
TransSkel Programmer’s Note 1 Apple Menu Support Changes

TransSkel
Programmer’s Notes

1: Changes in Apple menu support

Who to blame: Paul DuBois, dubois@primate.wisc.edu
Note creation date: 01/29/91
Note revision: 1.04
Last revision date: 01/06/94
TransSkel release: 3.00

This Note describes the changes in Apple menu support that have been implemented in TransSkel 
release 3.0.

Change 1: Multiple Application Items in Apple Menu

Release 1 and 2 Apple menu support

The SkelApple() call in releases 1 and 2 has the following form:

SkelApple (StringPtr aboutTitle, void (*aboutProc) (void));

The first argument, if non-nil, is typically “About application…” and is inserted as the first item in the 
Apple menu, followed by a gray line and any available desk accessories. If the argument is nil, the 
menu is loaded only with desk accessories.

The second argument is a callback function to be invoked whenever the first Apple menu item is selected. 
If nil, or if the first argument is nil, no callback is performed.

This support was sufficient for most applications, which install either zero or one items into the Apple 
menu. But some applications wish to have a second item, e.g., a “Help” item; possibly some applications 
have a use for more than two.

There are a number of ways to accomplish this goal, each with various strengths and weaknesses.    The 
following (non-exhaustive) list illustrates a few methods, of which the last was selected for 
implementation.

Characteristics deemed desirable in a solution were:

• Method should be extensible, i.e., handle an arbitrary number of application items.
• Minimal modification of existing programs
• Not depend on system-specific features

Approach 1: add arguments to SkelApple()

One could add another item title and callback function, e.g.,

SkelApple ("\pAbout X…", DoAbout, "\pHelp", DoHelp);

Problems:

The calling structure of SkelApple() changes.    By itself this is not an insuperable difficulty, given the 
number of other changes made for release 3. But what if the application really wants three items in the 
Apple menu? Or more than three? What if it wants seventeen!? “Yeah, right,” you say. Well, OK — but 

Page 32



TransSkel Programmer’s Note 1 Apple Menu Support Changes

still, this approach is not easily extensible without further changes. Another change is needed every time 
another extra item is wanted. It would be better to institute a mechanism allowing an arbitrary number of 
items and which would require no further changes.

Approach 2: define a new function

One could define    another function in addition to SkelApple(), e.g.,

SkelHelp ("\pHelp", DoHelp);

Problems:

• This approach requires no changes to SkelApple(), but again, what if the application really 
wants more than two items in the Apple menu?    A different function must be invented for 
each instance.

• A method is needed for inserting the new item into the menu, such as InsMenuItem(). That 
sacrifices 64K ROM compatibility, since those machines don’t have the InsMenuItem() call. 
One might get around this by recreating the menu anew and destroying the old one, but the 
complexity    involved in doing so makes such an approach unattractive.

• There is additional bookkeeping involved in keeping track of the callback functions. One could 
minimize this by requiring the callback function only for SkelApple() call, and changing its 
semantics so that the item number is passed to it.

Approach 3: allow SkelApple() to be called multiple times

The semantics of SkelApple() could be changed. Rather than allowing it to be called a single time, it 
could be called once for each application item to be installed. The first call would cause the menu to be 
created and its handler installed; subsequent calls would modify the existing menu, adding the new item 
with InsMenuItem(). The result might look like this:

SkelApple ("\pAbout X…", DoAbout);
SkelApple ("\pHelp", DoHelp);

Problems:
Same as for approach 2.

Approach 4: change meaning of SkelApple() arguments

Instead of supposing that the title string specifies a single menu item, it could be used to specify multiple 
items. To support this, the callback function must be changed to accept a single argument, the item 
number, instead of taking no argument. In this way only a single call to SkelApple() is necessary (as in 
releases 1 and 2), and the calling structure remains unchanged. For example:

SkelApple ("\pAbout X…;Help", DoAppleMenu);

It is not necessary for TransSkel to parse the item string to determine the number of items the application 
wants to insert because selections can be distinguished as application or DA items based on whether 
they are above or below the gray line item separating them.

Problems:
(i) The callback function calling structure must be changed (although balanced against this is the fact that 
the callback structure becomes isomorphic to that of selection callbacks for other menu handlers). (ii) The 
application must be careful not to pass “–” items in the item string, or TransSkel won’t properly determine 

Page 32



TransSkel Programmer’s Note 1 Apple Menu Support Changes

whether to invoke the callback or start a desk accessory. That seems reasonably unlikely.

The last approach seems to provide the desired extensibility with the least mandatory modification of 
existing applications. Those applications which install no items in the Apple menu remain unchanged. 
Those installing a single item must change the callback to accept a single Integer argument. Those 
wishing to put more than one item in the Apple menu will be able to do so.

Change 2: SkelApple() No Longer in TransSkel Core

SkelApple() has been removed from TransSkel.c and move into its own source file. When the 
TransSkel routines are built as a project (not a library) and included in another application’s project, this 
has the effect that SkelApple() and supporting routines are not linked into the application if it never 
calls SkelApple().

Change 3: Apple Menu ID Number No Longer 1

The menu ID number formerly used by SkelApple() to create the Apple menu was 1, which is in the 
range of numbers reserved for system resources. It is now 128. Applications no longer need to know a 
magic ID number, however. The ID is now available as skelAppleMenuID in TransSkel.h.

Caveat

Macintosh Technical Note TB 35 seems to indicate that applications should only count on being able to 
include the standard “About…” item in the Apple menu. It may be that applications taking advantage of 
the changes described in this Note will do so at the cost of MultiFinder compatibility. Then again, maybe 
not. The changes described here were implemented using only standard Menu Manager calls and do not, 
following the warnings in TN TB 35, rely on any knowledge of the internal structure of menu data 
structures. No problems have thus far been reported.

References

Macintosh Technical Note TB 35: MultiFinder Miscellanea

Page 32


