OPERATOR OVERLOADING

In C++, you can use the 'operator' keyword to overload normal C operators to perform basic functions like adding and
subtracting the way you would normally, by using the '+' and '-' symbols. Thus, instead of creating a function to do
something like this:

Vector = myAddTwoVectors(Vectorl, Vector2);
you would overload the '+' operator so that the above statement would look like this:
Vector = Vectorl + Vector2;

The mechanics for operator overloading are shown in the following code segment:

/I vector.cp
#include <iostream.h>

class Vector

/I friend needed to overload ios operators

friend ostream &operator<<(ostream &o0s, const Vector &V);
/I note that implicit 'this' object not sent to friend

/I function outside scope of class

public:
/I default constructor
Vector() x=0; y=0; /[inline
/I shorthand assignment constructor
Vector(const float a, const float b) : x(a), y(b)
/I overload operators
Vector operator+(const Vector &V);
Vector &operator+=(Vector &V);
Vector &operator=(Vector &V);
Vector &operator++(); /I prefix
Vector operator++(int); // postfix - requires dummy argument

private:
float x;
float y;

Vector Vector::operator+(const Vector &V')

return Vector(x + V.x, y + V.y);

Vector &Vector::operator+=(Vector &V)

X=X+ V.X;

y=y+Vy;
return *this;

Vector &Vector::operator=(Vector &V)

/I no different than default operator, but could be
X =V.X;

y=Vy;

return *this;

Vector &Vector::operator++()

++X;

++y,
return *this;

Vector Vector::operator++(int)

Vector V,
V = *this;
X++;
y++;

return V;

ostream &operator<<(ostream &0s, const Vector &V)

return os << "Vector[" << V.x << ", " << Vy << "]

main()

Vector vectorA(3, 4);
Vector vectorB(2, 7);

/l output line 1

cout << vectorA<<" +" << vectorA<<"=";
vectorA += vectorA;

cout << vectorA << endl;

I/l output line 2

cout << vectorA<<"+"<<vectorB<<"="
<< vectorA + vectorB << endl;

/l output line 3

vectorA = vectorB;

cout << vectorA << endl;

I/l output line 4
cout << ++vectorA << endl;

return O;

/l end vector.cp

