PREPROCESSING : commands, file inclusion, macros, conditional ...

PREPROCESSOR COMMANDS

#define

#undef

#include

#if

#ifdef

#ifndef

#else

#endif
#line

#elif

defined

unary #

binary ##

Define a preprocessor macro.
Usage: #define MAX 256
Remove a preprocessor macro definition.
Usage: #undef MAX
Insert text from another source file.

Usage: #include <file> ->searches 'standard' locations
#include "file" ->searches 'local' locations

Conditionally include some text, based on the value of a
constant expression.

Usage: #if MAX > 256
#include "altSize.h"
#endif

Conditionally include some text, based on whether a macro
name is defined.

Conditionally include some text, based on whether a macro
name is not defined.

Usage: #ifndef MAX
#define MAX 256
#endif

Alternatively include some text, if the previous #if,
#ifdef, #ifndef, or #elif test failed.

Terminate conditional text.

Supply a line number for compiler messages.
Alternatively include some text based on the value of

another constant expression, if the previous #if, #ifdef,

#ifndef, or #elif test failed.

Preprocessor function that yields 1 if a name is defined

as a preprocessor macro and 0 otherwise; used in #if and

#elif statements.

Usage: #if defined TOKEN -or- #if defined(TOKEN)

Operator to replace macro parameter with a string constant
containing the parameter's value.

Usage: #define PRINT(a) printf("value =" #a "\n")
'PRINT(5);' becomes 'printf("value = 5\n");'

Operator to create a single token out of two adjacent
tokens.

Usage: #define INPUT(i) input ## i
'INPUT(1) = INPUT(2);' becomes 'templ = temp2;'

#pragma Specify implementation-dependent information to the
compiler. Although it's best not to have implementation-
dependent pre-processing statements, it's a very
pragmatic inclusion to the list of preprocessing commands
(hence it's name).

#error Produce a compile-time error with a designated message.

Usage: #error "Opps! MAX not Defined."

FILE INCLUSION

You use the '#include' preprocessing directive to include header files. The entire contents of the specified file is
inserted in place of the file inclusion statement. The following are some examples:

#include <iostream.h>
#include <stdlib.h>
#include "myHeader.h"

The '<>' brackets identify standard libraries which are part of the compiler and follow implementation-defined rules to
find the file. The double-quote brackets define local files (usually within the directory or sub-directories that your
project file is located in).

MACROS

Macros use the '#define' preprocessing directive to substitute any occurrence of the macro 'name' with the identified
text in the macro definition. Examples include:

#define MAX_CHARS 255
#define ERROR_STR "\pError, try again.”
#define MAX(A,B) ((A)>(B) ? (A): (B))

CONDITIONAL INCLUSION

You can use conditional inclusion preprocessing directives to define or include items which are compiler or operating
system specific.

#ifndef OS
#define OS MAC
#endif

#if OS == MAC

#define SYS_HEADER "MacOS.h"
#elif OS == WIN

#define SYS_HEADER "Win.h"
#elif OS == WIN95

#define SYS_HEADER "Win95.h"
#elif OS == UNIX

#define SYS_HEADER "Unix.h"
#endif
#include SYS_HEADER

PRAGMA DIRECTIVES

Pragma directives are compiler-specific and therefore, tend to be less portable. The format for THINK C pragma
directives is:

#pragma [SC] pragma_directive [pragma_args]

If you specify SC, the directive must be recognized by Symantec C/C++ compilers. Some examples of THINK C
pragma directives include:

#pragma [SC] align [1/2/4] /I sets byte alignments within

/I structures.
#pragma [SC] message "text" /I prints text while compiling.
#pragma [SC] once /l when included in a header file,

/I file is included only once even
/I if #include directives include
/it multiple times.

#pragma [SC] options align=power // equivalent to align 4 directive.
#pragma [SC] options align=native

#pragma [SC] options align=mac68k // equivalent to align 2 directive.
#pragma [SC] options align=reset // default alignment.

#pragma [SC] template class<args> // produces instantiations of a
/I template.

#pragma [SC] template_access code // code type can be public, extern,
/I or static.

