Grand
Unnified
Socket
Interface

User’s Manual

Version 1.55
Last Updated:20Apr95

Matthias Neeracher <neeri@iis.ee.ethz.ch>

Introduction

@GUsl is an extension and partial replacement of the vPwruntime library. Its main

objective is to provide a more or less simple and consistent interface across the
following communication domains:

Memory based communication within a single machine (This name exists
for historical reasons).

Connections with the Printer Access Protocol, typically to a networked
PostScript printer.

Additionally, cusl adds some UNI X library calls dealing with files which were
missing, like chdir(), get cwd(), sym i nk(),and read! i nk(), and changes a few
other library calls to behave more like their UNI X counterparts.

The most recent version of GUSI may be obtained by anonymous ftp from
ftp.switch. ch in the directory sof t war e/ mac/ src/ mpw_c.

There is also a mailing list devoted to discussions about GUSI . You can join the
list by sending email to <gusi-request@iis.ee.ethz.ch>.

User's Manual

For ease of access, the manual has been split up into a number of sections:

GUSI_Install Installing and using the GUSI headers and libraries
GUSI_Common Routines common to all GUSI socket families
GUSI_Files Routines specific to the file system

GUSI_Unix Routines specific to memory based (UNIX) sockets
GUSI_Appletalk Routines specific to AppleTalk sockets
GUSI_PPC Routines specific to PPC Toolbox sockets
GUSI_INET Routines specific to internet sockets

GUSI_PAP Routines specific to PAP sockets

GUSI_Misc Miscellaneous routines

GUSI_Advanced Advanced techniques

Copying
Copyright (C) 1992-1995 Matthias Neeracher

Permission is granted to anyone to use this software for any purpose on any
computer system, and to redistribute it freely, subject to the following
restrictions:

The author is not responsible for the consequences of use of this software,
no matter how awful, even if they arise from defects in it.

The origin of this software must not be misrepresented, either by explicit
claim or by omission.

Altered versions must be plainly marked as such, and must not be
misrepresented as being the original software.

Design Objectives

ausl was developed according to at least three mutually conflicting standards:

The definition of the existing C library.

The behavior of the corresponding UNIX calls. While my original
guideline was a set of discarded SunOS manuals, my current reference
point is the ANSI/IEEE POSIX standard (A borrowed copy of the 1988
edition, if you really want to know; feel free to donate me a copy of the
1992 edition). The behaviour of the socket calls is, of course, modeled
after their BSD implementation.

The author's judgement, prejudices, laziness, and limited resources.

In general, the behavior of the corresponding POSIX/BSD library call was
implemented, since this faciliates porting UNIXish utilities to the Macintosh.

Acknowledgements

| would like to thank all who have agreed to beta test this code and who have
provided feedback.

The TCP/IP code in GUSI | NET. cp, GUSI TCP. cp, and GUSI UDP. cp is derived from a
socket library written by Charlie Reiman <reiman@talisman.kaleida.com>, which in
turn is based on code written by Tom Milligan
<milligan@madhaus.utcs.utoronto.ca>.

The PAP code in GUSI PAP. cp is derived from code written by Sak Wathanasin
<sw@nan.co.uk>.

Martin Heller <heller@gis.geogr.unizh.ch> suggested to move the documentation
to HTML and wrote the HTML to RTF converter. Ed Draper <draper@usis.com>
provided the PDF translation.

Many of the header files in the : i ncl ude: subdirectory are borrowed from BSD
4.4-lite, therefore:This product includes software developed by the University of
California, Berkeley and its contributors.

Installing and using GUSI

This section discusses how you can install Gusl on your disk and use it for your
programs.

To install cusl, change in the MPW Shell to its directory and type:

Bui | dProgram I nstall <Enter>

This will install all necessary files in { Cl ncl udes}, { CLi brari es}, and
{Ri ncl udes}, respectively. It will also install / et c/ ser vi ces in your preferences
folder, prompting you if you have an older version there.

This requires that you have MPW Perl installed, which is available in the same
ftp directory as GUSI .

To use GuUsl, include one or more of the following header files in your program:
GUSLh

The main file. This includes almost everything else.
TFileSpec.h

FSSpec manipulation routines.
dirent.h

Routines to access all entries in a directory.
netdb.h

Looking up TCP/IP host names.
netinet/in.h

The address format for TCP/IP sockets.
sys/errno.h

The errors codes returned by GUSI routines.
sys/ioctl.h

Codes to passtoioct!/ ().
sys/socket.h

Data types for socket calls.
sys/stat.h

Getting information about files.
sys/types.h

More data types.

sys/uio.h

Data types for scatter/gather calls.
sys/un.h

The address format for Unix domain sockets.
unistd.h

Prototypes for most routines defined in GUSI.

GUSI expects the Macintosh Toolbox to be initialized. This will happen
automatically under some circumstances (if you're writing an MPwtool with the
non-CodeWarrior compilers or if you are linking with sl owand are forcing a
write to standard output or standard error before you are using any non-file Gusl
routines, but it's often wiser to do an explicit initialization anyway.

You should init the Toolbox in the following way:

InitGaf ((Ptr) &qd.thePort);
InitFonts();

I ni t Wndows();

I nit Menus();

TEInit();

InitD al ogs(nil);
InitCursor();

You have to link your program with the cusi library. The exact procedure differs
slightly between the MPw C version, the PPCC version, and the CodeWarri or
version.

Linking with MPW C GUSI

For the MPW C version, you should link with { CLi br ari es} GUSI . o, and optionally
one or several configuration files. Currently, the following configuration files exist:

GUSI_Everything.cfg

Include code for everything defined in GUSI .
GUSI_Appletalk.cfg

Include code for AppleTalk sockets.
GUSI_Internet.cfg

Include code for MacTCP sockets.
GUSI_PAP.cfg

Include code for PAP sockets.

GUSI_PPC.cfg

Include code for PPC sockets.
GUSI_Unix.cfg

Include code for Unix domain sockets.

If you don't specify any configuration files, only the file related routines will be
included. It's important that these files appear before all other libraries.

Linking with ausl doesn't free you from linking in the standard libraries,
typically:

{Libraries}Runtine.o
{Libraries}Interface.o
{CLi braries}StdCLib.o
{Libraries}Tool Li bs. o

Linking with PPCC GUSI

For the PPcC version, you should link with { PPCLi br ari es} GUSI . xcof f and if you
are linking with SIOW, also with { PPCLi br ari es} GUSI . xcof f . The PPCC version
currently doesn't support flexible configuration. Like with the MPW C version,

ausl should be first in your link, and you have to link with the standard libraries.

ausl for ppcc makes use of Code Fragment Manager version numbers, therefore
you have to specify the correct version number for vakePEF with the -1 option.

-1 "QUSI . xcof f =GUSI #0x01508000- 0x01508000"

In case you were wondering, this encodes the version number (1.5.0) the same
way as the header of a' vers' resource.

Linking with CodeWarrior GUSI

The easiest way to get started with a Codewar ri or GUSI application is by cloning
from the appropriate project stationery in the Lib directory. The principle of
operation is the same as with the other versions:First GUSI . Li b, and then the
standard libraries have to be specified. To create an MPW tool with the
CodeWarrior compilers, you additionally have to link with cusi MPw Li b before
GUSI. Lib

The Codevar ri or version uses a new configuration mechanism that will
eventually be adapted in the other versions as well:At the beginning of your
application, call Gusl Set up for the components you need. Currently, the
following components are defined:

GUSISetup(GUSIwithSIOUXSockets)
Allows use of the sl aux library for standard 1/0.
GUSISetup(GUSIwithAppleTalkSockets)
Includes ADSP sockets.
GUSISetup(GUSIwithInternetSockets)
Includes TCP and UDP sockets.
GUSISetup(GUSIwithPAPSockets)
Includes PAP sockets.
GUSISetup(GUSIwithPPCSockets)
Includes PPC sockets.
GUSISetup(GUSIwithUnixSockets)
Includes Unix domain sockets.

If you call cusl Def aul t Set up() instead, all of the above will be included. These
calls should be included right at the beginning of your nai n() procedure.

Warning messages, Rezzing

You will get lots of warning messages about duplicate definitions, but that's ok
(Which means | can't do anything about it).

You should also rez your program with Gusl . r. The section
GUSI_Advanced/Resources discusses when and how to add your own
configuration resource to customize cusl defaults. Don't forget that your Power PC
programs also need a cf r g resource.

Overview

This section discusses the routines common to all, or almost all communication
domains. These routines return - 1 if an error occurred, and set the variable errno
to an error code. On success, the routines return 0 or some positive value.

Here's a list of all error codes and their typical explanations. The most important
of them are repeated for the individual calls.

EACCES

Permission denied:An attempt was made to access a file in a way
forbidden by its file access permissions, e.g., to open() a locked file for
writing.

EADDRINUSE

Address already in use:bi nd() was called with an address already in use
by another socket.

EADDRNOTAVAIL

Can't assign requested address:bi nd() was called with an address which
this socket can't assume, e.g., a TCP/IP address whose i n_addr specifies a
different host.

EAFNOSUPPORT

Address family not supported:You haven't linked with this socket family
or have specified a nonexisting family, e.g., AF_CHAOS.

EALREADY

Operation already in progress, e.g., connect () was called twice in a row
for a nonblocking socket.

EBADF
Bad file descriptor:The file descriptor you specified is not open.
EBUSY

Request for a system resource already in incompatible use, e.g., attempt to
delete an open file.

ECONNREFUSED

Connection refused, e.g. you specified an unused port for a connect ()
EEXIST

File exists, and you tried to open it with O _EXCL.

EHOSTDOWN

Remote host is down.
EHOSTUNREACH

No route to host.
EINPROGRESS

Operation now in progress. This is *not* an error, but returned from
nonblocking operations, e.g., nonblocking connect ().

EINTR

Interrupted system call:The user pressed Command-. or al ar n{) timed
out.

EINVAL

Invalid argument or various other error conditions.
EIO

Input/output error.
EISCONN

Socket is already connected.
EISDIR

Is a directory, e.g. you tried to open() a directory.
EMFILE

Too many open files.
EMSGSIZE

Message too long, e.g. for an UDP send().
ENAMETOOLONG

File name too long.
ENETDOWN

Network is down, e.g., Appletalk is turned off in the chooser.
ENFILE

Too many open files in system.
ENOBUFS

No buffer space available.

ENOENT
No such file or directory.
ENOEXEC
Severe error with the PowerPC standard library.
ENOMEM
Cannot allocate memory.
ENOSPC
No space left on device.
ENOTCONN

Socket is not connected, e.g., neither connect () nor accept () has been
called successfully for it.

ENOTDIR

Not a directory.
ENOTEMPTY

Directory not empty, e.g., attempt to delete nonempty directory.
ENXIO

Device not configured, e.g., MacTCP control panel misconfigured.
EOPNOTSUPP

Operation not supported on socket, e.g., sendt o() on a stream socket.
EPFNOSUPPORT

Protocol family not supported, i.e., attempted use of ADSP on a machine
that has AppleTalk but not ADSP.

EPROTONOSUPPORT

Protocol not supported, e.g., you called get pr ot obynanme() with neither
"tcp"” nor "udp” specified.

ERANGE

Result too large, e.g., get cwd() called with insufficient buffer.
EROFS

Read-only file system.
ESHUTDOWN

Can't send after socket shutdown.

ESOCKTNOSUPPORT

Socket type not supported, e.g., datagram PPC toolbox sockets.
ESPIPE

Illegal seek, e.g., I seek() called for a TCP socket.
EWOULDBLOCK

Nonblocking operation would block.
EXDEV

Cross-device link, e.g. FSpSmart Mbve() attempted to move file to a
different volume.

Creating and destroying sockets
A socket is created with socket () and destroyed with ¢/ ose().

int socket(int af, int type, int protocol) createsan endpoint for
communication and returns a descriptor. af specifies the communication domain
to be used. Valid values are:

AF_UNIX

Communication internal to a single Mac.
AF_INET

TCP/IP, using MacTCP.
AF_APPLETALK

Appletalk, using ADSP.
AF_PPC

The Program-to-Program Communication Toolbox.

t ype specifies the semantics of the communication. The following two types are
available:

SOCK_STREAM

A two way, reliable, connection based byte stream.
SOCK_DGRAM

Connectionless, unreliable messages of a fixed maximum length.

prot ocol would be used to specify an alternate protocol to be used with a socket.
In cusl , however, this parameter is always ignored.

Error codes:

EINVAL

The af you specified doesn't exist.
EMFILE

The descriptor table is full.

voi d close(int fd) removes the access path associated with the descriptor, and
closes the file or socket if the last access path referring to it was removed.

Prompting the user for an address

To give the user the opportunity of entering an address for a socket to be bound
or connected to, the choose() routine was introduced in GUSI . This routine has no
counterpart in UNIX implementations.

C puts up a modal dialog prompting the user to choose an address. domspecifies
the communication domain, like in socket . t ype may be used by future
communication domains to further differentiate within a domain, but is ignored
by current domains. pronpt is a message that will appear in the dialog.

const rai nt may be used to restrict the types of acceptable addresses (For more
information, consult the section of the communication domain). The following
two f | ags are defined for most socket types:

CHOOSE_DEFAULT

Offer the contents passed in name as the default choice.

CHOOSE_NEW

Prompt for a new address, suitable for passing to bi nd(). Default is
prompting for an existing address, to be used by connect ().

name on input contains a default address if CHOOSE_DEFAULT is set. On
output, it is set to the address chosen.

Error codes:

EINVAL

One of the f 1 ags is not (yet) supported by this communications domain.
This error is never reported for CHOOSE_DEFAULT , which might get
silently ignored.

EINTR

The user chose "Cancel" in the dialog.

Establishing connections between sockets

Before you can transmit data on a stream socket, it must be connected to a peer
socket. Connection establishment is asymmetrical:The server socket registers its
address with bi nd(), calls 1 i st en() to indicate its willingness to accept
connections and accepts them by calling accept (). The client socket, after
possibly having registered its address with bi nd() (This is not necessary for all
socket families as some will automatically assign an address) calls connect () to
establish a connection with a server.

It is possible, but not required, to call connect () for datagram sockets.

int bind(int s, const struct sockaddr *nane, int namel en) binds a socket
to its address. The format of the address is different for every socket family. For
some families, you may ask the user for an address by calling choose() .

Error codes:

EAFNOSUPPORT

nane specifies an illegal address family for this socket.
EADDRINUSE

There is already another socket with this address.

int listen(int s, int glen) turnsasocketinto a listener. gl en determines
how many sockets can concurrently wait for a connection, but is ignored for
almost all socket families.

int accept(int s, struct sockaddr *addr, int *addrlen) acceptsa
connection for a socket on a new socket and returns the descriptor of the new
socket. If addr is not NULL, the address of the connecting socket will be assigned
to it.

You can find out if a connection is pending by calling sel ect () to find out if the
socket is ready for reading.

Error codes:

ENOTCONN
You did not call /i st en() for this socket.
EWOULDBLOCK
The socket is nonblocking and no socket is trying to connect.

int connect(int s, const struct sockaddr *addr, int addrlen) triesto
connect to the socket whose address is in addr . If the socket is nonblocking and
the connection cannot be made immediately, connect () returns EINPROGRESS .
You can find out if the connection has been established by calling sel ect () to
find out if the socket is ready for writing.

Error codes:

EAFNOSUPPORT
nane specifies an illegal address family for this socket.
EISCONN
The socket is already connected.
EADDRNOAVAIL
There is no socket with the given address.
ECONNREFUSED
The socket refused the connection.
EINPROGRESS
The socket is nonblocking and the connection is being established.

Transmitting data between sockets

You can write data to a socket usingwrite(), witev(), send(), sendto(), Or
sendnsg(). You can read data from a socket using read(), readv(), recv(),
recvfront),Or recvnsg().

int read(int s, char *buffer, unsigned buflen) reads up to buf | en bytes
from the socket. read() for sockets differs from read() for files mainly in that it
may read fewer than the requested number of bytes without waiting for the rest
to arrive.

Error codes:

EWOULDBLOCK
The socket is nonblocking and there is no data immediately available.

int readv(int s, const struct iovec *iov, int count) performsthe same
action, but scatters the input data into the count buffers of the i ovJarray, always
filling one buffer completely before proceeding to the next. i ovec is defined as
follows:

struct iovec {
caddr _t iov_base; /* Address of this buffer */
i nt iov_len; /* Length of the buffer */

s

int recv(int s, void *buffer, int buflen, int flags) isidentical to read(),
except for the f | ags parameter. If the MsG_00B flag is set for a stream socket that
supports out-of-band data, recv() reads out-of-band data.

int recvfromint s, void *buffer, int buflen, int flags, void *from int
*from en) is the equivalent of recv() for unconnected datagram sockets. If f r om
is not NULL, it will be set to the address of the sender of the message.

int recvmsg(int s, struct msghdr *nmsg, int flags) isthe mostgeneral
routine, combining the possibilities of readv() and recvfront). msghdr is defined
as follows:

struct msghdr {

caddr _t nsg_nane; /* Like fromin recvfrom() */

i nt nsg_nanel en; /* Like fromen in recvfrom() */

st ruct i ovec *nsg_i ov; /* Scatter/gather array */

i nt nsg_i ovl en; /* Nunber of elenents in nsg_iov */

caddr _t nsg_accrights; /* Access rights sent/received. Not
used in GJSI */

i nt nsg_accri ghtsl en;

b

int wite(int s, char *buffer, unsigned buflen) writes up to bufl en bytes
to the socket. As opposed to read(), wite() for nonblocking sockets always
blocks until all bytes are written or an error occurs.

Error codes:

EWOULDBLOCK
The socket is nonblocking and data can't be immediately written.

int witev(int s, const struct iovec *iov, int count) performs the same
action, but gathers the output data from the count buffers of thei ovJarray,
always sending one buffer completely before proceeding to the next.

int send(int s, void *buffer, int buflen, int flags) isidentical to
write(),except for the f1 ags parameter. If the vsG_00B flag is set for a stream
socket that supports out-of-band data, send() sends an out-of-band message.

int sendto(int s, void *buffer, int buflen, int flags, void *to, int
*t ol en) is the equivalent of send() for unconnected datagram sockets. The
message will be sent to the socket whose address is giveninto.

int sendnsg(int s, const struct msghdr *nsg, int flags) combinesthe
possibilities of wri t ev() and sendt o().

I/O multiplexing

int select(int width, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct
timeval *timeout) examines the 1/0 descriptors specified by the bit masks

readf s, witefs, and except fs to see if they are ready for reading, writing, or
have an exception pending. wi dt h is the number of significant bits in the bit
mask. sel ect () replaces the bit masks with masks of those descriptors which are
ready and returns the total number of ready descriptors. ti meout , if not NULL,
specifies the maximum time to wait for a descriptor to become ready. If t i meout
IS NULL, sel ect () waits indefinitely. To do a poll, pass a pointer to a zerot i neval
value in ti meout . Any of r eadf ds, wri t ef ds, Or except f ds may be given as NULL if
no descriptors are of interest.

Error codes:
EBADF
One of the bit masks specified an invalid descriptor.

The descriptor bit masks can be manipulated with the following macros:

FD_ZERQ(f ds) ; [* Clear all bits in *fds */

FD SET(n, fds); /* Set bit nin *fds */

FD CLR(n, fds); /* Cear bit nin *fds */

FD | SSET(n, fds); /* Return 1 if bit nin *fds is set, else 0 */

Getting and changing properties of sockets

You can obtain the address of a socket and the socket it is connected to by calling
get socknane() and get peer name() respectively. You can query and manipulate
other properties of a socket by calling i oct/ (), fentl (), get sockopt (), and

set sockopt (). You can create additional descriptors for a socket by calling dup()
or dup2().

int getsockname(int s, struct sockaddr *name, int *nanel en) returnsin
*nane the address the socket is bound to. *nanel en should be set to the maximum
length of name and will be set by get socknane() to the actual length of the name.

int getpeernane(int s, struct sockaddr *name, int *namel en) returnsin
*narme the address of the socket that this socket is connected to. * nanel en should
be set to the maximum length of name and will be set by get peer nane() to the
actual length of the name.

int ioctl(int d, unsigned int request, long *argp) performs various
operations on the socket, depending on the r equest . The following codes are
valid for all socket families:

FIONBIO

Make the socket blocking if the | ong pointed to by argp is 0, else make it
nonblocking.

FIONREAD
Set *ar gp to the number of bytes waiting to be read.

Error codes:

EOPNOTSUPP

The operation you requested with r equest is not supported by this socket
family.

int fentl(int s, unsigned int cnd, int arg) provides additional control
over a socket. The following values of cnd are defined for all socket families:

F_DUPFD

Return a new descriptor greater than or equal to ar g which refers to the
same socket.

F_GETFL

Return descriptor status flags.

F_SETFL
Set descriptor status flags to ar g.

The only status flag implemented is FNDELAY which is true if the socket is
nonblocking.

Error codes:

EOPNOTSUPP
The operation you requested with cmd is not supported by this socket
family.

int getsockopt(int s, int level, int optname, void *optval, int *

opt | en) is used to request information about sockets. It is not implemented in
GUSI .

int setsockopt(int s, int level, int optnanme, void *optval, int optlen)
is used to set options associated with a socket. It is not implemented in GUSI .

int dup(int fd) returnsa new descriptor referring to the same socket as f d. The
old and new descriptors are indistinguishible. The new descriptor will always be
the smallest free descriptor.

int dup2(int oldfd, int new d) closesnew d if it was open and makes it a
duplicate of ol df d. The old and new descriptors are indistinguishible.

File system calls

Files are unlike sockets in many respects:Their length is never changed by other
processes, they can be rewound. There are also many calls which are specific to
files.

Differences to generic behavior

The following calls make no sense for files and return an error of EOPNOTSUPP:

socket ()

bi nd()
listen()
accept ()
connect ()

get socknane()
get peer nane()
get sockopt ()
set sockopt ()

The following calls will work, but might be frowned upon by your friends
(besides, UNIX systems generally wouldn't like them):

recv()
recvfrom))
recvisg()
send()
sendt o()
sendnsg()

choose() returns zero terminated C strings in name. It accepts an additional flag
CHOOSE_DI R. If this is set, choose() will select directories instead of files.

You may restrict the files presented for choosing by passing a pointer to the
following structure for the const rai nt argument:

typedef struct {
short nunTypes; /* Nunber of legitimate file types */
SFTypelLi st types; /* The types, like 'TEXT */

}sa constr _file;

sel ect () will give boring results. File descriptors are always considered ready to
read or write, and never give exceptions.

ioctl () andfcntl () don't support manipulating the blocking state of a file
descriptor or reading the number of bytes available for reading, but will accept
lots of other requests---Check with your trusty MPW C documentation.

Routines specific to the file system

In this section, you'll meet lots of good old friends. Some of these routines also
exist in the standard MPW libraries, but the Gusl versions have a few differences:

File names are relative to the directory specified by chdir().

You can define special treatment for some file names (See below under
"Adding your own file families").

You can pass FSSpec values to the routines by encoding them with
FSp2Encodi ng() (See "FSSpec routines” below).

int stat(const char * path, struct stat * buf) returns information about a
file. struct stat is defined as follows:

struct stat {

dev_t st _dev; /* Vol ume reference nunber of file */
i no_t st _ino; /* File or directory ID */
u_short st_node; /* Type and perm ssion of file */
short st _nli nk; /* Al ways 1 */

short st _uid; /* Set to O */

short st _gid; /* Set to O */

dev_t st _rdev; /* Set to O */

of f _t st _si ze;

time_t st _atine; /* Set to st_ntine */

time_t st_ntine;
time_t st _ctine;

| ong st _bl ksi ze;
| ong st _bl ocks;

b

st _node is composed of a file type and of file permissions. The file type may be
one of the following:

S_IFREG
A regular file.
S_IFDIR
A directory.
S_IFLNK
A finder alias file.
S_IFCHR
A console file under MPW or SIOW.
S_IFSOCK

A file representing a UNIX domain socket.

Permissions consist of an octal digit repeated three times. The three bits in the
digit have the following meaning:

4

File can be read.
2

File can be written.
1

File can be executed, i.e., its type is "APPL' or ‘appe’. The definition of
executability can be customized with the GUSI _ExecHook discussed in the
advanced section.

int Istat(const char * path, struct stat * buf) works just like st at (), but
if pat h is a symbolic link, / st at () will return information about the link and not
about the file it points to.

int fstat(int fd, struct stat * buf) isthe equivalent of stat () for
descriptors representing open files. While it is legal to call f st at () for sockets,
the information returned is not really interesting. The file type in st _node will be
S_IFSOCK for sockets.

int chnod(const char * filename, node_t node) changes the mode returned
by st at (). Currently, the only thing you can do with chnod() is to turn the write
permission off an on. This is translated to setting and clearing the file lock bit.

int utime(const char * file, const struct utimbuf * tim changes the
modification time of a file. st ruct uti nbuf is defined as:

struct utimbuf {
time_t actine; /* Access tinme */
time_t nodtine; /* Modification tine */

s

acti me is ignored, as the Macintosh doesn't store access times. The modification
of fileissettonodtine.

int isatty(int fd) returnsliffd represents aterminal (i.e. is connected to
"Dev: Stdi n" and the like), 0 otherwise.

|l ong | seek(int, long, int) worksthe same as the vPwroutine, and will return
ESPI PE if called for a socket.

int renmove(const char *filename) removes the named file. Iffil enane is a
symbolic link, the link will be removed and not the file.

int unlink(const char *filename) isidentical to renove(). Note that on the
Mac, unl i nk() on open files behaves differently from UNI X.

int rename(const char *ol dnane, const char *newname) renames and/or
moves a file. ol dnane and newname must specify the same volume, but as opposed
to the standard MPwroutine, they may specify different folders.

int open(const char*, int flags) opensanamed file. The fl ags consist of one
of the following modes:

O_RDONLY
Open for reading only.
WR_ONLY
Open for writing only.
O_RDWR
Open for reading and writing.
Optionally combined with one or more of:
O_APPEND
The file pointer is set to the end of the file before each write.
O_RSRC
Open resource fork.
O_CREAT
If the file does not exist, it is created.
O_EXCL
In combination with O_CREAT , return an error if file already exists.
O_TRUNC
If the file exists, its length is truncated to 0; the mode is unchanged.
O_ALIAS

If the named file is a symbolic link, open the link, not the file it points to
(This is most likely an incredibly bad idea).

int creat(const char * nane) is identical to open(nane,

O VWRONLY+O _TRUNC+O_CREAT) . If the file didn't exist before, Gusl determines its file
type and creator of the according to rules outlined in the section "Resources"
below.

int faccess(const char *filename, unsigned int cnd, |ong *arg) works the
same as the corresponding MPWroutine, but respects calls to chdi r () for partial
filenames.

void fgetfileinfo(char *fil enane, unsigned |ong *newcreator, unsigned
| ong *newt ype) returns the file type and creator of a file.

void fsetfileinfo(char *fil ename, unsigned | ong newcreator, unsigned
| ong newt ype) sets the file type and creator of a file to the given values.

int symink(const char* linkto, const char* |inkname) creates a file named
| i nkname that contains an alias resource pointing to | i nkt o. The created file
should be indistinguishible from an alias file created by the System 7 Finder.
Note that aliases bear only superficial similiarities to UNI X symbolic links,
especially once you start renaming files.

int readlink(const char* path, char* buf, int bufsiz) returnsin buf the
name of the file that pat h points to.

int truncate(const char * path, off_t |ength) causes a file to have a size
equal to | engt h bytes, shortening it or extending it with zero bytes as necessary.

int ftruncate(int fd, off_t |ength) doesthe same thing with an open file.

int access(const char * path, int node) tests if you have the specified access
rights to a file. rode may be either F_oK, in which case the file is tested for
existence, or a combination of the following:

R_OK

Tests if file is readable.
W_OK

Tests if file is writeable.
X_OK

Tests if file is executable. As with st at (), the definition of executability
may be customized.

access() returns 0 if the specified access rights exist, otherwise it sets er r no and
returns -1.

i nt nkdir(const char * path) creates a new directory.
int rndir(const char * path) deletes an empty directory.

int chdir(const char * path) makes all future partial pathnames relative to
this directory.

char * getcwd(const char * buf, int size) returnsa pointer to the current
directory pathname. If buf is NULL, si ze bytes will be allocated using nal I oc().

Error codes:

ENAMETOOLONG

The pathname of the current directory is greater than si ze.
ENOMEM

buf was NULL and nal I oc() failed.

A number of calls facilitate scanning directories. Directory entries are
represented by following structure:

struct dirent {

u_l ong d_fileno; /[* file number of entry */
u_short d_reclen; /* length of this record */
u_short d_nani en; /* length of string in d_nanme */

#defi ne MAXNAMLEN 255
char d_name[MAXNAMLEN + 1]; /* nane nust be no | onger than this
*/
1

DIR * opendir(const char * dirnane) opens a directory stream and returns a
pointer or NULL if the call failed.

struct dirent * readdir(DIR * dirp) returns the next entry from the directory
or NULL if all entries have been processed.

long telldir(const DIR * dirp) returns the position in the directory.
voi d seekdir(DIR * dirp, long |Ioc) changes the position.
void rew nddir (DI R * dirp) restarts a scan at the beginning.

int closedir(D R * dirp) closes the directory stream.

int scandir(const char * path, struct dirent *** entries, int

(*want) (struct dirent *), int (*sort)(const void *, const void *)) Scans
a whole directory at once and returns a possibly sorted list of entries. If want is
not NULL, only entries for which want returns 1 are returned. If sort IS not NULL,
the list is sorted using gsort () with sort as a comparison function. If sort is NULL,
the list will be sorted alphabetically on a Mac, but not necessarily on other
machines.

Unix domain sockets

This domain is quite regular and supports all calls that work on any domain,
except for out-of-band data.

Differences to generic behavior

Addresses are file system pathnames. cusl complies to the Unix implementation
in that it doesn't require the name to be terminated by a zero. Names that are
generated by ausi, however, will always be zero terminated (but the zero won't
be included in the count).

struct sockaddr _un {
short sun_fam ly; /* Always AF_UNI X */
char sun_path[108]; /* A pathnanme to a file */
i

C<choose()> works both for existing and new addresses, and no
restriction
is possible (or necessary).

Appletalk sockets

Currently, only stream sockets (including out-of-band data) are supported.
Appletalk sockets should work between all networked Macintoshes and between
applications on a single Mac, provided the SetSelfSend flag is turned on.
However, PPC sockets have a better performance for interapplication
communication on a single Machine.

Differences to generic behavior

Two classes of addresses are supported for AppleTalk. The main address type
specifies numeric addresses.

struct sockaddr _atlk {
short fam ly; /* Always AF_APPLETALK */
Addr Bl ock addr ; /* The numeric Appl eTal k socket address
*/
b

For bi nd() and connect (), however, you are also allowed to specify symbolic
addresses. bi nd() registers an NBP address, and connect () performs an NBP
lookup. Registered NBP adresses are automatically released when the socket is
closed. No call ever returns a symbolic address.

struct sockaddr_atl k_sym {
short famly; /* Always ATALK SYMADDR */
EntityNanme nane; /* The symnbolic NBP address */

b

choose() currently only works for existing sockets. The peer must have
registered a symbolic address. To restrict the choice of addresses presented, pass
a pointer to the following structure for the const r ai nt argument:

typedef struct {
short nunfTypes; /* Nunber of allowed types */
NLType types; /* List of types */
}sa_constr_atl k;

PPC sockets

These provide authenticated stream sockets without out-of-band data. PPC
sockets should work between all networked Macintoshes running System 7, and
between applications on a single Macintosh running System 7.

Differences to generic behavior

PPC socket addresses have the following format:

struct sockaddr ppc {

short fam ly; /* Always AF_PPC
*/
Locat i onNaneRec | ocati on; /* Check your trusty Inside
Maci nt osh */

PPCPor t Rec port;
b

choose() currently only works for existing sockets. To restrict the choice of
addresses presented, pass a pointer to the following structure for the const r ai nt
argument:

t ypedef struct {
short fl ags;
Str32 nbpType;
PPCPort Rec match;

}sa constr_ppc;

f1 ags is obtained by or'ing one or several of the following constants:

PPC_CON_NEWSTYLE

Always required for compatibility reasons.
PPC_CON_MATCH_NBP

Only display machines that have registered an entity of type nbpType.
PPC_CON_MATCH_NAME

Only display ports whose hame matches mat ch. nane.
PPC_CON_MATCH_TYPE

Only display ports whose type matches mat ch. u. port Type.

nbpType specifies the machines to be displayed, as explained above. mat ch
contains the name and/or type to match against.

connect () will block even if the socket is nonblocking. In practice, however,
delays are likely to be quite short, as it never has to block on a higher level
protocol and the PPC ToolBox will automatically establish the connection.

Internet sockets

These are the real thing for real programmers. Out-of-band data only works for
sending. Both stream (TCP) and datagram (UDP) sockets are supported. Internet
sockets are also suited for interapplication communication on a single machine,
provided it runs MacTCP.

Differences to generic behavior

Internet socket addresses have the following format:

struct in_addr {
u_l ong s_addr;

b

struct sockaddr _in {
u_char sin_l en; /* lgnored */
u_char sin_famly; /* Al ways C<AF_|I NET> */
u_short sin_port; /* Port nunber */
struct in_addr sin_addr; /* Host ID */
char sin_zero[8];

b

Routines specific to TCP/IP sockets
There are several routines to convert between numeric and symbolic addresses.

Hosts are represented by the following structure:

struct hostent {

char *h_nane; /* Oficial nanme of the host */

char **h_al i ases; /* A zero termnated array of alternate nanes
for the host */

int h_addrtype; /* Always AF_| NET */

int h_length; /* The length, in bytes, of the address */

char **h _addr list; /* A zero term nated array of network
addresses for the host */

}s

struct hostent * gethostbyname(char *name) returns an entry for the host with
the given nanme or NULL if a host with this name can't be found.

struct hostent * gethostbyaddr(const char *addrP, int, int) returnsan
entry for the host with the given address or NULL if a host with this name can't be
found. addr P in fact has to be a struct in_addr *. The last two parameters are
ignored.

char * inet_ntoa(struct in_addr inaddr) convertsan internet address into the
usual numeric string representation (e.g., 0x8184023C is converted to
"129.132.2.60")

struct in_addr inet_addr(char *address) converts a numeric string into an
internet address (If x is a valid address, i net _addr (i net _ntoa(x)) == x).

i nt get host nane(char *machnane, |ong buflen) gets our name into buf fer.

Services are represented by the following data structure:

struct servent {

char *s_nane; /* official service name */

char **s_aliases; /* alias list */

i nt s_port; /* port nunmber */

char *s_proto; /* protocol to use ("tcp" or "udp") */

b

voi d setservent (int stayopen) rewinds the file of services. If st ayopen is set,
the file will remain open until endser vent () is called, else it will be closed after
the next call to get ser vbynane() or get servbyport ().

voi d endservent () closes the file of services.

struct servent * getservent() returns the next service from the file of services,
opening the file first if necessary. If the file is not found (/ et ¢/ servi ces in the
preferences folder), a small built-in list is consulted. If there are no more services,
get servent () returns NULL.

struct servent * getservbynane (const char * name, const char * proto)
finds a named service by calling get ser vent () until the protocol matches prot o
and either the name or one of the aliases matches nane.

struct servent * getservbyport (int port, const char * proto) findsa
service by calling get servent () until the protocol matches pr ot o and the port
matches port.

Protocols are represented by the following data structure:

struct protoent {

char *p_nane; /* official protocol nane */
char **p_aliases; /* alias list (always NULL for QGUSI)*/
i nt p_proto; /* protocol nunber */

b

struct protoent * getprotobyname(char * name) finds a named protocol. This
call is rather unexciting.

PAP sockets

PAP, the AppleTalk Printer Access Protocol is a protocol which is almost
exclusively used to access networked printers. The current implementation of
PAP in Gusl is quite narrow in that it only implements the workstation side of
PAP and only in communication to the currently selected LaserWriter. It is also
doomed, as it depends on Apple system resources that probably are not
supported anymore in Apple's Quickdraw GX printing architecture, but if there
is enough interest, the current implementation might be replaced some time.

Routines specific to PAP sockets

While PAP sockets behave in most respects like other sockets, they can currently
not be created with the socket () call, but are opened with open() .

int open("Dev:Printer", int flags) opensaconnection to the last selected
LaserWriter. f | ags is currently ignored.

Communication with LaserWriters is somewhat strange. The three main uses of
PAP sockets are probably interactive sessions, queries, and downloads, which
will be discussed in the following sections. As in all other socket families, Gusl
does no filtering of the transmitted data, which means that lines sent by the
LaserWriter will be separated by linefeeds (ASCII 10) rather than carriage returns
(ASCII 13), which are used for this purpose in most other Mac contexts. For data
you send, it doesn't matter which one you use.

You start an interactive session by sending a line "execut i ve" after opening the
socket. This will put lots of LaserWriters (certainly all manufactured by Apple,
but probably not a Linotronic) into interactive mode. If you want to, you can now
play terminal emulator and use your LaserWriter as an expensive desk
calculator.

A query is some PostScript code you send to a LaserWriter that you expect to be
answered. This is quite straightforward, except that LaserWriters don't seem to
answer until you have indicated to them that no more data from you will be
coming. Therefore, you have to call shut down(s, 1) to shut the socket down for
writing after you have written your query and before you try to read the answer.
The following code demonstrates how to send a query to the printer:

int s = open("Dev:Printer", O RDWR);

wite(s, "FontDirectory /Corilla-Sem Bold exch known...", |en);

/* W won't wite any nore */

shutdown(s, 1);

whil e(read(s, buf, len) > 0)

do_sonet hi ng() ;
cl ose(s);

If you want to simply download a file, you can also ignore the LaserWriter's
response and simply close the socket after downloading.

Miscellaneous

BSD memory routines

These are implemented as macros if you

#i ncl ude <conpat. h>

voi d bzero(void * from int |en) zeroes | en bytes, starting at from

void bfill(void * from int len, int x) fills|en bytes, starting atfr omwith
X.

voi d bcopy(void * from void * to, int |en) copieslen bytesfrom fromto
to.

int bcnp(void * s1, void * s2, int |en) compares!|en bytesatsl againstl|en
bytes at s2, returning zero if the two areas are equal, nonzero otherwise.

Hooks

You can override some of GUSI's behaviour by providing hooks to GUSI. Note
that these often get called from deep within GUSI, so be sure you understand
what is required of a hook before overriding it.

GUSI hooks can be accessed with the following routines:

typedef void (*@USI Hook) (void);
voi d GUSI Set Hook(GUSI HookCode code, GUSI Hook hook);
@USI Hook QGUSI Get Hook(GUSI HookCode code);

Currently, two hooks are defined. The GUSI _Spi nHook is defined in the next
section. The GUSI _ExecHook is used by GUSI to decide whether a file or folder is
to be considered "executable” or not. The default hook considers all folders and
all applications (i.e., files of type ' APPL' and' appe' to be executable. To provide
your own hook, call

QUS| Set Hook(GUSI _ExecHook, (GUSI Hook) ny_exec_hook);

where ny_exec_hook is defined as
Bool ean my_exec_hook(const GUSIFil eRef & ref);

The old value is available as:
Bool ean (*)(const GUSIFil eRef & ref) QUSI get Hook(GUSI _ExecHook) ;

Blocking calls

Since the Macintosh doesn't have preemptive task switching, it is important that
other applications get a chance to run during blocking calls. This section
discusses the mechanism Gusl uses for that purpose.

While a routine is waiting for a blocking call to terminate, it repeatedly calls a
spin routine with the following parameters:

typedef enum spi n_nsg

{
SP_M SC, /* sonme weird thing, usually just return
i Mmediately if you get this */
SP_SELECT, /* in a select call, passes ticks the programis
prepared to wait */
SP_NAME, /* getting a host by nane */
SP_ADDR, /* getting a host by address */
SP_STREAM READ, /* Streamread call */
SP_ STREAMWRITE, /* Streamwite call */
SP_DGRAM _READ, /* Datagramread call */
SP_DGRAM WRI TE, /* Datagramwite call */
SP_SLEEP, /* sl eeping, passes ticks left to sleep */
SP_AUTO SPIN /* Automatically spinning, passes spin count */
}spi n_nsg;

typedef int (*Q@GUSI SpinFn)(spin_nmsg nsg, |ong param;

If the spin routine returns a nonzero value, the call is interrupted and EI NTR
returned. You can modify the spin routine with the following calls:

QUS| Set Hook(GUSI _Spi nHook, (GUSI Hook) ny_spi n_hook);
(GQUSI Spi nFn) GUSI Get Hook(GUSI _Spi nHook) ;

(For backward compatibility, GUSI also defines the equivalents:)

i nt GUSI Set Spi n(GUSI Spi nFn routi ne);
QUS| Spi nFn GUSI Get Spi n(voi d) ;

Often, however, the default spin routine will do what you want:It spins a cursor
and occasionally calls Get Next Event () or Wi t Next Event (). By default, only
mouse down and suspend/resume events are handled, but you can change that
by passing your own GUSI Evt Tabl e t0 GUSI Set Event s().

i nt GUSI Set Event s(GUSI Evt Tabl e tabl e);
QUS| Evt Handl er * QUSI Get Event s(voi d) ;

A GUSI Evt Tabl e is a table of GUSI Evt Handl er s, indexed by event code. Presence of
a non-nil entry in the table will cause that event class to be allowed for

Get Next Event () Or Wai t Next Event (). QUSI for MW C and PPCC includes one event
table to be used with the si owlibrary.

typedef void (*QUSI Evt Handl er) (Event Record * ev);
typedef QGUSI Evt Handl er GUSI Evt Tabl e[24] ;
ext ern GUSI Evt Handl er GUSI SI OVEvent s[] ;

@uUsl also supports three POSIX/BSD routines:al ar m(unsi gned sec) will after
sec seconds cancel the current call, raise Sl GALRM and return ElI NTR. Note that the
default handler for sl GALRMterminates the program, so be sure to install your
own handler. al ar n{ 0) cancels an alarm and returns the remaining seconds. As
opposed to POSIX systems, the Gusl version of al ar n) does not use real clock
interrupts and merely interrupts during a blocking call.

sl eep(unsi gned sec) sleeps for sec seconds, and usl eep(unsi gned usec) does
the same for usec micorseconds (rounded to 60ths of a tick).

Resources

A few Gausl routines (currently primarily choose()) need resources to work
correctly. These are added if you Rez your program with Gusl . r. On startup,
ausl also looks for a preference resource with type ' auzi* (the' z' actually must
be a capital Sigma) and ID Gusl Rsr cI D, which is currently defined as follows:

#i f ndef QUS| _PREF_VERSI ON
#def i ne QUS| _PREF_VERSI ON ' 0102

#endi f
type 'QJZl" {
literal |ongint text = 'TEXT'; [/* Type for creat'ed files
*/
literal |ongint mpw = 'MPS'; [/* Creator for creat'ed files
*/
byt e noAut oSpi n, aut oSpi n; /* Automatically spin cursor ?
*/
#i f GUSI _PREF_VERSION >= ' 0110
bool ean useChdir, dontUseChdir; /* Use chdir() ?

*/
bool ean approxStat, accurateStat; /* statbuf.st _nlink = # of
subdirectories ? */
bool ean noTCPDaenon, isTCPDaenon; /* Inetd client ?
*/
bool ean noUDPDaenon, i sUDPDaenpn;
#if QUS| _PREF _VERSI ON >= ' 0150'

bool ean noConsol e, hasConsol €; /* Are we providing our own
dev:console ? */
fill bit[3];

#el se

fill bit[4];
#endi f
literal longint = GUSI _PREF VERSI ON
#i f QUSI _PREF_VERSI ON >= ' 0120'
integer = @$$@Count of (Suffi xArray);
wi de array SuffixArray {

literal longint; /* Suffix of file */
literal longint; /* Type for file */
literal longint; /* Creator for file */
b
#endi
#endi f

s

To keep backwards compatible, the preference version is included, and you are
free to use whatever version of the preferences you want by defining
GUSI _PREF_VERS| ON.

The first two fields define the file type and creator, respectively, to be used for
files created by cuUsl . The type and creator of existing files will never be changed
unless explicitely requested with fsetfileinfo(). The default is to create text files
(type TEXT') owned by the MPW shel | (creator "MPS). If you request a
preference version of 1.2.0 and higher, you are also allowed to specify a list of
suffixes that are given different types. An example of such a list would be:

{'SYM', 'MPSY', 'sade' }

The aut oSpi n value, if nonzero, makes cusl call the spin routine for every call to
read(),wite(),send(),orrecv(). This is useful for making an 1/0 bound
program MultiFinder friendly without having to insert explicit calls to

Spi ncursor (). If you don't specify a preference resource, aut oSpi n is assumed to
be 1. You may specify arbitrary values greater than one to make your program
even friendlier; note, however, that this will hurt performance.

The usecChdi r flag tells cusl whether you change directories with the toolbox
calls PBSet Vol () or PBHSet Vol () or with the ausl call chdi r(). The current
directory will start with the directory your application resides in or the current
vPwdirectory, if you're running an MPwtool. If useChdi r is specified, the current
directory will only change with chdi r () calls. If dont UseChdi r is specified, the
current directory will change with toolbox calls, until you call chdi r () the first
time. This behaviour is more consistent with the standard MPwlibrary, but has
IMHO no other redeeming value. If you don't specify a preference resource,
useChdi r is assumed.

If appr oxSt at is specified, stat () and / st at () for directories return in st _nl i nk
the number of items in the directory + 2. If accurat eSt at is specified, they return
the number of subdirectories in the directory. The latter has probably the best
chances of being compatible with some Unix software, but the former is often a
sufficient upper bound, is much faster, and most programs don't care about this
value anyway. If you don't specify a preference resource, appr oxSt at is assumed.

The i sTCPDaenon and i sUDPDaenon flags turn GUsI programs into clients for
David Petersons i net d, as discussed below. If you don't specify a preference
resource, noTCPDaenon and noUDPDaenon are assumed.

The hasConsol e flag should be set if you are overriding the default "dev:console",
as discussed below.

Advanced techniques

This section discusses a few techniques that probably not every user of Gusl
needs.

FSSpec routines

If you need to do complicated things with the Mac file system, the normal cus
routines are probably not sufficient, but you still might want to use the internal
mechanism Gusl uses. This mechanism is provided in the header file

TFi | eSpec. h, which defines both cand c++ interfaces. In the following, the C++
member functions will be discussed and c equivalents will be mentioned where
available.

OSErr TFi |l eSpec: : Error () returns the last error provoked by a TFi | eSpec
member function.

TFi | eSpec: : TFi | eSpec(const FSSpec & spec, Bool ean useAlias = fal se)
constructs a TFi | eSpec from an FSSpec and resolves alias files unless useAl i as is
true. (The useAl i as parameter is also present in the following routines, but will
not be shown anymore).

TFi | eSpec(short vRef Num |ong parl D, ConstStr31Param nane) constructs a
TFi | eSpec from its components.

TFi | eSpec(short wd, Const Str31Param nane) constructs a TFi | eSpec from a
working directory reference number and a path component.

This routine is available to Cusers as OSErr WD2FSSpec(short wd,
Const Str31Par am nanme, FSSpec * desc).

TFi | eSpec(const char * path) constructs a TFi | eSpec from a full or relative
path name. This routine is available to C users as OSErr Pat h2FSSpec(const char
* path, FSSpec * desc).

TFi | eSpec(OSType obj ect, short vol = kOnSystenDisk, long dir = 0)
constructs special TFi | eSpecs, depending on obj ect .

This routine is available to Cusers as OSErr Speci al 2FSSpec(OSType obj ect,
short vol, long dirlD, FSSpec * desc).

All constants in Fol der s. h acceptable for Fi ndFol der () can be passed, e.g. the
following:

kSystemFolderType
The system folder.
kDesktopFolderType
The desktop folder; objects in this folder show on the desk top.

kExtensionFolderType

Finder extensions go here.
kPreferencesFolderType

Preferences for applications go here.

Furthermore, the value kTenpFi | eType is defined, which creates a temporary file
in the temporary folder, or, if di r is nonzero, in the directory you specify.

TFi | eSpec(short fRef Num constructs a TFi | eSpec from the file reference
number of an open file.

In principle, a TFi | eSpec should be compatible with an FSSpec. However, to be
absolutely sure, you can call TFi | eSpec: : Bl ess() which will call FSvakeFSSpec()
before passing the TFileSpec to a Fsp file system routine.

char * TFil eSpec:: Ful | Pat h() returns the full path name of the file. The
address returned points to a static buffer, so it will be overwritten on further
calls. This routine is available to Cusers as char * FSp2Ful | Pat h(const FSSpec *
desc).

char * TFil eSpec: : Rel Pat h() works like Ful I Pat h(), but when the current
folder given by chdi r () is a pparent folder of the object, a relative path name will
be returned. The address returned points to a static buffer, so it will be
overwritten on further calls. This routine is available to c users as char *

FSp2Rel Pat h(const FSSpec * desc).

char * TFil eSpec: : Encode() returns an ASCII encoding which may be passed to
all ausl routines taking path names. The address returned points to a static
buffer, so it will be overwritten on further calls. This generates short names
which may be parsed rather quickly. This routine is available to cusers as char *
FSp2Encodi ng(const FSSpec * desc).

OSErr TFil eSpec:: Catlnfo(Cl nfoPBRec & info, Boolean dirlnfo = fal se)
Gives information about the current object. If di r I nf o is t r ue, gives information
about the current object’s directory. This routine is available to C users as OSEr r
FSpCat | nfo(const FSSpec * desc, ClnfoPBRec * info).

OSErr TFi | eSpec: : Resol ve(Bool ean gently = true) resolve the object if itis an
alias file. If gently is t r ue (the default), nonexisting files are tolerated.

Boolean TFileSpec::Exists() returnst r ue if the object exists.

Boolean TFileSpec::IsParentOf(const TFileSpec & other) returns t r ue if the object
is a parent of ot her.

TFi | eSpec TFil eSpec: : operat or--() replaces the object with its parent
directory. This routine is available to C users as OSErr FSpUp(FSSpec * desc).

TFi | eSpec Fil eSpec::operator-=(int |evels) isequivalentto calling -- I evels
times and TFi | eSpec Fi |l eSpec: : operator-(int |evels) isequivalentto calling
- = on a copy of the current object.

TFi | eSpec TFil eSpec: : oper at or +=(Const St r 31Par am nane) , TFi | eSpec

TFi | eSpec: : oper at or +=(const char * name), and their non-destructive
counterparts + add a further component to the current object, which must be an
existing directory.

This routine is available to Cusers as OSErr FSpDown(FSSpec * desc,
Const St r 31Par am nane) .

TFi | eSpec TFil eSpec: : operator[] (short index) returnstheindexth objectin
the parent folder of the current object.

A destructive version of this routine is available to C users as OSEr r
FSpl ndex(FSSpec * desc, short index).

Furthermore, the == and ! = operators are defined to test TFi | eSpecs for equality.

OSErr FSpSmart Move(const FSSpec * from const FSSpec * to) does all the
work of moving and renaming a file (within the same volume), handling (I hope)
all special cases (You might be surprised how many there are).

File pattern iterators

Sometimes you might find it useful to find all files ending in . h or all directories
starting with Mw For this purpose, Gusl offers a mechanism in the header file
TFi | ed ob. h, which defines both cand C++ interfaces.

You start a search by constructing a file pattern iterator with

TFil ed ob:: TFi | ed ob(const char * pattern, const TFileSpec * startDir =
ni |). pattern isan absolute or relative path name, with the following characters
getting a special interpretation:

Matches an arbitrary single character.
Matches any number of characters (including none).

Suppresses the special interpretation of the following character.

start Di r provides a nonstandard starting directory for relative patterns. After
you have constructed the iterator, you can check whether a file was found by
calling Boolean TFileGlob::Valid() . If one was found, you can use the . To get the
next file, call Boolean TFileGlob::Next() , which again returnst r ue if another
match was found.

To call the file pattern iterator routines from C, you have the following routines:

FileGlobRef NewFileGlob(const char * pattern)
Constructs an iterator.
Boolean NextFileGlob(FileGlobRef glob)
Advances the iterator.
Boolean FileGlob2FSSpec(FileGlobRef glob, FSSpec * spec)

Copies the file specification to spec and returns whether the iterator is
valid.

void DisposeFileGlob(FileGlobRef glob)

Destructs the iterator.

Adding your own socket families

It is rather easy to add your own socket types to GUSI :

Pick an unused number between 17 and GUSI _MAX_DOMAI NS to use for
your address family.

Include GUsI _P. h.

Write a subclass of Socket Domai n and override socket () and optionally
choose().

Write a subclass of Socket and override whatever you want. If you
override recvfront) and sendto(), read() and write() are automatically
defined.

For more information, study the code in GUSI Di spat ch. cp and
GUSI Socket . cp, which implement the generic socket code. The easiest
actual socket implementation to study is probably GUsI uni x. cp.

Adding your own file families

@ausl also supports adding special treatment for certain file names to
almost all (tell me if | have forgotten one) standard C library routines
dealing with file names. To avoid countless rescanning of file names, Gusl
preprocesses the names:

If the file name starts with "Dev: " (case insensitive), the file name is
considered a device name, and the rest of the name can have any structure
you like.

Otherwise, the name is translated into a FSSpec, and therefore should
refer to a real file system object (all intermediate path name components
should refer to existing directories).

To create a file family:

Pick an address family, as described above. However, if you don't plan
on creating sockets of this family with socket(), just specify AF_UNSPEC.

Include GUSIFil e_P. h.

Write a subclass of Fi | eSocket Donai n, specifying whether you are
interested in device names, file names, or both, and override Yours() and
other calls.

Write a subclass of Socket and override whatever you want.

For more information, study the code in GUSI Fi | e. cp, which implements
the generic file socket code.

In your Your s() member function, you specify whether you are prepared to
handle one of the following functions for a given file name:

enum Request {
wi | | Open,
wi | | Renpve,
wi | | Renane,
wi |l GetFilelnfo,
wi |l SetFilelnfo,
wi | | FAccess,

willStat,
wi | | Chnod,
wi | [UTi e,

w | | Access

If you return t r ue for a request, your corresponding member function will be
called. Member functions are similar to the corresponding C library functions,
except that their first parameter is a GUSI Fi | eRef & instead of a const char *
(but further file name parameters, as in renane(), will be left untouched). You
might also return t r ue but not override the member function to indicate that
standard file treatment (EI NVAL for many routines) is OK.

The member function will always be called immediately after the Yours()
function, so you may want to pre-parse the file name in the vour s() function and
keep the information for the member function.

	Cover Page
	Introduction
	Organization
	Copying Restrictions
	Design Objectives
	Acknowledgements

	Installing and using GUSI
	Header files
	Linking
	MPW C
	PPCC
	CodeWarrior

	Warning messages, Rezzing

	Overview
	Error Codes
	Creating and destroying sockets
	Prompting the user for an address
	Establishing connections between sockets
	Transmitting data between sockets
	I/O multiplexing
	Getting and changing properties of sockets

	File System Calls
	Differences
	Routines

	Unix domain sockets
	Differences

	Appletalk sockets
	Differences

	PPC sockets
	Differences

	Internet sockets
	Differences
	Routines

	PAP sockets
	Routines

	Miscellaneous
	BSD memory routines
	Hooks
	Blocking calls
	Resources

	Advanced techniques
	FSSpec routines
	File pattern iterators
	Adding your own socket families
	Adding your own file families

	Structures
	iovec
	msghdr
	sa_constr_file
	stat
	utimbuf
	dirent
	sockaddr_un
	sockaddr_atlk
	sockaddr_atlk_sym
	sa_constr_atlk
	sockaddr_ppc
	sa_constr_ppc
	in_addr
	sockaddr_in
	hostent
	servent
	protoent

