
TransSkel Programmer’s Note 15 Thread Manager Support

TransSkel
Programmer’s Notes

15: Thread Manager Support

Who to blame: Hans van der Meer, hansm@fwi.uva.nl
Note creation date: 05/15/95
Note revision: 1.00
Last revision date: 07/21/95
TransSkel release: 3.22

This Note describes the implementation of Apple's Thread Manager in TransSkel release 3.22. [The code
fragments actually added to TransSkel differ slightly from those described below — Paul DuBois]

1. Thread Manager

The Thread Manager is implemented by Apple from System vs. 7.5 onwards, but for earlier versions of
System 7 available as an extension. The version on which this implementation is based is Thread
Manager vs. 2.1. This software can be found on the Apple ftp-server. Also available there a draft Inside
Macintosh description in Apple DocViewer format (beta draft dated 2/3/95). The coöperative multithread
mechanism implemented by the Thread Manager allows the programmer to run several computations
(pseudo) concurrently. The most obvious use is the adaptation of programs that run a loop to conclusion,
without any regard for intermittent support for an event mechanism. Addition of YieldToAnyThread()
function calls to these programs very simply turns them into event aware programs.

2. Implementation

Implementation of the Thread Manager is accomplished by changing the inner event loop of TransSkel.
The current code in TransSkel.c is:

pascal void
SkelEventLoop (void)
{
EventRecord evt;
Boolean oldDoneFlag;
long waitTime;

oldDoneFlag = doneFlag; /* save in case this is a recursive call */
doneFlag = false; /* set for this call */
while (!doneFlag)
{

if (hasWNE)
{

waitTime = (inForeground ? fgWaitTime : bgWaitTime);
(void) WaitNextEvent (eventMask, &evt, waitTime, nil);

}
else
{

/* ... */
SystemTask ();
if (!GetNextEvent (eventMask, &evt))

evt.what = nullEvent;
}

SkelRouteEvent (&evt);

Page 42

TransSkel Programmer’s Note 15 Thread Manager Support

}
doneFlag = oldDoneFlag; /* restore in case this was recursive call */

}

This code has been changed to:

pascal void
SkelEventLoop (void)
{
EventRecord evt;
Boolean oldDoneFlag;
long waitTime;
long see_next_event = 0L;

oldDoneFlag = doneFlag; /* save in case this is a recursive call */
doneFlag = false; /* set for this call */
while (!doneFlag)
{

if (TickCount() >= see_next_event)
{

if (hasWNE)
{

waitTime = (inForeground ? fgWaitTime : bgWaitTime);
(void) WaitNextEvent (eventMask, &evt, waitTime, nil);

}
else
{

/* ... */
SystemTask ();
if (!GetNextEvent (eventMask, &evt))

evt.what = nullEvent;
}

SkelRouteEvent (&evt);

/* spend one time quantum in threads */
if (hasThreads)

see_next_event = TickCount() +
(inForeground ? fgTimeQuantum : bgTimeQuantum);

}

if (hasThreads)
YieldToAnyThread(); /* Thread Manager reschedule */

}

doneFlag = oldDoneFlag; /* restore in case this was recursive call */
}

The original event loop gives up control every time it executes WaitNextEvent() or GetNextEvent().
Such behaviour is a pity for threaded programs, because they have to wait gWaitTime or bgWaitTime
ticks in respectively foreground and background, before their threads get another chance to run.
Therefore calling WaitNextEvent is deferred until a time quantum of fgTimeQuantum or
bgTimeQuantum ticks, respectively, has been given to the running threads. If these values are chosen
sufficiently small, no perceptible degradation in the performance of the system as a a whole will result.
And when the threads call YieldToAnyThread() often enough, Thread Manager ensures that the

Page 42

TransSkel Programmer’s Note 15 Thread Manager Support

event loop is sampled frequently enough. The time quanta can be set to 0, which effectively restores the
previous behaviour: calling WaitNextEvent every time through the loop.

The flag hasThreads signals the presence of Thread Manager. This flag and the other necessary
(initialized) variables and definitions have been added to TransSkel.c with statements:

/* Thread Gestalt Selectors */
#ifndef gestaltThreadMgrAttr
#define gestaltThreadMgrAttr 'thds' /* Thread Manager attributes */
enum {

/* Thread Mgr present */
gestaltThreadMgrPresent = 0,

/* Thread Mgr supports exact match creation option */
gestaltSpecificMatchSupport = 1,

/* ThreadsLibrary (Native version) has been loaded */
gestaltThreadsLibraryPresent = 2 };

#endif /* gestaltThreadMgrAttr */

static long fgTimeQuantum = 3L;
static long bgTimeQuantum = 1L;
static Boolean hasThreads = 0;

The presence of Thread Manager is figured out in SkelInit() by the following code:

/* determine presence of ThreadManager */
hasThreads = hasGestalt

&& Gestalt (gestaltThreadMgrAttr, &result) == noErr
#if skelPPC

&& (result & (1 << gestaltThreadsLibraryPresent))
&& (Ptr) NewThread != kUnresolvedSymbolAddress

#endif
&& (result & (1 << gestaltThreadMgrPresent));

A new query selector has been defined in TransSkel.h:

defineskelQHasThreads 12 /* Thread Manager */

To be interrogated through SkelQuery, where the switch has been augmented by:

case skelQHasThreads:
result = hasThreads ? 1 : 0;
break;

The supporting functions SkelSetWaitTimes and SkelGetWaitTimes have been supplemented by
corresponding functions for setting and getting the time quantum values.

In TransSkel.h:

pascal void SkelSetTimeQuanta (long fgTime, long bgTime);
pascal void SkelGetTimeQuanta (long *pFgTime, long *pBgTime);

In TransSkel.c:

pascal void
SkelSetTimeQuanta (long fgTime, long bgTime)

Page 42

TransSkel Programmer’s Note 15 Thread Manager Support

{
fgTimeQuantum = fgTime;
bgTimeQuantum = bgTime;

}

pascal void
SkelGetTimeQuanta (long *pFgTime, long *pBgTime)
{

if (pFgTime != (long) nil)
*pFgTime = fgTimeQuantum;

if (pBgTime != (long) nil)
*pBgTime = bgTimeQuantum;

}

Page 42

