postgres/data. After you have compiled POSTGRES,
you will need to create the initial database. To do this, type

% setenv POSTGRESHOME ˜postgres
% ˜postgres/bin/postmaster &
% ˜postgres/bin/createdb postgres
% kill %˜postgres/bin/postmaster

This will create the bootstrap template database, from which the database ‘‘postgres’’ will be generated.
The postmaster program will be discussed later - however, you must have it running in order to run
createdb. If several users wish to use POSTGRES, we advise you to create additional databases, one for each
user. This can be done by running createdb with the username as the first argument. For example, to
create a database for the user ‘‘bill’’, type

% ˜postgres/bin/createdb bill

3.9. Step 4 - Testing

3.9.1. Testing POSTGRES

After compiling the POSTGRES backend and support programs and creating the initial database, you
should test your compilation with the following. Commands you should type appear in boldface.

7



% ˜postgres/bin/postgres
---debug info---
Quiet = f
Noversion = f
override = f
DatabaseName = [postgres]
----------------

**** Transaction System Active ****
InitPostgres()..

POSTGRES backend interactive interface
$Revision: 1.25 $ $Date: 1992/08/27 06:08:25 $

StartTransactionCommand() at Thu Nov 2 15:43:35 1989
> retrieve (pg_user.all)

now in make_Var
relation = pg_user, attr = usecatupd
vnum = 1

...
lots of debugging output...

---- parser outputs :
((1 retrieve nil (("pg_user" 86 0 nil nil ))0 nil )((#S(resdom :resno 1
:restype 19 :reslen 16 :resname "usename" :reskey 0 :reskeyop 0)#S(var

...
lots more debugging output...

ProcessQuery() at Thu Nov 2 15:43:50 1989

blank
1: usename (typeid = 19, len = 16, byval = f)
2: usesysid (typeid = 21, len = 2, byval = t)
3: usecreatedb (typeid = 16, len = 1, byval = t)
4: usetrace (typeid = 16, len = 1, byval = t)
5: usesuper (typeid = 16, len = 1, byval = t)
6: usecatupd (typeid = 16, len = 1, byval = t)

----
1: usename = "postgres" (typeid = 19, len = 16, byval = f)
2: usesysid = "6" (typeid = 21, len = 2, byval = t)
3: usecreatedb = "t" (typeid = 16, len = 1, byval = t)
4: usetrace = "t" (typeid = 16, len = 1, byval = t)
5: usesuper = "t" (typeid = 16, len = 1, byval = t)
6: usecatupd = "t" (typeid = 16, len = 1, byval = t)

----
1: usename = "goh" (typeid = 19, len = 16, byval = f)
2: usesysid = "234" (typeid = 21, len = 2, byval = t)
3: usecreatedb = "t" (typeid = 16, len = 1, byval = t)
4: usetrace = "t" (typeid = 16, len = 1, byval = t)
5: usesuper = "t" (typeid = 16, len = 1, byval = t)
6: usecatupd = "t" (typeid = 16, len = 1, byval = t)

----
...

CommitTransactionCommand() at Thu Nov 2 15:43:51 1989

StartTransactionCommand() at Thu Nov 2 15:43:51 1989
It works!

8



The above response is an example of the raw output
generated by the backend. Your actual output may be slightly
different. Normally, you would use a
terminal monitor to talk to the backend instead.
To leave the backend, type <ctrl-D>:

> ˆD
%

4. Running POSTGRES

POSTGRES is designed to be a multiuser system. In practice, POSTGRES consists of three (or more)
processes:

g the postmaster,

g the terminal monitor, and

g the backend.

Users are expected to use the terminal monitor. The terminal monitor sends commands to the postmaster
which forwards commands to a backend. If you just completed step 3, then you have already been intro-
duced to the POSTGRES backend, so we’ll talk about the other two processes now.

4.1. The POSTGRES Postmaster

The postmaster is a process which manages communication between the user’s terminal monitor and
a POSTGRES backend. Without a running postmaster, the terminal monitor will not be able to connect to a
backend. To start the postmaster, type:

% cd ˜postgres/bin
% setenv POSTGRESHOME ˜postgres
% postmaster &

Here we are using the default parameters for the postmaster. For more details, consult the Reference.

4.2. The POSTGRES Terminal Monitor

The POSTGRES terminal monitor is a front-end user interface to the POSTGRES backend. To start a ter-
minal monitor, type

% monitor <database>

Database is the name of the database you want to use. Now we will run the monitor:

Welcome to the C POSTGRES terminal monitor

Go
*

The ‘‘*’’ is the terminal monitor prompt. We are now
talking to the backend, so let’s send a simple test
query: list the names and user ids of the postgres users.
We terminate the query with a \g — the ‘‘go’’ command
to the terminal monitor.

*retrieve (u.usename, u.usesysid) from u in pg_user
\g

Query sent to backend is "retrieve (u.usename, u.usesysid) from u in pg_user"

9



-----------------------------
| usename | usesysid |
-----------------------------
| postgres | 6 |
-----------------------------
| mike | 799 |
-----------------------------
| sp | 1511 |
-----------------------------
| jhingran | 943 |
-----------------------------
| cimarron | 2359 |
-----------------------------
| goh | 1994 |
-----------------------------
| ong | 2802 |
-----------------------------
| hong | 2469 |
-----------------------------
| mao | 1806 |
-----------------------------
| margo | 2697 |
-----------------------------
| sullivan | 1517 |
-----------------------------
| kemnitz | 3491 |
-----------------------------
| choi | 3898 |
-----------------------------
| mer | 3665 |
-----------------------------

Go

Okay, this worked, too. Now we’ll quit.

*\q I live to serve you. %

4.3. The POSTGRES Backend

The POSTGRES backend is the process which does all the ‘‘real’’ work. This process is started by the
postmaster when the postmaster receives a connection from a terminal monitor, so you should not normally
need to start up the backend yourself. Should you wish to start the backend and talk to it directly (without
a terminal monitor) you can do this by typing:

% ˜postgres/bin/postgres database

where database is the name of the database you wish to use. If you run a backend in this manner, you will
be talking to the backend parser directly. We recommend using the terminal monitor; if you are using
Postgres as a multiuser system, running the backend can result in locking failures and corrupt databases, as
the Postmaster handles shared resources such as semaphores and shared memory. In addition, returned
tuples are displayed more usefully and input is buffered better. The backend is used interactively primarily
during debugging.

4.4. POSTGRES Support Programs

Included in POSTGRES are a handful of support programs. Most of these are used internally by the
system but here is a list of them for your information.

initdb − creates the initial template database

10



createdb − creates new postgres databases
createdb.sh − creates new postgres databases - old version
destroydb − destroys postgres databases
ipcclean − frees up garbage shared memory from failed backends
pg_version − make version numbers for createdb
pg_id − gets user id’s for createdb
pg_uid − gets postgres user id for initializing the template database
pagedoc − disk page doctor
shmemdoc − shared memory buffer pool doctor

5. Optional Installation

5.1. Installing LIBPQ, the POSTGRES frontend library

The file ˜postgres/obj.<port>/libpq.a is created when you compile the system. This library contains
various routines intended for use by frontend programs. You use this library if you want to execute
Postgres queries from a C program. If you plan on doing software development, you may wish to copy this
file to /usr/lib so that the C compiler can reference it with -lpq. To do this, type:

# cp ˜postgres/obj.<port>/libpq.a /usr/lib

5.2. Demo Database

In ˜postgres/demo are files to be included by the terminal monitor to set up a demo database. Addi-
tional files demonstrate inheritance, historical queries, abstract data types, and various other features of
POSTGRES. A description of the demo database can be found in ˜postgres/demo/DEMO-README.

5.3. Video Demo Database

In ˜postgres/video are files that were used in the 1991 Postgres SIGMOD video. These files demon-
strate both the instance level and query rewrite rule systems, views, versions, and spatial queries using R-
Tree indices. A description of the video database can be found in ˜postgres/video/VIDEO-README.

5.4. Wisconsin Benchmark Database

In ˜postgres/bench are files which are the queries used in the Postgres version of the Wisconsin
benchmark. The Wisconsin benchmark illustrates "basic" relational performance using B-Tree indices on
nontrivial amounts of data. Instructions for running the benchmark are in ˜postgres/bench/WISC-
README.

5.5. Minimal Installation

The directories (in ˜postgres) necessary for a minimal running system are:

bin/ the binary programs comprising POSTGRES

data/ support files and user created databases
files/ database initialization scripts

When compiled using the "default" compilation options as shipped, (ie optimization and no debugging),
these directories will take up about 5 Mbytes. The following directories are necessary if Postgres is to ever
be recompiled.

newconf/ the POSTGRES configuration directory
obj.<port>/ compiled POSTGRES object files
src/ POSTGRES source files

When compiled using the "defaults", these directories will use about 16 Mbytes. Additional Postgres
directories are as follows:

demo/ demo database scripts
video/ video demo database scripts
bench/ Wisconsin benchmark database scripts
sample/ Sample LIBPQ application

11



doc/ postgres technical reports and the POSTGRES Manual
ref/ POSTGRES Reference source

These directories take up about 2 Mbytes, and can be reduced to about 200 Kbytes if the Postscript
files in doc and ref are deleted.

We do not recommend deleting these unless absolutely necessary.

6. Documentation

6.1. Printing the Manual

The POSTGRES manual is now in the file

˜postgres/doc/manual.me

This manual replaces the old tutorials, which are no longer distributed. It is recommended that you read
this manual before making extensive use of POSTGRES. A Postscript version of this manual is in

˜postgres/doc/psdump/manual.ps

6.2. Printing the Reference

The Reference is the document which details the exact syntax used by POSTGRES commands, and
provides interface definitions for LIBPQ and large objects. It is intended as a reference and should not be
read cover to cover.

If you have a Postscript printer, you can print the Reference by changing directory to the

˜postgres/ref

directory, where you will find a Postscript file called ref.t. This file can be simply sent to the printer in
whatever fashion your site uses to print Postscript files.

If you do not have a Postscript printer, or you have font problems, etc., the ref directory contains a
/bin/sh script called "genref". Edit this script and set the appropriate parameters for printing at your site in
this script, and then execute it by typing

% genref

This script will not actually try to send the job to the printer - rather it will create the ref.t output file. You
can then print the manual by sending this file directly to the printer with the regular printing commands
used by your site.

If genref fails, you may not have the grn preprocessor. This preprocessor for troff allows pictures
drawn with the gremlin graphics editor to be printed using a "troff" command. A script called eatgrn is
provided, which will cause genref to ignore grn directives and print anyway - this will result in the refer-
ence being printed without illustrations. There is only one illustration, so this should not be too much of a
problem.

6.2.1. If you do not have a Postscript printer

If you do not have a Postscript printer, change the psroff command in the genref script to the text
formatting command you use at your site, typically nroff, troff, or ditroff. As stated above, use the eatgrn
script if you do not have grn. Output suitable for a line-printer can be created using nroff.

6.3. Printing the Technical Reports and Tutorials

Postscript versions of the Postgres technical reports, tutorials, and release notes are in the directory
˜postgres/doc/psdump. Some files are not included in Postscript form and are simply regular files - read
the file ˜postgres/doc/README for details.

The /bin/sh script ˜postgres/doc/print contains site-specific printing parameters, and understands the
file extension protocol used in the doc directory. Once you set the site-specific parameters for printing in
this script, you should be able to print all the files in the doc easily, by executing

% print <filename>

from the ˜postgres/doc directory.

12



Unlike the genref script described above, this script will send the job directly to the printer. If you
do not have the grn utility described above, you should use the eatgrn script here as well. For technical
reports which require make, continue to the following section.

6.3.1. If the directory has a makefile

A couple of the technical reports use makefiles to generate their printable versions rather than the
print script. If the subdirectory has a makefile, you will have to change the site-specific parameters in the
makefile, run

% make

and then it will either print or create a printable file. Note that if the makefile uses grn and you do not have
access to this utility, you can use the eatgrn script here as well.

6.4. The 4.0.1 Release Notes

The Postgres 4.0.1 Release Notes are in the file ˜postgres/doc/release4.0.1.me. Before working
extensively with Postgres, you should read this file to find new features, known bugs, and other useful
information about this release.

As described above, you can print this file by typing

% print ˜postgres/doc/release4.0.1.me

7. Miscellaneous

7.1. Bug reports

If you find a bug with POSTGRES, please send mail to

bug-postgres@postgres.Berkeley.EDU
or

(ucbvax!postgres!bug-postgres)

describing as precisely as possible the command that caused the problem, instructions on how to repeat the
bug, and a script showing the bug.

7.2. Known Bugs List

A Known Bugs List with suggested workarounds is maintained on the machine
postgres.berkeley.edu in the file pub/postgres-v4r0r1.bugs. The Internet address of this machine is
128.32.149.1, and if you cannot access Postgres, this file can be sent to you via e-mail.

7.3. Consulting

This software is unsupported, public domain software. Although we are interested in feedback, it is
impossible for us to make any commitment to support in a research environment.

If you do want to talk directly to the Postgres group, electronic mail is strongly preferred. We can be
reached via the Internet as

post_questions@postgres.Berkeley.EDU
or

(ucbvax!postgres!post_questions)

We can also be reached at (415) 642-7520, Monday through Friday, between 1 and 4 PM Pacific Time.

7.4. Postgres BBS A mailing list for Postgres announcements and discussion is available for anyone who
is interested. If you wish to subscribe to this mailing list, send mail to

postgres-request@postgres.Berkeley.EDU

with "Add" as the subject. Note that mail sent to this address is processed electronically.

The mailing list itself is called

postgres@postgres.Berkeley.EDU

13



and all mail sent to this address will be will be routed to the mailing list membership.

14


