
BASICS : C versus C++, program form, data types, strings, constants ...

C VERSUS C++

C is a subset of C++.    An ANSI C program file should compile on a C++ compiler with little or no changes.    If your
wondering whether you should learn one or the other - don't.    Learn C++ and you'll get the benefits of both C and C+
+.

This reference documents a combination of ANSI C and C++.    C++ additions to ANSI C are identified throughout the
reference.

PROGRAM FORM

As an ongoing tradition, the first program you write should be the infamous ANSI C "Hello World" program.

    // hello.c
    #include <stdio.h>

    main()                              // by default, main returns an int
 
        printf("hello world\n");

        return 0;                    // successful program termination
 
    // end hello.c

Here's the equivalent "Hello World" program in C++ using streams:

    // hello.cp
    #include <iostream.h>

    main()
 
        cout << "hello world" << endl;
 
        return 0;
 
    // end hello.cp

If a program is successful, it should return a zero.    Returning a value of '1' generally represents an unsuccessful
program termination.    You can also use the EXIT_SUCCESS and/or EXIT_FAILURE definitions located in the
standard library file (i.e., stdlib.h).

Anything on a line after a double slash (//) is ignored by the compiler and is the standard way of commenting code in
C++.    Another way to comment your code is to use the C-style slash-asterisk method.    The following program
"square.cp" is almost as simple as the 'hello world' program, except it demonstrates the basics of using functions as
well as both styles of comments.

    // square.cp
    /*
          Sometimes it convenient to use the "old" C-style comments,
          especially when you have more than one line of stuff to say.
    */

    #include <iostream.h> // standard library.

    #define MAX 10                // preprocessor directive.

    int DoSquare(int);        // function prototypes required in C++.

    main()                                // main is the start of all C programs.
 
        int n;
        for(n=1;n<MAX;n++)
            cout << n << " squared = " << DoSquare(n) << endl;

        return 0;
 

    int DoSquare(int m)      // function definition.
 
        m = m * m;
        return m;                      // return value.
 
    // end square.cp

White space is ignored in C/C++.    Brackets are used to group (or enclose) multiple statements.    Function calls are
depicted with parenthesis () at the end of a function name which enclose variables which are used during the function
call.    Semicolons depict the end of a statement (i.e., you can place multiple statements on a single line separated by
semicolons if you wanted).

DATA TYPES AND TYPE CONVERSION

The following program identifies the built-in data types supported by C and methods for converting between these
data types.

    // types.cp
    #include <iostream.h>

    main()
 
        // declarations
        char                                c = 'A';    // 1-byte long by definition (in C++).
        short int                      si= 1;        // minimum range +/-32767.
        short                              s = 2;        // short same as short int.
        int                                  i = 3;        // minimum range +/-32767.
        long int                        li= 4;        // minimum range +/-2147483647.
        long                                l = 5;        // long same as long int.
        float                              f = 10.1; // min 6 digits (decimal) precision.
        double                            d = 11.2; // min 10 digits (decimal) precision.
        long double                  ld= 12.3;

        unsigned char              uc;              // unsigned integers can only store
        unsigned short int    usi;            // positive numbers.
        unsigned int                ui;
        unsigned long int      uli;

        signed char                  sc;              // signed integers can store positive
        signed short int        ssi;            // or negative numbers.
        signed int                    si2;
        signed long int          sli;

        // simple assignment
        s = 3;
        cout << s << endl;

        // automatic conversion
        f = s * i / d;

        cout << f << endl;

        // inline conversions
        ld = (long double)i;
        s = short(d);
        cout << ld << endl << s << endl;

        return 0;
 
    // end types.cp

STRINGS

Strings in C are "null terminated".    This means that the following declaration;

    char *str = "Test string";

allocates a block of memory 12 bytes long and returns a pointer 'str' to the first character in the string.    The first 11
bytes contain the characters "Test string", the 12th byte contains NULL (i.e., \0 or zero).    To declare an empty string,
use the following:

    char *nullStr = "";

Since the MacOS is based on Pascal strings, it is important that the difference be discussed.    The same string in
Pascal would also be 12 bytes long, however, the first character in the string is actually the integer '11' which defines
how many characters are in the string.    Your compiler should provide functions such as CtoPstr() and PtoCstr() to
convert between the two formats.    If you want to declare a Pascal-style string in C, use the following:

    char *Pstr = "\pThis is a Pascal string";

CONSTANTS

    // constant definition examples
    #define INTEGER                  123
    #define LONG                        123L
    #define UNSIGNED_LONG      123UL
    #define FLOAT                      12.3F
    #define CHAR_CONST            'A'
    #define OCTAL                      037                      /* leading zero */
    #define HEXADECIMAL          0X5
    #define STRING                    "characters"

    // escape sequences
    #define ALERT                      \a
    #define BACKSPACE              \b
    #define FORMFEED                \f
    #define NEWLINE                  \n
    #define CARRIAGE_RETURN \r
    #define HORIZ_TAB              \t
    #define VERT_TAB                \v
    #define BACKSLASH              \\
    #define QUESTION_MARK      \?
    #define SINGLE_QUOTE        \'
    #define DOUBLE_QUOTE        \"
    #define OCTAL_SEQ              \o13                    /* vertical tab */
    #define HEX_SEQ                  \x7                      /* alert */

    // enumeration constants

    enum boolean FALSE, TRUE ;
    enum identifiers first = 1, second, third ;

The first item in an enumeration statement has a value of 0, the next 1, the next 2, etc. unless specified values are
provided.

TERMINOLOGY

There’s a lot of fancy terminology in C++ which tends to confuse the novice.    Here are some of the buzz words that
are used in object-oriented programming and what they mean:

Instances - Variables of a pre-defined class type are called instances of that class, or objects.

Objects - Objects are variables which are instances of a class.    Here is a simple example:

    class Student                    // define class Student
 
        char *name;
        char *address;
        int    id;

        void input(void);    // class methods
        void print(void);
 

    Student freshman;            // freshman is an object,
  // a class variable, and
  // an instance of the class Student.

Methods - Methods are nothing more than member functions of a class.

Polymorphism - When the same function works on different types of objects, it’s called polymorphism.    For example,
you OPEN a door, you OPEN a window, and you OPEN your eyes.    Polymorphism means “many different forms”.

Encapsulation - The combination of member data and member functions (or methods) into an object.    With C++, you
assign an object data attributes and methods which operate on the data.    Generally speaking, all of the code for a
particular class of objects is maintained in a separate source code file, or in other words, it’s encapsulated.

Inheritance - One of the coolest things about C++ is that you can create an object which inherits all of the capabilities
of a parent object, and then make minor modifications to suit your needs.    For example, if there was a window class
which did everything you needed except for, say, window resizing.    You could create a subclass of the window class
and then add the code needed to perform the task.    There are two important things to realize: 1) you only need to
add the code to perform the specific task you need, and; 2) you don’t need the original source code of the parent
class to make modifications.

Multiple Inheritance - Inheriting capabilities or traits from more than one parent defines multiple inheritance.    There
are some problems with using multiple inheritance and many programmers avoid it at all costs (similar to using goto
statements), but there are times when it can be useful.

Virtual Function (or method) - Allows polymorphism by defining a function which is called by an object at runtime (i.e.,
late binding) instead of at compile time (i.e., early binding).

