
Standard ML of New Jersey

|

Batch Compiler

(Version 0.93)

February 15, 1993

Copyright
c

 1989,1990,1991 by AT&T Bell Laboratories



Standard ML of New Jersey

License and Disclaimer

Copyright
c

 1989,1990,1991 by AT&T Bell Laboratories

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for

any purpose and without fee is hereby granted, provided that the above copyright notice

appear in all copies and that both the copyright notice and this permission notice and

warranty disclaimer appear in supporting documentation, and that the name of AT&T

Bell Laboratories or any AT&T entity not be used in advertising or publicity pertaining

to distribution of the software without speci�c, written prior permission.

AT&T disclaims all warranties with regard to this software, including all

implied warranties of merchantability and �tness. In no event shall AT&T

be liable for any special, indirect or consequential damages or any damages

whatsoever resulting from loss of use, data or pro�ts, whether in an action of

contract, negligence or other tortious action, arising out of or in connection

with the use or performance of this software.

UNIX is a trademark of AT&T Corporation

VAX, DECstation and ULTRIX are trademarks of Digital Equipment Corporation.

SPARC and SunOS are trademarks of Sun MicroSystems

IBM and AIX are trademarks of International Business Machines Corporation.

HP, HP9000 and HP9000/300 are trademarks of Hewlett-Packard Company. HP-UX is

Hewlett-Packard's implementation of the UNIX operating system.

PostScript is a trademark of Adobe Systems Incorporated.

i



1 Batch Compiler

Note: The batch compiler is obsolete after version 0.93 and will not be distributed with future

versions of the compiler. This document is the section of the Release Notes for version 0.75 describing

how to use the batch system.

The SML/NJ batch compiler provides some (unsafe) separate compilation and cross compi-

lation capabilities. The batch system compiles �les containing signature, structure, and functor

declarations, i.e. only module level declarations are allowed. Compiling a module "Foo" produces a

corresponding object �le "Foo.mo", which contains the names of the other .mo �les required to build

the module, as well as the code of the module itself. Modules are compiled separately, producing

the necessary .mo �les.

A program is executed by passing a module name to the run-time system with the command

(assuming src is current working directory):

runtime/run [memory managment options] Module

The run-time system starts a linker which loads in the module, �nds out what other modules

it depends on, recursively loads them and passes them to the original module. The module then

"builds" itself, by executing its top-level declarations and creating a run-time structure. By conven-

tion, the loader looks for the module object �les in the directory src/mo. In this case it would look

for an object �le named src/mo/Module.mo.

For example, batch compiling the following module will create a �le named HelloWorld.mo.

structure HelloWorld =

struct

val foo = print "hello world"

end

When HelloWorld.mo is placed in the directory src/mo and the command

% runtime/run HelloWorld

is executed, the run-time system will build a run-time record containing foo, and as a side e�ect of

building the record, "hello world" will be printed.

Thus a program consists of the collection of all modules on which a given top-level structure

(transitively) depends. The order in which the modules will be executed/created is determined by

a postorder traversal of the (acyclic) dependence graph.

Using the batch system for separate compilation is unsafe since the .mo �les contain no type

information, only the names of the modules on which they directly depend. However, as long as

each module has the correct signature, the run-time record will be type-correct; in other words, it

is safe to edit, re-compile, and re-link modules as long their signatures do not change.

1.1 Installation

The compiler is composed of two parts: a run-time system written in C and assembly language;

and a number of ML object �les which form the main part of the compiler. The run-time system

ii



provides garbage collection, signal handling, and system calls; the rest of the compiler, including the

standard library, is written in ML. The .mo �les for the compiler reside in the mo.vax and mo.m68

subdirectories of the ML distribution. The source for the compiler resides in the src subdirectory,

and these instructions assume that the current directory is src.

To build a batch compiler:

1. Go to the src subdirectory of mldist:

% cd src

2. Run the makeml script with the -batch option, e.g.

% makeml -batch

The other options for makeml have the same meaning as for the interactive system. See the man

page doc/makeml.1.

As the command executes, you should see messages like "[Loading Foo]" and "[Executing Bar]",

which indicate the modules being linked in, and then messages like "signature ASSEMBLY" and

"functor CoreFunc", which indicate that the standard library is being compiled.

When the command successfully terminates, an executable image named "batch" has been cre-

ated in the current directory. This is the batch ML compiler. If you wish to use a di�erent name

for this �le, use the -i option of makeml.

Now you can run the batch compiler by typing "batch". You can give it commands interactively,

or by redirecting its input from a �le, as is done below with the command script "all".

Normally you will want to build a complete interactive or batch system, but there are occasions

when you may want to build just the run-time system. The option -run of makeml will do this.

When invoked, runtime/run takes the name of a module (say "Foo") as a parameter. It looks

for a �le with path name mo/Foo.mo relative to the current directory and loads that �le, and

then recursively loads mo/Bar.mo for all modules Bar on which Foo depends. Finally the code for

creating the module Foo is executed. For instance, to run the interactive system on a Vax, one

could symbolically link mo to mldist/mo.vax (or ../mo.vax if current directory is src) and execute

the command

runtime/run IntVax

This causes mo/IntVax.mo to be loaded, together with all the modules on which it depends (essen-

tially the whole compiler). IntVax.mo (de�ned in src/build/glue.sml) causes the interactive top-level

loop to be executed when the functor Interactive is applied. Any program can be directly loaded

and executed by the run-time system in this manner, not just the compiler.

The run-time system accepts the option 
ags -h, -r, -m, and -g to control heap sizing and garbage

collection messages.

1.2 Using the batch compiler

The batch compiler accepts commands on its standard input. The list of commands is:

iii


