
Grand

Unified

Socket

Interface

User’s Manual
Version 1.55

Last Updated 20Apr95

Matthias Neeracher <neeri@iis.ee.ethz.ch>

Introduction
GUSI is an extension and partial replacement of the MPW runtime library. Its main
objective is to provide a more or less simple and consistent interface across the following
communication domains

 Files

Ordinary Macintosh files and MPW pseudo devices.

 Unix

Memory based communication within a single machine (This name exists for
historical reasons).

 Appletalk

ADSP (and possibly in the future DDP) communication over a network.

 PPC

Local and remote connections with the System 7 PPC Toolbox

 Internet

TCP and UDP connections over MacTCP.

 PAP

Connections with the Printer Access Protocol, typically to a networked
PostScript printer.

Additionally, GUSI adds some UNIX library calls dealing with files which were missing,
like chdir(), getcwd(), symlink(), and readlink(), and changes a few other library
calls to behave more like their UNIX counterparts.

The most recent version of GUSI may be obtained by anonymous ftp from
ftp.switch.ch in the directory software/mac/src/mpw_c.

There is also a mailing list devoted to discussions about GUSI. You can join the list by
sending email to <gusi-request@iis.ee.ethz.ch>.

User's Manual
For ease of access, the manual has been split up into a number of sections

GUSI_Install Installing and using the GUSI headers and libraries

GUSI_Common Routines common to all GUSI socket families

GUSI_Files Routines specific to the file system

GUSI_Unix Routines specific to memory based (UNIX) sockets

GUSI_Appletalk Routines specific to AppleTalk sockets

GUSI_PPC Routines specific to PPC Toolbox sockets

GUSI_INET Routines specific to internet sockets

GUSI_PAP Routines specific to PAP sockets

GUSI_Misc Miscellaneous routines

GUSI_Advanced Advanced techniques

Copying
Copyright (C) 1992-1995 Matthias Neeracher

Permission is granted to anyone to use this software for any purpose on any computer
system, and to redistribute it freely, subject to the following restrictions

The author is not responsible for the consequences of use of this software, no
matter how awful, even if they arise from defects in it.

The origin of this software must not be misrepresented, either by explicit claim
or by omission.

Altered versions must be plainly marked as such, and must not be misrepresented
as being the original software.

Design Objectives
GUSI was developed according to at least three mutually conflicting standards

The definition of the existing C library.

The behavior of the corresponding UNIX calls. While my original guideline was
a set of discarded SunOS manuals, my current reference point is the ANSI/IEEE
POSIX standard (A borrowed copy of the 1988 edition, if you really want to
know; feel free to donate me a copy of the 1992 edition). The behaviour of the
socket calls is, of course, modeled after their BSD implementation.

The author's judgement, prejudices, laziness, and limited resources.

In general, the behavior of the corresponding POSIX/BSD library call was implemented,
since this faciliates porting UNIXish utilities to the Macintosh.

Acknowledgements
I would like to thank all who have agreed to beta test this code and who have provided
feedback.

The TCP/IP code in GUSIINET.cp, GUSITCP.cp, and GUSIUDP.cp is derived from a
socket library written by Charlie Reiman <reiman@talisman.kaleida.com>, which in turn
is based on code written by Tom Milligan <milligan@madhaus.utcs.utoronto.ca>.

The PAP code in GUSIPAP.cp is derived from code written by Sak Wathanasin
<sw@nan.co.uk>.

Martin Heller <heller@gis.geogr.unizh.ch> suggested to move the documentation to
HTML and wrote the HTML to RTF converter. Ed Draper <draper@usis.com> provided
the PDF translation.

Many of the header files in the include subdirectory are borrowed from BSD 4.4-lite,
therefore This product includes software developed by the University of California,
Berkeley and its contributors.

Installing and using GUSI
This section discusses how you can install GUSI on your disk and use it for your
programs.

To install GUSI, change in the MPW Shell to its directory and type

 BuildProgram Install <Enter>

This will install all necessary files in {CIncludes}, {CLibraries}, and {RIncludes},
respectively. It will also install /etc/services in your preferences folder, prompting you
if you have an older version there.

This requires that you have MPW Perl installed, which is available in the same ftp
directory as GUSI.

To use GUSI, include one or more of the following header files in your program

 GUSI.h

The main file. This includes almost everything else.

 TFileSpec.h

FSSpec manipulation routines.

 dirent.h

Routines to access all entries in a directory.

 netdb.h

Looking up TCP/IP host names.

 netinet/in.h

The address format for TCP/IP sockets.

 sys/errno.h

The errors codes returned by GUSI routines.

 sys/ioctl.h

Codes to pass to ioctl().

 sys/socket.h

Data types for socket calls.

 sys/stat.h

Getting information about files.

 sys/types.h

More data types.

 sys/uio.h

Data types for scatter/gather calls.

 sys/un.h

The address format for Unix domain sockets.

 unistd.h

Prototypes for most routines defined in GUSI.

GUSI expects the Macintosh Toolbox to be initialized. This will happen automatically
under some circumstances (if you're writing an MPW tool with the non-CodeWarrior
compilers or if you are linking with SIOW and are forcing a write to standard output or
standard error before you are using any non-file GUSI routines, but it's often wiser to do
an explicit initialization anyway.

You should init the Toolbox in the following way

 InitGraf((Ptr) &qd.thePort);
 InitFonts();
 InitWindows();
 InitMenus();
 TEInit();
 InitDialogs(nil);
 InitCursor();

You have to link your program with the GUSI library. The exact procedure differs slightly
between the MPW C version, the PPCC version, and the CodeWarrior version.

Linking with MPW C GUSI
For the MPW C version, you should link with {CLibraries}GUSI.o, and optionally one or
several configuration files. Currently, the following configuration files exist

 GUSI_Everything.cfg

Include code for everything defined in GUSI.

 GUSI_Appletalk.cfg

Include code for AppleTalk sockets.

 GUSI_Internet.cfg

Include code for MacTCP sockets.

 GUSI_PAP.cfg

Include code for PAP sockets.

 GUSI_PPC.cfg

Include code for PPC sockets.

 GUSI_Unix.cfg

Include code for Unix domain sockets.

If you don't specify any configuration files, only the file related routines will be included.
It's important that these files appear before all other libraries.

Linking with GUSI doesn't free you from linking in the standard libraries, typically

 {Libraries}Runtime.o
 {Libraries}Interface.o
 {CLibraries}StdCLib.o
 {Libraries}ToolLibs.o

Linking with PPCC GUSI
For the PPCC version, you should link with {PPCLibraries}GUSI.xcoff and if you are
linking with SIOW, also with {PPCLibraries}GUSI.xcoff. The PPCC version currently
doesn't support flexible configuration. Like with the MPW C version, GUSI should be first
in your link, and you have to link with the standard libraries.

GUSI for PPCC makes use of Code Fragment Manager version numbers, therefore you
have to specify the correct version number for MakePEF with the -l option.

 -l "GUSI.xcoff=GUSI#0x01508000-0x01508000"

In case you were wondering, this encodes the version number (1.5.0) the same way as the
header of a 'vers' resource.

Linking with CodeWarrior GUSI
The easiest way to get started with a CodeWarrior GUSI application is by cloning from
the appropriate project stationery in the Lib directory. The principle of operation is the
same as with the other versions First GUSI.Lib, and then the standard libraries have to be
specified. To create an MPW tool with the CodeWarrior compilers, you additionally have
to link with GUSIMPW.Lib before GUSI.Lib

The CodeWarrior version uses a new configuration mechanism that will eventually be
adapted in the other versions as well At the beginning of your application, call
GUSISetup for the components you need. Currently, the following components are
defined

 GUSISetup(GUSIwithSIOUXSockets)

Allows use of the SIOUX library for standard I/O.

 GUSISetup(GUSIwithAppleTalkSockets)

Includes ADSP sockets.

 GUSISetup(GUSIwithInternetSockets)

Includes TCP and UDP sockets.

 GUSISetup(GUSIwithPAPSockets)

Includes PAP sockets.

 GUSISetup(GUSIwithPPCSockets)

Includes PPC sockets.

 GUSISetup(GUSIwithUnixSockets)

Includes Unix domain sockets.

If you call GUSIDefaultSetup() instead, all of the above will be included. These calls
should be included right at the beginning of your main() procedure.

Warning messages, Rezzing
You will get lots of warning messages about duplicate definitions, but that's ok (Which
means I can't do anything about it).

You should also rez your program with GUSI.r. The section GUSI_Advanced/Resources
discusses when and how to add your own configuration resource to customize GUSI
defaults. Don't forget that your PowerPC programs also need a cfrg resource.

Overview
This section discusses the routines common to all, or almost all communication domains.
These routines return -1 if an error occurred, and set the variable errno to an error code.
On success, the routines return 0 or some positive value.

Here's a list of all error codes and their typical explanations. The most important of them
are repeated for the individual calls.

 EACCES

Permission denied An attempt was made to access a file in a way forbidden by its
file access permissions, e.g., to open() a locked file for writing.

 EADDRINUSE

Address already in use bind() was called with an address already in use by
another socket.

 EADDRNOTAVAIL

Can't assign requested address bind() was called with an address which this
socket can't assume, e.g., a TCP/IP address whose in_addr specifies a different
host.

 EAFNOSUPPORT

Address family not supported You haven't linked with this socket family or have
specified a nonexisting family, e.g., AF_CHAOS.

 EALREADY

Operation already in progress, e.g., connect() was called twice in a row for a
nonblocking socket.

 EBADF

Bad file descriptor The file descriptor you specified is not open.

 EBUSY

Request for a system resource already in incompatible use, e.g., attempt to delete
an open file.

 ECONNREFUSED

Connection refused, e.g. you specified an unused port for a connect()

 EEXIST

File exists, and you tried to open it with O_EXCL.

 EHOSTDOWN

Remote host is down.

 EHOSTUNREACH

No route to host.

 EINPROGRESS

Operation now in progress. This is *not* an error, but returned from nonblocking
operations, e.g., nonblocking connect().

 EINTR

Interrupted system call The user pressed Command-. or alarm() timed out.

 EINVAL

Invalid argument or various other error conditions.

 EIO

Input/output error.

 EISCONN

Socket is already connected.

 EISDIR

Is a directory, e.g. you tried to open() a directory.

 EMFILE

Too many open files.

 EMSGSIZE

Message too long, e.g. for an UDP send().

 ENAMETOOLONG

File name too long.

 ENETDOWN

Network is down, e.g., Appletalk is turned off in the chooser.

 ENFILE

Too many open files in system.

 ENOBUFS

No buffer space available.

 ENOENT

No such file or directory.

 ENOEXEC

Severe error with the PowerPC standard library.

 ENOMEM

Cannot allocate memory.

 ENOSPC

No space left on device.

 ENOTCONN

Socket is not connected, e.g., neither connect() nor accept() has been called
successfully for it.

 ENOTDIR

Not a directory.

 ENOTEMPTY

Directory not empty, e.g., attempt to delete nonempty directory.

 ENXIO

Device not configured, e.g., MacTCP control panel misconfigured.

 EOPNOTSUPP

Operation not supported on socket, e.g., sendto() on a stream socket.

 EPFNOSUPPORT

Protocol family not supported, i.e., attempted use of ADSP on a machine that has
AppleTalk but not ADSP.

 EPROTONOSUPPORT

Protocol not supported, e.g., you called getprotobyname() with neither "tcp" nor
"udp" specified.

 ERANGE

Result too large, e.g., getcwd() called with insufficient buffer.

 EROFS

Read-only file system.

 ESHUTDOWN

Can't send after socket shutdown.

 ESOCKTNOSUPPORT

Socket type not supported, e.g., datagram PPC toolbox sockets.

 ESPIPE

Illegal seek, e.g., lseek() called for a TCP socket.

 EWOULDBLOCK

Nonblocking operation would block.

 EXDEV

Cross-device link, e.g. FSpSmartMove() attempted to move file to a different
volume.

Creating and destroying sockets
A socket is created with socket() and destroyed with close().

int socket(int af, int type, int protocol) creates an endpoint for
communication and returns a descriptor. af specifies the communication domain to be
used. Valid values are

 AF_UNIX

Communication internal to a single Mac.

 AF_INET

TCP/IP, using MacTCP.

 AF_APPLETALK

Appletalk, using ADSP.

 AF_PPC

The Program-to-Program Communication Toolbox.

type specifies the semantics of the communication. The following two types are
available

 SOCK_STREAM

A two way, reliable, connection based byte stream.

 SOCK_DGRAM

Connectionless, unreliable messages of a fixed maximum length.

protocol would be used to specify an alternate protocol to be used with a socket. In
GUSI, however, this parameter is always ignored.

Error codes

 EINVAL

The af you specified doesn't exist.

 EMFILE

The descriptor table is full.

void close(int fd) removes the access path associated with the descriptor, and closes
the file or socket if the last access path referring to it was removed.

Prompting the user for an address

To give the user the opportunity of entering an address for a socket to be bound or
connected to, the choose() routine was introduced in GUSI. This routine has no
counterpart in UNIX implementations.

C puts up a modal dialog prompting the user to choose an address. dom specifies the
communication domain, like in socket. type may be used by future communication
domains to further differentiate within a domain, but is ignored by current domains.
prompt is a message that will appear in the dialog. constraint may be used to restrict
the types of acceptable addresses (For more information, consult the section of the
communication domain). The following two flags are defined for most socket types

 CHOOSE_DEFAULT

Offer the contents passed in name as the default choice.

 CHOOSE_NEW

Prompt for a new address, suitable for passing to bind(). Default is prompting for
an existing address, to be used by connect().

name on input contains a default address if CHOOSE_DEFAULT is set. On output, it is
set to the address chosen.

Error codes

 EINVAL

One of the flags is not (yet) supported by this communications domain. This
error is never reported for CHOOSE_DEFAULT , which might get silently
ignored.

 EINTR

The user chose "Cancel" in the dialog.

Establishing connections between sockets
Before you can transmit data on a stream socket, it must be connected to a peer socket.
Connection establishment is asymmetrical The server socket registers its address with
bind(), calls listen() to indicate its willingness to accept connections and accepts
them by calling accept(). The client socket, after possibly having registered its address
with bind() (This is not necessary for all socket families as some will automatically
assign an address) calls connect() to establish a connection with a server.

It is possible, but not required, to call connect() for datagram sockets.

int bind(int s, const struct sockaddr *name, int namelen) binds a socket to
its address. The format of the address is different for every socket family. For some
families, you may ask the user for an address by calling choose().

Error codes

 EAFNOSUPPORT

name specifies an illegal address family for this socket.

 EADDRINUSE

There is already another socket with this address.

int listen(int s, int qlen) turns a socket into a listener. qlen determines how
many sockets can concurrently wait for a connection, but is ignored for almost all socket
families.

int accept(int s, struct sockaddr *addr, int *addrlen) accepts a connection
for a socket on a new socket and returns the descriptor of the new socket. If addr is not
NULL, the address of the connecting socket will be assigned to it.

You can find out if a connection is pending by calling select() to find out if the socket
is ready for reading.

Error codes

 ENOTCONN

You did not call listen() for this socket.

 EWOULDBLOCK

The socket is nonblocking and no socket is trying to connect.

int connect(int s, const struct sockaddr *addr, int addrlen) tries to
connect to the socket whose address is in addr. If the socket is nonblocking and the
connection cannot be made immediately, connect() returns EINPROGRESS . You can
find out if the connection has been established by calling select() to find out if the
socket is ready for writing.

Error codes

 EAFNOSUPPORT

name specifies an illegal address family for this socket.

 EISCONN

The socket is already connected.

 EADDRNOAVAIL

There is no socket with the given address.

 ECONNREFUSED

The socket refused the connection.

 EINPROGRESS

The socket is nonblocking and the connection is being established.

Transmitting data between sockets
You can write data to a socket using write(), writev(), send(), sendto(), or
sendmsg(). You can read data from a socket using read(), readv(), recv(),
recvfrom(), or recvmsg().

int read(int s, char *buffer, unsigned buflen) reads up to buflen bytes from
the socket. read() for sockets differs from read() for files mainly in that it may read
fewer than the requested number of bytes without waiting for the rest to arrive.

Error codes

 EWOULDBLOCK

The socket is nonblocking and there is no data immediately available.

int readv(int s, const struct iovec *iov, int count) performs the same
action, but scatters the input data into the count buffers of the iovJarray, always filling
one buffer completely before proceeding to the next. iovec is defined as follows

 struct iovec {
 caddr_t iov_base; /* Address of this buffer */
 int iov_len; /* Length of the buffer */
 };

int recv(int s, void *buffer, int buflen, int flags) is identical to read(),
except for the flags parameter. If the MSG_OOB flag is set for a stream socket that
supports out-of-band data, recv() reads out-of-band data.

int recvfrom(int s, void *buffer, int buflen, int flags, void *from,

int *fromlen) is the equivalent of recv() for unconnected datagram sockets. If from is
not NULL, it will be set to the address of the sender of the message.

int recvmsg(int s, struct msghdr *msg, int flags) is the most general routine,
combining the possibilities of readv() and recvfrom(). msghdr is defined as follows

 struct msghdr {
 caddr_t msg_name; /* Like from in recvfrom() */
 int msg_namelen; /* Like fromlen in recvfrom() */
 struct iovec *msg_iov; /* Scatter/gather array */
 int msg_iovlen; /* Number of elements in msg_iov */
 caddr_t msg_accrights; /* Access rights sent/received. Not
used in GUSI */
 int msg_accrightslen;
 };

int write(int s, char *buffer, unsigned buflen) writes up to buflen bytes to
the socket. As opposed to read(), write() for nonblocking sockets always blocks until
all bytes are written or an error occurs.

Error codes

 EWOULDBLOCK

The socket is nonblocking and data can't be immediately written.

int writev(int s, const struct iovec *iov, int count) performs the same
action, but gathers the output data from the count buffers of the iovJarray, always
sending one buffer completely before proceeding to the next.

int send(int s, void *buffer, int buflen, int flags) is identical to write(),
except for the flags parameter. If the MSG_OOB flag is set for a stream socket that
supports out-of-band data, send() sends an out-of-band message.

int sendto(int s, void *buffer, int buflen, int flags, void *to, int

*tolen) is the equivalent of send() for unconnected datagram sockets. The message
will be sent to the socket whose address is given in to.

int sendmsg(int s, const struct msghdr *msg, int flags) combines the
possibilities of writev() and sendto().

I/O multiplexing
int select(int width, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval
*timeout) examines the I/O descriptors specified by the bit masks readfs, writefs, and
exceptfs to see if they are ready for reading, writing, or have an exception pending.
width is the number of significant bits in the bit mask. select() replaces the bit masks
with masks of those descriptors which are ready and returns the total number of ready
descriptors. timeout, if not NULL, specifies the maximum time to wait for a descriptor to
become ready. If timeout is NULL, select() waits indefinitely. To do a poll, pass a
pointer to a zero timeval value in timeout. Any of readfds, writefds, or exceptfds
may be given as NULL if no descriptors are of interest.

Error codes

 EBADF

One of the bit masks specified an invalid descriptor.

The descriptor bit masks can be manipulated with the following macros

 FD_ZERO(fds); /* Clear all bits in *fds */
 FD_SET(n, fds); /* Set bit n in *fds */
 FD_CLR(n, fds); /* Clear bit n in *fds */
 FD_ISSET(n, fds); /* Return 1 if bit n in *fds is set, else 0 */

Getting and changing properties of sockets
You can obtain the address of a socket and the socket it is connected to by calling
getsockname() and getpeername() respectively. You can query and manipulate other
properties of a socket by calling ioctl(), fcntl(), getsockopt(), and setsockopt().
You can create additional descriptors for a socket by calling dup() or dup2().

int getsockname(int s, struct sockaddr *name, int *namelen) returns in
*name the address the socket is bound to. *namelen should be set to the maximum length
of name and will be set by getsockname() to the actual length of the name.

int getpeername(int s, struct sockaddr *name, int *namelen) returns in
*name the address of the socket that this socket is connected to. *namelen should be set
to the maximum length of name and will be set by getpeername() to the actual length of
the name.

int ioctl(int d, unsigned int request, long *argp) performs various
operations on the socket, depending on the request. The following codes are valid for all
socket families

 FIONBIO

Make the socket blocking if the long pointed to by argp is 0, else make it
nonblocking.

 FIONREAD

Set *argp to the number of bytes waiting to be read.

Error codes

 EOPNOTSUPP

The operation you requested with request is not supported by this socket family.

int fcntl(int s, unsigned int cmd, int arg) provides additional control over a
socket. The following values of cmd are defined for all socket families

 F_DUPFD

Return a new descriptor greater than or equal to arg which refers to the same
socket.

 F_GETFL

Return descriptor status flags.

 F_SETFL

Set descriptor status flags to arg.

The only status flag implemented is FNDELAY which is true if the socket is nonblocking.

Error codes

 EOPNOTSUPP

The operation you requested with cmd is not supported by this socket family.

int getsockopt(int s, int level, int optname, void *optval, int *

optlen) is used to request information about sockets. It is not implemented in GUSI.

int setsockopt(int s, int level, int optname, void *optval, int optlen)
is used to set options associated with a socket. It is not implemented in GUSI.

int dup(int fd) returns a new descriptor referring to the same socket as fd. The old
and new descriptors are indistinguishible. The new descriptor will always be the smallest
free descriptor.

int dup2(int oldfd, int newfd) closes newfd if it was open and makes it a
duplicate of oldfd. The old and new descriptors are indistinguishible.

File system calls
Files are unlike sockets in many respects Their length is never changed by other
processes, they can be rewound. There are also many calls which are specific to files.

Differences to generic behavior
The following calls make no sense for files and return an error of EOPNOTSUPP

 socket()
 bind()
 listen()
 accept()
 connect()
 getsockname()
 getpeername()
 getsockopt()
 setsockopt()

The following calls will work, but might be frowned upon by your friends (besides,
UNIX systems generally wouldn't like them)

 recv()
 recvfrom()
 recvmsg()
 send()
 sendto()
 sendmsg()

choose() returns zero terminated C strings in name. It accepts an additional flag
CHOOSE_DIR. If this is set, choose() will select directories instead of files.

You may restrict the files presented for choosing by passing a pointer to the following
structure for the constraint argument

 typedef struct {
 short numTypes; /* Number of legitimate file types */
 SFTypeList types; /* The types, like 'TEXT' */
 }sa_constr_file;

select() will give boring results. File descriptors are always considered ready to read or
write, and never give exceptions.

ioctl() and fcntl() don't support manipulating the blocking state of a file descriptor or
reading the number of bytes available for reading, but will accept lots of other requests---
Check with your trusty MPW C documentation.

Routines specific to the file system
In this section, you'll meet lots of good old friends. Some of these routines also exist in
the standard MPW libraries, but the GUSI versions have a few differences

File names are relative to the directory specified by chdir().

You can define special treatment for some file names (See below under "Adding
your own file families").

You can pass FSSpec values to the routines by encoding them with
FSp2Encoding() (See "FSSpec routines" below).

int stat(const char * path, struct stat * buf) returns information about a
file. struct stat is defined as follows

 struct stat {
 dev_t st_dev; /* Volume reference number of file */
 ino_t st_ino; /* File or directory ID */
 u_short st_mode; /* Type and permission of file */
 short st_nlink; /* Always 1 */
 short st_uid; /* Set to 0 */
 short st_gid; /* Set to 0 */
 dev_t st_rdev; /* Set to 0 */
 off_t st_size;
 time_t st_atime; /* Set to st_mtime */
 time_t st_mtime;
 time_t st_ctime;
 long st_blksize;
 long st_blocks;
 };

st_mode is composed of a file type and of file permissions. The file type may be one of
the following

 S_IFREG

A regular file.

 S_IFDIR

A directory.

 S_IFLNK

A finder alias file.

 S_IFCHR

A console file under MPW or SIOW.

 S_IFSOCK

A file representing a UNIX domain socket.

Permissions consist of an octal digit repeated three times. The three bits in the digit have
the following meaning

 4

File can be read.

 2

File can be written.

 1

File can be executed, i.e., its type is `APPL' or 'appe'. The definition of
executability can be customized with the GUSI_ExecHook discussed in the
advanced section.

int lstat(const char * path, struct stat * buf) works just like stat(), but if
path is a symbolic link, lstat() will return information about the link and not about the
file it points to.

int fstat(int fd, struct stat * buf) is the equivalent of stat() for descriptors
representing open files. While it is legal to call fstat() for sockets, the information
returned is not really interesting. The file type in st_mode will be S_IFSOCK for sockets.

int chmod(const char * filename, mode_t mode) changes the mode returned by
stat(). Currently, the only thing you can do with chmod() is to turn the write permission
off an on. This is translated to setting and clearing the file lock bit.

int utime(const char * file, const struct utimbuf * tim) changes the
modification time of a file. struct utimbuf is defined as

 struct utimbuf {
 time_t actime; /* Access time */
 time_t modtime; /* Modification time */
 };

actime is ignored, as the Macintosh doesn't store access times. The modification of file
is set to modtime.

int isatty(int fd) returns 1 if fd represents a terminal (i.e. is connected to
"DevStdin" and the like), 0 otherwise.

long lseek(int, long, int) works the same as the MPW routine, and will return
ESPIPE if called for a socket.

int remove(const char *filename) removes the named file. If filename is a
symbolic link, the link will be removed and not the file.

int unlink(const char *filename) is identical to remove(). Note that on the Mac,
unlink() on open files behaves differently from UNIX.

int rename(const char *oldname, const char *newname) renames and/or moves a
file. oldname and newname must specify the same volume, but as opposed to the standard
MPW routine, they may specify different folders.

int open(const char*, int flags) opens a named file. The flags consist of one of
the following modes

 O_RDONLY

Open for reading only.

 WR_ONLY

Open for writing only.

 O_RDWR

Open for reading and writing.

Optionally combined with one or more of

 O_APPEND

The file pointer is set to the end of the file before each write.

 O_RSRC

Open resource fork.

 O_CREAT

If the file does not exist, it is created.

 O_EXCL

In combination with O_CREAT , return an error if file already exists.

 O_TRUNC

If the file exists, its length is truncated to 0; the mode is unchanged.

 O_ALIAS

If the named file is a symbolic link, open the link, not the file it points to (This is
most likely an incredibly bad idea).

int creat(const char * name) is identical to open(name,
O_WRONLY+O_TRUNC+O_CREAT). If the file didn't exist before, GUSI determines its file
type and creator of the according to rules outlined in the section "Resources" below.

int faccess(const char *filename, unsigned int cmd, long *arg) works the
same as the corresponding MPW routine, but respects calls to chdir() for partial
filenames.

void fgetfileinfo(char *filename, unsigned long *newcreator, unsigned

long *newtype) returns the file type and creator of a file.

void fsetfileinfo(char *filename, unsigned long newcreator, unsigned

long newtype) sets the file type and creator of a file to the given values.

int symlink(const char* linkto, const char* linkname) creates a file named
linkname that contains an alias resource pointing to linkto. The created file should be
indistinguishible from an alias file created by the System 7 Finder. Note that aliases bear
only superficial similiarities to UNIX symbolic links, especially once you start renaming
files.

int readlink(const char* path, char* buf, int bufsiz) returns in buf the
name of the file that path points to.

int truncate(const char * path, off_t length) causes a file to have a size equal
to length bytes, shortening it or extending it with zero bytes as necessary.

int ftruncate(int fd, off_t length) does the same thing with an open file.

int access(const char * path, int mode) tests if you have the specified access
rights to a file. mode may be either F_OK, in which case the file is tested for existence, or a
combination of the following

 R_OK

Tests if file is readable.

 W_OK

Tests if file is writeable.

 X_OK

Tests if file is executable. As with stat(), the definition of executability may be
customized.

access() returns 0 if the specified access rights exist, otherwise it sets errno and returns
-1.

int mkdir(const char * path) creates a new directory.

int rmdir(const char * path) deletes an empty directory.

int chdir(const char * path) makes all future partial pathnames relative to this
directory.

char * getcwd(const char * buf, int size) returns a pointer to the current
directory pathname. If buf is NULL, size bytes will be allocated using malloc().

Error codes

 ENAMETOOLONG

The pathname of the current directory is greater than size.

 ENOMEM

buf was NULL and malloc() failed.

A number of calls facilitate scanning directories. Directory entries are represented by
following structure

 struct dirent {
 u_long d_fileno; /* file number of entry */
 u_short d_reclen; /* length of this record */
 u_short d_namlen; /* length of string in d_name */
 #define MAXNAMLEN 255

 char d_name[MAXNAMLEN + 1]; /* name must be no longer than this
*/
 };

DIR * opendir(const char * dirname) opens a directory stream and returns a
pointer or NULL if the call failed.

struct dirent * readdir(DIR * dirp) returns the next entry from the directory or
NULL if all entries have been processed.

long telldir(const DIR * dirp) returns the position in the directory.

void seekdir(DIR * dirp, long loc) changes the position.

void rewinddir(DIR * dirp) restarts a scan at the beginning.

int closedir(DIR * dirp) closes the directory stream.

int scandir(const char * path, struct dirent *** entries, int (*want)

(struct dirent *), int (*sort)(const void *, const void *)) scans a whole
directory at once and returns a possibly sorted list of entries. If want is not NULL, only
entries for which want returns 1 are returned. If sort is not NULL, the list is sorted using
qsort() with sort as a comparison function. If sort is NULL, the list will be sorted
alphabetically on a Mac, but not necessarily on other machines.

Unix domain sockets
This domain is quite regular and supports all calls that work on any domain, except for
out-of-band data.

Differences to generic behavior
Addresses are file system pathnames. GUSI complies to the Unix implementation in that it
doesn't require the name to be terminated by a zero. Names that are generated by GUSI,
however, will always be zero terminated (but the zero won't be included in the count).

 struct sockaddr_un {
 short sun_family; /* Always AF_UNIX */
 char sun_path[108]; /* A pathname to a file */
 };

C<choose()> works both for existing and new addresses, and no
restriction
is possible (or necessary).

Appletalk sockets
Currently, only stream sockets (including out-of-band data) are supported. Appletalk
sockets should work between all networked Macintoshes and between applications on a
single Mac, provided the SetSelfSend flag is turned on. However, PPC sockets have a
better performance for interapplication communication on a single Machine.

Differences to generic behavior
Two classes of addresses are supported for AppleTalk. The main address type specifies
numeric addresses.

 struct sockaddr_atlk {
 short family; /* Always AF_APPLETALK
*/
 AddrBlock addr; /* The numeric AppleTalk socket address
*/
 };

For bind() and connect(), however, you are also allowed to specify symbolic
addresses. bind() registers an NBP address, and connect() performs an NBP lookup.
Registered NBP adresses are automatically released when the socket is closed. No call
ever returns a symbolic address.

 struct sockaddr_atlk_sym {
 short family; /* Always ATALK_SYMADDR */
 EntityName name; /* The symbolic NBP address */
 };

choose() currently only works for existing sockets. The peer must have registered a
symbolic address. To restrict the choice of addresses presented, pass a pointer to the
following structure for the constraint argument

 typedef struct {
 short numTypes; /* Number of allowed types */
 NLType types; /* List of types */
 }sa_constr_atlk;

PPC sockets
These provide authenticated stream sockets without out-of-band data. PPC sockets should
work between all networked Macintoshes running System 7, and between applications on
a single Macintosh running System 7.

Differences to generic behavior
PPC socket addresses have the following format

 struct sockaddr_ppc {
 short family; /* Always AF_PPC
*/
 LocationNameRec location; /* Check your trusty Inside
Macintosh */
 PPCPortRec port;
 };

choose() currently only works for existing sockets. To restrict the choice of addresses
presented, pass a pointer to the following structure for the constraint argument

 typedef struct {
 short flags;
 Str32 nbpType;
 PPCPortRec match;
 }sa_constr_ppc;

flags is obtained by or'ing one or several of the following constants

 PPC_CON_NEWSTYLE

Always required for compatibility reasons.

 PPC_CON_MATCH_NBP

Only display machines that have registered an entity of type nbpType.

 PPC_CON_MATCH_NAME

Only display ports whose name matches match.name.

 PPC_CON_MATCH_TYPE

Only display ports whose type matches match.u.portType.

nbpType specifies the machines to be displayed, as explained above. match contains the
name and/or type to match against.

connect() will block even if the socket is nonblocking. In practice, however, delays are
likely to be quite short, as it never has to block on a higher level protocol and the PPC
ToolBox will automatically establish the connection.

Internet sockets
These are the real thing for real programmers. Out-of-band data only works for sending.
Both stream (TCP) and datagram (UDP) sockets are supported. Internet sockets are also
suited for interapplication communication on a single machine, provided it runs MacTCP.

Differences to generic behavior
Internet socket addresses have the following format

 struct in_addr {
 u_long s_addr;
 };
 struct sockaddr_in {
 u_char sin_len; /* Ignored */
 u_char sin_family; /* Always C<AF_INET> */
 u_short sin_port; /* Port number */
 struct in_addr sin_addr; /* Host ID */
 char sin_zero[8];
 };

Routines specific to TCP/IP sockets
There are several routines to convert between numeric and symbolic addresses.

Hosts are represented by the following structure

 struct hostent {
 char *h_name; /* Official name of the host */
 char **h_aliases; /* A zero terminated array of alternate
names for the host */
 int h_addrtype; /* Always AF_INET */
 int h_length; /* The length, in bytes, of the address */
 char **h_addr_list; /* A zero terminated array of network
addresses for the host */
 };

struct hostent * gethostbyname(char *name) returns an entry for the host with the
given name or NULL if a host with this name can't be found.

struct hostent * gethostbyaddr(const char *addrP, int, int) returns an
entry for the host with the given address or NULL if a host with this name can't be found.
addrP in fact has to be a struct in_addr *. The last two parameters are ignored.

char * inet_ntoa(struct in_addr inaddr) converts an internet address into the
usual numeric string representation (e.g., 0x8184023C is converted to "129.132.2.60")

struct in_addr inet_addr(char *address) converts a numeric string into an
internet address (If x is a valid address, inet_addr(inet_ntoa(x)) == x).

int gethostname(char *machname, long buflen) gets our name into buffer.

Services are represented by the following data structure

 struct servent {
 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port number */
 char *s_proto; /* protocol to use ("tcp" or "udp") */
 };

void setservent(int stayopen) rewinds the file of services. If stayopen is set, the
file will remain open until endservent() is called, else it will be closed after the next
call to getservbyname() or getservbyport().

void endservent() closes the file of services.

struct servent * getservent() returns the next service from the file of services,
opening the file first if necessary. If the file is not found (/etc/services in the
preferences folder), a small built-in list is consulted. If there are no more services,
getservent() returns NULL.

struct servent * getservbyname (const char * name, const char * proto)
finds a named service by calling getservent() until the protocol matches proto and
either the name or one of the aliases matches name.

struct servent * getservbyport (int port, const char * proto) finds a
service by calling getservent() until the protocol matches proto and the port matches
port.

Protocols are represented by the following data structure

 struct protoent {
 char *p_name; /* official protocol name */
 char **p_aliases; /* alias list (always NULL for GUSI)*/
 int p_proto; /* protocol number */
 };

struct protoent * getprotobyname(char * name) finds a named protocol. This call
is rather unexciting.

PAP sockets
PAP, the AppleTalk Printer Access Protocol is a protocol which is almost exclusively used
to access networked printers. The current implementation of PAP in GUSI is quite narrow
in that it only implements the workstation side of PAP and only in communication to the
currently selected LaserWriter. It is also doomed, as it depends on Apple system
resources that probably are not supported anymore in Apple's Quickdraw GX printing
architecture, but if there is enough interest, the current implementation might be replaced
some time.

Routines specific to PAP sockets
While PAP sockets behave in most respects like other sockets, they can currently not be
created with the socket() call, but are opened with open().

int open("DevPrinter", int flags) opens a connection to the last selected
LaserWriter. flags is currently ignored.

Communication with LaserWriters is somewhat strange. The three main uses of PAP
sockets are probably interactive sessions, queries, and downloads, which will be
discussed in the following sections. As in all other socket families, GUSI does no filtering
of the transmitted data, which means that lines sent by the LaserWriter will be separated
by linefeeds (ASCII 10) rather than carriage returns (ASCII 13), which are used for this
purpose in most other Mac contexts. For data you send, it doesn't matter which one you
use.

You start an interactive session by sending a line "executive" after opening the socket.
This will put lots of LaserWriters (certainly all manufactured by Apple, but probably not
a Linotronic) into interactive mode. If you want to, you can now play terminal emulator
and use your LaserWriter as an expensive desk calculator.

A query is some PostScript code you send to a LaserWriter that you expect to be
answered. This is quite straightforward, except that LaserWriters don't seem to answer
until you have indicated to them that no more data from you will be coming. Therefore,
you have to call shutdown(s,1) to shut the socket down for writing after you have
written your query and before you try to read the answer. The following code
demonstrates how to send a query to the printer

 int s = open("DevPrinter", O_RDWR);
 write(s, "FontDirectory /Gorilla-SemiBold exch known...", len);
 /* We won't write any more */
 shutdown(s, 1);
 while(read(s, buf, len) > 0)
 do_something();
 close(s);

If you want to simply download a file, you can also ignore the LaserWriter's response and
simply close the socket after downloading.

Miscellaneous

BSD memory routines
These are implemented as macros if you

 #include <compat.h>

void bzero(void * from, int len) zeroes len bytes, starting at from.

void bfill(void * from, int len, int x) fills len bytes, starting at from with x.

void bcopy(void * from, void * to, int len) copies len bytes from from to to.

int bcmp(void * s1, void * s2, int len) compares len bytes at s1 against len
bytes at s2, returning zero if the two areas are equal, nonzero otherwise.

Hooks
You can override some of GUSI's behaviour by providing hooks to GUSI. Note that these
often get called from deep within GUSI, so be sure you understand what is required of a
hook before overriding it.

GUSI hooks can be accessed with the following routines

 typedef void (*GUSIHook)(void);
 void GUSISetHook(GUSIHookCode code, GUSIHook hook);
 GUSIHook GUSIGetHook(GUSIHookCode code);

Currently, two hooks are defined. The GUSI_SpinHook is defined in the next section. The
GUSI_ExecHook is used by GUSI to decide whether a file or folder is to be considered
"executable" or not. The default hook considers all folders and all applications (i.e., files
of type 'APPL' and 'appe' to be executable. To provide your own hook, call

 GUSISetHook(GUSI_ExecHook, (GUSIHook) my_exec_hook);

where my_exec_hook is defined as

 Boolean my_exec_hook(const GUSIFileRef & ref);

The old value is available as

 Boolean (*)(const GUSIFileRef & ref)GUSIgetHook(GUSI_ExecHook);

Blocking calls
Since the Macintosh doesn't have preemptive task switching, it is important that other
applications get a chance to run during blocking calls. This section discusses the
mechanism GUSI uses for that purpose.

While a routine is waiting for a blocking call to terminate, it repeatedly calls a spin
routine with the following parameters

 typedef enum spin_msg
 {
 SP_MISC, /* some weird thing, usually just return
immediately if you get this */
 SP_SELECT, /* in a select call, passes ticks the program
is prepared to wait */
 SP_NAME, /* getting a host by name */
 SP_ADDR, /* getting a host by address */
 SP_STREAM_READ, /* Stream read call */
 SP_STREAM_WRITE, /* Stream write call */
 SP_DGRAM_READ, /* Datagram read call */
 SP_DGRAM_WRITE, /* Datagram write call */
 SP_SLEEP, /* sleeping, passes ticks left to sleep */
 SP_AUTO_SPIN /* Automatically spinning, passes spin count */
 }spin_msg;
 typedef int (*GUSISpinFn)(spin_msg msg, long param);

If the spin routine returns a nonzero value, the call is interrupted and EINTR returned. You
can modify the spin routine with the following calls

 GUSISetHook(GUSI_SpinHook, (GUSIHook) my_spin_hook);
 (GUSISpinFn)GUSIGetHook(GUSI_SpinHook);

(For backward compatibility, GUSI also defines the equivalents)

 int GUSISetSpin(GUSISpinFn routine);
 GUSISpinFn GUSIGetSpin(void);

Often, however, the default spin routine will do what you want It spins a cursor and
occasionally calls GetNextEvent() or WaitNextEvent(). By default, only mouse down
and suspend/resume events are handled, but you can change that by passing your own
GUSIEvtTable to GUSISetEvents().

 int GUSISetEvents(GUSIEvtTable table);
 GUSIEvtHandler * GUSIGetEvents(void);

A GUSIEvtTable is a table of GUSIEvtHandlers, indexed by event code. Presence of a
non-nil entry in the table will cause that event class to be allowed for GetNextEvent() or
WaitNextEvent(). GUSI for MPW C and PPCC includes one event table to be used with the
SIOW library.

 typedef void (*GUSIEvtHandler)(EventRecord * ev);
 typedef GUSIEvtHandler GUSIEvtTable[24];
 extern GUSIEvtHandler GUSISIOWEvents[];

GUSI also supports three POSIX/BSD routines alarm(unsigned sec) will after sec
seconds cancel the current call, raise SIGALRM, and return EINTR. Note that the default
handler for SIGALRM terminates the program, so be sure to install your own handler.
alarm(0) cancels an alarm and returns the remaining seconds. As opposed to POSIX
systems, the GUSI version of alarm() does not use real clock interrupts and merely
interrupts during a blocking call.

sleep(unsigned sec) sleeps for sec seconds, and usleep(unsigned usec) does the
same for usec micorseconds (rounded to 60ths of a tick).

Resources
A few GUSI routines (currently primarily choose()) need resources to work correctly.
These are added if you Rez your program with GUSI.r. On startup, GUSI also looks for a
preference resource with type 'GUZI' (the 'Z' actually must be a capital Sigma) and ID
GUSIRsrcID, which is currently defined as follows

 #ifndef GUSI_PREF_VERSION
 #define GUSI_PREF_VERSION '0102'
 #endif
 type 'GUZI' {
 literal longint text = 'TEXT'; /* Type for creat'ed files
*/
 literal longint mpw = 'MPS '; /* Creator for creat'ed files
*/
 byte noAutoSpin, autoSpin; /* Automatically spin
cursor ? */
 #if GUSI_PREF_VERSION >= '0110'
 boolean useChdir, dontUseChdir; /* Use chdir() ?
*/
 boolean approxStat, accurateStat; /* statbuf.st_nlink = # of
subdirectories ? */
 boolean noTCPDaemon, isTCPDaemon; /* Inetd client ?
*/
 boolean noUDPDaemon, isUDPDaemon;
 #if GUSI_PREF_VERSION >= '0150'
 boolean noConsole, hasConsole; /* Are we providing our own
devconsole ? */
 fill bit[3];
 #else
 fill bit[4];
 #endif
 literal longint = GUSI_PREF_VERSION;
 #if GUSI_PREF_VERSION >= '0120'
 integer = @t$$@>Countof(SuffixArray);
 wide array SuffixArray {
 literal longint; /* Suffix of file */
 literal longint; /* Type for file */
 literal longint; /* Creator for file */
 };
 #endif
 #endif
 };

To keep backwards compatible, the preference version is included, and you are free to use
whatever version of the preferences you want by defining GUSI_PREF_VERSION.

The first two fields define the file type and creator, respectively, to be used for files
created by GUSI. The type and creator of existing files will never be changed unless
explicitely requested with fsetfileinfo(). The default is to create text files (type `TEXT')
owned by the MPW Shell (creator `MPS '). If you request a preference version of 1.2.0
and higher, you are also allowed to specify a list of suffixes that are given different types.
An example of such a list would be

 {'SYM ', 'MPSY', 'sade' }

The autoSpin value, if nonzero, makes GUSI call the spin routine for every call to
read(), write(), send(), or recv(). This is useful for making an I/O bound program
MultiFinder friendly without having to insert explicit calls to SpinCursor(). If you don't
specify a preference resource, autoSpin is assumed to be 1. You may specify arbitrary
values greater than one to make your program even friendlier; note, however, that this
will hurt performance.

The useChdir flag tells GUSI whether you change directories with the toolbox calls
PBSetVol() or PBHSetVol() or with the GUSI call chdir(). The current directory will
start with the directory your application resides in or the current MPW directory, if you're
running an MPW tool. If useChdir is specified, the current directory will only change with
chdir() calls. If dontUseChdir is specified, the current directory will change with
toolbox calls, until you call chdir() the first time. This behaviour is more consistent
with the standard MPW library, but has IMHO no other redeeming value. If you don't
specify a preference resource, useChdir is assumed.

If approxStat is specified, stat() and lstat() for directories return in st_nlink the
number of items in the directory + 2. If accurateStat is specified, they return the
number of subdirectories in the directory. The latter has probably the best chances of
being compatible with some Unix software, but the former is often a sufficient upper
bound, is much faster, and most programs don't care about this value anyway. If you don't
specify a preference resource, approxStat is assumed.

The isTCPDaemon and isUDPDaemon flags turn GUSI programs into clients for David
Petersons inetd, as discussed below. If you don't specify a preference resource,
noTCPDaemon and noUDPDaemon are assumed.

The hasConsole flag should be set if you are overriding the default "devconsole", as
discussed below.

Advanced techniques
This section discusses a few techniques that probably not every user of GUSI needs.

FSSpec routines
If you need to do complicated things with the Mac file system, the normal GUSI routines
are probably not sufficient, but you still might want to use the internal mechanism GUSI
uses. This mechanism is provided in the header file TFileSpec.h, which defines both C
and C++ interfaces. In the following, the C++ member functions will be discussed and C
equivalents will be mentioned where available.

OSErr TFileSpecError() returns the last error provoked by a TFileSpec member
function.

TFileSpecTFileSpec(const FSSpec & spec, Boolean useAlias = false)
constructs a TFileSpec from an FSSpec and resolves alias files unless useAlias is true.
(The useAlias parameter is also present in the following routines, but will not be shown
anymore).

TFileSpec(short vRefNum, long parID, ConstStr31Param name) constructs a
TFileSpec from its components.

TFileSpec(short wd, ConstStr31Param name) constructs a TFileSpec from a
working directory reference number and a path component.

This routine is available to C users as OSErr WD2FSSpec(short wd, ConstStr31Param
name, FSSpec * desc).

TFileSpec(const char * path) constructs a TFileSpec from a full or relative path
name. This routine is available to C users as OSErr Path2FSSpec(const char * path,
FSSpec * desc).

TFileSpec(OSType object, short vol = kOnSystemDisk, long dir = 0)
constructs special TFileSpecs, depending on object.

This routine is available to C users as OSErr Special2FSSpec(OSType object, short
vol, long dirID, FSSpec * desc).

All constants in Folders.h acceptable for FindFolder() can be passed, e.g. the
following

 kSystemFolderType

The system folder.

 kDesktopFolderType

The desktop folder; objects in this folder show on the desk top.

 kExtensionFolderType

Finder extensions go here.

 kPreferencesFolderType

Preferences for applications go here.

Furthermore, the value kTempFileType is defined, which creates a temporary file in the
temporary folder, or, if dir is nonzero, in the directory you specify.

TFileSpec(short fRefNum) constructs a TFileSpec from the file reference number of
an open file.

In principle, a TFileSpec should be compatible with an FSSpec. However, to be
absolutely sure, you can call TFileSpecBless() which will call FSMakeFSSpec() before
passing the TFileSpec to a FSp file system routine.

char * TFileSpecFullPath() returns the full path name of the file. The address
returned points to a static buffer, so it will be overwritten on further calls. This routine is
available to C users as char * FSp2FullPath(const FSSpec * desc).

char * TFileSpecRelPath() works like FullPath(), but when the current folder
given by chdir() is a pparent folder of the object, a relative path name will be returned.
The address returned points to a static buffer, so it will be overwritten on further calls.
This routine is available to C users as char * FSp2RelPath(const FSSpec * desc).

char * TFileSpecEncode() returns an ASCII encoding which may be passed to all
GUSI routines taking path names. The address returned points to a static buffer, so it will
be overwritten on further calls. This generates short names which may be parsed rather
quickly. This routine is available to C users as char * FSp2Encoding(const FSSpec *
desc).

OSErr TFileSpecCatInfo(CInfoPBRec & info, Boolean dirInfo = false) Gives
information about the current object. If dirInfo is true, gives information about the
current object's directory. This routine is available to C users as OSErr
FSpCatInfo(const FSSpec * desc, CInfoPBRec * info).

OSErr TFileSpecResolve(Boolean gently = true) resolve the object if it is an alias
file. If gently is true (the default), nonexisting files are tolerated.

Boolean TFileSpecExists() returns true if the object exists.

Boolean TFileSpecIsParentOf(const TFileSpec & other) returns true if the object is a
parent of other.

TFileSpec TFileSpecoperator--() replaces the object with its parent directory. This
routine is available to C users as OSErr FSpUp(FSSpec * desc).

TFileSpec FileSpecoperator-=(int levels) is equivalent to calling -- levels
times and TFileSpec FileSpecoperator-(int levels) is equivalent to calling -= on
a copy of the current object.

TFileSpec TFileSpecoperator+=(ConstStr31Param name), TFileSpec
TFileSpecoperator+=(const char * name), and their non-destructive counterparts +
add a further component to the current object, which must be an existing directory.

This routine is available to C users as OSErr FSpDown(FSSpec * desc,
ConstStr31Param name).

TFileSpec TFileSpecoperator[](short index) returns the indexth object in the
parent folder of the current object.

A destructive version of this routine is available to C users as OSErr FSpIndex(FSSpec
* desc, short index).

Furthermore, the == and != operators are defined to test TFileSpecs for equality.

OSErr FSpSmartMove(const FSSpec * from, const FSSpec * to) does all the
work of moving and renaming a file (within the same volume), handling (I hope) all
special cases (You might be surprised how many there are).

File pattern iterators
Sometimes you might find it useful to find all files ending in .h or all directories starting
with MW. For this purpose, GUSI offers a mechanism in the header file TFileGlob.h,
which defines both C and C++ interfaces.

You start a search by constructing a file pattern iterator with
TFileGlobTFileGlob(const char * pattern, const TFileSpec * startDir =

nil). pattern is an absolute or relative path name, with the following characters getting
a special interpretation

 ?

Matches an arbitrary single character.

 *

Matches any number of characters (including none).

 \

Suppresses the special interpretation of the following character.

startDir provides a nonstandard starting directory for relative patterns. After you have
constructed the iterator, you can check whether a file was found by calling Boolean
TFileGlobValid() . If one was found, you can use the . To get the next file, call Boolean
TFileGlobNext() , which again returns true if another match was found.

To call the file pattern iterator routines from C, you have the following routines

 FileGlobRef NewFileGlob(const char * pattern)

Constructs an iterator.

 Boolean NextFileGlob(FileGlobRef glob)

Advances the iterator.

 Boolean FileGlob2FSSpec(FileGlobRef glob, FSSpec * spec)

Copies the file specification to spec and returns whether the iterator is valid.

 void DisposeFileGlob(FileGlobRef glob)

Destructs the iterator.

Adding your own socket families
It is rather easy to add your own socket types to GUSI

Pick an unused number between 17 and GUSI_MAX_DOMAINS to use for your
address family.

Include GUSI_P.h.

Write a subclass of SocketDomain and override socket() and optionally
choose().

Write a subclass of Socket and override whatever you want. If you override
recvfrom() and sendto(), read() and write() are automatically defined.

For more information, study the code in GUSIDispatch.cp and GUSISocket.cp,
which implement the generic socket code. The easiest actual socket
implementation to study is probably GUSIUnix.cp.

Adding your own file families
GUSI also supports adding special treatment for certain file names to almost all (tell me if
I have forgotten one) standard C library routines dealing with file names. To avoid
countless rescanning of file names, GUSI preprocesses the names

If the file name starts with "Dev" (case insensitive), the file name is considered a
device name, and the rest of the name can have any structure you like.

Otherwise, the name is translated into a FSSpec, and therefore should refer to a
real file system object (all intermediate path name components should refer to
existing directories).

To create a file family

Pick an address family, as described above. However, if you don't plan on
creating sockets of this family with socket(), just specify AF_UNSPEC.

Include GUSIFile_P.h.

Write a subclass of FileSocketDomain, specifying whether you are interested in
device names, file names, or both, and override Yours() and other calls.

Write a subclass of Socket and override whatever you want.

For more information, study the code in GUSIFile.cp, which implements the
generic file socket code.

In your Yours() member function, you specify whether you are prepared to handle one
of the following functions for a given file name

 enum Request {
 willOpen,
 willRemove,
 willRename,
 willGetFileInfo,
 willSetFileInfo,
 willFAccess,
 willStat,
 willChmod,
 willUTime,
 willAccess
 };

If you return true for a request, your corresponding member function will be called.
Member functions are similar to the corresponding C library functions, except that their
first parameter is a GUSIFileRef & instead of a const char * (but further file name
parameters, as in rename(), will be left untouched). You might also return true but not
override the member function to indicate that standard file treatment (EINVAL for many
routines) is OK.

The member function will always be called immediately after the Yours() function, so
you may want to pre-parse the file name in the Yours() function and keep the
information for the member function.

