
TransSkel Programmer’s Note 13 Universal Headers and Power Macintosh

TransSkel
Programmer’s Notes

13: Universal Header and Power Macintosh Support

Who to blame: Paul DuBois, dubois@primate.wisc.edu
Note creation date:11/18/94
Note revision: 1.01
Last revision date: 03/21/95
TransSkel release: 3.18

This Note describes the changes made to TransSkel release 3.18 to support use of the
universal header files and generation of native mode PowerPC code on the Power
Macintosh.

03/20/05 — Updated for release 3.19. Changes made to accommodate release 2 of the
universal headers are described. Added section on precompiling the universal headers.

As of release 3.18, TransSkel is written to be compatible with the universal header files.
The source has been changed to use universal procedure pointers based on the
UniversalProcPtr type defined in those headers. Use of universal procedure
pointers allows conformance to the procedural interface expected when running on the
PowerPC chip, so that native mode PPC code can be generated.

Interface Changes

TransSkel now uses universal procedure pointer (UPP) types where appropriate, i.e.,
when routine descriptors rather than function pointers might be necessary depending on
the type of code being generated (68K vs. PowerPC). This change affects the interface in
the following ways:

The SkelInitParams structure has changed slightly. It used to be:

struct SkelInitParams
{

short skelMoreMasters;
GrowZoneProcPtr skelGzProc;
SkelResumeProcPtr skelResumeProc;
Size skelStackAdjust;

};

Page 1

TransSkel Programmer’s Note 13 Universal Headers and Power Macintosh
The grow zone member is now a UPP, so the structure looks like this:

struct SkelInitParams
{

short skelMoreMasters;
GrowZoneUPP skelGzProc;
SkelResumeProcPtr skelResumeProc;
Size skelStackAdjust;

};

Use of the SkelInitParams structure in the PowerPC environment is discussed in TPN 5.

The following functions now have different prototypes because they require UPP’s instead of function pointers:

Page 2

TransSkel Programmer’s Note 13 Universal Headers and Power Macintosh

Old:
pascal ModalFilterProcPtr
SkelDlogFilter (ModalFilterProcPtr filter, Boolean doReturn);
pascal ModalFilterYDProcPtr
SkelDlogFilterYD (ModalFilterYDProcPtr filter, Boolean doReturn);
pascal short
SkelAlert (short alrtResNum, ModalFilterProcPtr filter, short positionType);
pascal void
SkelSetDlogProc (DialogPtr d, short item, SkelDlogItemProcPtr proc);
pascal SkelDlogItemProcPtr
SkelGetDlogProc (DialogPtr d, short item);

New:

pascal ModalFilterUPP
SkelDlogFilter (ModalFilterU 10/09/93 11/18scal ModalFilterYDUPP
SkelDlogFilterYD (ModalFilterYDUPP filter, Boolean doReturn);
pascal short
SkelAlert (short alrtResNum, ModalFilterUPP filter, short positionType);
pascal void
SkelSetDlogProc (DialogPtr d, short item, UserItemUPP proc);
pascal UserItemUPP
SkelGetDlogProc (DialogPtr d, short item);

For compiling 68K code, the impact of these changes is negligible since the new UPP types are equivalent to the old non-UPP types. For
instance, in the 68K environment ModalFilterUPP and ModalFilterProcPtr are the same. For compiling in the PowerPC
environment, you’ll need to change your application since you must pass routine descriptors instead of function pointers for UPP
parameters.

Examples of the way the function calls listed above are used for the PowerPC environment can be seen in the source for the Button,
DialogSkel, Filter, and MultiSkel demonstration applications. Search the source files for the skelPPC symbol.

Header File Compatibility Problems

The universal headers create universal procedure pointer (UPP) types as routine
descriptors for PowerPC code generation and as ProcPtr types for 68K code
generation. Relying on UPP type availability is a problem for people that don’t have or
don’t use the universal headers, because UPP types aren’t defined anywhere in the old
Apple headers. One way to deal with this would be to stipulate that TransSkel no longer
supports compilation with the older Apple headers. This will happen eventually, but for
now TransSkel defines compatibility types and macros if the universal headers are
unavailable. This works as follows:

• TransSkel.h first determines whether or not the universal headers are being used. It
defines the symbol skelUnivHeaders as 0 if universal headers (and thus
UniversalProcPtr’s) are unavailable. If the universal headers are available, the
value of skelUnivHeaders is set to 1 or 2, depending on whether those headers
are at release 1 or 2. Its value is determined like this:

Page 3

TransSkel Programmer’s Note 13 Universal Headers and Power Macintosh

ifndef skelUnivHeaders
ifdef GENERATINGPOWERPC /* Universal headers, release 2 */

Page 4

TransSkel Programmer’s Note 13 Universal Headers and Power Macintosh
define skelUnivHeaders 2
else
ifdef USESROUTINEDESCRIPTORS /* Universal headers, release 1 */
define skelUnivHeaders 1
else /* Old Apple headers */
define skelUnivHeaders 0
endif /* USESROUTINEDESCRIPTORS */
endif /* GENERATINGPOWERPC */
endif /* skelUnivHeaders */

The macro GENERATINGPOWERPC is defined only in release 2 of the universal headers, so if it is found, skelUnivHeaders is set
to 2. Otherwise, the headers are the release 1 universal headers or the old Apple headers. These are distinguished by looking for the
macro USESROUTINEDESCRIPTORS, which is defined in the release 1 headers but not in the old Apple headers.

• When skelUnivHeaders is 0, it’s assumed that the types and macros associated with UPP’s are unavailable and compatibility
workarounds are defined to compensate. TransSkel.h typedef’s some of the UPP types needed in the TransSkel source code to the
equivalent non-UPP types and defines macros that emulate UPP-manipulation macros:

if !skelUnivHeaders

typedef ProcPtr UniversalProcPtr;
typedef GrowZoneProcPtr GrowZoneUPP;
typedef ModalFilterProcPtr ModalFilterUPP;
typedef ModalFilterYDProcPtr ModalFilterYDUPP;
typedef pascal void (*UserItemUPP) (DialogPtr d, short item);

define NewModalFilterProc(proc) (ModalFilterUPP)(proc)
define NewModalFilterYDProc(proc) (ModalFilterYDUPP)(proc)

define DisposeRoutineDescriptor(upp) /* as nothing */

endif /* !skelUnivHeaders */

This is done primarily for UPP types needed for interface function arguments or return values.

I test the symbol skelUnivHeaders in TransSkel source rather than directly testing symbols like GENERATINGPOWERPC or
USESROUTINEDESCRIPTORS for several reasons:

• The appropriate symbols to test for determining the presence of the universal headers are not guaranteed by Apple to be stable. (In
fact, the symbols do differ for release 1 and release 2.) Directly checking for symbols defined in those headers would require several
source code changes whenever the symbols change. By testing skelUnivHeaders instead, source code changes are minimized
when the universal headers change. It’s only necessary to make sure that skelUnivHeaders gets its value correctly.

• You can override the value of skelUnivHeaders if you like by setting it in your prefix code. This is not true for symbols like
GENERATINGPOWERPC or USESROUTINEDESCRIPTORS, which should be left alone. One use for this would be if you want to
require compilation using the universal headers: you can cause the compiler to complain when they are not used by defining
skelUnivHeaders as a non-zero value, since this will cause errors whenever UPP types are encountered in your source.

Page 5

TransSkel Programmer’s Note 13 Universal Headers and Power Macintosh
• Testing whether or not universal headers are used is a stopgap measure until they are truly used “universally.” Right now THINK C

can be used with universal headers or the old Apple headers which know nothing about UPP’s. Eventually I may just assume the
universal headers are used. At that point I’ll just unconditionally define skelUnivHeaders as a non-zero value in TransSkel.h.

If you need to test for universal headers in your own code, you can do so like this:

#if skelUnivHeaders
/* universal headers are being used */

else
/* universal headers are not being used */

endif

If you need to test for a particular release of the universal headers in your own code, you can do so like this:

#if skelUnivHeaders > 1
/* universal headers release 2 are being used */

elif skelUnivHeaders > 0
/* universal headers release 1 are being used */

else
/* universal headers are not being used */

endif

Precompiling the Universal Headers

The universal headers are written to use newer routine names like
GetControlValue() rather than the older routine names like GetCtlValue().
Support for the older names is still provided if the OLDROUTINENAMES macro is
defined as 1 when the headers are precompiled. Currently the default value of this macro
is 1 but it appears that will change in the future.

TransSkel no longer uses the older names as of release 3.19, so you can precompile the
headers with OLDROUTINENAMES set to 0 and still assume that TransSkel will work.
(This assumes that you don’t use older names in your own code, of course.)

Four macros (STRICT_CONTROLS, STRICT_WINDOWS, STRICT_MENUS, and
STRICT_LISTS) were introduced with the release 2 universal headers. These are
intended to facilitate the migration to treatment of control, window, menu, and list
records as opaque structures, i.e., structures for which the members are invisible and not
accessed by user code. At the moment, the defaults for all of these is 0 since Apple
doesn’t yet provide accessor functions to get at the record contents. Therefore you should
leave these macros set to 0.

PowerPC Code Generation

If you need to know whether you’re generating PowerPC code, the macro skelPPC can
be used.
skelPPC is 1 if compiling PowerPC code, 0 if compiling 68K code. A value of 1 also

Page 6

TransSkel Programmer’s Note 13 Universal Headers and Power Macintosh

implies that the universal headers are available, since no non-universal header method
exists for generating PowerPC code. (A value of 0 does not imply absence of the
universal headers, however.)

skelPPC is simply a shorthand. The usual way to test for PowerPC code generation is:

#if defined(powerc) || defined (__powerc)
#endif

Page 7

TransSkel Programmer’s Note 13 Universal Headers and Power Macintosh

But it’s easier to write:

#if skelPPC
#endif

Here’s an example that shows how to compile code conditionally for the PowerPC or 68K environments. It comes from MSkelHelp.c in the
MultiSkel demonstration application. The example shows how to pass a control action procedure to TrackControl(), in this case a
scroll bar tracking procedure.

The action procedure is declared according to following prototype:

static pascal void
TrackScroll (ControlHandle theScroll, short partCode);

In order to pass the action procedure to TrackControl(), a pointer to the procedure is stored in either a routine descriptor or a scalar
variable as follows:

/*
* Set up a variable to point to the scroll tracking procedure. For 68K code this
* is just a direct pointer to TrackScroll(). For PowerPC code it is a
* routine descriptor into which the address of TrackScroll() is stuffed.
*/

if skelPPC /* PowerPC code */

static RoutineDescriptor trackDesc =
BUILD_ROUTINE_DESCRIPTOR(uppControlActionProcInfo, TrackScroll);

static ControlActionUPP trackProc = (ControlActionUPP) &trackDesc;

else /* 68K code */

static ControlActionUPP trackProc = TrackScroll;

endif

The preceding code sets trackProc to the value appropriate for the type of code being generated. To use trackProc, just pass it to
TrackControl():

partCode = TrackControl (helpScroll, pt, trackProc);

Page 8

