
Array Elements

Since Pascal counts from ‘1’ and C counts from ‘0’ you’ll have to manually adjust
array element designations.

In Pascal:

 procedure Normalize (var ThePoint: Coordinates);
 var
 Length: Real;
 begin
 Length := SQRT(ThePoint[1] * ThePoint[1] +
 ThePoint[2] * ThePoint[2] +
 ThePoint[3] * ThePoint[3]);

 ThePoint[1] := ThePoint[1] / Length;
 ThePoint[2] := ThePoint[2] / Length;
 ThePoint[3] := ThePoint[3] / Length
 end;

shows the array “Bvert” to have 3 elements.    It’s still 3 in C but are designated 0,
1 and 2 instead of 1, 2 and 3.    So the above would become:

void Normalize (Coordinates *ThePoint);

 double Length;

 Length = sqrt(ThePoint[0] * ThePoint[0] +
 ThePoint[1] * ThePoint[2] +
 ThePoint[2] * ThePoint[2]);
 ThePoint[0] = ThePoint[0] / Length;
 ThePoint[1] = ThePoint[1] / Length;
 ThePoint[2] = ThePoint[2] / Length

All array element designations reduced by one.    There ARE some that don’t get
changed.    You’ll have to play it by ear to see which is which.    The key is in the
declaration.    If it says “typedef short widget [3]” then you know that “widget[1]”
is one too high.

While we’re on arrays, CTools™ doesn’t bracket two dimensional ones right.    If
the Pascal says “widgets [1, 20]” then    will, too.    So you have to replace the “, “
with “][“ between them, to make “widgets[1][20]”.    The compiler will find these
for you.    If you have a lot of them, you may be able to Find all “[1, “ and replace
with “[1][“ to do it faster.

