TransSkel 3 Reference Introduction

TransSkel

A Transportable Skeleton for
Macintosh Application Development

Reference Manual

Release 3.24
24 January 1996

Page 1

TransSkel 3 Reference Introduction

Table of Contents

Introduction to TransSkel Release 3.........cooiiiiiiiiiiiiiiieee e e 1
Major Differences Between Releases.........ccveeiiieiiieiriieeiiieeeiie e 1
TransSkel and System Compatibility..........cccceeriiriiiiiiiiiiieiieeeee e 2

OVETVIEW ...ttt ettt ettt et s a e e bt e eh bt et e e s at e e bt e sb bt e bt e sab e e bt e sabe e bt e sab e e bt e saeeeans 4

DISITDULION INOTES....c..eitiiiiiiieieete ettt ettt ettt et st sae et saeenaeentens 6
How t0 et TranSSKel........cocouvviiiiiiie et 6
DiStribution LayOUL........cccuiiiiiiiieiiieie ettt ettt eneens 6
Installing TranSSKEL..........oeiiiiiiiiiieeiee et stee e e ae e e e e e e aaeeenes 7

Interface Installation for Symantec CH+/THINK C........ccocoeviiiiniiiniiniiiniinies 7
Interface Installation for Metrowerks..........ccccueeveiiiiiiiiieniiie e 7
Thread Manager Problems When Compiling TransSkel..........c..cccoooeieiiiiennennn. 8
The TransSkel Demonstration AppliCations...........eeeeuveeeriiireniiiee e eiee e 8

The TransSkel Programming Interface — General Information............c.cccooeeveeniinicnicnncnnenns 11
SOUICE FILES.....iiiiiiiieie et sttt 11
Using TransSkel from Symantec CH++ (PPC)......coooiiiiiiiiiiiiiiiceee e 11
Using TransSkel from THINK C (68K).......cccvuiieiiiieiiieciieeeeeeiee et 11
Using TransSkel from Metrowerks C..........coooouiiiiieiiiiiieiiieie ettt 12
Using TransSkel from Metrowerks Pascal.............ccooovveviiiiiiiiiniieeeceeeieceee e, 12
Using TransSkel for Threaded Applications..........cceeeuieriieriiiniieiiieeieeee e 12
The Rest of this Manual..........cocooiiiiiii e 12

Initialization and TerMINAtION.cceeiiieriieeiieeee ettt ettt ettt e et esateebeeseneenseas 14

Querying the Execution ENVITONMENt............cooviiiiiiiiiiiiiee et 16

EVENE PrOCESSINE. . cevieiitieiieeiieiie ettt ettt et e et e bt e st e et e st e eabeesnteenbeesnbeenseessneenseennnas 18

MenU MaAnAZEIMENL.........ccoiiiuiiiiieiiiiieee et ee e esi e e ettt e e e et teeeesbaeeeeeesaateeeessnteeeessnnnseeeessnnsseeas 25

WiIndoW ManaQ@EmENL...........cecuiiiiiieiiieiieriteeitesite ettt et e stte et e estaesteesseeenbeessaesnbeesseeenseenseesnseens 28
The Port-Setting MoOdel........cccviiiiiieeiiece et e eseaee e 36

WINAOW PLOPETTIES. ... eieuiieiiiieiie ettt ettt ettt et e st e e sateesbeessbesnseesabeenseessseenseens 39

MUIIEASKING SUPPOTL...eeiviieiiiieeeiie ettt et e et e e st e e st e e naeeesstaeesnsneeesseeennseeenns 43

ADPPLE EVENE SUPPOTL...coniiiiiiiiiieeiee et ettt et et e et e s ate e bt e sbeeteesabeenee e 46

Thread Manager SUPPOTL......c..eeeriiieeiieeeiieeeeiee ettt e e e rteeesteeesbreesaree e saeeesssaeessneeasseesnsseeens 49

MiSCellaneous ROULINES.c.eiuiriiiiiiieiieieete ettt sttt et saees 51
Control Manipulation..........c.eeeeuiieriiiiiiiie et e e saee e saaeeeesbeeennes 51
Dialog [tem Management...........cc.eeeuieriieiiieniiieeieesieeeite et et seeeeteesreesiteesaeeenbeesnseenens 51
Positioning and Layout ROULINES..........cccueiiiiieiiiieeie et 55
ALCTt PrESENTAtION. ...c..iiiiiiiiiieitiriteieet ettt sttt ettt ettt sae e 56
MISCEIIANEOUS. ...ttt et ettt et ettt e st e sbeeebeeeas 57

AUTNOTSIIP. .ot ettt et e sttt et e st e et e s et e e bt e e nbeebeesnteebeeennas 58

IIUACX ettt et et sttt e h e et e et et e b eaeeas 60

Page 2

TransSkel 3 Reference Introduction

Introduction to TransSkel Release 3

This document describes TransSkel, a programmer’s aid for Macintosh application development under
Symantec C++/THINK C 7 or 8, Metrowerks CodeWarrior C 7.0 through 8.0 (C or Pascal). The name
“TransSkel” means “transportable skeleton,” reflecting two of its objectives:

The version of TransSkel described in this document can be used with .

» TransSkel is an application skeleton. It is not in itself a finished, working application. Rather, it
provides a framework for application development that you flesh out by adding muscle and
connective tissue.

» TransSkel is transportable from application to application. It provides a limited set of services in a
general manner so that it can be plugged into applications of many different kinds without
modification.

TransSkel has a third, pedagogical, objective. Acquisition of Macintosh programming skills can be
difficult. Although the many available volumes on the topic contain a good deal of useful information,
access to all this information may still leave one with a dearth of practical knowledge of how to write a
Macintosh application that actually does something. Coupled with the fact that even trivial applications
involve a rather large amount of code, the necessity of understanding much of the Macintosh Toolbox
before you can use any of it leaves the beginning programmer with a daunting task.

TransSkel addresses this problem on two fronts. First, TransSkel handles many tasks for you
automatically so you don’t have to learn how to do them right away, if at all. This reduces the
programmer’s initial burden. Second, TransSkel is provided in source form. It has long been my
observation that, while basic documentation is a necessity, it is just as important to have someone else’s
source code to look at. If you can find some other program that does something similar to what you want
to do, you can often learn a great deal about how to write your own program. Thus you can study
TransSkel itself to learn basic event-handling techniques, and the standard distribution includes a
number of demonstration programs that you can examine to learn something about the interaction
between event-handling and the code that handles application-specific tasks.

The claims that can be made for TransSkel are rather modest. It is neither the most general nor the most
capable Macintosh application development tool. Nevertheless, it has enjoyed widespread distribution
and use, perhaps due principally to three fairly attractive characteristics:

e It’s free.

* It’s in the public domain. You can use it for any purpose with no restrictions whatsoever. No
royalties need be paid. No “About” box attributions are required.

* As already mentioned, TransSkel comes in source form. You can check for yourself how or why it
does something the way it does — and if you don’t like it, you can change it.

Page 3

TransSkel 3 Reference Introduction

Major Differences Between Releases

Page 4

TransSkel 3 Reference Introduction

TransSkel release 1 provided the basic window and menu registration and event routing services which
remain as its core today. This initial release was criticized (justly) for its defective port-setting policy.
Release 2 addressed those criticisms. David Berry and Owen Hartnett contributed other changes, so that
release 2 also offered support for zoom boxes (which didn’t exist when release 1 was written), modeless
dialogs, better memory handling and improved menu support. Translations of TransSkel into other
languages began to appear at this time, with Owen’s port to THINK Pascal (then Lightspeed Pascal)
being the most widely distributed.

Two glaring deficiencies in release 2 were failure to provide hierarchical menu or multitasking
(MultiFinder) support. A number of people contributed changes to address these shortcomings, to
varying degrees of completeness. The most thorough treatment was contributed by Bob Schumaker, who
also made many other changes and additions, a number of which appear in release 3.

TransSkel release 3 provides, among other things, multitasking support, multiple-monitor awareness,
fully prototyped source code, additional improvements to menu handling (including hierarchical menu
support), and Apple Event support. TransSkel now also departs from the “everything in one source file”
orientation.

Beginning with release 3, a series of TransSkel Programmer’s Notes has been instituted in order to

provide detailed discussion of particular aspects of TransSkel programming. Think of them as vignettes
that don’t belong in the manual.

TransSkel and System Compatibility

An effort has been made to ensure that TransSkel code will run on as many Macintoshes and versions of
the system software as possible. This includes 64K ROM machines and software not supporting system
calls such as SysEnvirons (), Gestalt (), GetMBarHeight (), or GetGrayRgn (). You can
also use TransSkel to develop native-mode code for Power Macintosh applications. The intent is that if
applications developed with TransSkel run only on certain machines, that will be due to a choice you
have made, not to an incompatibility imposed on you by TransSkel.

TransSkel has not been tested on all possible configurations, of course, so if you discover compatibility
bugs, please report them—especially if you have a fix.

Although TransSkel should be compatible with a wide range of systems, little effort was expended to
ensure compatibility of this release of TransSkel with any previous release. The myriad changes between
releases 2 and 3 involve a number of incompatibilities. Applications written for release 2 and earlier
need modification in order to compile or run properly under release 3. And applications written for early
release 3 distributions sometimes need modification for more recent distributions. If you have
applications that need to be converted from earlier TransSkel releases, read the “Release Notes and
Compatibility Issues” document, which is devoted to discussion of the differences between releases 2
and 3, and summarizes the issues involved in porting code to the latter.

't In addition to the TransSkel I maintain, Bob has followed a different development track and maintains his own version,
currently numbered at release 2.9. The numbering shouldn’t be taken to mean that his version is more primitive than mine.
Quite the opposite. He has, for instance, added support for tool (floating) windows.

Page 5

TransSkel 3 Reference Introduction

Page 6

TransSkel 3 Reference Introduction

A significant “incompatiblity release” occurred at release 3.11, when TransSkel was converted to use
Pascal-compatible bindings for the public (interface) functions, so that it could be used from within
Pascal applications without translating TransSkel itself into Pascal. This results in some
incompatibilities for existing TransSkel applications written in C. See TransSkel Programmer’s Note 11
for details about modifying code written for pre-3.11 applications.

If you find TransSkel useful, please feel free to send a note describing what you use it for, or perhaps a
copy of applications you build with it. Other comments or suggestions are welcome; criticisms and bug
fixes are especially valuable.

Paul DuBois
dubois@primate.wisc.edu

Page 7

TransSkel 3 Reference Introduction

Overview

Skeleton programs are a common vehicle by which to demonstrate techniques involved in programming
particular machines, operating systems, software packages, etc. In the Macintosh world, skeleton
programs often take the form of simple applications that support a window and a few menus, and handle
a number of standard operations such as window dragging and menu item selection. These provide
straightforward sample applications and serve as valuable learning tools by illustrating a number of
typical Macintosh programming techniques. They help one get up to speed by providing live source
code to study. The disadvantage of skeleton applications is that they are not directly reusable. To use one
for a different application, it has to be modified and recompiled.

The philosophy underlying TransSkel is different. It’s an application skeleton, distinct in both form and
purpose from a skeleton application. It’s not a complete application, but a standard framework on which
to build complete applications. The goal is to provide a limited set of services in a general manner. By
concentrating on operations that virtually all applications require and that remain relatively stereotypical
across applications, the code implementing them can be abstracted out and decoupled from any
particular application. This frees the programmer from having to be much concerned about the services
provided, and induces a discipline through which they are accessed.

So what is it that TransSkel provides? Its capabilities have expanded with time, but the central focus
remains quite simple: to function as an event-routing engine. TransSkel offers a mechanism for
registering window and menu objects, and an event loop which automatically routes events to those
objects. There are a number of routines which perform additional tasks, but the basic premise is that
you’re more interested in responding to events rather than in the mechanics of gathering and dispatching
them. This leaves you free to concentrate on writing application-specific code.

This simple approach, together with an emphasis on modularity, results in code which is reusable from
application to application. TransSkel is reasonably general, and thus transportable without modification
across a wide variety of applications. For instance, it doesn’t limit you to some fixed number of
windows or menus — it doesn’t care how many you have, or whether you create or dispose of them all
at once or dynamically.

This document is organized into the following sections:

* Introduction to TransSkel
* Overview of TransSkel
» Distribution Notes — Availability, Layout, Installation, Demonstrations
* Programming interface specification
— Initialization and Termination
— Querying the Execution Environment
— Event Processing
— Menus
— Windows
— Window Properties
— Multitasking
— Apple Events

Page 8

TransSkel 3 Reference Introduction

— Thread Manager

— Miscellaneous routines
* Future Changes
e Additional documentation
* Authorship

Several other pieces of documentation are referred to here and in the source code. The key to these
references is:

HIN Human Interface Notes

IM Inside Macintosh

MHIG Macintosh Human Interface Guidelines
PGMF Programmer‘s Guide to MultiFinder
TN Macintosh Technical Notes

TPN TransSkel Programmer‘s Notes

References to the old series and new series of Inside Macintosh can be distinguished by the fact that

volumes in the old series are numbered (e.g., IM V) whereas volumes in the new series are named (e.g.,
IM: Files).

Technical Notes come in two series as well. The original series was numbered (e.g., TN 79 for Technical
Note 79). The new series is numbered as well, but the number is also accompanied by a section
designator (e.g., TN TE 26, for Technical Note 26 in the TextEdit section). Most references to Technical
Notes in TransSkel documentation are to Notes in the new series. There are, however, some Notes in the
old series which were not carried forward into the new series.

Page 9

TransSkel 3 Reference Introduction

Distribution Notes
This section discusses how to obtain TransSkel, how the distribution is organized and installed, and
describes the demonstration applications.

How to get TransSkel

TransSkel is in the public domain and may be freely redistributed. The software is provided “as is,” with
no warranty express or implied.

The TransSkel distribution may be obtained over the World Wide Web or via anonymous FTP.

World Wide Web:

http://www.primate.wisc.edu/software/mac/TransSkel

FTP:

ftp://ftp.primate.wisc.edu/pub/mac/TransSkel

Distribution Layout

The TransSkel distribution’s primary folders are:

Documents — Documentation
Release Notes
TransSkel — A Transportable Macintosh Application Skeleton (Reference)
TransSkel — A Transportable Macintosh Application Skeleton (Tutorial)
TransSkel Programmer’s Notes

Source — TransSkel library C source code

Interface — TransSkel interface files
TransSkel.h — C header file
TransSkel.p — Metrowerks Pascal interface file
Precompiled binary library documents:
Without Thread Manager support:
TransSkel/SY-68K — Symantec C++/THINK C 68K library
TransSkel/SY-PPC.o — Symantec C++ PowerPC static library
TransSkel/MW-68K — Metrowerks 68K library
TransSkel/MW-PPC — Metrowerks PowerPC library
With Thread Manager support:
TransSkel-TH/SY-68K — Symantec C++/THINK C 68K library
TransSkel-TH/SY-PPC.o — Symantec C++ PowerPC static library
TransSkel-TH/MW-68K — Metrowerks 68K library
TransSkel-TH/MW-PPC — Metrowerks PowerPC library

Page 10

TransSkel 3 Reference Introduction

Demos — Demonstration applications (C and Pascal)
MiniSkel: minimal application
Hello: “hello, world” application
Skel: simulation of traditional Skel
MultiSkel: multiple-window application — fixed number of windows and menus
ManyWind: multiple-window application — variable number of menus and windows
DialogSkel: application using modeless dialogs
Filter: demonstrates use of dialog filter for alerts and dialogs
Button: demonstrates button-outlining routines
HierMenu: demonstrates hierarchical menus
ThreadDemo: demonstrates Thread Manager use

The C demonstration applications compile under either Symantec C++/THINK C or Metrowerks C. The
Pascal applications compile under Metrowerks Pascal.

The Project Listings folder contains text listings of project contents. This may be helpful for recreating
project documents if you use versions of Symantec C++/THINK C or Metrowerks older than what I use
and are unable to open the project documents included in the distribution. The TransSkel archive also
contains a distribution consisting of project documents for Metrowerks CodeWarrior 6.

Installing TransSkel

TransSkel can be used from Symantec C++/THINK C, Metrowerks C, or Metrowerks Pascal.

Interface Installation for Symantec C++/THINK C

In order for the TransSkel header file and library to be easily accessible to your projects, you should
install them inside the same folder as that in which the Symantec Project Manager (or THINK Project
Manager) is located. I do this by creating folders named “Local Headers” and “Local Libraries” there.
This makes it clear that their contents are not part of Symantec’s distribution.

Make a copy of TransSkel.h from the TransSkel “Interface” folder and put it in “Local Headers”. You
can copy the libraries TransSkel/SY-68K and TransSkel/SY-PPC.o from the “Interface” folder to “Local
Libraries”. You can then add TransSkel/SY-68K to 680x0 applications and TransSkel/SY-PPC.o to Power
Macintosh applications. If the application uses the Thread Manager, use TransSkel-TH/SY-68K or
TransSkel-TH/SY-PPC.o.

To build a library from scratch, open its project document (located in the TransSkel folder) and update it.
If you want, you can include the library projects directly in application projects. Library documents are
smaller than project documents, but if you use the project document, the object code for a file isn’t

linked into your application if none of the functions in the file are referenced. This results in smaller
applications. If you include a library document, all the code is linked in, whether you use it all or not.

Interface Installation for Metrowerks CodeWarrior

Page 11

TransSkel 3 Reference Introduction

In order for the TransSkel header, interface, and library files to be easily accessible to your projects, you
should install them where the Metrowerks compilers and linkers can find them. Find the “MacOS
Support” folder located in the same folder as the CodeWarrior IDE application. Inside this you should
put a copies of TransSkel.h in the “Headers” folder, TransSkel.p in the “Interfaces” folder, and the
library files in the “Libraries” folder.

You can add TransSkel/MW-68K to 680x0 applications and TransSkel/MW-PPC to Power Macintosh
applications. If the application uses the Thread Manager, use TransSkel-TH/MW-68K or TransSkel-
TH/MW-PPC.

To build a library from scratch, open its project document (located in the TransSkel folder) and update it.

Thread Manager Problems When Compiling TransSkel

Thread Manager support is controlled by the useThreads symbol near the top of TransSkel.c. Thread
Manager support is turned off if the symbol value is zero. Otherwise, Thread Manager support is turned
on.

Library project names that begin with “TransSkel” are non-threaded, i.e., built with Thread Manager
support turned off. Library project names that begin with “TransSkel-TH” are non-threaded, i.e., built
with Thread Manager support turned on. Thread Manager support is turned on or off appropriately in
the prefix file that each library project document uses. The prefix files are found in the Prefix folder.

It appears that support for the Thread Manager trickled into Apple’s header files incrementally, and I’'m
not sure just how to compensate for the various combinations of support:

» Ifyoudon’t have Threads.h, use one of the versions in the (Extra Support) folder and put it where
your compiler can find it.

» Ifyou still have trouble compiling TransSkel.c, take a look at the section near the beginning where
the #include directives appear and see if you can figure out what symbols you need to define.
Please let me know what you had to do (and specify the compiler and compiler version you’re
using).

* Ifyou simply can’t get TransSkel.c to compile, change #define useThreads 1 to #define
useThreads 0, and this will disable the code that references the Thread Manager. The
SkelSetThreadTimes () and SkelGetThreadTimes () functions will still be available but
will have no effect. The skelQHasThreads selector for SkelQuery () will also be available,
but it will return false even if the Thread Manager is installed.

The TransSkel Demonstration Applications

The Demos folder contains a C Demos and Pascal Demos folder. These two folders are similar, each
containing one folder per demonstration application, in the appropriate language. The C demos may be
compiled under either Symantec C++/THINK C or Metrowerks CodeWarrior. The Pascal demos
compile only under Metrowerks Pascal.

Page 12

TransSkel 3 Reference Introduction

For each C demonstration application, there are four projects, two for Metroworks (68K and PPC) and
two for Symantec (68K and PPC). If a resource file is required to build an application XXX,

Page 13

TransSkel 3 Reference Introduction

there is a resource file XXX .rsrc that is included by all projects that build the application. Note that when
you build the application using the Symantec projects XXX/SY-68K and XXX/SY-PPC, two more
resource files XXX/SY-68K.rsrc and XXX/SY-PPC.rsrc will be generated.

The demonstrations are examples of the kinds of applications for which TransSkel can be used. The
programs differ in emphasis and complexity. To build any C demonstration application, open the
appropriate project document for the compiler you want to use and build it. To build any Pascal
demonstration application, open the appropriate project document for the compiler you want to use and
build it.

Any of the demonstration applications may be terminated by selecting Quit from the File menu or by
typing command-Q.

MiniSkel

This demonstration puts up an Apple menu with desk acessories in it, and a File menu with a Quit item.
Desk accessories may be run as usual. The source illustrates in minimal fashion the general way in
which a host uses TransSkel.

Hello

This demonstration puts up a single window that says “hello, world.” If the application is suspended, the
message changes to “goodbye, world.” Demonstrates simple window handling.

Skel

This demonstration mimics the traditional Skel program: one sizable, draggable, non-closable dark gray
window, Apple and File menus, two dialog boxes, support for desk accessories.

MultiSkel

This demonstration is a simple multiple-window application. There are two text windows (one editable,
the other not), and two graphics windows (one manipulable, the other not). MultiSkel shows how to use
TransSkel to support some of the basic Macintosh programming techniques: graphics, scroll bar use,
region manipulation, shift-click and double-click detection, text editing and use of the clipboard.

All four windows may be resized, dragged, closed and opened. If any window is resized, its display
adjusts itself to the window’s new shape. Use the close box in a window to close it, or select Close from
the File menu. To make hidden windows visible, select Open from the File menu.

Help Window
This window describes MultiSkel via a scrolling text display.

Edit Window
This window allows text editing. The Edit menu is functional for this window, except Undo. The
clipboard is supported. Scrolling is not.

Page 14

TransSkel 3 Reference Introduction

Zoom Window
This window presents a series of randomly selected rectangles, each smoothly interpolated into the
next. The display pauses if the mouse button is held down in the window.

Page 15

TransSkel 3 Reference Introduction

Region Window

If the mouse is clicked and dragged in this window, a gray selection rectangle is drawn. Rectangles
drawn this way are combined into a region, the outline of which is drawn as a “marching ants”
marquee. Rectangles drawn with the shift key down are subtracted from the region. Clear the
window by double-clicking.

ManyWind

This application demonstrates dynamic object handler creation and disposal. Initially there are two
menus and no windows. The Apple menu operates as usual. The File menu allows new windows to be
created with the New item. Up to 20 windows may exist at once; after that, the New item is dimmed
until some window is destroyed. Whenever any windows are present, a Windows menu and a Color
menu are also present. The Windows menu contains one item for each visible window. Selecting an item
brings the corresponding window to the front. The Color menu may be used to change the background
color of the frontmost window. Clicking the close box of a window destroys it and removes it from the
Windows menu. If all the windows are closed, the Windows and Color menus are destroyed as well until
another window is created.

DialogSkel

This application supports two modeless dialogs, each of which is used to influence the appearance of the
other, and a standard document window.

The dialogs disappear when the application is suspended, and reappear when it’s resumed.
Filter

This application demonstrates the use of SkelDlogFilter () to show how event loss during modal
dialog processessing can be avoided with dialog filters. See also TPN 2 and TPN 8.

Button

This application demonstrates how to use the button-outlining routines in various situations. It
accompanies the discussion in TPN 10.

HierMenu

This application demonstrates how to use TransSkel to set up hierarchical menus, using both
NewMenu () and GetMenu ().

Page 16

TransSkel 3 Reference Introduction

The TransSkel Programming Interface — General Information

TransSkel installation directions are given in the “Distribution Notes” section. I assume here that you’ve
already followed those instructions.

Source Files

Host applications interact with TransSkel entirely through function calls; there are no global variables. C
source files that use TransSkel functions should include the following line:

#include "TransSkel.h"

TransSkel.h contains the constants, types, and functions needed for referring to TransSkel
routines and the services they provide.

Pascal source files that use TransSkel functions should include a USES statement:
USES TransSkel
and the project document should include the interface file TransSkel.pTransSkel.p.

The calling sequences for TransSkel routines are as given by the procedure/function declarations in
TransSkel.p. The calling sequences for callback routines are given in comments in the t ype section.
These provide you with the appropriate translation for the various callbacks that are described elsewhere
using C syntax in the rest of this manual.

Using TransSkel from Symantec C++ (PPC)

Include the TransSkel/SY-PPC.o library in your project document. If the application uses the Thread
Manager, use TransSkel-TH/SY-PPC.o.

It’s a good idea to turn on “prototypes required” under Project/Options/PowerPC C/Language Settings to
catch possible misuse of TransSkel routines.

Several aspects of the way your application behaves in a multitasking environment are controlled

by the application’s 'SIZE' resource. You can set these directly from Symantec C++ under
Project/Options/Project Type.

Using TransSkel from THINK C (68K)

Include the TransSkel/SY-68K library in your project document. If the application uses the Thread
Manager, use TransSkel-TH/SY-68K.

Page 17

TransSkel 3 Reference Introduction

It’s a good idea to turn on “prototypes required” under Options/THINK C to catch possible misuse of
TransSkel routines.

Also, turn off “Separate STRs” under Project/Set Project Type or your application will crash on
machines running early versions of the system software (e.g., 4.1).

Several aspects of the way your application behaves in a multitasking environment are controlled

by the application’s 'SIZE' resource. You can set these directly from THINK C under the dialog
presented by Project/Set Project Type.

Using TransSkel from Metrowerks C

For 68K projects, include TransSkel/MW-68K in your project document. For PowerPC projects, include
TransSkel/MW-PPC in your project document. If the application uses the Thread Manager, use
TransSkel/MW-68K or TransSkel-TH/MW-PPC.

It’s a good idea to turn on “Require Prototypes” in the Language preferences to catch possible misuse of
TransSkel routines.

Several aspects of the way your application behaves in a multitasking environment are controlled
by the application’s 'SIZE' resource. You can set these directly in the Project preferences.

Using TransSkel from Metrowerks Pascal

For 68K projects, include TransSkel/MW-68K in your project document. For PowerPC projects, include
TransSkel/MW-PPC in your project document. If the application uses the Thread Manager, use
TransSkel/MW-68K or TransSkel-TH/MW-PPC.

Several aspects of the way your application behaves in a multitasking environment are controlled
by the application’s 'SIZE' resource. You can set these directly in the Project preferences.

Using TransSkel for Threaded Applications

If your application is unthreaded, you can use the unthreaded version of the TransSkel library. If your
application is threaded, you must use the thread version of the library. If your application is unthreaded,
you can use either the threaded or unthreaded version of the library. There is no particular size penalty to
using the threaded version (about 100-200 bytes), but it may be simpler to use the unthreaded version.
This is because for PPC projects, you must link in 7hreadsLib if you use the threaded version even for
applications that don’t use the Thread Manager. By using the unthreaded TransSkel library, you don’t
have to include ThreadsLib.

If you don’t have a Threads Library to link into your PPC project documents, look in the (Extra Support)
folder for ThreadsLib.xcoff and include that.

The Rest of this Manual

Page 18

TransSkel 3 Reference Introduction

Page 19

TransSkel 3 Reference Introduction

The manual sections following this one describe the programming interface provided by TransSkel. The
interface is described using C, so if you want to use TransSkel from Pascal, consult the file TransSkel.p,
which provides the appropriate translation for the C syntax used here. (The calling sequences for
callback routines are given in comments in the t ype section.)

Each of the following sections discusses a particular aspect of the programming interface:

Initialization and Termination

This section describe the functions used to initialize TransSkel when your application begins and
how to shut it down when your application is ready to exit.

Querying the Execution Environment

This section describes routines that provide access to information about the system or the
application’s state.

Event Processing
This section discusses the routines that provide your application’s event loop.
Menus

This section discusses how to write menu handlers and how to arrange for TransSkel to call them
automatically when menu selections are made.

Windows

This section discusses how to write window handlers and how to arrange for TransSkel to call them
automatically when window events occur.

Window Properties

This section discusses window properties — a mechanism that allows you to associate arbitrary
pieces of information with your application’s windows.

Multitasking

This section discusses how to use TransSkel’s multitasking support.
Apple Events

This section discusses how to use TransSkel’s high-level event support.
Miscellaneous

This section discusses miscellaneous other routines provided by TransSkel.

Page 20

TransSkel 3 Reference Introduction

Initialization and Termination

TransSkel must be initialized to work properly. You do this by calling SkelInit () near the beginning
of your application. In addition, if you wish to have TransSkel clean up menus, windows, etc., when
your application is ready to exit, you call SkelCleanup (). Thus a typical application looks like this:

int
main (void)
{
SkelInit (nil);
/* set up menus, windows, etc. */
/* run event loop */
SkelCleanup ();

An argument of nil to SkelInit () means “use the default initialization parameters”. If you want to
use values different than the defaults, declare a SkelInitParams structure, call
SkelGetInitParams () to fill it with the default values, change those parameters you wish to be
different, and pass the structure to SkelInit (). For example, if you want SkelInit () to call
MoreMasters () 840 times instead of the default 6 times, do this:

SkelInitParams initParams;
SkelGetInitParams (&initParams);

initParams.skelMoreMasters = 840;
SkelInit (&initParams);

The SkelInitParams structure looks like this:

typedef struct SkelInitParams SkelInitParams, *SkelInitParamsPtr;

struct SkelInitParams

{

short skelMoreMasters;
GrowZoneUPP skelGzProc;
SkelResumeProcPtr skelResumeProc;
Size skelStackAdjust;

)}z
* skelMoreMasters is the number of times to call MoreMasters (). The default is 6 times.

* skelGzProc is either a pointer to a user-written GrowZone () routine or nil if no
GrowZone () function should be installed. The defaultis nil.

* skelResumeProc is a pointer to a resume function passed to InitDialogs (),ornil ifno
function should be installed. The default is ni1, and the resume function should always be ni1 for
applications that will run

Page 21

TransSkel 3 Reference Introduction

under System 7 or later. SkelResumeProcPtr is used rather than ResumeProcPtr because the

latter is not supposed to be used under System 7 anymore and is disappearing from Apple’s header
files.

* skelStackAdjust is the amount by which to adjust the application stack size. Positive values
increase the stack size, negative values decrease it. The default is no adjustment.

The reason you call SkelGetInitParams () if you don’t want to use the default initialization
parameters is that the Skel InitParams structure may be extended in the future. If you try to
initialize such a structure statically, your program may be incompatible with future versions of
TransSkel. By calling SkelGetInitParams () to get the defaults and modifying the parameters you
want to change, your application will be compatible with new versions of TransSkel simply by
recompiling. This is discussed further in TPN 5.

Interface Specification

pascal void
SkelInit (SkelInitParamsPtr initParams) ;

The host application should call SkelInit () to initialize the various Macintosh managers and
some internal variables. initParams is a pointer to a SkelInitParams structure containing
the initialization values you want to use, or nil if you want to use the defaults.

SkelInit () should be called before any other TransSkel routines, with the exception of
SkelGetInitParams ().

pascal void
SkelGetInitParams (SkelInitParamsPtr initParams) ;

This function fills in the initialization parameters structure you pass it with the default initialization
values. Use this function if you plan on modifying some of the defaults when you call
SkelInit ().

pascal void
SkelCleanup (void);

SkelCleanup () destroys all registered objects (windows, dialogs and menus). It's generally
called before the application exits, after the main event loop has terminated.

Before removing window handlers, SkelCleanup () hides all windows and closes desk
accessories. Desk accessories are closed because on some early systems (e.g., System 4.1), if you
leave a DA open when the application exits, the system crashes the next time you open that DA.
Windows are hidden from back to front. This is more esthetic (less obtrusive), and it’s also quicker
because the system doesn’t have to do as much painting of underlying windows.

Page 22

TransSkel 3 Reference Introduction

Querying the Execution Environment

Applications often need to know something about the capabilities of the system on which they’re
executing (e.g., are Apple Events available?), or about their own state (e.g., am I running in the
foreground?). This section describes routines that provide access to this kind of information.

Interface Description

pascal long
SkelQuery (short selector);

SkelQuery () may be thought of as a TransSkel-specific Gestalt () call. It provides a
mechanism for the host application to query TransSkel about certain aspects of the execution
environment. The argument is a query selector indicating the information desired. Interpretation of
the return value depends on the selector, as follows:

Selector Return Value

skelQVersion TransSkel version number. The major version number is
contained in bytes 2-3 (bits 16-31) and the minor version
number is contained in bytes 0-1 (bits 0-15). For example,
0x00030004 means 3.04. You can extract the major and minor
version numbers using HiWord () and LoWord ().

skelQSysVersion System software version.The major version number is
contained in byte 1 (bits 8-15) and the minor and subminor
version numbers are contained in bits 4-7 and 0-3 of byte 0.
For example, 0x00000701 means 7.0.1.

skelQHasWNE Non-zero if WaitNextEvent () is implemented, zero
otherwise.
skelQMBarHeight Menu bar height, in pixels. This works on any Macintosh, in

contrast to the global MBarHeight or the function
GetGrayRgn (), thus no machine-specific test is needed.

skelQHas64KROM Non-zero if the system has the 64K ROM. This can be useful
to the application if it uses certain features which are known
not to exist on in the 64K ROM.

skelQHasColorQD Non-zero if the system has Color QuickDraw, zero otherwise.

skelQQDVersion QuickDraw version number. The major version number is
contained in byte 1 (bits 8-15) and the minor version number is
contained in byte 0 (bits 0-7). For example, 0x00000230 means

2.30 (2.3).

skelQInForeground Non-zero if the application is in the foreground, zero
otherwise.

skelQHasGestalt Non-zero if the system has the Gestalt () call, zero
otherwise.

skelQHasAppleEvents Non-zero if Apple Events are available, zero otherwise.

skelQGrayRgn Handle to copy of desktop region, zero if handle could not be

allocated. Return value should be cast to RgnHandle type.
Region must be disposed of by caller. Works even on systems

Page 23

TransSkel 3 Reference Introduction

where GetMBarHeight () is not implemented.
skelQHasThreads Non-zero if the Thread Manager is available, zero otherwise.

Page 24

TransSkel 3 Reference Introduction

The return value is meaningless if the selector is not one of those defined above.

Note
skelQHasWNE was known as ske 1 QWNEImplemented in some early release 3 versions.

The set of selectors provided may seem somewhat arbitrary. It happens to contain selectors for those
types of information I’ve found useful for implementing TransSkel itself.

pascal Boolean
SkelTrapAvailable (short trap);

This function returns true if the given trap is available, false otherwise. You can use it to
determine whether particular Toolbox routines are available. Here’s how TransSkel determines
whether or not WaitNextEvent () is available:

include <Traps.h>
hasWNE = SkelTrapAvailable (WaitNextEvent);
pascal Boolean

SkelGestaltCheck (OSType selector, short featureCode);
SkelGestaltCheck ()

This function returns true if the given Gestalt selector is available and the bit specified by
featureCode is set, false otherwise. If featureCode is -1, SkelGestaltCheck () just
checks whether selector is present.

Page 25

TransSkel 3 Reference Introduction
Event Processing

TransSkel provides a simple means of initiating and terminating a basic event loop: you call
SkelEventLoop () to process events and SkelStopEventLoop () to stop processing events.

Typically you’ll call SkelEventLoop () from your main () function and
SkelStopEventLoop () from within a menu or window handler function that’s called by TransSkel.
Here’s a simple main () function:

int
main (void)
{
SkelInit (nil);
/* set up menus, windows, etc. here */
SkelEventLoop ()
SkelCleanup ();
}

If you have a File menu with a Quit item in it, and you’ve registered a handler function for the menu
with TransSkel, you can terminate the event loop when Quit is selected like this:

pascal void
MyFileMenu (short item)
{

switch (item)

{
/* handler other items here */

case quitApp:
SkelStopEventLoop () ;
break;

}

Normally, TransSkel applications call SkelEventLoop () to initiate the main event loop that drives
the application. You can use SkelDoEvents () and SkelDoUpdates () torun a “mini-event loop”
outside of the main event loop. Each routine runs as long as any events of the desired type(s) are
pending. While such events are pending, they are retrieved from the event queue and dispatched.

SkelDoEvents () takes an event mask parameter specifying which events you’re interested in.
SkelDoUpdates () processes update events only. These routines are intended to make it easier to
dispose of any pending events of a given type before resuming the main event loop. For instance, you
might put up a standard file dialog to solicit an input file. When the user dismisses the dialog by clicking
Open, your application might read in the selected file and present its contents in a document window.
However, when the dialog disappears, parts of any windows over which the dialog came up will be
erased. Unless you take steps to ensure otherwise, update events for these windows will be pending
while you read in the file. To avoid leaving the user staring at a

Page 26

TransSkel 3 Reference Introduction
damaged display, you can call SkelDoUpdates () to repair window contents after the dialog is
dismissed and before reading the file.

TransSkel also provides functions allowing you to process a particular event record, to control what kind
of events are requested by TransSkel, to install a hook allowing you to inspect events before TransSkel
processes them, and to set up an “idle” function that’s called when no events are pending (i.e., when null
events occur).

Interface Description

Event Routing Routines

pascal void
SkelEventLoop (void);

The host calls this function to run an event loop, typically after calling menu and window
registration functions. SkelEventLoop () solicits events from the system and passes them to
SkelRouteEvent () until SkelStopEventLoop () is called.

pascal void
SkelStopEventLoop (void);

SkelStopEventLoop () terminates the current event loop, causing the last call to
SkelEventLoop () to return. Generally, host applications call this function when they are ready
to exit, for example in the code that processes the Quit item from the File menu. The application may
then call SkelCleanup () and exit.

pascal void
SkelRouteEvent (EventRecord *event);

This function processes a single event, either by handling it itself, or by routing it to a handler
function, such as a window, menu, or OS event handler. For null events, SkelRouteEvent ()
also polls window handler idle functions as appropriate.

If the host wishes to inspect events before TransSkel processes them, a hook function should be
installed with SkelSetEventHook ().

SkelRouteEvent () performs the following actions itself, without routing them to host-installed
handlers:

* Window dragging, if the window can be dragged. Ifthe Command key is down when the user
clicks in a window’s drag region, the window is dragged without changing its plane. (That is, the
window is not made active.)

* Window sizing, if the window has a grow box or zoom box. The host program detects when the
window has been resized according to the convention described in the discussion of the

Page 27

TransSkel 3 Reference Introduction

doUpdate parameter for the SkelWindow () function.

Page 28

TransSkel 3 Reference Introduction

If the mouse is clicked in the content region of an inactive window, that window is brought to the
front. Normally, window-activating clicks are not passed to mouse-click handler functions.
Exception: If the getFrontClicks flag is set in the application’s 'SIZE' resource, mouse
clicks in the content area of a suspended application’s window are passed to the application .

If a movable modal dialog is frontmost and the click occurs outside the window, a beep is
emitted. Exceptions to this are that the user can click in the menu bar to make menu selections,

and can Command-click in the drag region of underlying windows.

Disk-insert events for uninitialized disks are handled by allowing the user to eject or initialize the
disk. You don’t end up with a dead floppy drive due to such an event having been thrown away.

System item selections from the Apple menu (e.g., desk accessories) are processed, if
SkelApple () has been called.

Passes clicks in system windows (desk accessories) to the system for processing.

Window sizing and zooming behavior can be modified by the application.

pascal void
SkelDoEvents (short mask);

Runs the TransSkel event loop to process any events of the types specified in the mask parameter.
Returns when no events of the requested types are availble.

Example: to process any outstanding activates and updates, do this:

SkelDoEvents (activMask + updateMask) ;

Note: the argument must be an event mask value or sum of event mask values, not event numbers.
For example, it would be an error to call SkelDoEvents () like this:

SkelDoEvents (activateEvt + updateEvt);

pascal void
SkelDoUpdates (void);

This function runs the TransSkel event loop to process any outstanding update events.

Event Inspection Hook Routines

pascal void
SkelSetEventHook (SkelEventHookProcPtr p);

SkelSetEventHook () installs a function to be called each time an event (null events included)
is routed by SkelRouteEvent (). A pointer to the event record is passed

Page 29

TransSkel 3 Reference Introduction
to the function, which can inspect the event and take whatever action it deems necessary. The function
should be declared as follows:

pascal Boolean
MyEventHook (EventRecord *event);

If your hook returns true, SkelRouteEvent () assumes the handler processed the event and
ignores it, otherwise TransSkel handles the event as it would otherwise. To turn event inspection off,
pass a value of nil to SkelSetRouteEvent (). There is no event inspection hook initially.

Note

Not every event that occurs passes through the hook. For example, many desk accessory events are
processed by the system, mouse up events following clicks in the menu bar and window drag regions
are eaten by the Toolbox, etc. Notwithstanding this caveat, the events seen by the hook are generally
the only ones the host really cares about, anyway.

Warning

You can easily disrupt the normal port-setting behavior that TransSkel provides if your event hook
returns t rue for activate events. In addition, if your event hook returns t rue for null events, you
will effectively disable any idle-time procedure you have installed, and, if the front window is a
dialog with an edit text item, the caret will not blink properly.

pascal SkelEventHookProcPtr
SkelGetEventHook (void);

SkelGetEventHook () returns the current event-inspecting hook, or ni1 if there isn’t one.

Idle Time Routines

pascal void
SkelSetIdle (SkelIdleProcPtr p);

SkelSetIdle () installs an idle function to be run when no events are available. To turn the idle
function off, pass a value of ni1. There is no idle function initially.

If you supply an idle function, it should be declared as follows:

pascal void
MyEventHook (void);

pascal SkelIdleProcPtr
SkelGetIdle (void):;

SkelGetIdle () returns the current idle function, or ni1l if there isn’t one.

Event Mask Routines

Page 30

TransSkel 3 Reference Introduction

pascal void
SkelSetEventMask (short mask);

Page 31

TransSkel 3 Reference Introduction

SkelSetEventMask () is used to specify the types of events requested for processing by
SkelEventLoop (). The mask is constructed by combining the event masks used to specify
individual event types. The default is the same as the system event mask default, i.e., everyEvent
- keyUpMask.

IM II-70 and TN 202 both warn against changing the system event mask, in particular, against
restricting the set of events which can be posted. SkelSetEventMask () does not change the
system event mask, it only changes the set of events requested by TransSkel on behalf of your
application.

Normally SkelSetEventMask () is called by an application to restrict the set of events
requested, for instance, to process only pending update events. It is legitimate to expand the set of
events which can be posted, to allow key-up events (which are by default ignored). However, if this
is done, the application must also change the system event mask and should be careful to restore that
mask before terminating. See TransSkel Programmer’s Note 3 for more details.

If you modify the event mask, you are responsible for resetting it before your application exits.
PGMF 2-11 claims that “in the long run, low memory will disappear,” so TransSkel avoids anything
that requires modifying or even accessing low memory variables directly. The rationale is that there
1s no point in doing anything that looks like it will cause an application to break under future
versions of system software.

pascal short
SkelGetEventMask (void):;

SkelGetEventMask () returns the current TransSkel event mask.

Dialog Event Filter Routines

pascal ModalFilterUPP
SkelDlogFilter (ModalFilterUPP filter, Boolean doReturn);

This routine provides a standard dialog/alert event filter function. The first argument is the dialog-
specific filter function you would normally pass to ModalDialog () or to an alert call. The
standard function takes care of routing updates and activates that aren’t for the dialog or alert
through the TransSkel event router so they get passed to your application normally. It also routes OS
events. The filter also passes command-clicks in the drag region of underlying windows through the
TransSkel event router so that windows can be dragged around in their current plane under modal
dialogs, as per Apple's Human Interface Guidelines (MHIG-145).

In addition, the standard filter can map Return or Enter key events onto clicks in the default button ,
and Escape or Command-period key events onto clicks in the cancel button. If the standard filter
doesn’t handle the event, it passes it to function you passed as the £i1ter argument, if that
argument isn’t nil. If non-nil, filter should point to a function defined like this:

Page 32

TransSkel 3 Reference Introduction

pascal Boolean

Page 33

TransSkel 3 Reference Introduction

MyFilter (DialogPtr dlog, EventRecord *evt, Integer *item);

The doReturn argument is t rue if you want the standard filter to treat the item specified in the
dialog record as the default button and map Return and Enter onto it. If you want to specify a
different item as the default, or to specify a cancel button, use SkelDlogDefaultItem() and
SkelDlogCancelItem().

SkelDlogFilter () maintains a stack internally and may be called in nested fashion if you are
processing multiple dialogs or alerts — although you should try to avoid such situations as they can
be confusing to the user. You must call SkelRmveDlogFilter () to pop the stack after each call
to SkelDlogFilter ().

Example:

ModalDialog (SkelDlogFilter (MyFilter, true), &item);
SkelRmveDlogFilter ();

See TransSkel Programmer’s Notes 2 and 8 for further information about dialog event filters.

pascal ModalFilterYDUPP
SkelDlogFilterYD (ModalFilterYDUPP filter, Boolean doReturn);

This routine is like SkelDlogFilter (), butit’s used for dialog event filter functions like those
used by the System 7 Standard File dialogs CustomGetFile () and CustomPutFile (), 1.e.,
filter functions that are declared like this:

pascal Boolean
MyFilterYD (DialogPtr dlog, EventRecord *evt, Integer *item, void *data);

Currently, you should always pass false for the doReturn argument, since the Standard File
dialogs handle key mapping for themselves.

You must call SkelRmveDlogFilter () toremove the filter installed by
SkelDlogFilter¥YD().

See TransSkel Programmer’s Note 8 for further information.

pascal void
SkelRmveDlogFilter (void);

Removes the dialog filter installed by SkelDlogFilter () or SkelDlogFilterYD (). You
must call this function once for each call to those two functions.

See TransSkel Programmer’s Notes 2 and 8 for further information.

pascal void
SkelDlogDefaultItem (short item);

Page 34

TransSkel 3 Reference Introduction

Designates the given item as the item that should be considered the default button by the standard
dialog event filter function. The filter function maps Return and Enter onto clicks in

Page 35

TransSkel 3 Reference Introduction

this button. If item is zero, Return/Enter mapping is turned off. If i tem is —1, the filter maps Return
and Enter onto the item specified as the default in the dialog record.

See TransSkel Programmer’s Note 8 for further information. See TransSkel Programmer’s Note 10
for information about outlining the default button.

pascal void
SkelDlogCancelltem (short item);

Designates the given item as the item that should be considered the cancel button by the standard
dialog event filter function. The filter function maps Escape and Command-period onto clicks in this
button. If item is zero, Escape/Command-period mapping is turned off.

See TransSkel Programmer’s Note 8 for further information.

pascal void
SkelDlogTracksCursor (Boolean tracks);

Determines whether or not the standard dialog event filter changes the cursor to an I-beam when the
cursor is inside any edit text item.

See TransSkel Programmer’s Note 8 for further information.

Miscellaneous Routines

pascal EventRecord *
SkelGetCurrentEvent (void):;

This function returns a pointer to the last event processed by SkelRouteEvent (). Note that this
will be nil if no events have been processed yet.

pascal short
SkelGetModifiers (void);

This function returns the modifiers word from the last event processed by SkelRouteEvent ().

pascal Boolean
SkelCmdPeriod (EventRecord *evt);

Returns true if the given event contains a key-down event representing Command-period (i.e.,
“cancel the current operation”), false otherwise. The test is done in an internationally-compatible
way.

This function is used by the standard dialog event filter function, but it can also be useful in other
contexts, such as during print operations.

Page 36

TransSkel 3 Reference Introduction

Related Routines

SkelClose () and SkelActivate () under “Window Management”.

SkelSetWaitTimes () and SkelGetWaitTimes () under “Multitasking Support”.

Page 37

TransSkel 3 Reference Introduction
Menu Management
pascal Boolean
SkelMenu (MenuHandle menu,
SkelMenuSelectProcPtr doSelect,
SkelMenuClobberProcPtr doClobber,
Boolean subMenu,
Boolean drawBar);

SkelMenu () registers a menu with TransSkel. This causes a handler to be created for the menu so
that TransSkel knows how to route selections to it. The host should already have created menu via
GetMenu () or NewMenu (). SkelMenu () allocates memory for the handler and returns true if
it succeeded. If SkelMenu () returns false, it failed, probably because the internal data structures
could not be allocated.

SkelMenu () installs menus at the end of the menu bar; the host should not call InsertMenu ().
menu

A handle to the menu to be registered.

doSelect

A pointer to the function to call when items are selected from the menu. The function takes one
parameter, the number of the item that was selected:

pascal void
MySelect (short item);

If doSelect is nil, the menu is installed but selecting items from it has no effect.
doClobber

A pointer to the function to call to take care of disposing of the menu. The function takes one
parameter, a handle to the menu to dispose of:

pascal void
MyClobber (MenuHandle m);

doClobber can be nil for any menu that persists throughout program execution. Handlers for
temporary menus should include a disposal function.

Note
The host should never call the doClobber function itself. Let SkelCleanup () or

SkelRmveMenu () doit.

Page 38

TransSkel 3 Reference Introduction

If the host calls SkelMenu () to install a handler for a menu for which a handler already exists,
the previous handler is removed (without disposing of the menu itself). This is functionally
equivalent to modification of existing handlers.

subMenu

This parameter should be t rue if the menu is a submenu in a hierarchical menu, false
otherwise.

Note

Hierarchical menu support doesn't work with 64K ROM machines, and there's nothing you can
do about it. Should your application require them and provide no workaround, it should test for
that ROM via SkelQuery () and refuse to run if it’s present.

drawBar

This parameter should be t rue if the menu bar should be drawn after the menu is installed.
Typically the host installs all menus but the last with a drawBar value of false, to avoid
menu bar flicker due to unnecessary redrawing. Alternatively, you can pass false as you install
all your menus, then call DrawMenuBar () afterward. This parameter is ignored if subMenu is
true.

pascal void
SkelRmveMenu (MenuHandle menu) ;

SkelRmveMenu () removes the menu handler for the given menu. It removes the menu from the
menu bar (which is redrawn) and calls the handler’s disposal function, if one was specified when the
handler was created.

SkelRmveMenu () deletes the menu from the menu bar; the host should not call
DeleteMenu (). SkelRmveMenu () redraws the menu bar; the host does not need to.

It is permissible for menu handler selection functions to call SkelRmveMenu () . Handlers can
remove themselves this way. Menu handlers can also be removed by window handler functions, for
instance, if a menu is only present when a particular window is active.

pascal void
SkelApple (StringPtr items, SkelMenuSelectProcPtr doSelect);

The Apple menu and the way it is processed are generally highly stereotypical: an applcation-
specific item that says something like “About MyApp...”, then a gray line, then system entries for
the items in the Apple Menu Items folder under System 7 (or desk accessories otherwise). Selecting
the application item results in a display giving some information about the program. Selecting a
system item causes it to be opened.

Page 39

TransSkel 3 Reference Introduction
If your application has an Apple menu that fits this description, call SkelApple () to install one.
The items argument supplies the title of the application item as a Pascal string (e.g., " \pAbout
MyApp..") and doSelect is the function to execute when that item is selected.

items can be nil or the empty string, or, if non-empty, can contain multiple items separated by
semicolons. For instance, if you want to specify an “About” item and a “Help” item, 1 tems might
look like this:

"\pAbout MyApp..;Help"

doSelect is declared the same way as the selection function passed to SkelMenu () . Normally

the item number passed to the Apple menu selection function will be 1, but not necessarily, since you
can specify multiple item titles in items.

If items is nil or the empty string, only system items appear in the menu. If i tems is non-empty
but doSelect isnil, the “About” item appears in the Apple menu but selecting it has no effect.

SkelApple () creates its own menu, so you do not need to supply one. It uses a menu ID of
skelAppleMenulID (128), so the host should not use that ID for any of its other menus. If the
Apple menu is to be handled in a non-standard way, use SkelMenu () to install your own Apple
menu.

SkelApple () calls SkelMenu () to install the Apple menu but returns no value. It is assumed
that SkelApple () will be called so early in the application that it is virtually certain to succeed,
and that if it doesn’t, there is no hope for the application anyway.

SkelApple () does not draw the menu bar; if your only menu is the Apple menu, then you’ll need
to call DrawMenuBar () yourself to make the menu show up.

pascal void
SkelSetMenuHook (SkelMenuHookProcPtr p);

This routine registers a function to be called when a menu selection is about to be made (i.e., when
there is a mouse-down event in the menu bar or a command-key equivalent was typed). This gives
your application a chance to adjust menu items to disable or enable menu items according to your
application’s state. For example, if you have a Close item in your File menu, you might want to
disable it when no windows are visible.

The menu hook function takes no arguments and returns no value:

pascal void
MyMenuHook (void);

Pass nil to turn off menu selection notification.

pascal SkelMenuHookProcPtr
SkelGetMenuHook (void);

Page 40

TransSkel 3 Reference Introduction

Returns the current menu notification function, or ni1 if there isn’t one.

Page 41

TransSkel 3 Reference Introduction

Window Management

pascal Boolean

SkelWindow (WindowPtr wind,
SkelWindMouseProcPtr doMouse,
SkelWindKeyProcPtr doKey,
SkelWindUpdateProcPtr doUpdate,
SkelWindActivateProcPtr doActivate,
SkelWindCloseProcPtr doClose,
SkelWindClobberProcPtr doClobber,
SkelWindIdleProcPtr doIdle,
Boolean idleFrontOnly) ;

SkelWindow () registers a window with TransSkel. This causes a handler to be created for the
window so that TransSkel knows how to route events to it. The window’s port is also made the
current port. SkelWindow () allocates memory for the handler and returns true if it succeeded. If
SkelWindow () returns false, it failed and the current port remains unchanged. The application
should already have created the window via NewWindow () or GetNewWindow (). The rest of the
parameters are values that are installed into TransSkel’s handler structure for the window. Most of
the parameters are addresses of functions that are called to handle events in the window (doMouse,
doKey, doUpdate, doActivate, doClose) or program execution conditions (doClobber,
doIdle). If the handler doesn’t need a particular function, pass nil for the corresponding
parameter. For example, if the handler doesn’t process key clicks, pass nil as the value of doKey.

If a handler function is associated with multiple windows, the function can call GetPort () to
determine which window it was called for.

If the application calls SkelWindow () to install a handler for a window for which a handler
already exists, the previous handler is removed (without disposing of the window itself). This is
functionally equivalent to modification of existing handlers.

The window’s initial property list is empty, unless SkelWindow () is used to register an already-
registered window. In that case, any existing properties attached to the window are transferred to the
new handler.

Note

Since SkelWindow () sets the port to the window being registered, problems can ensue if you
don’t show the window when you’re done initializing it. That is, you can end up with the port no
longer set to the front window. In this case, you should save the port before and restore it after
calling SkelWindow ().

wind

A pointer to the window to be registered.

Page 42

TransSkel 3 Reference Introduction

doMouse

A pointer to the function to execute when wind is the active window and the mouse is clicked in its
content region. The function takes three parameters:

pascal void
MyMouse (Point where, long when, short modifiers);

The location of the mouse click is passed in where, in coordinates local to the window. The time of
the click is passed in when, and the modifier flags word of the mouse click event record is passed in
modifiers. The time of the click can be used for double-click detection, while the modifiers can
be used to detect shift-click, option-click, etc.

doKey

A pointer to the function to execute to handle key clicks when wind is the active window. The
function takes three parameters:

pascal void
MyKey (short c, short code, short modifiers);

The character is passed in c, the raw character code in code, and the modifier flags word of the key
event record is passed in modi fiers. Note that the character is a short; this is consistent with
the way the Apple headers declare char arguments in Toolbox function prototypes, so you may pass
c directly to the Toolbox.

If you want to detect Command-period and interpret it as a Cancel event, the arguments to the key
function are not useful. Instead, you can do something like this:

pascal void
MyKey (short ¢, short code, short modifiers)

{
if (SkelCmdPeriod (SkelGetCurrentEvent ()))

{

/* it’s a Cancel */

/* process key normally */

An optimization of this is to check the modifiers argument to see whether or not the Command key
is down first:

if ((modifiers & cmdKey) && SkelCmdPeriod (SkelGetCurrentEvent ()))

Key clicks are routed to the doKey function of the active window and are thrown away if no
windows are visible. If this is a problem, install an event-inspecting hook with

Page 43

TransSkel 3 Reference Introduction

SkelSetEventHook ().

doUpdate

Page 44

TransSkel 3 Reference Introduction

A pointer to the function that draws the content region of the window. TransSkel brackets calls to
this function by calls to BeginUpdate () and EndUpdate (), so that drawing shows on the
screen only in the region that actually needs updating (see IM:Toolbox Essentials 4-448-450). The
update function takes one parameter:

pascal void
MyUpdate (Boolean resized);

The resized parameter indicates whether or not the window has been resized. The convention for
such notification is this: if the mouse is clicked in the grow box or zoom box of the active window,
TransSkel resizes it automatically and invalidates the entire window port to cause an update event to
be generated. When that event occurs, TransSkel passes a value of true to the update function. The
application may take whatever action is appropriate to respond to a resizing. Since the entire port is
invalidated, drawing shows up in the whole window.

doActivate

A pointer to the function to execute when the window is activated or deactivated. The function takes
one parameter:

pascal void
MyActivate (Boolean active);

The parameter has a value of t rue if the window is coming active, false if it is going inactive.
The application program should draw the grow box if the window has one and take whatever other
steps are appropriate, such as enabling or disabling of controls, and hilighting text selections

properly.

You can cause a window’s doActivate function to be invoked from anywhere in your application
by passing the window pointer to SkelActivate (). This is useful in suspend/resume functions,
for example.

doClose

A pointer to the function to execute when the mouse is clicked in the window’s close box. If the
window has a close box but the handler has a doClose function of nil, the window is simply

hidden (not disposed of). In that case, the application should probably provide a method for
reopening the window (such as a menu selection).

If a window should be disposed of when it’s closed, the doC1lose function can call
SkelRmveWind (). This will cause the window to be disposed of (via the doC1lobber function)
and its handler removed.

The doClose function takes no parameters:

pascal void
MyWindClose (void);

Page 45

TransSkel 3 Reference Introduction

You can cause a window’s doClose function to be invoked from anywhere in your application by
passing the window pointer to SkelClose (). This is useful in menu handlers, e.g., for the Close
item of a File menu.

Page 46

TransSkel 3 Reference Introduction

doClobber

A pointer to the function to execute to dispose of the window and any associated data structures that
may have been created at the same time as the window (e.g., controls, TextEdit records). This is the
function in which CloseWindow () or DisposeWindow () should be called. The function takes
no parameters:

pascal void
MyWindClobber (void);

Your application should never call the doC1obber function itself. Let Skel1RmveWind () or
SkelCleanup () doit.

Note
You should supply a disposal function. If you do not, the situation after you call
SkelRmveWind () is that TransSkel will have disposed of the handler but not the window.

doIdle

A pointer to the function to execute when there are no events pending. Essentially, this is the “no-
event” handler. For example, doId1le functions for TextEdit window handlers can call TEId1e ()
to blink the caret. Window handlers that change the cursor shape depending on the current mouse
location can do so here.

doIdle differs from the general application idle function that’s specified with SkelSetIdle ()
in that the window idle function is attached to a particular window.

The doId1le function takes no parameters:

pascal void
MyWindIdle (void);

idleFrontOnly

If this argument is t rue, the window idle function is called only when the window is active
(frontmost). If doIdle is nil, the value of idleFrontOnly is irrelevant, of course.

doIdle functions that should execute only when the window is visible must themselves check
whether that is so. Window idle functions are polled when the application is suspended, but do not
run unless they are set to run even when the window is not frontmost.

pascal void
SkelRmveWind (WindowPtr wind) ;

SkelRmveWind () removes the window handler for wind. It calls the handler’s doClobber
function, if one was specified when the handler was created.

Page 47

TransSkel 3 Reference Introduction

It is dangerous for doId1le functions to call SkelRmveWind () to remove handlers for windows
other than the one for which they are called. Otherwise, it is permissible for any window handler
function except doClobber to call SkelRmveWind (). Handlers can

Page 48

TransSkel 3 Reference Introduction
remove themselves this way. (doClobber is called by SkelRmveWind () ; it does not make sense for
the latter to be called by the former.)

Window handlers can also be removed by menu handler functions.

pascal Boolean

SkelDialog (DialogPtr dlog,
ModalFilterProcPtr doFilter,
SkelWindEventProcPtr doSelect,
SkelWindCloseProcPtr doClose,
SkelWindClobberProcPtr doClobber) ;

SkelDialog () registers a modeless dialog or movable modal dialog with TransSkel. This causes
a handler to be created for the dialog so that TransSkel knows how to route events to it. The dialog
port is also made the current port. SkelDialog () allocates memory for the handler, attaches a
skelWPropModeless or skelWPropMovableModal property to it depending on the type of
window, and returns t rue if it succeeds. If SkelDialog () returns false, it failed, and the
current port remains unchanged. The application should already have created the dialog via
NewDialog () or GetNewDialog (). The other parameters are addresses of functions that are
called to handle events in the dialog (doSelect, doClose, doFilter) or program execution
conditions (doClobber). If the handler doesn’t need a particular function, pass ni1 for the
corresponding parameter.

If the application calls SkelDialog () to install a handler for a dialog for which a handler already
exists, the previous handler is removed (without disposing of the dialog itself). This is functionally
equivalent to modification of existing handlers.

Modeless and movable modal dialog is discussed in more detail in TransSkel Programmer’s Note 12.
dlog

A pointer to the dialog to be registered.

doFilter

A pointer to a filter function. (Notice that this is not a UPP.) This function is given first chance at
events for the dialog. A filter function can be used to perform tasks such as hiliting controls and text
selections when activate events occur, tracking mouse clicks in user items, or mapping key clicks
onto button presses (e.g., mapping the Return key onto a click in the OK button).

An “event for the dialog” is defined as:

* Null events, key clicks, and mouse clicks in the content region when the dialog is frontmost.

» Updates and activates for the dialog.

Page 49

TransSkel 3 Reference Introduction

The function is declared as follows:

Page 50

TransSkel 3 Reference Introduction
Boolean
MyFilter (DialogPtr dlog, EventRecord *evt, short *item);

dlog is the dialog to which the event applies. The filter function should return true or false to
indicate whether or not it handled the event. If it returns false, TransSkel continues to route the
event as it would were there no filter function. If it returns t rue, the 1 tem parameter should be set
to the item associated with processing the event and the dialog’s selection routine will be called to
tell the handler that an item hit occurred. For instance, if you map the Return key to a click in the
OK button, the function should return t rue and the item parameter should be set to the item
number of the OK button.

The filter should return false for null events, or the caret will not blink in the frontmost window if
that window is a dialog with edit text items. It should also return false for update and activate events,
even if it responds to them, so that the Dialog Manager can do what it normally does in response to
these events.

The filter function can assume that the port is set to the dialog when it’s called if the application
doesn’t violate TransSkel’s port setting model. The port is set to the dialog when it becomes active,
so the port should be set properly for activates, null events, and key and mouse clicks. For update
events, the port is set to the dialog before calling the filter and is restored afterward.

For update events, the filter is called called between BeginUpdate () and EndUpdate () calls.
It is safe to remove the dialog by calling SkelRmveDlog () from within the filter.
doSelect

The item selection function. This function is called when a hit occurs in an enabled item in the
dialog. The function takes two parameters.

pascal void
MySelect (DialogPtr dlog, short item);

A pointer to the dialog to be handled is passed in d1og, and item is the item to which the event
applies.

It is safe to remove the dialog by calling SkelRmveDlog () from within the selection function.
doClose

A pointer to the function to execute when the mouse is clicked in the dialog’s close box. If the dialog
has a close box but the handler has a doClose function of ni1, the dialog is simply hidden (not
disposed of). In that case, the application should probably provide a method for reopening the dialog,
e.g., a menu item.

doClose is useful for writing handlers for temporary dialogs that are thrown away when the dialog
is closed. The doC1lose function can call SkelRmveDlog () to cause the dialog to be disposed of

Page 51

TransSkel 3 Reference Introduction

and its handler to be removed.

The doClose function is defined the same way as for SkelWindow ().

Page 52

TransSkel 3 Reference Introduction

doClobber

A pointer to the function to execute to dispose of d1og and any associated data structures that may

have been created at the same time as the dialog. The function is defined the same way as for
SkelWindow ().

The application should never call the doClobber function itself. Let SkelRmveDlog () or
SkelCleanup () doit.

Note
You should supply a disposal function. If you do not, the situation after you call
SkelRmveDlog () is that TransSkel will have disposed of the handler but not the dialog.

pascal void
SkelRmveDlog (DialogPtr dlog);

SkelRmveDlog () removes the dialog handler for d1og. It calls the handler’s doClobber
function, if one was specified when the handler was created.

SkelRmveDlog () can be used to dynamically alter the set of available dialogs.

pascal void
SkelClose (WindowPtr wind);

Ifwindisnil, SkelClose () does nothing. If the window is a Desk Accessory window,
SkelClose () closes it properly. Otherwise SkelClose () calls the window’s close procedure.

This is useful for situations when you may not know a window’s close procedure. For example, you
can call it to process a Close item in your File menu:

SkelClose (FrontWindow ());

pascal void
SkelActivate (WindowPtr wind, Boolean active);

SkelActivate () calls the given window’s activate procedure. active indicates whether the
window should be activated or deactivated. This is useful in suspend/resume handlers when you may
not know a window’s activate procedure:

SkelActivate (wind, inForeground) ;

pascal void

SkelSetGrowBounds (WindowPtr wind,
short hLo, short vlLo,
short hHi, short vHi);

SkelSetGrowBounds () tells the handler for wind what the lower and upper limits on window
sizing should be. The lower limits horizontally and vertically are given by hLo and vLo. The upper

Page 53

TransSkel 3 Reference Introduction

limits are given by hHi and vHi.

Page 54

TransSkel 3 Reference Introduction
Grow limits for a window are initialized by SkelWindow () when it creates the window’s handler.
To reset these general defaults (as opposed to the defaults for a particular window), pass ni1 as the
value of wind. The initial defaults are 80 pixels in either direction for the lower limits. The default
upper limits are the dimensions of the desktop region bounding rectangle, and are therefore machine
dependent.

pascal void
SkelSetZoom (WindowPtr wind, SkelWindZoomProcPtr doZoom) ;

SkelSetZoom () installs a function to be used to zoom the window when its zoom box is clicked
by the user. If wind is ni1, the function becomes the default window zooming function that is used
for all windows subsequently made known to TransSkel with SkelWindow (). If wind is non-
nil, the function is used only for the given window. If doZoom is ni1, the initial default function
(the “default default”) is used. If doZoom is non-ni1, it is used as the function to be called for
zooming. The function takes two parameters, the window to be zoomed, and the zoom direction
(either inZoomIn or inZoomOut):

pascal void
MyZoomProc (WindowPtr w, short zoomDir);

By default, TransSkel will zoom a window to the full size of the screen (or the screen containing
most of the window, on multiple-screen systems), inset by 3 pixels on all sides and the height of the
menu bar on the top if the window is on the screen containing the menu bar. Applications may wish
to modify this behavior, particularly for large-screen monitors. For instance, text editors need only
zoom windows to the width of a page, which may be less than the full width of the screen.

pascal SkelWindZoomProcPtr
SkelGetZoom (WindowPtr wind) ;

This function returns the current function used to zoom the given window, or nil if the window is
zoomed using TransSkel’s default zoom function.

pascal void
SkelGetWindContentRect (WindowPtr wind, Rect *rp);

Returns the window’s content rectangle in the second argument, in global coordinates.

pascal void
SkelGetWindStructureRect (WindowPtr wind, Rect *rp);

Returns the window’s structure rectangle in the second argument, in global coordinates.

pascal short
SkelGetWindTitleHeight (WindowPtr wind) ;

Page 55

TransSkel 3 Reference Introduction

This function returns the height of the window’s title bar by calculating the difference between the
tops of the structure and content regions. It works whether or not the window is visible (the structure
region is invalid for invisible regions) and in a script-system independent way.

Note

SkelGetWindTitleHeight () is intended to be used for rectangular window with the title bar
on the top. It will not work for windows that have a title bar on the side, and it may not work for
strangely-shaped windows.

pascal Boolean
SkelGetWindowDevice (WindowPtr wind, GDHandle *gd, Rect *devRect);

SkelGetWindowDevice () determines which active screen device contains the largest area of
the content region of the window and returns the device and the usable area on that device. The
return value is true if the window actually overlaps some device, false otherwise. You can pass
nil for the device or device rectangle parameters if you’re not interested in the device.

If the return value if false (the window overlaps no devices), non-nil arguments are filled in with
the main device, the main device rectangle, and t rue, respectively

On return, gd will be ni1 if Color QuickDraw is not supported, since no graphics devices will be
present.

SkelGetWindowDevice () doesn't check whether the visible flag is set in the window record,
because it can be useful for determining where to position not-yet-shown windows — if the return
value is false, you know the window will not be visible on any device even after a
ShowWindow (), and that it should be positioned somewhere within the returned rectangle.

Applications that save document positions should use SkelGetWindowDevice () whena
document is opened to determine whether the window will be invisible if positioned where it was
last saved, and move it somewhere within the returned rectangle if the function result is false.

If you use this routine for positioning windows before you show them, remember to take into
account the height of the title bar. This can be determined by calling
SkelGetWindTitleHeight ().

SkelGetWindowDevice () calls SkelGetRectDevice (); see the description of the latter
function.

pascal Boolean
SkelWindowRegistered (WindowPtr wind);

Returns t rue if the window is registered with TransSkel, false otherwise.

pascal Boolean
SkelIsDlog (WindowPtr wind) ;

Page 56

TransSkel 3 Reference Introduction

Page 57

TransSkel 3 Reference Introduction
Returns t rue if the window is a dialog window, false otherwise. It is safe to pass nil to this
routine.

pascal Boolean
SkelIsMMDlog (WindowPtr wind) ;

Returns t rue if the window is a movable modal dialog window, false otherwise. It is safe to pass
nil to this routine.

The Port-Setting Model

TransSkel uses three princples in deciding when to change the current port. These are described below.

Follow the active window. The main port-setting principle is that TransSkel sets the port to a window
when the window becomes active (frontmost). Thus the current port follows window activation events.
This is congruent with the way users perceive themselves to be directing their attention to a given
window by clicking in it to bring it to the front, if it isn’t already frontmost.

This often means the programmer need do no SetPort () calls at all, since many events are directed
toward the active window. It also means that many events naturally go to the correct port without
scattering a lot of SetPort () calls throughout the TransSkel code itself. For instance, key clicks are
directed by TransSkel to the frontmost window, thus to the current port. Mouse clicks in the close box,
the grow region or the zoom box of a window can only occur when that window is frontmost, so the port
will already be set correctly. Mouse clicks in the content region of a window are passed to the window’s
click handler only if the window is active.

Make local port changes for non-active windows. A second port-setting principle is that port changes
not resulting from a window coming active are local changes only. That is, the port is set temporarily to
handle some event, and then restored after the event has been processed. For instance, update events can
occur for any window. Thus, TransSkel saves the port, sets the port to the window needing updating,
calls the update handler, and restores the port. Clobber and idle procedures may also be executed for any
window and the port is saved, set and restored similarly.

One implication of this port-setting model is that your window handler procedures can expect to find the
port set to the window for which they’re being called. This means your application may be able to share
handler procedures among windows that have the similar characteristics. By doing a GetPort (), those
procedures can determine which window is to be affected. For example, if multiple windows share a
clobber function, that function can determine the proper window to dispose of like this:

pascal void
MyClobber (void)
{

WindowPtr w;

GetPort (&w);
/* dispose of window here */

Page 58

TransSkel 3 Reference Introduction

Some anomalous situations are handled specially and deserve comment.

Page 59

TransSkel 3 Reference Introduction

Zooming and closing can both be initiated under application control, thus for windows which aren’t
necessarily active. Thus the port is set before performing the operation and restored afterward.

A local port change is made for deactivate events. This is necessary for the case that the window coming
active is a modal dialog. Modal dialogs are not handled by TransSkel, so setting the port to the
deactivated window and leaving it there would leave the port set to the wrong window during dialog
processing.

Set the port when a window is registered. The current port is also set by SkelWindow () whena
window is registered. I concede that setting the port to any newly-created window does not strictly
follow from either the user’s perception of port-setting, or from the local-changes-only convention.
However, in my experience, typically when a window is created and its handler installed, other
initialization is performed on the window (setting font size or face, installing controls, etc.) and it is
convenient to find the port already set. In any case, should the application wish to override this behavior,
the port can be saved before and restored after the call to SkelWindow (). For instance, the model will
fail under the following circumstances:

* Window A is created and activated (port becomes A)
* Window B is created but is not visible, i.e., it will be used later (port becomes B)
» User draws into A, the active window. The port, however, is set to B.

Under conditions such as these, the creation of B and its initialization should be bracketed by a pair of
calls to GetPort () and SetPort (). I felt that these circumstances are sufficiently infrequent that
the burden on the developer is less when the port is set by SkelWindow () than when it is not.

Treatment of modeless dialogs and movable modal dialogs is similar; when a dialog becomes active, the
port is set to it.

Page 60

TransSkel 3 Reference Introduction

Window Properties
Windows may have property lists. A window property consists of an short property type, a long
property data value, and a handle to the next property in the list (ni1 if none).

typedef struct SkelWindProperty SkelWindProperty, **SkelWindPropHandle;
struct SkelWindProperty
{
short skelWPropType;
long skelWPropData;
SkelWindPropHandle skelWPropNext;
bi

You can store whatever you like in the skelWPropData field, for instance, a handle to an auxiliary
data structure, or a pointer to a function.

The current property types are:

skelWPropAll /* pseudo-property */

skelWPropModeless /* modeless dialog */

skelWPropModal /* modal dialog */

skelWPropTool /* tool window */

skelWPropMovableModal /* movable modal dialog */
skelWPropHelp /* help window */

skelWPropText /* text window */

skelWPropDisplayWind /* TransDisplay window */
skelWPropEditWind /* TransEdit window */
skelWPropApplBase /* first general-use property number */

Property types less than 256 (a constant available as ske lWPropApplBase) are reserved for use by
TransSkel and those window packages which are now or in the future become part of the TransSkel
“canon” — e.g., TransDisplay, TransEdit. ske lWPropAll is a pseudo-property used as indicated
under the descriptions of the SkelGetWindProp () and SkelRmveWindProp () functions.

Properties from skelWPropApplBRase and higher are available for use on an application-defined
basis.

When a window is registered with TransSkel using SkelWindow (), it has no properties by default.
SkelDlogWindow () assigns a skelWPropModeless or skelWPropMovableModal property,
depending on the type of dialog being registered.

You can assign properties with Ske1AddWindProp () and remove them with

SkelRmveWindProp (). Properties and property values may be retrieved with
SkelGetWindProp () and SkelGetWindPropData (). By attaching distinct properties to
different types of windows, an application can easily determine whether a window is a given type or not.

Page 61

TransSkel 3 Reference Introduction
TransSkel allows you to call SkelWindow () for a window that has already been passed to
SkelWindow (). In such a case, the current window handler is destroyed, and replaced with a new
one. However, if the window has any existing properties, they are not destroyed, but are transferred to
the new handler.

Why properties?

TransSkel manages windows by associating each one with a structure that describes various things about
the window: pointer to window structure, etc.

Window-handling attributes that apply to all or most windows are valid candidates for inclusion in the
handler structure. However, for attributes that distinctly apply only to a given type of window, it is
unwarranted to put the machinery for them directly in the structure.

If applications assigned no more than one property to a given window, the property mechanism could be
implemented as a static slot in the TransSkel window handler structure. However, since multiple
properties might be useful in unforeseen contexts, and to forestall the need for changes to the property
mechanism due to unanticipated requirements, the implementation uses a list of dynamically-allocated
structures which can be added and deleted.

This allows an arbitrary number of properties and eliminates the need for each application to invent its
own method of identifying windows. The window property structure carries window type
indentification information, and points to additional data that can be used by the machinery that
manipulates that window type.

Properties allow different types of windows to be easily identified without building information
necessary to identify and manipulate each type directly into the handler structure. Furthermore, the
mechanism to process information associated with the property remains in the application, where it
belongs; there is no need to build idiosyncratic window-handling mechanisms into TransSkel.

Interface Specification

pascal Boolean
SkelAddWindProp (WindowPtr w, short propType, long propData);

SkelAddWindProp () adds a property to a window and returns t rue if it succeeded. It returns
false if the window is not registered with TransSkel, if memory could not be allocated for the new
property structure, if the window already has a property of the given type, or if the pseudo-type
skelWPropAll is passed as the property type.

Since SkelAddWindProp () fails if the window already has a property of the given type,, you
should remove any instance of a given property before creating a new one.

pascal void

Page 62

TransSkel 3 Reference Introduction

SkelRmveWindProp (WindowPtr w, short propType)

Removes the property of the given type for the given window. Note that since TransSkel has no way
of interpreting what you store in the skelWPropData field, if you use it to store a

Page 63

TransSkel 3 Reference Introduction

pointer or handle to other data structures, you are responsible for disposing of those structures yourself.
Use SkelGetWindProp () to get a handle to the property structure before you remove the
property. For example:

wh = SkelGetWindProp (w, propType);
MyDisposePropData ((**wh) .skelWPropData) ;
SkelRmveWindProp (w, propType);

Passing skelWPropAll as the property type removes all properties. Again, if you need to dispose
of auxiliary structures, do so for all structures before removing any of them. However, if you try

walking the property list while simultaneously removing properties from the list, you’ll encounter
problems:

Incorrect:

wh = SkelGetWindProp (w, skelWPropAll);

while (wh != (SkelWindPropHandle) nil)

{
MyDisposePropData ((**wh) .skelWPropData) ;
SkelRmveWindProp (w, (**wh).skelWPropType)
wh = (**wh) .skelWPropNext;

Correct:

wh = SkelGetWindProp (w, skelWPropAll);

while (wh != (SkelWindPropHandle) nil)

{
MyDisposePropData ((**wh) .skelWPropData) ;
wh = (**wh) .skelWPropNext;

}

SkelRmveWindProp (w, skelWPropAll);

A window’s property list is disposed of automatically by SkelRmveWind () after calling the
window’s clobber function. You may therefore wish to use the clobber function to dispose of
auxiliary data structures pointed to by the skelWPropData field.

pascal SkelWindPropHandle
SkelGetWindProp (WindowPtr w, short propType);

Returns a handle to the property structure for the given window and property type. Returns nil if
the window is unregistered or does not have the given property.

Passing the pseudo-property ske lWPropAll as the property type causes a handle to the first
property in the property list to be returned, which can be useful when you want to scan through the
list yourself. This will be ni1 if the window has no properties.

Here’s how to walk the property list for a window w:

SkelWindPropHandle wh;

Page 64

TransSkel 3 Reference Introduction

wh = SkelGetWindProp (w, skelWPropAll);
while (wh != (SkelWindPropHandle) nil) /* walk list until end reached */
{

/* ... look at (**wh).skelWPropType... */

Page 65

TransSkel 3 Reference Introduction
wh = (**wh) .skelWPropNext;

}

pascal long
SkelGetWindPropData (WindowPtr w, short propType):;

Returns the data value for a window’s property. If the window is not registered, has no such property,
or the property type is skelWPropAl1l, the function returns zero. This means that if it is important
to distinguish a true property value of zero from an error return, you should not call
SkelGetWindPropData (), but should do the following instead:

SkelWindPropHandle wh;

wh = SkelGetWindProp (w, skelWPropAll);
if (wh == (SkelWindPropHandle) nil)

/* handle error */
else

/* look at (**wh).skelWPropData */

Page 66

TransSkel 3 Reference Introduction
Multitasking Support

System software versions that allow multiple applications to be open at once manage those applications
by moving them between foreground and background. (This includes System 7 and versions of System 6
that support MultiFinder.) The system uses OS events to communicate to applications that they’re being
suspended or resumed and that the contents of the Clipboard (the system scrap) need to be converted to
or from the application’s private scrap.

TransSkel provides support for multitasking by allowing your application to be notified when
suspend/resume events occur, and when the clipboard needs to be converted between the private and
system scrap. There are also routines for setting and getting the foreground and background event wait
times used by WaitNextEvent (), and there is a SkelQuery () selector your application can use to
find out whether it is currently in the foreground or background.

There is presently no support for receiving mouse-moved OS events. This may be provided in the future.
There is also no support for child-died information delivered through OS events, and this is unlikely to
change. (This was used primarily only for debuggers, and the bits that you test in the event message
seem now not even to be documented.) Under System 7, you can receive child-died information using
Apple Events.

To receive OS events:

* You must set the proper flags in your application’s 'SIZE' resource to inform the system that your
application wants to know about OS events.

* You must register handler functions for OS events with TransSkel, so it knows how to route those
events into your application code.

'SIZE' resource —1 controls whether or not the system tells your application about OS events. For
TransSkel, the relevant flags are acceptSuspendResumeEvents,
doesActivateOnFGSwitch, and getFrontClicks. These flags correspond to the Suspend &
Resume Events, MultiFinder-Aware, and Get FrontClicks items that you can set with the SIZE Flags
popup menu from Set Project Type... under the Project menu in THINK C. In Metrowerks CodeWarrior
you can set the flags in the Project preferences.

* acceptSuspendResumeEvents

If set, this flag specifies that your application wishes to receive OS events (that is, osEvt events,
formerly known as app4Evt events). The system still suspends and resumes your application if the
flag isn’t set, it simply doesn’t tell you when that happens.

e doesActivateOnFGSwitch

If set, this flag specifies that your application will handle deactivating and activating of the front
window itself when the application is suspended and resumed. If this flag isn’t set, the system

Page 67

TransSkel 3 Reference Introduction
fools your application into doing the right thing by creating a false window. That’s easier for your
application but it takes longer. The result for the user is more sluggish response.

If the doesActivateOnFGSwitch flag is set, you also set the
acceptSuspendResumeEvents flag, or your application won’t know when to do the activates..

e getFrontClicks

Normally, a click in the content area of a window belonging to a suspended application brings the
application to the front but is otherwise thrown away. Setting the get FrontClicks flag specifies
that your application wishes to receive such content-area mouse clicks.

To receive suspend and resume events, you should set the appropriate flag(s) in the 'SIZE' resource and
install a handler for TransSkel to call when your application is suspended or resumed. The function takes
one parameter:

pascal void
MySuspendResume (Boolean inForeground) ;

inForeground is false if your application is being suspended, t rue if it’s being resumed. Register
your suspend/resume handler with TransSkel like this:

SkelSetSuspendResume (MySuspendResume) ;

If your application supports a private scrap, you can arrange to be notified when the application needs to
convert its contents to or from the Clipboard. This allows interapplication communication via the
Clipboard.

To manage Clipboard conversion, write a handler function:

pascal void
MyClipCvt (Boolean inForeground)
{
if (inForeground)
/* convert system scrap to private scrap */
else
/* convert private scrap to system scrap */

}

inForegroundis false if your application is being suspended, which means you should unload the
application’s private scrap to the system scrap. Otherwise your application is being resumed and you
should convert the contents of the system scrap to your application’s private scrap.

Register your Clipboard conversion handler with TransSkel like this:

SkelSetClipCvt (MyClipCvt);

Note
When an application is brought to the foreground, it only needs to convert the system scrap if that was
changed while the application was suspended. Thus, it’s not necessarily true that your Clipboard

Page 68

TransSkel 3 Reference Introduction

conversion handler will be called on every resume.

Page 69

TransSkel 3 Reference Introduction

If your application needs to know whether it’s running in the foreground or background, you can call
SkelQuery ():

inForeground = SkelQuery (skelQInForeground) ;

Interface Specification

pascal void
SkelSetSuspendResume (SkelSuspendResumeProcPtr p);

Register a function to be called when a suspend/resume event occurs. Pass ni1 to disable
notification.

pascal SkelSuspendResumeProcPtr
SkelGetSuspendResume (void);

Returns the current suspend/resume handler, or ni 1 if there isn’t one.

pascal void
SkelSetClipCvt (SkelClipCvtProcPtr p);

Register a function to be called when the Clipboard needs converting. Pass ni1 to disable
notification.

pascal SkelClipCvtProcPtr
SkelGetClipCvt (void);

Returns the current Clipboard conversion handler, or ni1 if there isn’t one.

pascal void
SkelSetWaitTimes (long fgTime, long bgTime) ;

pascal void
SkelGetWaitTimes (long *pFgTime, long *pBgTime);

These functions are used to set or get the foreground and background event wait times used by
WaitNextEvent (). The values are specified in ticks (60ths/second). The defaults are 6 and 300

ticks (.1 second, 5 seconds).

Either argument to SkelGetWaitTimes () may be nil if you’re not interested in the
corresponding time.

Related Routines

SkelQuery (), re: the skelQInForeground selector.

Page 70

TransSkel 3 Reference Introduction

Apple Event Support
TransSkel provides some support for Apple Events (high-level events), although the interface is pretty
rudimentary and may change in the future. Presently, to receive high-level events:

* You must set the proper flags in your application’s 'SIZE' resource to inform the system that your
application wants to know about high-level events.

* You must register handler functions for high-level events with TransSkel, so it knows how to send
those events to your application. You will probably also need to register handler functions with the
system.

'SIZE' resource —1 controls whether or not the system tells your application about high-level events. For
TransSkel, the relevant flags are 1 sHighLevelEventAware and localAndRemoteHLEvents.
These flags correspond to the HighLevelEvent-Aware and Accept Remote HighLevelEvents items that
you can set with the SIZE Flags popup menu from Set Project Type... under the Project menu in THINK
C. In Metrowerks CodeWarrior you can set the flags in the Project preferences.

* isHighLevelEventAware

This flag must be set to specify that your application can receive high-level events (that is,
kHighLevelevent events). Actually, it means your application can send high-level events, too,
but TransSkel has nothing to do with sending them.

e JlocalAndRemoteHLEvents

If set, this flag specifies that your application can send and receive high-level events across a
network.

Assuming the 'SIZE' resource is set properly, your application must do several things to receive and
process Apple Events.

You need to write handler functions for the events in which you’re interested. For instance, to handle the
required core Apple Events (Open Application, Quit Application, Open Documents, and Print
Documents), you can write handlers for them like this:

pascal OSErr
MyAEOpenApp (const AppleEvent *theAEvt, AppleEvent *replyEvt, long refCon);
pascal OSErr
MyAEQuitApp (const AppleEvent *theAEvt, AppleEvent *replyEvt, long refCon);
pascal OSErr
MyAEOpenDoc (const AppleEvent *theAEvt, AppleEvent *replyEvt, long refCon);
pascal OSErr
MyAEPrintDoc (const AppleEvent *theAEvt, AppleEvent *replyEvt, long refCon);

Page 71

TransSkel 3 Reference Introduction
Your handlers must be registered using AEInstallEventHandler (). However, first you should
test whether Apple Events are available:

if (SkelQuery (skelQHasAppleEvents))

/* Bpple Events are available */
else

/* Bpple Events are not available */

If Apple Events are available, you tell the system about your handlers:

if (AEInstallEventHandler (kCoreEventClass, kAEOpenApplication,
MyAEOpenApp, 0L, false) != noErr)
/* handle errror */
if (AEInstallEventHandler (kCoreEventClass, kAEQuitApplication,
MyAEQuitApp, 0L, false) != noErr)
/* handle errror */
if (AEInstallEventHandler (kCoreEventClass, kAEOpenDocuments,
MyAEOpenDoc, 0L, false) != noErr)
/* handle errror */
if (AEInstallEventHandler (kCoreEventClass, kAEPrintDocuments,
MyAEPrintDoc, 0L, false) != noErr)
/* handle errror */

Now you need to write a function that TransSkel can call to notify your application about high-level
events. The function should be declared like this:

pascal void
MyAEProc (EventRecord *theEvent);

And you register it with TransSkel like this:

SkelSetAEHandler (MyAEProc);

What you do inside MyAEProc () depends on how you intend to process Apple Events. If you respond
only to Apple Events for which you’ve registered handlers by calling AEInstallEventHandler (),
MyAEProc () doesn’t need to do anything other than pass the events along to
AEProcessAppleEvent (), which will convert them to Apple Events and route them to whichever
handler is appropriate for the event type:

pascal void
MyAEProc (EventRecord *theEvent)
{
AEProcessAppleEvent (theEvent);
}

If your application responds to other high-level events, then MyAEProc () may need to do additional
processing.

Interface Specification

pascal void
SkelSetAEHandler (SkelAEHandlerProcPtr p);

Page 72

TransSkel 3 Reference Introduction

SkelSetAEHandler () registers a function for TransSkel to call when a high-level event occurs.
The function should be declared like this:

Page 73

TransSkel 3 Reference Introduction

pascal void
MyAEProc (EventRecord *theEvent);

Pass ni1l to turn off high-level event notification.

pascal SkelAEHandlerProcPtr
SkelGetAEHandler (void);

SkelGetAEHandler () returns the current high-level event handler. It returns ni1 if there isn’t
one.

Page 74

TransSkel 3 Reference Introduction

Thread Manager Support

In System 7.5, Apple provides support for multi-threaded applications via the Thread Manager. The
Thread Manager is also available as an extension for earlier systems. TransSkel provides support for
threads by calling YieldToAnyThread () inthe main event loop if the Thread Manager is available.

First you should test whether the Thread Manager is available:

if (SkelQuery (skelQHasAppleEvents))

/* Apple Events are available */
else

/* Bpple Events are not available */

If the Thread Manager is available, you can set up your threads using Thread Manager calls such as
NewThread ().

If you find that your threads aren’t being given enough time, you can use SkelSetThreadTimes ()
to increase the priority of thread processing relative to event processing.

Interface Specification

pascal void
SkelSetThreadTimes (long fgTime, long bgTime) ;

pascal void
SkelGetThreadTimes (long *pFgTime, long *pBgTime) ;

These functions are used to set or get the amount of time the main event loop gives priority to thread
execution in the foreground or background (by calling YieldToAnyThread ()) before checking
to see whether or not there is an event. The values are specified in ticks (60ths/second). The default
is O ticks for both values. This default is appropriate for applications that are not multi-threaded, so
if you use threads, and you want more time spent thread processing and less time soliciting events
from the operating system, set the values to some positive value (e.g., 3 ticks/1 tick).

YieldToAnyThread () is called at least one time through the main event loop, even if the thread
times are set to 0, so your threads aren’t locked out if you forget to set the times to a non-zero value.

Either argument to SkelGetThreadTimes () may be nil if you’re not interested in the
corresponding time.

Related Routines

Page 75

TransSkel 3 Reference Introduction

SkelQuery (), re: the skelQHasThreads selector.

Page 76

TransSkel 3 Reference Introduction
Miscellaneous Routines
This section describes miscellaneous TransSkel routines.

Control Manipulation

pascal Boolean
SkelHiliteControl (ControlHandle ctrl, short hilite);

This routine sets the control hilite value. It differs from the HiliteControl () Toolbox routine in
that it does nothing if the hilite value is already set to the value passed. SkelHiliteControl ()
returns true if the hilite value was set, false if not. The return value can be used to avoid
unnecessary drawing. For instance, if you draw a heavy outline around a button, you should redraw
it appropriately (black or gray) when the button hilite value changes, but you don’t need to if the
value’s already set properly.

pascal void
SkelDrawButtonOutline (ControlHandle ctrl);

Draw a heavy outline around the control (which should be a push-button). If the button is inactive,
the outline is drawn in gray. True gray is used if it’s available and the window uses a color GrafPort,
otherwise dithered gray is used.

pascal void
SkelEraseButtonOutline (ControlHandle ctrl);

Assuming there’s a heavy outline around the control (which should be a push-button) this function
erases it by drawing the outline in white.

pascal void
SkelFlashButton (ControlHandle ctrl);

Simulates a click in the control (which should be a push-button) by inverting it momentarily.

pascal short
SkelToggleCtlValue (ControlHandle ctrl);

Toggle the value of the control and return the resulting value. This is most useful for checkbox items.

Dialog Item Management

Page 77

TransSkel 3 Reference Introduction

This section describes TransSkel routines for dealing with dialog items. These routines assume that you
call them appropriately. Don’t call SkelGetDlogCtl () to get a control handle for an item that’s not
actually associated with a control, don’t call SkelGetDlogStr () to get the text of a dialog item
unless it’s a static text or edit text item, and so forth.

pascal ControlHandle
SkelGetDlogCtl (DialogPtr d, short item);

Return a handle to the control associated with the dialog item.

pascal Boolean
SkelSetDlogCtlHilite (DialogPtr d, short item, short hilite);

Set the hiliting value of the control associated with the dialog item, and return t rue if the value was
changed, false if the hiliting value was already set to the given value.

pascal short
SkelGetDlogCtlHilite (DialogPtr d, short item);

Return the hiliting value of the control associated with the dialog item.

pascal void
SkelSetDlogCtlValue (DialogPtr d, short item, short value);

Set the value of the control associated with the dialog item.

pascal short
SkelGetDlogCtlValue (DialogPtr d, short item);

Return the value of the control associated with the dialog item.

pascal short
SkelToggleDlogCtlvalue (DialogPtr d, short item);

Toggle the value of the control associated with the dialog item and return the resulting value. This is
most useful for checkbox items.

pascal void
SkelSetDlogCtlRefCon (DialogPtr d, short item, long value);

Set the reference constant of the control associated with the dialog item.

pascal long
SkelGetDlogCtlRefCon (DialogPtr d, short item);

Page 78

TransSkel 3 Reference Introduction

Return the reference constant of the control associated with the dialog item.

pascal void
SkelSetDlogStr (DialogPtr d, short item, StringPtr str);

Set the text of the dialog item using the string pointed to by str.

pascal void
SkelGetDlogStr (DialogPtr d, short item, StringPtr str);

Get the text of the dialog item into the string pointed to by str.

pascal void
SkelSetDlogRect (DialogPtr d, short item, Rect *r);

Set the bounding rectangle of the dialog item using the rectangle pointed to by r.

pascal void
SkelGetDlogRect (DialogPtr d, short item, Rect *r);

Get the bounding rectangle of the dialog item into the rectangle pointed to by r.

pascal void
SkelSetDlogProc (DialogPtr d, short item, UserItemUPP proc);

Set the procedure associated with the dialog item.

This routine is easier to use than the equivalent SetDItem () toolbox call. It also gives better
typechecking since the proc argument is specified simply as a Handle for SetDItem (). With
SkelSetDlogProc () the procedure must be of the proper type. This is valuable especially when
compiling PowerPC code since the proc argument must actually be a routine descriptor and not
simply a pointer to a procedure.

pascal UserItemUPP
SkelGetDlogProc (DialogPtr d, short item);

Get the procedure associated with the dialog item.

pascal void
SkelSetDlogType (DialogPtr d, short item, short type);

Set the dialog item’s type.

pascal short
SkelGetDlogType (DialogPtr d, short item);

Page 79

TransSkel 3 Reference Introduction

Get the dialog item’s type.

pascal void
SkelSetDlogRadioButtonSet (DialogPtr dlog,
short first, short last, short choice);

For dialog items first through last, set the value of item choice to 1 and the others to 0. The
items should be consecutive radio buttons.

pascal void
SkelSetDlogButtonOutliner (DialogPtr d, short item);

item must be a user item. This routine associates a drawing procedure with the item that draws a
heavy outline around the dialog’s default button. It does this by moving and sizing the item’s
bounding rectangle to surround the default button’s bounding rectangle. To force the outline to be
redrawn (e.g., if you change the button’s hiliting state), you can use SkelGetDlogRect () to get
item’s bounding rectangle and pass it to InvalRect ().

Since this function moves and sizes the user item bounding rectangle so it’s appropriate for the
button, the initial size and location of the rectangle doesn’t matter. However, the user item should be
disabled. Also, because the user item needs to be set up, you should create the dialog invisible, call
SkelSetDlogButtonInstaller () and then show the dialog with ShowWindow ().

If you create the dialog with GetNewDialog () and it is possible for the default button to become
inactive, create a 'dctb' resourcefor the dialog. This will allow the outline to be drawn in true gray
on systems and monitors that support color or grayscale. Otherwise dithered gray will always be
used.

You will also get dithered gray if you create a dialog with NewDialog (). To get true gray when
possible, test whether Color QuickDraw is available, and use NewCDialog () instead if it is. You
can do this as follows:

if (SkelQuery (skelQHasColorQD))

dlog = NewCDialog (... arguments ...);
else

dlog = NewDialog (... arguments ...);

pascal void
SkelSetDlogCursor (DialogPtr d);

Checks whether the cursor is inside an edit text item of the given dialog, and changes it to an [-beam
if so, to the arrow if not.

pascal Boolean
SkelDlogMapKeyToButton (DialogPtr d,
EventRecord *evt,

Page 80

TransSkel 3 Reference Introduction
short *item,
short defaultlItem,
short cancelltem);

This routine looks at an event to see whether or not it's a key event that should be mapped onto an
item hit in a dialog's default or cancel button. It’s normally called from with a modeless dialog or
movable modal dialog event filter. SkelDlogFilter () calls it as well for processing modal
dialog events.

If the key event is for the Return or Enter keys, defaultItem specifies the number of the item
that the key should map to. Specify a value of 0 means no mapping should be done, a positive value
to explicitly specify the item that the key maps to, or a negative value to map the key to the item
specified as the default in the dialog record.

If the key event is for the Escape key or Command-period, cancelItem specifies the number of
the item that the key should map to. Specify a value of 0 if no key mapping should be done, or a
positive value to explicitly specify the item that the key maps to.

If the key maps to a button item, the button is flashed for visual feedback if it is hilited normally (not
dimmed). If the button is enabled, the i tem parameter is set to the item number and the function
returns t rue. If the key doesn't map to an item or the button is disabled, the function returns
false.

If the key maps to a button, but the button isn't hilited properly or is disabled, the event is mapped to

a null event so that nothing else is done with it. This is done based on the assumption that if the
caller is trying to do key mapping, it doesn't want the mapped keys to get into dialog edit text items.

Positioning and Layout Routines

pascal Boolean
SkelGetRectDevice (Rect *rp, GDHandle *gd, Rect *devRect,
Boolean *isMainDevice);

SkelGetRectDevice () determines which active screen device contains the largest part of the
given rectangle and returns the device, the device rectangle, and a flag indicating whether or not the
device is the main device. These values are stuffed into the arguments, which are passed as variable
addresses. If you're not interested in a particular value, pass ni1 for the corresponding argument.

The rectangle must be specified in global coordinates. The return value is t rue if the rectangle
overlaps some device, false otherwise.

If the return value if false (the rectangle overlaps no devices), the device, device rectangle
parameters are filled in with the values for the main device.

On return, gd will be ni1 if Color QuickDraw is not supported, since no graphics devices will be

Page 81

TransSkel 3 Reference Introduction

present.

Page 82

TransSkel 3 Reference Introduction

pascal void
SkelGetMainDeviceRect (Rect *r);

Returns in r the usable area on the main device (the screen containing the menu bar).

pascal void
SkelPositionRect (Rect *refRect, Rect *r,
Fixed hRatio, Fixed vRatio);

Position the rectangle r relative to the reference rectangle refRect. hRatio and vRatio
indicate the ratios to use for dividing the border between the inner and outer rectangles.

Examples:

Center a rectangle inside the reference rectangle:

SkelPositionRect (&ref, &r, FixRatio (1, 2), FixRatio (1, 2));

Leave 1/3 of the vertical border between a rectangle and the reference rectangle above the rectangle
and 2/3 below:

SkelPositionRect (&ref, &r, FixRatio (1, 2), FixRatio (1, 3)):;

pascal void
SkelPositionWindow (WindowPtr w, short positionType,
Fixed hRatio, Fixed vRatio);

Position a window according to the given positioning type, using hRatio and vRatio to divide
the border between the window and the reference frame. The frame used is determined by
positionType, which should be one of the following:

skelPositionNone Don’t position window; leave as is
skelPositionOnMainDevice Position on main device

skelPositionOnParentWindow Position over the frontmost visible window
skelPositionOnParentDevice position on device on which the frontmost visible
window lies.

For those cases in which a window is positioned against a device, the positioning does not include
the menu bar area if the device is the main device. Those cases which use the frontmost visible
window use the main device if no window is visible.

It is best that the window be invisible before calling SkelPositionWindow () and made visible
after, otherwise the window will appear to jump on the screen.

Note

Page 83

TransSkel 3 Reference Introduction
If a window 1is positioned against a parent window that has been moved partly off the desktop, the
positioned window might end up partly off the desktop, too. This may be undesirable. If so, you can
force the window to be positioned against the parent device instead if it goes off the desktop by
writing your positioning code like this:

SkelPositionWindow (wind, positionType, hRatio, vRatio);

SkelGetWindStructureRect (wind, &r);

if (positionType == skelPositionOnParentWindow && !SkelTestRectVisible (&r))
SkelPositionWindow (wind, skelPositionOnParentDevice, hRatio, vRatio);

pascal void
SkelGetReferenceRect (Rect *r, short positionType):;

Return in r the rectangle to be used as a reference against which to position another rectangle.
positionType should be one of the following:

skelPositionOnMainDevice Reference is main device

skelPositionOnParentWindow Reference is frontmost visible window

skelPositionOnParentDevice Reference is device on which the frontmost visible
window lies

For those cases in which a device rectangle is the reference, the device rectangle does not include the
menu bar area if the device is the main device. Those cases which use the frontmost visible window
use the main device if no window is visible.

If positionType is SkelPositionNone, the result is undefined.

pascal Boolean
SkelTestRectVisible (Rect *r);

Return t rue if the given rectangle is entirely visible, i.e., entirely contained within the desktop
region, false otherwise.

Alert Presentation

pascal short
SkelAlert (short alrtResNum, ModalFilterUPP filter,
short positionType);

Present the alert stored in the 'ALRT' resource alrtResNum. positionType specifies how to
position the alert on the screen. The legal values for this parameter are the same as those discussed
under SkelPositionWindow (). filter is the alert event filter. It’s analagous to the filter
function you pass to the Toolbox routine Alert ().

If the positioning type is skelPositionOnParentWindow, the alert can end up positioned
partly off the desktop if the parent window has been moved partly off the desktop . If this would
happen, the alert is positioned on the parent device instead of the parent window.

Page 84

TransSkel 3 Reference Introduction

Page 85

TransSkel 3 Reference Introduction

pascal void
SkelSetAlertPosRatios (Fixed hRatio, Fixed vRatio);

Set the screen positioning ratios that SkelAlert () uses to position alerts. The default ratios are:

horizontal FixRatio (1, 2) center horizontally
vertical FixRatio (1, 5) 1/5 of border above alert, 4/5 below

pascal void
SkelGetAlertPosRatios (Fixed *hRatio, Fixed *vRatio);

Get the current positioning ratios used by SkelAlert (). If you’re not interested in a particular
ratio, pass ni1 for the corresponding argument.

Miscellaneous

pascal void
SkelPause (long ticks);

Pause process execution for the given number of ticks (60ths of a second). If the application is
running under a system that supports multitasking, time is given to other processes during the pause.

Page 86

TransSkel 3 Reference Introduction

Authorship

The principal authors of TransSkel are listed below, with an indication of the thrust of their
contributions. You may judge which author is most likely to be able to field your questions from this
information, or you may simply address them to the first author.

Paul DuBois
Original author of TransSkel.

U.S. Mail
Paul DuBois
Wisconsin Regional Primate Research Center
1220 Capitol Court
Madison, WI 53715-1299 USA

Internet
dubois@primate.wisc.edu

Owen Hartnett
Responsible for most of the improvments between releases 1.02 and 2, and for the port from THINK
C to THINK Pascal.

U.S. Mail
Owen Hartnett
QHM Software Company
163 Richard Drive
Tiverton, RI 02878 USA

Internet:

omh(@cs.brown.edu (Brown University Computer Science)
UucCP

uunet!brunix!omh

Bob Schumaker
Responsible for most of the improvements between releases 2 and 3.

U.S. Mail
Bob Schumaker
The AMIX Corporation
1881 Landings Drive
Mountain View, CA 94043-0848

Internet
bob@markets.amix.com
UuCP

Page 87

TransSkel 3 Reference Introduction

{sun, uunet, netcom} !markets!bob
CIS

72227,2103
AOL

BSchumaker

Other contributors, of code or, what is just as useful, criticism, include David Berry, Nick Rothwell,
William Gilbert, Danny Zerkel, Duane Williams, Denis Cohen, Lionel Cons...

Page 88

TransSkel 3 Reference

Introduction

Index

64K ROM 2, 16, 26
acceptSuspendResumeEvents 43
AElInstallEventHandler() 46
Apple menu 26
BeginUpdate() 29
CloseWindow() 31

color GrafPort 51

Color QuickDraw 16, 36, 55
command-clicks 22
Command-period 22, 23, 29
DeleteMenu() 26

Desk accessories 15, 26
desktop region 17, 34, 56
DisposeWindow() 31
doesActivateOnFGSwitch 43
DrawMenuBar() 26, 27
EndUpdate() 29

Escape 22, 23

event loop 18

FTP 6

Gestalt() 2, 16
getFrontClicks 19, 44
GetGrayRgn 16
GetGrayRgn() 2
GetMBarHeight() 2, 17
GetMenu() 25
GetNewDialog() 32, 54
GetNewWindow() 28
GetPort() 28, 37
GrowZone() 14
hierarchical menus 10, 26
HiliteControl() 51
InitDialogs() 14
InsertMenu() 25

InvalRect() 53
isHighLevelEventAware 46
localAndRemoteHLEvents 46
MBarHeight 16

modal dialog 37
ModalDialog() 22

modeless dialog 32, 38, 54
MoreMasters() 14

movable modal dialog 20, 32, 36, 38, 54

NewDialog() 32
NewMenu() 25
NewWindow() 28

null events 19, 20, 21, 33
OS events 22, 43
QuickDraw version 16
ResumeProcPtr 14
SetDItem() 53

SetPort() 36
ShowWindow() 54

SIZE resource 11, 12, 20, 43, 46
SkelActivate() 34
SkelAddWindProp() 40
SkelAlert() 57

SkelApple() 26
skelAppleMenulD 27
SkelCleanup() 15
SkelClose() 34
SkelCmdPeriod() 24
SkelDialog() 32
SkelDlogCancelltem() 23
SkelDlogDefaultltem() 23
SkelDlogFilter() 22
SkelDlogFilterYD() 23
SkelDlogMapKeyToButton() 54
SkelDlogTracksCursor() 23
SkelDoEvents() 20
SkelDoUpdates() 20
SkelDrawButtonOutline() 51
SkelEraseButtonOutline() 51
SkelEventLoop() 19
SkelFlashButton() 51
SkelGestaltCheck() 17
SkelGetAEHandler() 48
SkelGetAlertPosRatios() 57
SkelGetClipCvt() 45
SkelGetCurrentEvent() 24
SkelGetDlogCtl() 52
SkelGetDlogCtlHilite() 52
SkelGetDlogCtlRefCon() 52
SkelGetDlogCtlValue() 52
SkelGetDlogProc() 53
SkelGetDlogRect() 53
SkelGetDlogStr() 52
SkelGetDlogType() 53
SkelGetEventHook() 21
SkelGetEventMask() 22
SkelGetldle() 21
SkelGetInitParams() 15

Page 89

TransSkel 3 Reference

Introduction

SkelGetMainDeviceRect() 55
SkelGetMenuHook() 27
SkelGetModifiers() 24
SkelGetRectDevice() 55
SkelGetReferenceRect() 56
SkelGetSuspendResume() 45
SkelGetThreadTimes() 49
SkelGetWaitTimes() 45
SkelGetWindContentRect() 35
SkelGetWindowDevice() 35
SkelGetWindProp() 41
SkelGetWindPropData() 42
SkelGetWindStructureRect() 35
SkelGetWindTitleHeight() 35
SkelGetZoom() 35
SkelHiliteControl() 51
Skellnit() 15

SkellnitParams 14
SkellsDlog() 36
SkellsMMDlog() 36
SkelMenu() 25

SkelPause() 57
skelPositionNone 56
skelPositionOnMainDevice 56
skelPositionOnParentDevice 56
skelPositionOnParentWindow 56, 57
SkelPositionRect() 55
SkelPositionWindow() 55
skelQGrayRgn 17
skelQHas64KROM 16
skelQHasAppleEvents 16
skelQHasColorQD 16
skelQHasGestalt 16
skelQHasThreads 17
skelQHasWNE 16
skelQInForeground 16
skelQMBarHeight 16
skelQQDVersion 16
skelQSysVersion 16
SkelQuery() 16, 45
skelQVersion 16
SkelResumeProcPtr 14
SkelRmveDlog() 34

SkelRmveDlogFilter() 23
SkelRmveMenu() 26
SkelRmveWind() 31
SkelRmveWindProp() 40
SkelRouteEvent() 19, 24
SkelSetAEHandler() 47
SkelSetAlertPosRatios() 57
SkelSetClipCvt() 45

SkelSetDlogButtonOutliner() 53

SkelSetDlogCtlHilite() 52
SkelSetDlogCtlRefCon() 52
SkelSetDlogCtlValue() 52
SkelSetDlogCursor() 54
SkelSetDlogProc() 53

SkelSetDlogRadioButtonSet() 53

SkelSetDlogRect() 53
SkelSetDlogStr() 52
SkelSetDlogType() 53
SkelSetEventHook() 20
SkelSetEventMask() 21
SkelSetGrowBounds() 34
SkelSetldle() 21
SkelSetMenuHook() 27
SkelSetSuspendResume() 45
SkelSetThreadTimes() 49
SkelSetWaitTimes() 45
SkelSetZoom() 34
SkelStopEventLoop() 19
SkelTestRectVisible() 56
SkelToggleCtlValue() 51
SkelToggleDlogCtlValue() 52
SkelTrapAvailable() 17
SkelWindow() 28
SkelWindowRegistered() 36
SysEnvirons() 2

system event mask 21
TEIdle() 31

Thread Manager 8, 12, 49
TransSkel.h 11

TransSkel.p 11
WaitNextEvent() 16, 43, 45
World Wide Web 6

Page 90

