
TransSkel Programmer’s Note 14 inForeground on Launch

TransSkel
Programmer’s Notes

14: inForeground on Launch

Who to blame: Hans van der Meer, hansm@fwi.uva.nl
Note creation date: 05/15/95
Note revision: 1.00
Last revision date: 07/21/95
TransSkel release: 3.22

This Note describes a corrected initialization of the inForeground variable in TransSkel release 3.22.
[The code fragments actually added to TransSkel differ slightly from those described below — Paul
DuBois]

1. Introduction

The inForeground variable can be queried in order to find out whether the program executes in the
foreground or in the background. However, when the application is launched directly into the background,
the initialization statement in TransSkel.c

static BooleaninForeground = true;

is evidently incorrect.

2. Corrected Initialization

Using the Process Manager – if available of course – enables the programmer to interrogate the system
as to whether the program starts up in foreground or background. After that, the resume and suspend
events are keeping inForeground correct.

We first ensure the presence of the necessary Gestalt selectors along with the declaration of
inForeground.

/* Process Manager Gestalt Selectors */
#ifndef gestaltOSAttr
#define gestaltOSAttr 'os    ' /* ProcessManager attributes */
#endif
static BooleaninForeground = true;

In SkelInit() we add the following code and we are in business. Unless, however, the Process
Manager is unavailable. In the latter case we must be content with blind initialization.

ProcessSerialNumber PSN1, PSN2;
Boolean answer;
...
/* initialize inForeground with Process Manager query */
if (SkelGestaltCheck(gestaltOSAttr, -1)

&& GetCurrentProcess(&PSN1) == noErr
&& GetFrontProcess(&PSN2) == noErr
&& SameProcess(&PSN1, &PSN2, &answer) == noErr)

inForeground = answer;
else /* fall back to best guess */

inForeground = true;

Page 22

TransSkel Programmer’s Note 14 inForeground on Launch

3. Convenience routine for Gestalt checking

In the above code the routine SkelGestaltCheck() is used. For convenience a new query function
has been defined for testing a Gestalt feature. I believe that the exuberant use of Gestalt selectors
warrants this.

In TransSkel.h for outside access:

pascal Boolean
SkelGestaltCheck(const OSType selector, const short featurecode);

In TransSkel.c the function declaration.

pascal Boolean
SkelGestaltCheck(const OSType selector, const short featurecode)
{

long result;

if (!hasGestalt || Gestalt(selector, &result) != noErr)
return false;

return (featurecode < 0) ? true :
((result & (1 << featurecode)) ? true : false);

}

This function returns true if the specific selector is present and the bit denoted by the featurecode
is set. Note that a value of –1 for featurecode can be used as a mere check on the presence of the
selector, without any interest in its value.

Page 22

