
Standard ML of New Jersey
—

System Modules

(Version 0.93)

February 15, 1993

Copyright c© 1993 by AT&T Bell Laboratories

Contents

Intro . SYS-2
Ast . SYS-3
System.Control.CG . SYS-7
CInterface . SYS-11
System.Unsafe.CleanUp . SYS-13
Code . SYS-14
Compile . SYS-15
Control . SYS-18
Directory . SYS-20
Env . SYS-21
MC . SYS-23
PolyCont . SYS-24
PrettyPrint . SYS-25
Print . SYS-29
Runtime . SYS-31
Signals . SYS-32
Symbol . SYS-34
SysIO . SYS-36
System . SYS-40
Timer . SYS-42
Unsafe . SYS-44
Weak . SYS-47

SYS-1

INTRO(SYS) INTRO(SYS)

NAME
Intro — introduction to system-dependent features

DESCRIPTION
The structure System (see SYSTEM) contains substructures and values for system-dependent
features of Standard ML of New Jersey.

SEE ALSO
System(SYS)

SYS-2 Last change: February 3, 1993

AST(SYS) AST(SYS)

NAME
Ast — unelaborated ML syntax trees

SYNOPSIS
signature AST
structure System.Ast : AST

SIGNATURE

type fixity

type symbol same as System.Symbol.symbol
val infixleft : int -> fixity

val infixright : int -> fixity

type filePos positions in files
type path symbolic path, a list of symbols
EXPRESSIONS
datatype exp

= VarExp of path variable
| FnExp of rule list abstraction
| AppExp of {function:exp,argument:exp} application
| CaseExp of {expr:exp,rules:rule list} case expression
| LetExp of {dec:dec,expr:exp} let expression
| SeqExp of exp list sequence of expressions
| IntExp of int integer
| RealExp of string floating point literal,

coded by its string
| StringExp of string string
| RecordExp of (symbol * exp) list record
| TupleExp of exp list tuple (derived form)
| SelectorExp of symbol selector of a record field
| ConstraintExp of {expr:exp,constraint:ty} type constraint
| HandleExp of {expr:exp, rules:rule list} exception handler
| RaiseExp of exp raise an exception
| IfExp of {test:exp, thenCase:exp, elseCase:exp}

if expression (derived form)
| AndalsoExp of exp * exp andalso (derived form)
| OrelseExp of exp * exp orelse (derived form)
| VectorExp of exp list vector
| WhileExp of {test:exp,expr:exp} while (derived form)
| MarkExp of exp * filePos * filePos mark an expression

RULE for case functions and exception handler
and rule = Rule of {pat:pat,exp:exp}

PATTERN
and pat = WildPat empty pattern

| VarPat of path variable pattern
| IntPat of int integer
| RealPat of string floating literal
| StringPat of string string
| RecordPat of {def:(symbol * pat) list,

flexibility:bool} record
| TuplePat of pat list tuple
| AppPat of {constr:path,argument:pat} application
| ConstraintPat of {pattern:pat,constraint:ty}

constraint
| LayeredPat of {varPat:pat,expPat:pat} as expressions
| VectorPat of pat list vector pattern
| MarkPat of pat * filePos * filePos mark a pattern

Last change: January 30, 1993 SYS-3

AST(SYS) AST(SYS)

STRUCTURE EXPRESSION
and strexp = VarStr of path variable structure

| StructStr of dec defined structure
| AppStr of path * (strexp * bool) list application
| LetStr of dec * strexp let in structure
| MarkStr of strexp * filePos * filePos mark

FUNCTOR EXPRESSION
and fctexp = VarFct of path * fsigexp option functor variable

| FctFct of { definition of a functor
params : (symbol option * sigexp) list,

body : strexp,

constraint : sigexp option}

| LetFct of dec * fctexp

| AppFct of path * (strexp * bool) list

* fsigexp option application
| MarkFct of fctexp * filePos * filePos mark

SIGNATURE EXPRESSION
and sigexp = VarSig of symbol signature variable

| SigSig of spec list defined signature
| MarkSig of sigexp * filePos * filePos mark

FUNCTOR SIGNATURE EXPRESSION
and fsigexp = VarFsig of symbol funsig variable

| FsigFsig of {param: (symbol option * sigexp) list,

def:sigexp} defined funsig
| MarkFsig of fsigexp * filePos * filePos

mark a funsig
SPECIFICATION FOR SIGNATURE DEFINITIONS
and spec =

StrSpec of (symbol * sigexp) list structure
| TycSpec of ((symbol * tyvar list) list * bool) type
| FctSpec of (symbol * fsigexp) list functor
| ValSpec of (symbol * ty) list value
| DataSpec of db list datatype
| ExceSpec of (symbol * ty option) list exception
| FixSpec of {fixity: fixity, ops: symbol list} fixity
| ShareSpec of path list structure sharing
| ShatycSpec of path list type sharing
| LocalSpec of spec list * spec list local specif
| IncludeSpec of symbol include specif
| OpenSpec of path list open structures
| MarkSpec of spec * filePos * filePos mark a spec

SYS-4 Last change: January 30, 1993

AST(SYS) AST(SYS)

DECLARATIONS (let and structure)
and dec =

ValDec of vb list values
| ValrecDec of rvb list recursive values
| FunDec of fb list recurs functions
| TypeDec of tb list type dec
| DatatypeDec of {datatycs: db list, withtycs: tb list}

datatype dec
| AbstypeDec of {abstycs: db list, withtycs: tb list, body: dec}

abstract type
| ExceptionDec of eb list exception
| StrDec of strb list structure
| AbsDec of strb list abstract struct
| FctDec of fctb list functor
| SigDec of sigb list signature
| FsigDec of fsigb list funsig
| LocalDec of dec * dec local dec
| SeqDec of dec list sequence of dec
| OpenDec of path list open structures
| OvldDec of symbol * ty * exp list overloading (internal)
| FixDec of {fixity: fixity, ops: symbol list} fixity
| ImportDec of string list import (unused)
| MarkDec of dec * filePos * filePos mark a dec

VALUE BINDINGS
and vb = Vb of {pat:pat, exp:exp}

| MarkVb of vb * filePos * filePos

RECURSIVE VALUE BINDINGS
and rvb = Rvb of {var:symbol, exp:exp, resultty: ty option}

| MarkRvb of rvb * filePos * filePos

RECURSIVE FUNCTIONS BINDINGS
and fb = Fb of {var:symbol, clauses:clause list}

| MarkFb of fb * filePos * filePos

CLAUSE: a definition for a single pattern in a function binding
and clause = Clause of {pats: pat list,

resultty: ty option, exp:exp}

TYPE BINDING
and tb = Tb of {tyc : symbol, def : ty, tyvars : tyvar list}

| MarkTb of tb * filePos * filePos

DATATYPE BINDING
and db = Db of {tyc : symbol, tyvars : tyvar list,

def : (symbol * ty option) list}

| MarkDb of db * filePos * filePos

EXCEPTION BINDING
and eb = EbGen of {exn: symbol, etype: ty option}

Exception definition
| EbDef of {exn: symbol, edef: path}

defined by equality
| MarkEb of eb * filePos * filePos

STRUCTURE BINDING
and strb = Strb of {name: symbol,def: strexp,constraint: sigexp option}

| MarkStrb of strb * filePos * filePos

FUNCTOR BINDING
and fctb = Fctb of {name: symbol,def: fctexp}

| MarkFctb of fctb * filePos * filePos

Last change: January 30, 1993 SYS-5

AST(SYS) AST(SYS)

SIGNATURE BINDING
and sigb = Sigb of {name: symbol,def: sigexp}

| MarkSigb of sigb * filePos * filePos

FUNSIG BINDING
and fsigb = Fsigb of {name: symbol,def: fsigexp}

| MarkFsigb of fsigb * filePos * filePos

TYPE VARIABLE
and tyvar = Tyv of symbol

| MarkTyv of tyvar * filePos * filePos

TYPES
and ty

= VarTy of tyvar type variable
| ConTy of symbol list * ty list type constructor
| RecordTy of (symbol * ty) list record
| TupleTy of ty list tuple
| MarkTy of ty * filePos * filePos mark type

DESCRIPTION
System.Ast defines a set of datatypes that represent unelaborated ML syntax trees (i.e. the result
of parsing before static analysis, or elaboration, has been performed). They are produced by Sys-
tem.Compile.parse and can be compiled by System.Compile.compileAst. Another set of abstract
syntax types are use to represent programs after elaboration, but these are not externalized. See
src/absyn.

SEE ALSO
Compile(SYS)

SYS-6 Last change: January 30, 1993

CGCONTROL(SYS) CGCONTROL(SYS)

NAME
System.Control.CG — code generator/optimizer control flags

SYNOPSIS
signature CGCONTROL
structure System.Control.CG : CGCONTROL

SIGNATURE

structure M68 : sig val trapv : bool ref end

val tailrecur : bool ref

val recordopt : bool ref

val tail : bool ref

val allocprof : bool ref

val closureprint : bool ref

val closureStrategy : int ref

val lambdaopt : bool ref

val cpsopt : bool ref

val rounds : int ref

val path : bool ref

val betacontract : bool ref

val eta : bool ref

val selectopt : bool ref

val dropargs : bool ref

val deadvars : bool ref

val flattenargs : bool ref

val switchopt : bool ref

val handlerfold : bool ref

val branchfold : bool ref

val arithopt : bool ref

val betaexpand : bool ref

val unroll : bool ref

val knownfiddle : bool ref

val invariant: bool ref

val targeting: int ref

val lambdaprop: bool ref

val newconreps : bool ref

val unroll_recur : bool ref

val hoistup : bool ref

val hoistdown : bool ref

val maxregs : int ref

val recordcopy : bool ref

val tagopt : bool ref

val recordpath : bool ref

val machdep : bool ref

val misc1 : bool ref

val misc2 : bool ref

val misc3 : int ref

val misc4 : int ref

val hoist : bool ref

val argrep : bool ref

val reduce : bool ref

val bodysize : int ref

val reducemore : int ref

val alphac : bool ref

val comment : bool ref

Last change: February 3, 1993 SYS-7

CGCONTROL(SYS) CGCONTROL(SYS)

val knownGen : int ref

val knownClGen : int ref

val escapeGen : int ref

val calleeGen : int ref

val spillGen : int ref

val foldconst : bool ref

val etasplit : bool ref

val printLambda : bool ref

val printit : bool ref

val printsize : bool ref

val scheduling : bool ref

val cse : bool ref

val optafterclosure : bool ref

val calleesaves : int ref

val extraflatten : bool ref

val uncurry : bool ref

val ifidiom : bool ref

val comparefold : bool ref

val csehoist : bool ref

val rangeopt : bool ref

val floatargs : int ref

val floatvars : int ref

val floatreg_params : bool ref

val icount : bool ref

val representations : bool ref

DESCRIPTION
There is little point in fiddling with these flags to improve the performance of the optimizer. Each
flag either has little effect or is already set to an optimum value.

M68.trapv generate arithmetic traps on the MC680x0.

tailrecur obsolete.

recordopt constant-folding of record expressions.

tail obsolete.

allocprof generate allocation-profiling code.

closureprint print information about generated closures.

closureStrategy choose flat vs. linked closures.

lambdaopt perform reduction of lambda-language before CPS-conversion.

cpsopt perform optimization of CPS representation.

rounds how many alternating rounds of expansion/contraction.

path ?

betacontract perform β-contraction of functions called only once.

eta perform η reduction on CPS.

selectopt constant-folding of SELECT expressions.

SYS-8 Last change: February 3, 1993

CGCONTROL(SYS) CGCONTROL(SYS)

dropargs remove unused arguments to known functions.

deadvars eliminate dead variables.

flattenargs flatten tupled arguments of known functions.

switchopt constant-folding of SWITCH expressions.

handlerfold constant-folding of exception handlers.

branchfold optimization of conditional branches whose clauses are α-equivalent.

arithopt constant-folding of arithmetic operators.

betaexpand β-reduction of functions called more than once.

unroll loop unrolling.

knownfiddle scope localization of free variables.

invariant hoist loop-invariant computations.

targeting register targeting of results of subexpressions.

lambdaprop ?

newconreps use efficient data-constructor representations.

unroll recur unrolling of non-tail-recursive functions.

hoistup enlarge scope of variables to merge closures.

hoistdown contract scope of variables to merge closures.

maxregs limit the number of registers used on the target machine.

recordcopy ?

tagopt ?

recordpath perform select-path optimization on record components.

machdep do machine-dependent optimizations (e.g. load-delay scheduling).

misc1, misc2, misc3, misc4 miscellaneous control flags.

hoist hoistup or hoistdown.

argrep use trace-based argument register selection.

reduce perform the contract phase (which encompasses many of the above optimizations).

bodysize control the optimism of the inline expander.

reducemore control the propensity of the optimizer to give up when] few optimizations are found.

alphac perform alpha conversion when necessary.

comment generate comments in the assembly code.

Last change: February 3, 1993 SYS-9

CGCONTROL(SYS) CGCONTROL(SYS)

knownGen count of the number of known functions without closures ever generated.

knownClGen count of the number of known functions with closures ever generated.

escapeGen the number of escaping functions ever generated.

calleeGen the number of callee-save closures ever generated.

spillGen the number of spills ever generated.

foldconst do constant folding

etasplit local/global calling sequences for escaping functions.

printLambda show the lambda code of each compilation.

printit show the CPS code after each phase.

printsize show the size of CPS after each phase.

scheduling instruction scheduling.

cse common subexpression elimination.

optafterclosure perform CPS optimization after the closure phase.

calleesaves number of callee-save registers.

extraflatten flatten tupled arguments even when it might slow down some calls.

uncurry do the uncurrying optimization.

ifidiom optimize the special SWITCH statements generated by if expressions.

comparefold constant-fold integer comparisons.

csehoist hoist common subexpressions.

rangeopt do range analysis.

floatargs number of floating-point argument registers.

floatvars number of floating-point temporary registers.

floatreg params ?

icount enable instruction counting.

representations do Leroy-style representation analysis

REFERENCES
Andrew W. Appel, Compiling with Continuations, Cambridge University Press, 1992.

SYS-10 Last change: February 3, 1993

CINTERFACE(SYS) CINTERFACE(SYS)

NAME
CInterface — low-level operating system interface functions

SYNOPSIS
signature CINTERFACE
structure System.Unsafe.CInterface : CINTERFACE

SIGNATURE

exception CFunNotFound of string

exception SysError of (int * string)

exception SystemCall of string

type time

val c_function : string -> (’a -> ’b)

val c_string : string -> string

val wrap_sysfn : string -> (’a -> ’b) -> ’a -> ’b

val argv : unit -> string list

val environ : unit -> string list

val gethostname : unit -> string

val exec : (string * string list * string list) -> (int * int)

val system : string -> int

val export : int -> bool

val blas : (int * ’a) -> int

val salb : string -> ’a

val gettime : unit -> {usr : time, sys : time, gc : time}

val setitimer : (int * time * time) -> unit

val gc : int -> unit

val syscall : (int * string list) -> int

val exit : int -> ’a

val getpid : unit -> int

val getuid : unit -> int

val getgid : unit -> int

val chdir : string -> unit

val gethostid : unit -> string

val gettimeofday: unit -> time

DESCRIPTION

c function
get a function from the runtime system. Raises CFunNotFound with the name of the missing
function.

c string
convert a string to null-terminated (C language) format.

wrap sysfn
get, and wrap exception-handlers around, a C function.

argv ()
get the command line arguments.

environ ()
get the Unix “environment” as a list of strings.

Last change: February 3, 1993 SYS-11

CINTERFACE(SYS) CINTERFACE(SYS)

gethostname ()
what it says.

exec (c, a, e)
Pipe, fork and execute Unix command c with arguments a and environment e; return input
and output file descriptors.

system s

Execute shell command s.

export fd
like exportML but to a file descriptor.

blas (fd , x)
blast-write x to a file descriptor.

salb s

Convert a character string to a data structure. Essentially the inverse of blas.

gettime ()
Get the cumulative execution time of the process, divided into non-gc user time, system
time, and garbage collection time.

setitimer (i, t1, t2)
Set an interval timer (see the Unix manual).

gc n

Invoke the garbage collector. For a minor collection, n = 0; for a major collection, n > 0.
Future releases may have more than two levels of collection.

syscall (n,l)
Perform system call #n with arguments l. The arguments may, in fact, be integer values,
byte arrays, etc., as well as strings; use cast. Use of this function is not portable.

exit c

Terminate the sml process with error code c.

getpid(), getuid(), getgid(), gethostid()
Unix system calls.

chdir s, gettimeofday()
Unix system calls.

SYS-12 Last change: February 3, 1993

CLEANUP(SYS) CLEANUP(SYS)

NAME
System.Unsafe.CleanUp — cleanup functions to be executed on exit

SYNOPSIS
signature CLEANUP
structure System.Unsafe.CleanUp : CLEANUP

SIGNATURE

datatype clean_mode

= CleanForExportML | CleanForExportFn

| CleanForQuit | CleanForInit

val addCleaner : (string * (clean_mode -> unit)) -> bool

val removeCleaner : string -> unit

val cleanup : clean_mode -> unit

val shutdown : unit -> ’a

DESCRIPTION
Allows the installation of cleanup functions that will be executed when the system is about to exit
for some reason. Normally used by the i/o stream system to keep track of which files need buffers
flushed, etc.

Last change: February 3, 1993 SYS-13

CODE(SYS) CODE(SYS)

NAME
Code — interface to machine code objects

SYNOPSIS
signature CODE
structure System.Code : CODE

SIGNATURE

structure IO : sig type instream end

type code

val mkCode : string -> code

val inputCode : (IO.instream * int) -> code

val sizeOf : code -> int

val apply : code -> (’a -> ’b)

DESCRIPTION
System.Code provides an interface for creating and operating on machine code objects, which are
essentially a special form of string. Code objects can also be generated by the functions Sys-
tem.Compile.compile and System.Compile.compileAst, but in these cases the code is bundled inside
values of type codeUnit. One reason for creating a special type for code is to support special memory
management for code.

structure IO
Imported version of IO providing the type instream.

type code
The type of code values. Structurally the same as strings.

mkCode s
Coerces a string to a code value.

inputCode (instream, n)
Read the first n bytes from the instream, producing a code value.

sizeOf code
Returns the size in bytes of the code.

apply code
Coerces code to an executable function. The highly polymorphic type of the result reflects
the fact that code of different “types” is produced by compiler functions (e.g. the batch
compiler and the interactive top level), so the arguments expected when the code is executed
differ. This will change after 0.93.

SEE ALSO
IO(BASE), Compile(SYS)

SYS-14 Last change: January 30, 1993

COMPILE(SYS) COMPILE(SYS)

NAME
Compile — interface to compiler

SYNOPSIS
signature COMPILE
structure System.Compile : COMPILE

SIGNATURE

structure PP : sig type ppconsumer end

structure IO : sig type instream type outstream end

structure Ast : sig type dec end

type source

type staticUnit

type codeUnit

type compUnit (* = staticUnit * codeUnit *)

exception Compile of string

val makeSource : string * int * IO.instream * bool * PP.ppconsumer

-> source

val closeSource : source -> unit

val changeLvars : staticUnit -> staticUnit

val elaborate : source * staticEnv -> staticUnit

val parse : source * staticEnv -> Ast.dec * staticEnv

val compile : source * staticEnv -> compUnit

val compileAst : Ast.dec * staticEnv * source option -> compUnit

val execute : compUnit * environment -> environment

val eval_stream : IO.instream * environment -> environment

val use : string -> unit

val use_stream : IO.instream -> unit

DESCRIPTION
A unit of separate compilation is, in terms of source code, a sequence of signature, structure, and
module declarations. The resulting environment containing only signature, structure, and functor
bindings can also be thought of as the compiled form of the compilation unit. The declarations need
not be closed: they can contain free references not only to one another, but to pervasives and to
modules defined in ”earlier” compilation units.

System.Compile: COMPILE is the external interface providing access to functions defined in functors
CompileUnit (src/build/compile.sml) and Interact (src/build/interact.sml).

functions.

structure PP
Imported for type PP.ppconsumer.
See section PrettyPrint(SYS).

structure IO
Imported for type instream. See section IO(BASE).

structure Ast
Imported for type dec. See section Ast(SYS).

type source
External version of ErrorMsg.inputSource. This wraps an input stream (instream) in a
datastructure that maintains location information for error reporting. It may also contain
an output stream for gathering indexing information.

Last change: January 30, 1993 SYS-15

COMPILE(SYS) COMPILE(SYS)

type staticUnit
The static information for a unit of compilation. It contains a static environment whose
elements are module bindings, plus a list of the lvars of these elements.

type codeUnit
The code part of a compilation unit. It contains the code itself, plus a persistent specification
of imported components, i.e. structures and functors mentioned freely in the declarations
of its elements.

type compUnit
An abbreviation for (staticUnit * codeUnit).

exception Compile of string
Exception raised to signal compilation errors. The string argument identifies the error and
other relevant information.

makeSource (s, n, str, interact, consumer)
Probably the first argument to makeSource should be a ”string option”. Perhaps the bool
argument indicating whether the instream is interactive could be eliminated, if this attribute
can be determined from the stream itself.

closeSource source
Close the input steam and indexing stream, if any.

changeLvars unit
“Alpha-convert” a static unit by replacing its bound lvars with newly created ones. This is
used to prevent clash of lvar bindings when importing a previously compiled staticUnit.

elaborate (source, senv)
Parse and analyze input from the source using the staticEnv and producing a staticUnit as
the result. The result contains only the new bindings, i.e. the delta environment. Termi-
nated by eof in the source or an error causing the Compile exception.

parse (source, senv)
Parse the source relative to the static environment senv, yielding an Ast.dec and a resultant
incremental environment containing the new infix bindings introduced by the declaration
parsed.

compile (dec, senv)
Elaborate and generate code for the declaration syntax tree dec. The result is a staticUnit
and corresponding codeUnit.

compileAst (dec, senv, source opt)
Parse, elaborate, and generate code for the declarations input from the source. The result
is a staticUnit and corresponding codeUnit. Terminated by eof in the source or an error
causing the Compile exception.

execute (unit, env)
Execute the code from the codeUnit against the given environment. The result is bound in
a dynamic environment that is combined with with static environment of the staticUnit to
form the result environment. The imports from the codeUnit are looked up in the static
part of the environment arg and their stamps are validated.

use file name
The string file name is interpreted as a file name. The file is opened and used to create

SYS-16 Last change: January 30, 1993

COMPILE(SYS) COMPILE(SYS)

a source that is compiled against the top-level environment. The resulting environment is
concatenated onto the top level environment.

use stream instream
Similar to use, but starting with an instream instead of a file name.

SEE ALSO
Symbol(SYS), Env(SYS), Ast(SYS)

CAVEATS
This interface will change substantially after version 0.93, though no functionality will be lost.

Last change: January 30, 1993 SYS-17

CONTROL(SYS) CONTROL(SYS)

NAME
Control — ways of controlling compiler modes

SYNOPSIS
signature CONTROL
structure System.Control : CONTROL

SIGNATURE

structure Runtime : RUNTIMECONTROL

structure MC : MCCONTROL

structure CG : CGCONTROL

structure Print : PRINTCONTROL

structure Debug : DEBUG

val allocProfReset : unit -> unit

val allocProfPrint : unit -> unit

val prLambda : (unit -> unit) ref

val debugging : bool ref

val primaryPrompt : string ref

val secondaryPrompt: string ref

val internals : bool ref

val weakUnderscore : bool ref

val interp : bool ref

val debugLook : bool ref

val debugCollect : bool ref

val debugBind : bool ref

val saveLambda : bool ref

val saveLvarNames : bool ref

val timings : bool ref

val reopen : bool ref

val markabsyn : bool ref

val indexing : bool ref

val instSigs : bool ref

val quotation : bool ref

DESCRIPTION
System.Control contains many knobs for controlling the specifics of compiler operation. The sub-
structures are documented in their own sections of this chapter.

allocProfReset ()
reset the allocation profiler.

allocProfPrint ()
show statistics of allocation profiling.

primaryPrompt
Printed between compilation units at top level; the default is “- ”

secondaryPrompt
Printed between compilation units at top level; the default is “= ”

internals
show types and values with compiler internal mumbo-jumbo.

weakUnderscore
show weak type variables with underscore syntax for (almost) compatibility with The Defi-
nition of Standard ML.

SYS-18 Last change: February 3, 1993

CONTROL(SYS) CONTROL(SYS)

interp
Interpret programs instead of generating native code. Makes compilation go an order of
magnitude faster, makes execution two orders of magnitude slower.

debugLook, debugCollect, debugBind
turn on debug print statements for various parts of the compiler front end.

saveLvarNames
keep track of source-language variable names associated with internal compiler temporaries.

timings
display the execution time of each phase of the compiler.

markabsyn
keep track of source-code line numbers in abstract syntax.

indexing
create index files for GNU-Emacs tags program.

quotation
enable the quote/antiquote mechanism.

Last change: February 3, 1993 SYS-19

DIRECTORY(SYS) DIRECTORY(SYS)

NAME
Directory — operations on Unix directory files

SYNOPSIS
signature DIRECTORY
structure System.Directory : DIRECTORY

SIGNATURE

val isDir : string -> bool

exception NotDirectory

val listDir : string -> string list

val cd : string -> unit

val getWD : unit -> string

DESCRIPTION

isDir s

true if s names a directory.

listDir s

a list of files in directory s; raises NotDirectory if s is not a directory.

cd s

make s current working directory.

getWD ()
get the name of the current working directory.

SEE ALSO
UnixPath(LIB)

SYS-20 Last change: February 3, 1993

ENVIRONMENT(SYS) ENVIRONMENT(SYS)

NAME
Env — interface to compiler environments

SYNOPSIS
signature ENVIRONMENT
structure System.Env : ENVIRONMENT

SIGNATURE

type environment

type staticEnv

exception Unbound

val emptyEnv : unit -> environment

val concatEnv : environment * environment -> environment

val layerEnv : environment * environment -> environment

val staticPart : environment -> staticEnv

val layerStatic : staticEnv * staticEnv -> staticEnv

val filterEnv : environment * symbol list -> environment

val filterStaticEnv : staticEnv * symbol list -> staticEnv

val catalogEnv : staticEnv -> symbol list

val describe : staticEnv -> symbol -> unit

val pervasiveEnvRef : environment ref

val topLevelEnvRef : environment ref

DESCRIPTION
System.Env is an external version of the internal Env structure used by the compiler.

type environment
External version of Environment.environment.

type staticEnv
External version of Environment.staticEnv.

exception Unbound
Raised when attempting to look up a symbol not bound in the environment in question.

emptyEnv ()
The empty environment (Environment.emptyEnv).

concatEnv (e1, e1)
Concatenate two environments, with the first argument overlaying the second argument.
The concatenation eliminates bindings in the second argument’s dynamic environment that
become hidden as the result of the concatenation.

layerEnv (env1, env1)
Concatenate two environments, with the first argument overlaying the second argument, but
don’t bother to eliminate hidden dynamic bindings. This is used for temporary combinations
of environments.

staticPart env
Extract the static part (statenv and invenv) of an environment.

layerStatic (senv1, senv1)
Layer the two components of the staticEnvs.

filterEnv (env, symbols)
The result is the subenvironment of the first argument formed by selecting only the bindings

Last change: January 30, 1993 SYS-21

ENVIRONMENT(SYS) ENVIRONMENT(SYS)

of the symbols in the second environment. Any symbols in the symbol list that are not bound
in the first environment are ignored. This function allows us to cut down an environment
to a desired minimum.

catalogEnv senv
Produces a sorted list of all symbols bound in the staticEnv senv.

describe senv symbol
Prints a description of the binding of the symbol in the staticEnv senv.

pervasiveEnvRef
A reference containing the pervasive environment. This is used as the base environment for
most compilations. If this reference is updated, the change will not affect evaluation until
the top-level evaluation loop is restarted, which will happen on an interrupt.

topLevelEnvRef
A reference containing the current top-level environment. This is changed by each interactive
evaluation, and implicitly by functions like ”use”. Changes take effect on the next top-level
evaluation.

SEE ALSO
Symbol(SYS), Compile(SYS)

CAVEATS
This interface will change after version 0.93, though no functionality will be lost.

SYS-22 Last change: January 30, 1993

MCCONTROL(SYS) MCCONTROL(SYS)

NAME
MC — control of the pattern-match compiler

SYNOPSIS
signature MCCONTROL
structure System.Control.MC : MCCONTROL

SIGNATURE

val printArgs : bool ref

val printRet : bool ref

val bindContainsVar : bool ref

val bindExhaustive : bool ref

val matchExhaustive : bool ref

val matchRedundant : bool ref

val expandResult : bool ref

DESCRIPTION
These flags control the operation of the analyzer that converts ML pattern matches to decision trees
during the compilation process.

printArgs
whether to (for diagnostic purposes) print the clauses of each match analyzed.

printRet
whether to (for diagnostic purposes) print the results of each pattern-match compilation

bindContainsVar
whether to issue warning messages of the form, “binding contains no variable.”

bindExhaustive
whether to issue warning messages of the form, “binding not exhaustive.”

matchExhaustive
whether to issue warning messages of the form, “match not exhaustive.”

matchRedundant
whether to issue warning messages of the form, “redundant pattern in match.”

expandResult
whether to create duplicate copies of right-hand-sides in some cases (default is false). Has
no effect on semantics, but can cause exponential code blowup if true.

Last change: February 3, 1993 SYS-23

POLYCONT(SYS) POLYCONT(SYS)

NAME
PolyCont — unsafe call-with-current-continuation

SYNOPSIS
signature POLY CONT
structure System.Unsafe.PolyCont : POLY CONT

SIGNATURE

type ’a cont

val callcc : (’a cont -> ’a) -> ’a

val throw : ’a cont -> ’a -> ’b

type ’a control_cont

val capture : (’a control_cont -> ’a) -> ’a

val escape : ’a control_cont -> ’a -> ’b

DESCRIPTION
PolyCont.callcc is a more loosely typed creator of first-class continuations. With the looser typing
it is possible (if you are clever enough) to poke holes in the type system. However, for some
applications the weak typing is too restrictive.

capture and escape are just like callcc and throw except that when a continuation is invoked it
gets the exception handler of the invoker. This is a bug, not a feature, but it can be more efficient
for applications that don’t care about the exception handler: capture can be tail-recursive since it
doesn’t have to save an exception handler. Certain space leaks can thus be avoided.

SEE ALSO
Callcc(BASE)

SYS-24 Last change: February 3, 1993

PRETTYPRINT(SYS) PRETTYPRINT(SYS)

NAME
PrettyPrint — prettyprinting values

SYNOPSIS
signature PRETTYPRINT
structure System.PrettyPrint : PRETTYPRINT

SIGNATURE

type ppstream

type ppconsumer = consumer: string -> unit,

flush: unit -> unit,

linewidth: int

datatype break_style = CONSISTENT | INCONSISTENT

val mk_ppstream : ppconsumer -> ppstream

val dest_ppstream : ppstream -> ppconsumer

val add_break : ppstream -> int * int -> unit

val add_newline : ppstream -> unit

val add_string : ppstream -> string -> unit

val begin_block : ppstream -> break_style -> int -> unit

val end_block : ppstream -> unit

val clear_ppstream : ppstream -> unit

val flush_ppstream : ppstream -> unit

val with_pp : ppconsumer -> (ppstream -> unit) -> unit

val install_pp : string list -> (ppstream -> ’a -> unit)

-> unit

val pp_to_string : int -> (ppstream -> ’a -> unit) -> ’a -> string

DESCRIPTION
System.PrettyPrint implements a facility for defining and installing user-defined prettyprinters over
(monomorphic) user-defined types for use by the top-level loop of the SML compiler. The underlying
algorithm is that of Oppen (TOPLAS, 1980). There are more expressive prettyprinting languages
around, notably that of PPML, but the Oppen interface has the benefit of being efficiently imple-
mentable. Thus it is a good option for modest prettyprinting tasks that need to be quick, such as
the printing of SML values. These same prettyprinting facilities are used by the compiler for such
tasks as printing values in the interactive top level and printing expressions in error messages.

The high-level view is that the user will define a prettyprinter for a datatype and install it in a
prettyprinter table. When it comes time for the compiler to print a value, it looks first in the
prettyprinter table, to see if a prettyprinter is installed for that type. If so, it calls the prettyprinter
on the value, otherwise, it calls the default printing routine.

The Oppen algorithm provides a block abstraction: a block establishes a level of indentation. Since
blocks can be nested and offset from one another, levels of indentation can be achieved. A block
can be broken up by one or more breaks, which mark possible places to add carriage returns. There
are two styles of block: CONSISTENT and INCONSISTENT. If a consistent block does not fit
completely onto the current line, a carriage return will be added after each component of the block.
If an INCONSISTENT block does not fit completely onto the current line, a carriage return is added
after the last item that does fit on the line; this style of block conserves on vertical space.

type ppstream
This is an abstract type of prettyprint streams. A ppstream encapsulates the state of an
Oppen prettyprinter.

type ppconsumer
This type describes a record that provides the ultimate consumer of the characters produced
by the prettyprint operations. A ppconsumer is supplied to mk_ppstream and with_pp and
is used by those operations to build ppstreams.

Last change: January 30, 1993 SYS-25

PRETTYPRINT(SYS) PRETTYPRINT(SYS)

type break style
This defines the behavior of breaks within a block. If the style is CONSISTENT, then if any
break occurs, all breaks occur. If the style is INCONSISTENT, then breaks will only occur
when the current line is full.

mk ppstream consumer
A new ppstream is constructed, with character output directed to the consumer.

dest ppstream pps
Returns the consumer record used by the ppstream.

install pp path ppfn The first argument is a path designating a type constructor in the current
interactive top-level environment. This type constructor must be a nullary constructor (i.e
it must be a type constant like ”int” rather than a constructor with parameters like ”list”),
and it must be generative (i.e. it must be a datatype or abstype constructor). The second
argument is a prettyprinting function for that type. Note that the connection between the
type constructor designated by the path and the printing function is not enforced by type
checking, so this operation is unsafe. Also note that install pp should only be called at
top level; if you try to install a prettyprinter for a datatype defined within a local context
(like a structure) from within that same context, it won’t work.

The function ppfn is installed in a prettyprinter table maintained by the interactive system,
and it will be used when printing values of the designated type.

It is planned that this facility will be extended to allow nonnullary type constructors in the
future.

begin block pps bs
This begins a new level of indentation, at the current offset from the left margin. The
break style argument determines how the block is to be broken. The third argument deter-
mines the new offset if the block gets broken.

end block pps Prettyprinting for pps reverts to the previous level of indentation.

add break pps (size, offset)
Notify the ppstream pps that a carriage return is possible. The argument to this function
is a pair; the first member is the size of the break, the second member is an offset. This
“break” offset is used for finer control over indentation than that offered by the block offset.
The current block style and the size of the block determine what action is to be taken:

• block style = CONSISTENT and the entire block fits on the remainder of the
current line =¿ output size spaces.

• block style = CONSISTENT and the block does not fit on the rest of the line =¿
add a carriage return after each component in the block and add the block offset
to the current indentation level. Each component will be further indented by offset
spaces.

• block style = INCONSISTENT and the next component of the current block fits
on the rest of the line =¿ output size spaces.

• block style = INCONSISTENT and the next component doesn’t fit on the rest of
the line =¿ output a carriage return and indent to the current indentation level plus
the block offset plus offset extra spaces.

Size is taken into account when determining if there is enough room to print the next
component in the block.

SYS-26 Last change: January 30, 1993

PRETTYPRINT(SYS) PRETTYPRINT(SYS)

add string pps s
Outputs the given string to pps.

add newline pps
Forces the output of a line break on pps.

lear ppstream pps
Clears the state of pps.

flush ppstream pps
Flushes currently accumulated text to pps’s consumer and calls the flush operation of the
consumer.

with pp consumer printfn
Constructs a new ppstream from consumer and applies the printfn to it.

pp to string linewidth printit x
Constructs a new ppstream whose consumer accumulates output in a string. Applies the
function printit to this ppstream and the value x, and then returns the string s containing
the prettyprinting output.

EXAMPLE

open System.PrettyPrint;

fun out_ppstream outstrm n =

mk_ppstream{linewidth = n,

flush = fn () => flush_out outstrm,

consumer = outputc outstrm}

fun with_ppstream ppstrm =

{add_string=add_string ppstrm,

add_break=add_break ppstrm,

begin_block=begin_block ppstrm,

end_block=fn () => end_block ppstrm,

flush_ppstream=fn () => flush_ppstream ppstrm};

datatype Num = Zero | Suc of Num;

fun pp_Num ppstrm n =

let fun ppn Zero = add_string ppstrm "Z"

| ppn (Suc n) = (ppn n; add_string ppstrm "’")

in begin_block ppstrm CONSISTENT 0;

ppn n;

end_block ppstrm

end;

val _ = install_pp ["Num"] pp_Num;

datatype Nexp = Atom of Num

| Add of (Nexp*Nexp);

fun pp_Nexp ppstrm ne =

let fun pr (Atom a) = pp_Num ppstrm a

| pr (Add(a1,a2)) =

(pr a1;

add_string ppstrm " +";

add_break ppstrm (1,0);

pr a2)

in begin_block ppstrm CONSISTENT 0;

pr ne;

end_block ppstrm

end;

val _ = install_pp ["Nexp"] pp_Nexp;

Last change: January 30, 1993 SYS-27

PRETTYPRINT(SYS) PRETTYPRINT(SYS)

datatype exp = A of Nexp

| ITE of (bool*exp*exp);

fun pp_exp ppstrm e =

let val {add_string,add_break,begin_block,

end_block,flush_ppstream} =

with_ppstream ppstrm

val pp_Nexp = pp_Nexp ppstrm

fun pr (A a) = pp_Nexp a

| pr (ITE(b,e1,e2)) =

(begin_block CONSISTENT 0;

add_string"if ";

add_string (if b then "true" else "false");

add_break(1,2);

add_string "THEN ";

pr e1;

add_break(1,2);

add_string "ELSE ";

pr e2;

add_break(1,0);

add_string "END";

end_block ())

in begin_block CONSISTENT 0;

pr e;

end_block ()

end;

val _ = install_pp ["exp"] pp_exp;

(* some example values to try *)

val N = Add(Atom(Suc(Suc(Suc(Suc(Suc(Suc(Suc(Suc(Suc(Zero)))))))))),

Atom(Suc(Suc(Suc(Suc(Suc(Suc(Suc(Suc(Suc(Zero)))))))))));

val a = ITE(true,A(N),A(N));

val b = ITE(false,a,A(N));

val c = ITE(true,b,b);

FILES

$SMLSRC/boot/system.sig contains the PRETTYPRINT signature.

$SMLSRC/util/pp.sml contains the internal PrettyPrint structure implementation.

CAVEATS
Be sure that all prettyprinting is done between calls of begin_block and end_block, and that calls
to these functions are balanced (dynamically, not just statically!). This can be tricky to check.

Prettyprint functions that are going to be installed by install pp should not call flush ppstream.
The system will do the flushing for you.

In general, expect to spend some time experimenting to get the printing to work the way you want
it to.

SYS-28 Last change: January 30, 1993

PRINTCONTROL(SYS) PRINTCONTROL(SYS)

NAME
Print — control of top-level interactive value printing

SYNOPSIS
signature PRINTCONTROL
structure System.Print : PRINTCONTROL

SIGNATURE

type outstream

val printDepth : int ref

val printLength : int ref

val stringDepth : int ref

val printLoop : bool ref

val signatures : int ref

val out : outstream ref

val linewidth : int ref

val say : string -> unit

val flush: unit -> unit

DESCRIPTION

printDepth
the depth of nesting of recursive data structure at which ellipsis begins.

printLength
the length of lists at which ellipsis begins.

stringDepth
the length of strings at which ellipsis begins.

printLoop
whether to treat loops (involving ref cells) specially when printing.

signatures
whether to print signature bodies at their declarations.

out
The stream to which all compiler messages and top-level value printing should go. Initialized
to std_out. To suppress all printout by the compiler, open /dev/null for output and assign
the resulting outstream to System.Print.out:

System.Print.out := open_out "/dev/null"

linewidth
The number of characters per line for prettyprinting to out.

say s

write s to !System.Print.out.

flush ()
flush_out(!out).

Last change: February 3, 1993 SYS-29

PRINTCONTROL(SYS) PRINTCONTROL(SYS)

The function print in the initial environment is overloaded, and can be used to print integers, reals,
strings, or booleans. It’s output is directed to the output stream std_out, which represents the
Unix standard output, and this cannot be changed. So output by applications that use the print

function cannot easily be controlled. The function System.Print.say can be used as an alternative
— it’s output is via System.Print.out.

SYS-30 Last change: February 3, 1993

RUNTIMECONTROL(SYS) RUNTIMECONTROL(SYS)

NAME
Runtime — control flags for the runtime system

SYNOPSIS
signature RUNTIMECONTROL
structure System.Control.Runtime : RUNTIMECONTROL

SIGNATURE

val collected : int ref

val collectedfrom : int ref

val gcmessages : int ref

val majorcollections : int ref

val minorcollections : int ref

val ratio : int ref

val softmax : int ref

val lastratio : int ref

DESCRIPTION

collected
cumulative kilobytes of live objects ever found by the garbage collector.

collectedfrom
cumulative kilobytes of live+dead objects ever examined by the garbage collector.

gcmessages
Which level of garbage collection messages to print:

0 None.

1 Only heap resizings.

2 Major collections and heap resizings.

3 Minor collections and all of the above.

> 3 Levels greater than 3 are legal; in current versions they have the same effect as level 3.

majorcollections
how many major collections have ever occurred.

minorcollections
how many minor collections have ever occurred.

ratio
The target ratio of heap size to live data, as long as memory usage is less than the soft max.

softmax
What level of physical memory usage (in bytes) the system should aim for. If mh is the
hard max (the “datasize” operating system resource limit), ms is the soft max, r is the heap
ratio, and d is the amount of live data, then the heap size will be approximately

min(mh,max(3d,min(rd,ms))).

lastratio
The ratio of heap size to live data actually achieved at the last major garbage collection.

Last change: February 3, 1993 SYS-31

SIGNALS(SYS) SIGNALS(SYS)

NAME
Signals — interface to Unix signal system

SYNOPSIS
signature SIGNALS
structure System.Signals : SIGNALS

SIGNATURE

datatype signal

= SIGHUP | SIGINT | SIGQUIT | SIGALRM | SIGVTALRM

| SIGTERM | SIGURG | SIGCHLD | SIGIO | SIGWINCH

| SIGUSR1 | SIGUSR2 | SIGPROF | SIGTSTP | SIGCONT

| SIGGC

val setHandler: (signal *

((int * unit cont) -> unit cont) option)

-> unit

val inqHandler: signal ->

((int * unit cont) -> unit cont) option

val maskSignals : bool -> unit

val masked : unit -> bool

val pause : unit -> unit

DESCRIPTION

setHandler (s, SOME h)
Install handler h for signal s. When the signal arrives, the handler h(n, c) is invoked.
Argument n is the number of occurrences of the signal that have arrived by the time the
system has had an opportunity to invoke the handler. Argument c is the continuation
function of the interrupted program. When h returns a continuation, this re-enables the
signal, which is blocked during execution of the handler.

If h simply returns c as a result, this resumes the interrupted process. Or, h can return
some other continuation, which will abandon the current thread of control. In this case, h
may want to save c in a data structure for later resumption.

setHandler (s,NONE)
Remove the handler (if any) for signal s.

inqHandler s

get the current handler (if any) for signal s.

SIGHUP ... SIGCONT
Unix signal names

SIGGC
a special signal raised after each garbage colleciton.

maskSignals true
block the invocation of all signal handlers.

maskSignals false
resume the delivery of signals, including those that arrived while signals were masked.

masked ()
are signals blocked now?

SYS-32 Last change: February 3, 1993

SIGNALS(SYS) SIGNALS(SYS)

pause ()
sleep until the next signal arrives.

CAVEATS
SIGCONT is not yet supported.

REFERENCES
John H. Reppy, “Asynchronous Signals in Standard ML”, TR 90-1144, Cornell University, Dept. of
Computer Science, 1990.

Last change: February 3, 1993 SYS-33

SYMBOL(SYS) SYMBOL(SYS)

NAME
Symbol — compiler symbols

SYNOPSIS
signature SYMBOL
structure System.Symbol : SYMBOL

SIGNATURE

type symbol

datatype namespace =

VALspace | TYCspace | SIGspace | STRspace | FCTspace | FIXspace |

LABspace | TYVspace | FSIGspace%

val valSymbol : string -> symbol

val tycSymbol : string -> symbol

val tyvSymbol : string -> symbol

val sigSymbol : string -> symbol

val strSymbol : string -> symbol

val fsigSymbol : string -> symbol

val fctSymbol : string -> symbol

val fixSymbol : string -> symbol

val labSymbol : string -> symbol

val name : symbol -> string

val makestring: symbol -> string

val kind : symbol -> string

val nameSpace : symbol -> namespace

val makeSymbol: namespace * string -> symbol

DESCRIPTION
System.Symbol is an external interface to the internal Symbol structure used by the compiler.

type symbol
External version of the internal type Symbol.symbol. Symbols are needed when working
with abstract syntax trees (System.Ast) and environments (System.Env). Though symbols
belong to one type, symbol, they come in nine different flavors, corresponding to the different
name spaces of Standard ML: variables and constructors, type constructors, type variables,
signatures, structures, functor signatures, functors, fixities, and labels.

type namespace
External version of the internal type Symbol.namespace. The constructors of this datatype
correspond to the nine namespaces that symbols are partitioned into. Each symbol has a
unique namespace.

valSymbol s
Creates a value symbol in name space VALspace.

tycSymbol s
Creates a type constructor symbol in name space TYCspace.

tyvSymbol s
Creates a type variable symbol in name space TYVspace. The string s should start with an
apostrophy, but this is not checked.

sigSymbol s
Creates a signature symbol in name space SIGspace.

SYS-34 Last change: January 30, 1993

SYMBOL(SYS) SYMBOL(SYS)

strSymbol s
Creates a structure symbol in name space STRspace.

fsigSymbol s
Creates a functor signature symbol in name space FSIGspace.

fctSymbol s
Creates a functor symbol in name space FCTspace.

fixSymbol s
Creates a fixity symbol in name space FIXspace. Fixity symbols are bound to fixity in-
formation. An infix directive binds a fixity symbol; a later value declaration for the same
identifier creates a separate binding of a value symbol with the same name.

labSymbol s
Creates a label symbol in name space LABspace.

name sym
Returns the string from which the symbol was constructed.

makestring sym
Returns a print representation of the symbol, consisting of the name with an annotation
indicating the name space. E.g. value symbol ”foo” is mapped to ”VAL$foo”.

kind sym
Returns a string naming the name space of the symbol. The names of the namespaces are
”variable or constructor”, ”type constructor”, ”signature”, ”structure”, ”functor”, ”fixity”,
”label”, ”type variable”, and ”functor signature”.

nameSpace sym
Returns the namespace of the symbol sym.

makeSymbol (ns, s)
Creates a new symbol with namespace ns and name s.

SEE ALSO
Env(SYS), Compile(SYS), Ast(SYS)

CAVEATS
This interface will change in minor ways after version 0.93. There are some missing functions and
types, such as symbol equality and symbol mappings.

Last change: January 30, 1993 SYS-35

SysIO(SYS) SysIO(SYS)

NAME
SysIO — system calls for unbuffered input/output

SYNOPSIS
signature SYSIO
structure System.Unsafe.SysIO : SYSIO

SIGNATURE

type bytearray

type time

type fd = int
eqtype fileid

datatype fname = DESC of fd | PATH of string

datatype mode = O_READ | O_WRITE | O_APPEND

datatype whence = L_SET | L_INCR | L_XTND

datatype access = A_READ | A_WRITE | A_EXEC

datatype file_type = F_REGULAR | F_DIR | F_SYMLINK

| F_SOCK | F_CHR | F_BLK

val dtablesize : int

val openf : (string * mode) -> fd

val close : fd -> unit

val unlink : string -> unit

val pipe : unit -> (fd * fd)

val connect_unix : string -> fd

val connect_inet : (string * string) -> fd

val link : (string * string) -> unit

val symlink : (string * string) -> unit

val mkdir : (string * int) -> unit

val dup : fd -> fd

val read : (fd * bytearray * int) -> int

val readi : (fd * bytearray * int * int) -> int

val write : (fd * bytearray * int) -> unit

val writei : (fd * bytearray * int * int) -> unit

val writev : (fd * (bytearray * int) list) -> unit

val send_obd : (fd * bytearray * int) -> unit

val getdirent : fd -> string list

val readlink : string -> string

val truncate : (fname * int) -> unit

val lseek : (fd * int * whence) -> int

val getmod : fname -> int

val chmod : (fname * int) -> unit

val umask : int -> int

val access : (string * access list) -> bool

val isatty : fd -> bool

val fionread : fd -> int

val getfid : fname -> fileid

val ftype : fname -> file_type

val getownid : fname -> (int * int)

val fsize : fname -> int

val atime : fname -> time

val ctime : fname -> time

val mtime : fname -> time

val select : (fd list * fd list * fd list * time option)

-> (fd list * fd list * fd list)

DESCRIPTION
These functions allow the manipulation of Unix file descriptors and unbuffered input/output oper-

SYS-36 Last change: February 3, 1993

SysIO(SYS) SysIO(SYS)

ations upon them. Most of these operations correspond directly to Unix system calls. See a Unix
manual, chapter 2, for detailed semantics.

fd
Unix file descriptor (a small integer).

fileid
A representation of the device and inode numbers; a unique descriptor of a file (no matter
how reopened or linked).

fname
Some system calls accept either an unopened file (represented by its name) or a file descrip-
tor; this union type is useful for arguments to those calls.

mode
What you intend to do with a file: read, write, or append (write at the end).

whence
Useful as an argument to lseek.

access
File protection modes.

file type
Types of Unix file.

dtablesize
The number of file descriptors that can be simultaneously open.

openf (s,m)
Open an unbuffered file named s for reading (m = O_READ), writing (m = O_WRITE), or
appending (m = O_APPEND).

close fd
Close a file. The only effect this has is to clear a slot in the file descriptor table maintained
by the operating system (if this table becomes full, it is impossible to open new files).

unlink s

Unlink (remove) the file named s from its directory.

pipe ()
Create a pipe, and return both ends as file descriptors (fd

0
, fd

1
). Data written to fd

1
may

be read from fd
0
.

connect unix s

Open a Unix-domain socket with file pathname s.

connect inet (h, p)
Open an internet-domain socket connection to host h (specified as an ASCII string of decimal
numbers separated by dots, e.g. "128.112.128.1") on port p (specified as an ASCII decimal
string, e.g. "6000").

link (s, l)
Create a link: Make l a new alternate name for file s.

Last change: February 3, 1993 SYS-37

SysIO(SYS) SysIO(SYS)

symlink (s, l)
Create a symbolic link.

mkdir (s,m)
Make a directory named s with protection (access) mode m.

dup fd
Duplicate a file descriptor fd.

read (fd , a, n)
Read no more than n bytes into byte-array a from file fd. Returns the number of bytes
actually read.

readi (fd , a, n, i)
Just like read, but starts filling a at position i instead of position 0.

write (fd , a, n)
Write no more than n bytes from byte-array a to file fd. Returns the number of bytes
actually written.

writei (fd , a, n, i)
Like write, but starts at position i of a instead of position 0.

writev (fd , l)
Given a list l of buffers, each of which is a byte-array and the number of characters to write
from it, write the contents of the buffers (in the given order) to file fd.

send obd (fd , a, n)
Send n bytes from byte-array a as out-of-band data on socket fd.

getdirent fd
Get a list of files in directory fd.

readlink s

If s names a symbolic link, get the name of the file it points to.

truncate (n, i)
Truncate file n to i bytes.

lseek (fd , i, w)
Position file fd for reading or writing from i bytes beyond the (beginning / current position
/ end) of the file, if w is (L_SET / L_INCR / L_XTND). The offset i may be negative.

getmod n

Get the mode (access protection) of file n.

chmod (n,m)
Set the mode of file n to m.

umask m

Set the user mask to m (this affects the mode of newly-created files). Returns the previous
value of the mask.

access (s, l)
Returns true iff the file s exists and is accessible (by the current user) with permission to
do all the things specified by l. If l is empty, this is an existence test.

SYS-38 Last change: February 3, 1993

SysIO(SYS) SysIO(SYS)

isatty fd
True if fd is associated with a terminal device.

fionread fd
Returns the number of bytes ready to read without blocking from fd.

getfid n

Get a unique descriptor for file n (see type fileid, above).

ftype n

Find the type (ordinary file, directory, i/o device, etc.) of n.

getownid n

?

fsize n

The number of bytes in file n.

atime n

The last access time of n.

ctime n

The time n’s status last changed.

mtime n

The time of last modification of n.

select (lr, lw, le, t)
Block until either: one of lr is ready for reading, one of lw is ready for writing, or one of
le has an exceptional condition, or t = SOME t′ and more than t′ seconds have elapsed.
Returns the sublists of file descriptors (l′

r
, l′

w
, l′

e
) on which the respective i/o operations are

possible without blocking.

SEE ALSO
The Unix (tm) manual.

CAVEATS
dtablesize isn’t necessarily constant in Unix (especially after exportML), but is constant here.

Last change: February 3, 1993 SYS-39

SYSTEM(SYS) SYSTEM(SYS)

NAME
System — system-dependent features of SML/NJ

SYNOPSIS
signature SYSTEM
structure System : SYSTEM
(present but not pre-opened in the sml executable)

SIGNATURE

structure Hooks : HOOKS

structure Symbol : SYMBOL

structure Env : ENVIRONMENT

structure Ast : AST

structure Code : CODE

structure Compile: COMPILE

structure PrettyPrint : PRETTYPRINT

structure Control : CONTROL

structure Tags : TAGS

structure Timer : TIMER

structure Stats : STATS

structure Unsafe : UNSAFE

structure Signals : SIGNALS

structure Directory : DIRECTORY

val exn_name : exn -> string

val version : string

val architecture : string ref

val runtimeStamp : string ref

val interactive : bool ref

val system : string -> int

val argv : unit -> string list

val environ : unit -> string list

DESCRIPTION
Each of the substructures is described in its own section of this chapter. The val components are:

exn name e

get the name from an exception. Note the following behavior, however:

exception E1

exception J = E1

exn_name(E1) is "E1" and exn_name(J) is also "E1".

version
The version of SML/NJ currently running, e.g.

Standard ML of New Jersey, Version 0.93, February 1, 1993

architecture
the instruction set architure of the executing machine, e.g. .mipseb for the big-endian
MIPS. Other architectures are .sparc, .mipsel, .vax, .m68, .hppa, etc.

runtimeStamp
an identifier for the current version of the runtime system. May change each time the
runtime system is recompiled.

SYS-40 Last change: February 3, 1993

SYSTEM(SYS) SYSTEM(SYS)

interactive
whether the standard input is (nominally) from an interactive source such as a terminal.

system s

execute the shell s, yielding a return code.

argv ()
get the command-line arguments

environ ()
get the Unix “environment”

Last change: February 3, 1993 SYS-41

TIMER(SYS) TIMER(SYS)

NAME
Timer — execution timing

SYNOPSIS
signature TIMER
structure System.Timer : TIMER

SIGNATURE

datatype time = TIME of {sec : int, usec : int}

type timer

val start_timer : unit -> timer

val check_timer : timer -> time

val check_timer_sys : timer -> time

val check_timer_gc : timer -> time

val makestring : time -> string

val add_time : time * time -> time

val sub_time : time * time -> time

val earlier : time * time -> bool

DESCRIPTION

time
A time value, divided into seconds (sec) and microseconds (usec).

timer
An abstract time value: the time at which a timer was started.

start timer ()
Start a timer. Any number of timers may be simultaneously active.

check timer t

The amount of non-gc user execution time since t was started.

check timer sys t

The amount of operating system execution time since t was started.

check timer gc t

The amount of garbage collection time since t was started.

makestring v

Convert time v into a decimal string (e.g. 123.103200 for 123 seconds and 103200 microsec-
onds).

add time, sub time
Arithmetic on time values.

earlier (t1, t2)
True if t1 is less than t2.

EXAMPLE

SYS-42 Last change: February 3, 1993

TIMER(SYS) TIMER(SYS)

fun timeit f x =

let open System.Timer

val timeofday = System.Unsafe.CInterface.gettimeofday

val t = start_timer()

val rt = timeofday()

val z = f x

val rt’ = sub_time(timeofday(),rt)

val t’ = check_timer t

val ts = check_timer_sys t

val tg = check_timer_gc t

in implode[" ",makestring t’," ",makestring ts," ", makestring tg," ",

makestring rt’," "]

end

The result of timeit f x is that f is applied to x, the result is discarded, and a string containing the
non-gc user time, the system time, the garbage collection time, and the wallclock time is returned.

Last change: February 3, 1993 SYS-43

UNSAFE(SYS) UNSAFE(SYS)

NAME
Unsafe — unsafe features of SML/NJ

SYNOPSIS
signature UNSAFE
structure System.Unsafe : UNSAFE

SIGNATURE

type object

type instream and outstream

structure Assembly : ASSEMBLY

structure CInterface : CINTERFACE

structure SysIO : SYSIO

structure CleanUp : CLEANUP

structure Weak : WEAK

structure Susp : SUSP

structure PolyCont : POLY_CONT

val boxed : ’a -> bool

val ordof : ’a * int -> int

val slength : ’a -> int

val objLength : ’a -> int

val getObjTag : ’a -> int

val special : (int * ’a) -> ’b

val setSpecial : (’a * int) -> unit

val getSpecial : ’a -> int

val store : string * int * int -> unit

val bstore : Assembly.A.bytearray * int * int -> unit

val subscript : ’a array * int -> ’a

val update : ’a array * int * ’a -> unit

val subscriptv : ’a vector * int -> ’a

val subscriptf : Assembly.A.realarray * int -> real

val updatef : Assembly.A.realarray * int * real -> unit

val getvar : unit -> ’a

val setvar : ’a -> unit

val gethdlr : unit -> ’a

val sethdlr : ’a -> unit

val boot : ’a -> (’b -> ’c)

val cast : ’a -> ’b

val blast_write : outstream * ’a -> int

val blast_read : instream * int -> ’a

val create_s : int -> string

val create_b : int -> Assembly.A.bytearray

val store_s : string * int * int -> unit

val lookup_r : (int -> object) ref

val lookup : int -> object

val toplevelcont : unit cont ref

val pstruct : core: object, initial: object, math: object ref

exception Boxity

val tuple : object -> object vector

val string : object -> string

val real : object -> real

val int : object -> int

datatype datalist = DATANIL

| DATACONS of (string * string * datalist)

val datalist : datalist

val profiling : bool ref

DESCRIPTION
Many of the components of System.Unsafe can cause Standard ML of New Jersey to dump core,

SYS-44 Last change: February 3, 1993

UNSAFE(SYS) UNSAFE(SYS)

or to use a more technical term, to “go wrong.” Furthermore, System.Unsafe may be rearranged
at the whim of the implementors, and nothing in here is guaranteed from one release to the
next.

Furthermore, this module is hodgepodge of unsafe features that are of genuine interest to ordinary
(but sophisticated) users, and of those that are of use only to implementors of the system.

Each of the substructures is descibed in its own section of this chapter. The value components are:

boxed x

true if x is represented as a pointer.

ordof (s, i)
just like String.ordof, but without range checking.

slength s

just like String.size but may dump core on single-character strings.

objLength x

Gives the length of a vector, array, or record; but undefined or may dump core on zero-
element or two-element records.

getObjTag x

Get the low-order tag bits of a boxed value.

special (i, x)
Make a “special” object with tag i. Used for weak pointers, lazy thunks, etc.

setSpecial (x, i)
Change the tag of special object x to i.

store (s, i, c)
Change the ith character of string s to the character whose code is c. Bombs on single-
character strings, or on string literals embedded in programs.

bstore (a, i, c)
Like ByteArray.update, but without range checking.

subscript (a, i)
Like Array.sub, but without range checking.

update (a, i, v)
Like Array.update, but without range checking.

subscriptv (v, i)
Like Vector.sub, but without range checking.

subscriptf (a, i)
Like RealArray.sub, but without range checking.

updatef (a, i, x)
Like RealArray.update, but without range checking.

getvar ()
Get the value of the global register variable.

Last change: February 3, 1993 SYS-45

UNSAFE(SYS) UNSAFE(SYS)

setvar x

Set the value of the global register variable.

gethdlr ()
Get the exception-handler continuation.

sethdlr c

Set the exception-handler continuation.

boot s

Interpret string s (which contains machine instructions) as a function.

cast x

Treat x as a value of a different type.

blast write (f, x)
Write x to outstream f as a structured value. Returns the number of characters written.

blast read (f, n)
Read n characters from instream f , and interpret them as a data structure.

create s n

Make an uninitialized string of length n.

create b n

Make an uninitialized byte array of length n.

CAVEATS
Indeed.

SYS-46 Last change: February 3, 1993

WEAK(SYS) WEAK(SYS)

NAME
Weak — weak pointers

SYNOPSIS
signature WEAK
structure System.Unsafe.Weak : WEAK

SIGNATURE

type ’a weak

val weak : ’a -> ’a weak

val strong : ’a weak -> ’a option

DESCRIPTION
A weak pointer to object x is one that, by itself, is not sufficient to keep x alive. If there are no
conventional (strong) references to x, it will be reclaimed by the collector, and the weak pointer will
be zapped.

α weak
the type of weak pointers to things of type α.

weak x A weak pointer to x.

strong p returns NONE if x no longer exists. Returns SOME x if x still exists, or if x no longer
exists but the garbage collector hasn’t gotten to it yet,

Of course, this is semantically ill-defined, especially because the semantics of ML talks about values,
not objects.

CAVEATS
May not be supported forever.

Last change: February 3, 1993 SYS-47

