
Special Graphic Elements

As discussed in the section “Custom Graphic Elements”, any graphical entity can
easily be converted to a Graphic Element. Because of the simplicity and
completeness of the Graphic Elements paradigm, it also becomes possible to treat
many things which are not precisely “onscreen graphics” as Graphic Elements.
Examples of two such elements are included in the Graphic Elements system: a
special-effects controller element, and a “grabber” element.

Special Effects Controllers

A Graphic Elements SFXController is a special element which:

— captures another Graphic Element (and all its dependents) in its present
form by causing it to render itself into a new offscreen GWorld created for
this purpose, then hiding the captured element;

— after a specified delay, calls a specified special-effects processor procedure
a specified number of times at specified intervals;

— when the special effect is finished, deletes itself and frees all memory it has
used, leaving the “captured” element either visible or invisible.

An SFXController is created and its effect is started by calling

GrafElPtr DoGESFX(GEWorldPtr world, OSType ctrlrID,
GrafElPtr subjectElement,
SFXProcessor fxProc,
short nSteps, short delay,
short stepTime, Boolean fxIn,
Boolean forward);

Where:

— world is the GEWorld in which the new special effect is to take place.

— ctrlrID is the unique four-character name by which the application program will refer to this special
effect controller.

— subjectElement is a pointer to the Graphic Element to which the special effect will be applied. This
pointer can be obtained, for example, from FindElementByID().

— fxProc is the processor procedure for this special effect. SFXProcessor procedures are discussed below.

— nSteps is the number of steps in which the special effect is to be applied. Some, but not all,
SFXProcessor procedures support variable numbers of steps.

— delay is the number of milliseconds to wait before the first step of the effect.

— stepTime is the number of milliseconds to wait between successive steps of the effect.

— fxIn determines whether the original (captured) Graphic Element is to be left visible (fxIn == true) or
invisible (fxIn == false) at the end of the special effect.

— forward determines the direction of the special effect, in cases where “direction” is meaningful. For
example, a horizontal wipe SFXController might wipe from left to right is forward is true, and from
right to left if it is false.

Special effects are normally started from a Graphic Element's creation function, its collision function, or its
autochange function. Note that, while a special effect is in progress, its subject element does not “exist” as far as the
Graphic Elements system is concerned. The application program can determine when a special effect is finished by
calling

Boolean SFXFinished(GEWorldPtr world, OSType ctrlrID);

Where

— world is the GEWorld in which the special effect it taking place,

— ctrlrID is the four-character ID assigned to the controller at creation.

SFXProcessor Procedures

A Graphic Elements special effects processor procedure has the prototype:

typedef pascal void (*SFXProcessor)(SFXCtrlrPtr controller);

Where

— controller is a pointer to the special effects controller record for which processing is being performed.

The SFXProcessor uses fields of the SFXController record to determine what processing is needed on a given call:

— controller->sfxSrc is an offscreen GWorld containing the source graphic for the special effect.

— controller->baseGraphic->graphWorld is the offscreen GWorld which is the destination of the special
effect.

— controller->sfxData can be used by the SFXProcessor to store a pointer to any additional data it needs to
allocate.

— controller->currentStep is the step of the special effect for which the SFXProcessor is being called. See
below for special meanings of controller->currentStep.

— controller->nSteps is the total number of steps for this special effect.

— controller->forward is true if the special effect should go “forward”, false if it should go ”backward”.

The SFXProcessor is called two extra times during the life cycle of a special effect. When the SFXController is
created, it is called with
controller->currentStep == 0. At this time, it may allocate memory (and assign a pointer to controller->sfxData)
or do any other necessary preprocessing. It should not do any graphics processing — i.e., anything which affects
controller->baseGraphic->graphWorld — at this time.

When the special effect is finished, the SFXProcessor is called with
controller->currentStep == -1. At this time, it should free any memory it has allocated, and perform any other
necessary “teardown”.

NOTE: There is no simple way for a special effects processor to recover from a failure to allocate memory. If it
cannot allocate memory during its initialization step, it should store a nil pointer in controller->sfxData, and should
be sure to check for a non-nil pointer in this field before using it.

NOTE 2: By their nature, digital special effects are expensive in both time and memory. A Graphic Element
captured by a special effects controller temporarily takes up at least three times its normal memory, and can require
more than double the amount of offscreen-to-offscreen copying. Be sure to allow for this when planning your
special effects.

The “Grabber” Graphic Element

The “Grabber” is a Graphic Element which manipulates other Graphic Elements. It is used in software for
interactively editing Graphic Elements Worlds and the elements they contain.

Essentially, the “Grabber” is a sensor-type element in the topmost plane of a GEWorld, with its sensitive rectangle
set to the entire area of that world. When the user presses the mouse button, its tracking procedure searches for the
topmost Graphic Element, in between a minimum and a maximum “plane” level, which contains the mouse point. If
it finds such an element (and this element is not already selected), it drops its old selection and “grabs” the element,
allowing the user to move it around in the GEWorld as long as the mouse button is down.

The application program creates a “Grabber” for a given GEWorld by calling

GrafElPtr MakeGrabber(GEWorldPtr world);

Where:

— world is a pointer to the Graphic Elements world for which the “Grabber” is being created.

A newly-created “Grabber” does nothing until it is activated. The application program should provide a means for
the user to activate and deactivate the Grabber — while it is active, no other sensor in the GEWorld will function,
since the user must be able to pick up and move these sensors just like any other Graphic Element. The application
activates and deactivates the Grabber by calling

void ActivateGrabber(GEWorldPtr world, Boolean activate);

Where:

— world is the GEWorld containing the Grabber,

— activate is true to activate the Grabber or false to deactivate it.

The Grabber acts only on objects located between a minimum plane and a maximum plane. When it is created, the
“lowest” plane is 2, and the ”highest’ plane is 32766. The application program can change this minimum and
maximum at any time by calling

void SetGrabberDepth(GEWorldPtr world, short newMinPlane,
short newMaxPlane);

Where

— world is the GEWorld containing the Grabber,

— newMinPlane is the new “lowest” plane on which the Grabber will grab Graphic Elements,

— newMaxPlane is the new “highest” plane on which the Grabber will select elements.

Set newMinPlane and newMaxPlane to the same value to cause the Grabber to select only the Graphic Elements
on a single plane. The minimum plane should always be “higher” than the plane of the background, so that the
Grabber will not pick up the background graphic, and ”lower” that the highest possible plane (32767), so that it
won't try to grab itself.

The application program can find out whether a Grabber is active by calling

Boolean GrabberActive(GEWorldPtr world);

Where

— world is the GEWorld containing the Grabber,

The application program can retrieve the Grabber's current selection at any time by calling

GrafElPtr CurrentGrabberSelection(GEWorldPtr world);

Where

— world is the GEWorld containing the Grabber,

When the Grabber has no current selection, this function will return nil. The application program must be sure to
take this possibility into account.

