
Python Library Reference

 Guido van Rossum

Dept. AA, CWI, P.O. Box 94079

1090 GB Amsterdam, The Netherlands

E-mail: guido@cwi.nl

13 October 1995

Release 1.3

Copyright © 1991-1995 by Stichting Mathematisch Centrum, Amsterdam,
The Netherlands.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided
that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting
documentation, and that the names of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

1

Abstract

Python is an extensible, interpreted, object-oriented
programming language. It supports a wide range of
applications, from simple text processing scripts to
interactive WWW browsers.

While the Python Reference Manual describes the
exact syntax and semantics of the language, it does not
describe the standard library that is distributed with the
language, and which greatly enhances its immediate
usability. This library contains built-in modules
(written in C) that provide access to system
functionality such as file I/O that would otherwise be
inaccessible to Python programmers, as well as
modules written in Python that provide standardized
solutions for many problems that occur in everyday
programming. Some of these modules are explicitly
designed to encourage and enhance the portability of
Python programs.

This library reference manual documents Python’s
standard library, as well as many optional library
modules (which may or may not be available,
depending on whether the underlying platform
supports them and on the configuration choices made
at compile time). It also documents the standard types
of the language and its built-in functions and
exceptions, many of which are not or incompletely
documented in the Reference Manual.

This manual assumes basic knowledge about the
Python language. For an informal introduction to
Python, see the Python Tutorial; the Python Reference
Manual remains the highest authority on syntactic and
semantic questions. Finally, the manual entitled
Extending and Embedding the Python Interpreter
describes how to add new extensions to Python and
how to embed it in other applications.

   

 Contents

3

Chapter 1

Introduction

The “Python library” contains several different kinds of components.
It contains data types that would normally be considered part of the

“core” of a language, such as numbers and lists. For these types, the Python
language core defines the form of literals and places some constraints on their
semantics, but does not fully define the semantics. (On the other hand, the
language core does define syntactic properties like the spelling and priorities
of operators.)

The library also contains built-in functions and exceptions — objects that
can be used by all Python code without the need of an import statement. Some
of these are defined by the core language, but many are not essential for the
core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules.
There are many ways to dissect this collection. Some modules are written in
C and built in to the Python interpreter; others are written in Python and
imported in source form. Some modules provide interfaces that are highly
specific to Python, like printing a stack trace; some provide interfaces that are
specific to particular operating systems, like socket I/O; others provide
interfaces that are specific to a particular application domain, like the World-
Wide Web. Some modules are avaiable in all versions and ports of Python;
others are only available when the underlying system supports or requires
them; yet others are available only when a particular configuration option was
chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out”: it first describes the built-
in data types, then the built-in functions and exceptions, and finally the
modules, grouped in chapters of related modules. The ordering of the chapters
as well as the ordering of the modules within each chapter is roughly from
most relevant to least important.

This means that if you start reading this manual from the start, and skip to
the next chapter when you get bored, you will get a reasonable overview of
the available modules and application areas that are supported by the Python
library. Of course, you don’t have to read it like a novel — you can also
browse the table of contents (in front of the manual), or look for a specific
function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see
module rand) and read a section or two.

Let the show begin!

Chapter 2

Built-in Types, Exceptions and
Functions

Built-in Objects
Names for built-in exceptions and functions are found in a separate

symbol table. This table is searched last when the interpreter looks up the
meaning of a name, so local and global user-defined names can override built-
in names. Built-in types are described together here for easy reference.1 built-
intypes built-inexceptions built-infunctions type

The tables in this chapter document the priorities of operators by listing
them in order of ascending priority (within a table) and grouping operators
that have the same priority in the same box. Binary operators of the same
priority group from left to right. (Unary operators group from right to left, but
there you have no real choice.) See Chapter 5 of the Python Reference
Manual for the complete picture on operator priorities.

2.1    Built-in Types

The following sections describe the standard types that are built into the
interpreter. These are the numeric types, sequence types, and several others,
including types themselves. There is no explicit Boolean type; use integers
instead. built-intypes Booleantype

Some operations are supported by several object types; in particular, all
objects can be compared, tested for truth value, and converted to a string
(with the ‘…‘ notation). The latter conversion is implicitly used when an
object is written by the print statement. print

2.1.1    Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or
as operand of the Boolean operations below. The following values are
considered false: if while truthvalue Booleanoperations
• None None

• zero of any numeric type, e.g., 0, 0L, 0.0.

• any empty sequence, e.g., ”, (), [].

1 Most descriptions sorely lack explanations of the exceptions that may be
raised — this will be fixed in a future version of this manual.

5

• any empty mapping, e.g., {}.

• instances of user-defined classes, if the class defines a
\s\do5(\s\do4())nonzero\s\do5(\s\do4())() or \s\do5(\s\do4())len\s\do5(\s\do4())()
method, when that method returns zero.

All other values are considered true — so objects of many types are
always true.

Operations and built-in functions that have a Boolean result always return
0 for false and 1 for true, unless otherwise stated. (Important exception: the
Boolean operations or and and always return one of their operands.)

2.1.2    Boolean Operations

These are the Boolean operations, ordered by ascending priority:
Booleanoperations

[Sorry. Ignored \begin{tableiii} ... \end{tableiii}]
and or not
Notes:
(1) These only evaluate their second argument if needed for their outcome.

(2) not has a lower priority than non-Boolean operators, so e.g. not a == b is
interpreted as not(a == b), and a == not b is a syntax error.

2.1.3    Comparisons

Comparison operations are supported by all objects. They all have the same
priority (which is higher than that of the Boolean operations). Comparisons
can be chained arbitrarily, e.g. x < y <= z is equivalent to x < y and y <= z,
except that y is evaluated only once (but in both cases z is not evaluated at all
when x < y is found to be false). chainingcomparisons

This table summarizes the comparison operations:
[Sorry. Ignored \begin{tableiii} ... \end{tableiii}]

operatorcomparison == is is not
Notes:
(1) <> and != are alternate spellings for the same operator. (I couldn’t choose

between and ! :-) language language

Objects of different types, except different numeric types, never compare
equal; such objects are ordered consistently but arbitrarily (so that sorting a
heterogeneous array yields a consistent result). Furthermore, some types (e.g.,
windows) support only a degenerate notion of comparison where any two
objects of that type are unequal. Again, such objects are ordered arbitrarily
but consistently. typesnumeric objectscomparing

(Implementation note: objects of different types except numbers are
ordered by their type names; objects of the same types that don’t support
proper comparison are ordered by their address.)

Two more operations with the same syntactic priority, in and not in, are
supported only by sequence types (below). in not in

2.1.4    Numeric Types

There are three numeric types: plain integers, long integers, and floating point
numbers. Plain integers (also just called integers) are implemented using long
in , which gives them at least 32 bits of precision. Long integers have
unlimited precision. Floating point numbers are implemented using double
in . All bets on their precision are off unless you happen to know the machine
you are working with. numerictypes integertypes integertype longintegertype
floating pointtype language

Numbers are created by numeric literals or as the result of built-in
functions and operators. Unadorned integer literals (including hex and octal
numbers) yield plain integers. Integer literals with an L or l suffix yield long
integers (L is preferred because 1l looks too much like eleven!). Numeric
literals containing a decimal point or an exponent sign yield floating point
numbers. numericliterals integerliterals longintegerliterals floating
pointliterals hexadecimalliterals octalliterals

Python fully supports mixed arithmetic: when a binary arithmetic operator
has operands of different numeric types, the operand with the “smaller” type
is converted to that of the other, where plain integer is smaller than long
integer is smaller than floating point. Comparisons between numbers of
mixed type use the same rule.2 The functions int(), long() and float() can be
used to coerce numbers to a specific type. int long float

All numeric types support the following operations, sorted by ascending
priority (operations in the same box have the same priority; all numeric
operations have a higher priority than comparison operations):

[Sorry. Ignored \begin{tableiii} ... \end{tableiii}]
operations onnumerictypes
Notes:
(1) For (plain or long) integer division, the result is an integer. The result is

always rounded towards minus infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1,
and (-1)/(-2) is 0. integerdivision longintegerdivision

(2) Conversion from floating point to (long or plain) integer may round or
truncate as in ; see functions floor() and ceil() in module math for well-
defined conversions. floor ceil numericconversions math language

(3) See the section on built-in functions for an exact definition.

2 As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and
similar for tuples.

7

Bit-string Operations on Integer Types

Bit-string Operations
Plain and long integer types support additional operations that make sense

only for bit-strings. Negative numbers are treated as their 2’s complement
value (for long integers, this assumes a sufficiently large number of bits that
no overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the
numeric operations and higher than the comparisons; the unary operation has
the same priority as the other unary numeric operations (+ and -).

This table lists the bit-string operations sorted in ascending priority
(operations in the same box have the same priority):

[Sorry. Ignored \begin{tableiii} ... \end{tableiii}]
operations onintegertypes bit-stringoperations shiftingoperations
maskingoperations
Notes:
(1) Negative shift counts are illegal.

(2) A left shift by n bits is equivalent to multiplication by pow(2, n) without
overflow check.

(3) A right shift by n bits is equivalent to division by pow(2, n) without
overflow check.

2.1.5    Sequence Types

There are three sequence types: strings, lists and tuples.
Strings literals are written in single or double quotes: ’xyzzy’, "frobozz".

See Chapter 2 of the Python Reference Manual for more about string literals.
Lists are constructed with square brackets, separating items with commas: [a,
b, c]. Tuples are constructed by the comma operator (not within square
brackets), with or without enclosing parentheses, but an empty tuple must
have the enclosing parentheses, e.g., a, b, c or (). A single item tuple must
have a trailing comma, e.g., (d,). sequencetypes stringtype tupletype listtype

Sequence types support the following operations. The in and not in
operations have the same priorities as the comparison operations. The + and *
operations have the same priority as the corresponding numeric operations.3

This table lists the sequence operations sorted in ascending priority
(operations in the same box have the same priority). In the table, s and t are
sequences of the same type; n, i and j are integers:

[Sorry. Ignored \begin{tableiii} ... \end{tableiii}]
operations onsequencetypes len min max concatenationoperation
repetitionoperation subscriptoperation sliceoperation in not in
Notes:

3 They must have since the parser can’t tell the type of the operands.

(1) If i or j is negative, the index is relative to the end of the string, i.e., len(s)
+ i or len(s) + j is substituted. But note that -0 is still 0.

(2) The slice of s from i to j is defined as the sequence of items with index k
such that i <= k < j. If i or j is greater than len(s), use len(s). If i is omitted,
use 0. If j is omitted, use len(s). If i is greater than or equal to j, the slice is
empty.

More String Operations

String objects have one unique built-in operation: the % operator (modulo)
with a string left argument interprets this string as a C sprintf format string to
be applied to the right argument, and returns the string resulting from this
formatting operation.

The right argument should be a tuple with one item for each argument
required by the format string; if the string requires a single argument, the right
argument may also be a single non-tuple object.4 The following format
characters are understood: %, c, s, i, d, u, o, x, X, e, E, f, g, G. Width and
precision may be a * to specify that an integer argument specifies the actual
width or precision. The flag characters -, +, blank, # and 0 are understood.
The size specifiers h, l or L may be present but are ignored. The %s
conversion takes any Python object and converts it to a string using str()
before formatting it. The ANSI features %p and %n are not supported. Since
Python strings have an explicit length, %s conversions don’t assume that ’0’
is the end of the string.

For safety reasons, floating point precisions are clipped to 50; %f
conversions for numbers whose absolute value is over 1e25 are replaced by
%g conversions.5 All other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then the
formats in the string must have a parenthesized key into that dictionary
inserted immediately after the % character, and each format formats the
corresponding entry from the mapping. E.g.

        >>> count = 2
        >>> language = 'Python'
        >>> print '%(language)s has %(count)03d quote
types.' % vars()
        Python has 002 quote types.
        >>>

4 A tuple object in this case should be a singleton.
5 These numbers are fairly arbitrary. They are intended to avoid printing

endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a
particular machine.

9

In this case no * specifiers may occur in a format (since they a require
sequential parameter list).

Additional string operations are defined in standard module string and in
built-in module regex.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of
the object. These operations would be supported by other mutable sequence
types (when added to the language) as well. Strings and tuples are immutable
sequence types and such objects cannot be modified once created. The
following operations are defined on mutable sequence types (where x is an
arbitrary object): mutablesequencetypes listtype

[Sorry. Ignored \begin{tableiii} ... \end{tableiii}]
operations onmutablesequencetypes operations onsequencetypes operations
onlisttype subscriptassignment sliceassignment del

append count index insert remove reverse sort
Notes:
(1) Raises an exception when x is not found in s.

(2) The sort() method takes an optional argument specifying a comparison
function of two arguments (list items) which should return -1, 0 or 1
depending on whether the first argument is considered smaller than, equal
to, or larger than the second argument. Note that this slows the sorting
process down considerably; e.g. to sort a list in reverse order it is much
faster to use calls to sort() and reverse() than to use sort() with a
comparison function that reverses the ordering of the elements.

2.1.6    Mapping Types

A mapping object maps values of one type (the key type) to arbitrary objects.
Mappings are mutable objects. There is currently only one standard mapping
type, the dictionary. A dictionary’s keys are almost arbitrary values. The only
types of values not acceptable as keys are values containing lists or
dictionaries or other mutable types that are compared by value rather than by
object identity. Numeric types used for keys obey the normal rules for
numeric comparison: if two numbers compare equal (e.g. 1 and 1.0) then they
can be used interchangeably to index the same dictionary entry.

mappingtypes dictionarytype
Dictionaries are created by placing a comma-separated list of

key: varvalue pairs within braces, for example: {’jack’: 4098, ’sjoerd’: 4127}
or {4098: ’jack’, 4127: ’sjoerd’}.

The following operations are defined on mappings (where a is a mapping,
k is a key and x is an arbitrary object):

[Sorry. Ignored \begin{tableiii} ... \end{tableiii}]
operations onmappingtypes operations ondictionarytype del len

keys has\s\do5(k)ey
Notes:
(1) Raises an exception if k is not in the map.

(2) Keys and values are listed in random order.

2.1.7    Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support
only one or two operations.

Modules

The only special operation on a module is attribute access: m.name, where m
is a module and name accesses a name defined in m’s symbol table. Module
attributes can be assigned to. (Note that the import statement is not, strictly
spoken, an operation on a module object; import foo does not require a
module object named foo to exist, rather it requires an (external) definition for
a module named foo somewhere.)

A special member of every module is \s\do5(\s\do4())dict\s\do5(\s\do4()).
This is the dictionary containing the module’s symbol table. Modifying this
dictionary will actually change the module’s symbol table, but direct
assignment to the \s\do5(\s\do4())dict\s\do5(\s\do4()) attribute is not possible
(i.e., you can write m.\s\do5(\s\do4())dict\s\do5(\s\do4())[’a’] = 1, which defines
m.a to be 1, but you can’t write m.\s\do5(\s\do4())dict\s\do5(\s\do4())= {}.

Modules are written like this: <module ’sys’>.

Classes and Class Instances

Classes and Instances

(See Chapters 3 and 7 of the Python Reference Manual for these.)

Functions

Function objects are created by function definitions. The only operation on a
function object is to call it: func(argument-list).

There are really two flavors of function objects: built-in functions and
user-defined functions. Both support the same operation (to call the function),
but the implementation is different, hence the different object types.

The implementation adds two special read-only attributes:
f.func\s\do5(c)ode is a function’s code object (see below) and
f.func\s\do5(g)lobals is the dictionary used as the function’s global name
space (this is the same as m.\s\do5(\s\do4())dict\s\do5(\s\do4()) where m is the
module in which the function f was defined).

Methods

method

11

Methods are functions that are called using the attribute notation. There
are two flavors: built-in methods (such as append() on lists) and class instance
methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance
methods: m.im\s\do5(s)elf is the object whose method this is, and
m.im\s\do5(f)unc is the function implementing the method. Calling m(arg-1,
arg-2, …, arg-n) is completely equivalent to calling
m.im\s\do5(f)unc(m.im\s\do5(s)elf, arg-1, arg-2, …, arg-n).

(See the Python Reference Manual for more info.)

Code Objects

code
Code objects are used by the implementation to represent “pseudo-

compiled” executable Python code such as a function body. They differ from
function objects because they don’t contain a reference to their global
execution environment. Code objects are returned by the built-in compile()
function and can be extracted from function objects through their
func\s\do5(c)ode attribute. compile func\s\do5(c)ode

A code object can be executed or evaluated by passing it (instead of a
source string) to the exec statement or the built-in eval() function. exec eval

(See the Python Reference Manual for more info.)

Type Objects

Type objects represent the various object types. An object’s type is accessed
by the built-in function type(). There are no special operations on types. The
standard module types defines names for all standard built-in types. type
types

Types are written like this: <type ’int’>.

The Null Object

This object is returned by functions that don’t explicitly return a value. It
supports no special operations. There is exactly one null object, named None
(a built-in name).

It is written as None.

File Objects

File objects are implemented using ’s stdio package and can be created with
the built-in function open() described under Built-in Functions below. They
are also returned by some other built-in functions and methods, e.g.
posix.popen() and posix.fdopen() and the makefile() method of socket
objects. open popen fdopen makefile

When a file operation fails for an I/O-related reason, the exception
IOError is raised. This includes situations where the operation is not defined

for some reason, like seek() on a tty device or writing a file opened for
reading.

Files have the following methods:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Internal Objects

(See the Python Reference Manual for these.)

2.1.8    Special Attributes

The implementation adds a few special read-only attributes to several object
types, where they are relevant:
• x.\s\do5(\s\do4())dict\s\do5(\s\do4()) is a dictionary of some sort used to store

an object’s (writable) attributes;

• x.\s\do5(\s\do4())methods\s\do5(\s\do4()) lists the methods of many built-in
object types, e.g., [].\s\do5(\s\do4())methods\s\do5(\s\do4()) yields [’append’,
’count’, ’index’, ’insert’, ’remove’, ’reverse’, ’sort’];

• x.\s\do5(\s\do4())members\s\do5(\s\do4()) lists data attributes;

• x.\s\do5(\s\do4())class\s\do5(\s\do4()) is the class to which a class instance
belongs;

• x.\s\do5(\s\do4())bases\s\do5(\s\do4()) is the tuple of base classes of a class
object.

2.2    Built-in Exceptions

Exceptions are string objects. Two distinct string objects with the same value
are different exceptions. This is done to force programmers to use exception
names rather than their string value when specifying exception handlers. The
string value of all built-in exceptions is their name, but this is not a
requirement for user-defined exceptions or exceptions defined by library
modules.

13

The following exceptions can be generated by the interpreter or built-in
functions. Except where mentioned, they have an ‘associated value’ indicating
the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the
code).

User code can raise built-in exceptions. This can be used to test an
exception handler or to report an error condition ‘just like’ the situation in
which the interpreter raises the same exception; but beware that there is
nothing to prevent user code from raising an inappropriate error.

[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]

2.3    Built-in Functions

The Python interpreter has a number of functions built into it that are always
available. They are listed here in alphabetical order.

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

15

Chapter 3

Python Services

The modules described in this chapter provide a wide range of services
related to the Python interpreter and its interaction with its environment.
Here’s an overview:
sys — Access system specific parameters and functions.

types — Names for all built-in types.

traceback — Print or retrieve a stack traceback.

pickle — Convert Python objects to streams of bytes and back.

shelve — Python object persistency.

copy — Shallow and deep copy operations.

marshal — Convert Python objects to streams of bytes and back (with
different constraints).

imp — Access the implementation of the import statement.

\s\do5(\s\do4())builtin\s\do5(\s\do4()) — The set of built-in functions.

\s\do5(\s\do4())main\s\do5(\s\do4()) — The environment where the top-level
script is run.

3.1    Built-in Module sys

sys This module provides access to some variables used or maintained by the
interpreter and to functions that interact strongly with the interpreter. It is
always available.

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

3.2    Standard Module types

types
This module defines names for all object types that are used by the

standard Python interpreter (but not for the types defined by various extension
modules). It is safe to use “from types import *” — the module does not
export any other names besides the ones listed here. New names exported by
future versions of this module will all end in Type.

Typical use is for functions that do different things depending on their
argument types, like the following:

from types import *
def delete(list, item):
        if type(item) is IntType:
              del list[item]
        else:
              list.remove(item)

The module defines the following names:
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

17

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

3.3    Standard Module traceback

traceback
This module provides a standard interface to format and print stack traces

of Python programs. It exactly mimics the behavior of the Python interpreter
when it prints a stack trace. This is useful when you want to print stack traces
under program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored
in the variables sys.exc\s\do5(t)raceback and sys.last\s\do5(t)raceback.

The module defines the following functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

3.4    Standard Module pickle

pickle persistentobjects serializingobjects marshallingobjects
flatteningobjects picklingobjects

The pickle module implements a basic but powerful algorithm for
“pickling” (a.k.a. serializing, marshalling or flattening) nearly arbitrary
Python objects. This is the act of converting objects to a stream of bytes (and
back: “unpickling”). This is a more primitive notion than persistency —
although pickle reads and writes file objects, it does not handle the issue of
naming persistent objects, nor the (even more complicated) area of concurrent
access to persistent objects. The pickle module can transform a complex
object into a byte stream and it can transform the byte stream into an object
with the same internal structure. The most obvious thing to do with these byte
streams is to write them onto a file, but it is also conceivable to send them
across a network or store them in a database. The module shelve provides a
simple interface to pickle and unpickle objects on “dbm”-style database files.
shelve

Unlike the built-in module marshal, pickle handles the following
correctly: marshal
• recursive objects (objects containing references to themselves)

• object sharing (references to the same object in different places)

• user-defined classes and their instances

The data format used by pickle is Python-specific. This has the advantage
that there are no restrictions imposed by external standards such as CORBA
(which probably can’t represent pointer sharing or recursive objects);
however it means that non-Python programs may not be able to reconstruct
pickled Python objects.

The pickle data format uses a printable representation. This is slightly
more voluminous than a binary representation. However, small integers
actually take less space when represented as minimal-size decimal strings
than when represented as 32-bit binary numbers, and strings are only much
longer if they contain many control characters or 8-bit characters. The big
advantage of using printable (and of some other characteristics of pickle’s
representation) is that for debugging or recovery purposes it is possible for a
human to read the pickled file with a standard text editor. (I could have gone a
step further and used a notation like S-expressions, but the parser (currently
written in Python) would have been considerably more complicated and
slower, and the files would probably have become much larger.)

The pickle module doesn’t handle code objects, which the marshal
module does. I suppose pickle could, and maybe it should, but there’s
probably no great need for it right now (as long as marshal continues to be
used for reading and writing code objects), and at least this avoids the
possibility of smuggling Trojan horses into a program. marshal

For the benefit of persistency modules written using pickle, it supports the
notion of a reference to an object outside the pickled data stream. Such
objects are referenced by a name, which is an arbitrary string of printable
characters. The resolution of such names is not defined by the pickle module
— the persistent object module will have to implement a method
persistent\s\do5(l)oad. To write references to persistent objects, the persistent
module must define a method persistent\s\do5(i)d which returns either None
or the persistent ID of the object.

There are some restrictions on the pickling of class instances.
First of all, the class must be defined at the top level in a module.
Next, it must normally be possible to create class instances by calling the

class without arguments. If this is undesirable, the class can define a method
\s\do5(\s\do4())getinitargs\s\do5(\s\do4())(), which should return a tuple
containing the arguments to be passed to the class constructor
(\s\do5(\s\do4())init\s\do5(\s\do4())()). \s\do5(\s\do4())getinitargs\s\do5(\s\do4())
\s\do5(\s\do4())init\s\do5(\s\do4())

19

Classes can further influence how their instances are pickled — if the
class defines the method \s\do5(\s\do4())getstate\s\do5(\s\do4())(), it is called
and the return state is pickled as the contents for the instance, and if the class
defines the method \s\do5(\s\do4())setstate\s\do5(\s\do4())(), it is called with the
unpickled state. (Note that these methods can also be used to implement
copying class instances.) If there is no \s\do5(\s\do4())getstate\s\do5(\s\do4())()
method, the instance’s \s\do5(\s\do4())dict\s\do5(\s\do4()) is pickled. If there is
no \s\do5(\s\do4())setstate\s\do5(\s\do4())() method, the pickled object must be a
dictionary and its items are assigned to the new instance’s dictionary. (If a
class defines both \s\do5(\s\do4())getstate\s\do5(\s\do4())() and
\s\do5(\s\do4())setstate\s\do5(\s\do4())(), the state object needn’t be a dictionary
— these methods can do what they want.) This protocol is also used by the
shallow and deep copying operations defined in the copy module.
\s\do5(\s\do4())getstate\s\do5(\s\do4()) \s\do5(\s\do4())setstate\s\do5(\s\do4())
\s\do5(\s\do4())dict\s\do5(\s\do4())

Note that when class instances are pickled, their class’s code and data are
not pickled along with them. Only the instance data are pickled. This is done
on purpose, so you can fix bugs in a class or add methods and still load
objects that were created with an earlier version of the class. If you plan to
have long-lived objects that will see many versions of a class, it may be
worthwhile to put a version number in the objects so that suitable conversions
can be made by the class’s \s\do5(\s\do4())setstate\s\do5(\s\do4())() method.

When a class itself is pickled, only its name is pickled — the class
definition is not pickled, but re-imported by the unpickling process.
Therefore, the restriction that the class must be defined at the top level in a
module applies to pickled classes as well.

The interface can be summarized as follows.
To pickle an object x onto a file f, open for writing:

p = pickle.Pickler(f)
p.dump(x)

A shorthand for this is:

pickle.dump(x, f)

To unpickle an object x from a file f, open for reading:

u = pickle.Unpickler(f)
x = u.load()

A shorthand is:

x = pickle.load(f)

The Pickler class only calls the method f.write with a string argument.
The Unpickler calls the methods f.read (with an integer argument) and
f.readline (without argument), both returning a string. It is explicitly allowed
to pass non-file objects here, as long as they have the right methods.
Unpickler Pickler

The following types can be pickled:
• None

• integers, long integers, floating point numbers

• strings

• tuples, lists and dictionaries containing only picklable objects

• classes that are defined at the top level in a module

• instances of such classes whose \s\do5(\s\do4())dict\s\do5(\s\do4()) or
\s\do5(\s\do4())setstate\s\do5(\s\do4())() is picklable

Attempts to pickle unpicklable objects will raise the PicklingError
exception; when this happens, an unspecified number of bytes may have been
written to the file.

It is possible to make multiple calls to the dump() method of the same
Pickler instance. These must then be matched to the same number of calls to
the load() instance of the corresponding Unpickler instance. If the same object
is pickled by multiple dump() calls, the load() will all yield references to the
same object. Warning: this is intended for pickling multiple objects without
intervening modifications to the objects or their parts. If you modify an object
and then pickle it again using the same Pickler instance, the object is not
pickled again — a reference to it is pickled and the Unpickler will return the
old value, not the modified one. (There are two problems here: (a) detecting
changes, and (b) marshalling a minimal set of changes. I have no answers.
Garbage Collection may also become a problem here.)

Apart from the Pickler and Unpickler classes, the module defines the
following functions, and an exception:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]

3.5    Standard Module shelve

shelve pickle dbm gdbm
A “shelf” is a persistent, dictionary-like object. The difference with “dbm”

databases is that the values (not the keys!) in a shelf can be essentially

21

arbitrary Python objects — anything that the pickle module can handle. This
includes most class instances, recursive data types, and objects containing lots
of shared sub-objects. The keys are ordinary strings.

To summarize the interface (key is a string, data is an arbitrary object):

import shelve

d = shelve.open(filename) # open, with (g)dbm
filename -- no suffix

d[key] = data      # store data at key (overwrites old
data if
                                # using an existing key)
data = d[key]      # retrieve data at key (raise
KeyError if no
                                # such key)
del d[key]            # delete data stored at key
(raises KeyError
                                # if no such key)
flag = d.has_key(key)      # true if the key exists
list = d.keys() # a list of all existing keys
(slow!)

d.close()              # close it

Restrictions:
• The choice of which database package will be used (e.g. dbm or gdbm)

depends on which interface is available. Therefore it isn’t safe to open the
database directly using dbm. The database is also (unfortunately) subject
to the limitations of dbm, if it is used — this means that (the pickled
representation of) the objects stored in the database should be fairly small,
and in rare cases key collisions may cause the database to refuse updates.

• Dependent on the implementation, closing a persistent dictionary may or
may not be necessary to flush changes to disk.

• The shelve module does not support concurrent read/write access to
shelved objects. (Multiple simultaneous read accesses are safe.) When a
program has a shelf open for writing, no other program should have it
open for reading or writing. file locking can be used to solve this, but this
differs across versions and requires knowledge about the database
implementation used.

3.6    Standard Module copy

copy
copy deepcopy
This module provides generic (shallow and deep) copying operations.
Interface summary:

import copy

x = copy.copy(y)                # make a shallow copy of y
x = copy.deepcopy(y)        # make a deep copy of y

For module specific errors, copy.error is raised.
The difference between shallow and deep copying is only relevant for

compound objects (objects that contain other objects, like lists or class
instances):
• A shallow copy constructs a new compound object and then (to the extent

possible) inserts references into it to the objects found in the original.

• A deep copy constructs a new compound object and then, recursively,
inserts copies into it of the objects found in the original.

Two problems often exist with deep copy operations that don’t exist with
shallow copy operations:
• Recursive objects (compound objects that, directly or indirectly, contain a

reference to themselves) may cause a recursive loop.

• Because deep copy copies everything it may copy too much, e.g.
administrative data structures that should be shared even between copies.

Python’s deepcopy() operation avoids these problems by:
• keeping a table of objects already copied during the current copying pass;

and

• letting user-defined classes override the copying operation or the set of
components copied.

This version does not copy types like module, class, function, method, nor
stack trace, stack frame, nor file, socket, window, nor array, nor any similar
types.

Classes can use the same interfaces to control copying that they use to
control pickling: they can define methods called
\s\do5(\s\do4())getinitargs\s\do5(\s\do4())(), \s\do5(\s\do4())getstate\s\do5(\s\do4())
() and \s\do5(\s\do4())setstate\s\do5(\s\do4())(). See the description of module
pickle for information on these methods. pickle

23

\s\do5(\s\do4())getinitargs\s\do5(\s\do4())
\s\do5(\s\do4())getstate\s\do5(\s\do4()) \s\do5(\s\do4())setstate\s\do5(\s\do4())

3.7    Built-in Module marshal

marshal This module contains functions that can read and write Python values
in a binary format. The format is specific to Python, but independent of
machine architecture issues (e.g., you can write a Python value to a file on a
PC, transport the file to a Sun, and read it back there). Details of the format
are undocumented on purpose; it may change between Python versions
(although it rarely does).6

This is not a general “persistency” module. For general persistency and
transfer of Python objects through RPC calls, see the modules pickle and
shelve. The marshal module exists mainly to support reading and writing the
“pseudo-compiled” code for Python modules of .pyc files. pickle shelve code

Not all Python object types are supported; in general, only objects whose
value is independent from a particular invocation of Python can be written
and read by this module. The following types are supported: None, integers,
long integers, floating point numbers, strings, tuples, lists, dictionaries, and
code objects, where it should be understood that tuples, lists and dictionaries
are only supported as long as the values contained therein are themselves
supported; and recursive lists and dictionaries should not be written (they will
cause infinite loops).

Caveat: On machines where C’s long int type has more than 32 bits (such
as the DEC Alpha), it is possible to create plain Python integers that are
longer than 32 bits. Since the current marshal module uses 32 bits to transfer
plain Python integers, such values are silently truncated. This particularly
affects the use of very long integer literals in Python modules — these will be
accepted by the parser on such machines, but will be silently be truncated
when the module is read from the .pyc instead.7

There are functions that read/write files as well as functions operating on
strings.

The module defines these functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

6 The name of this module stems from a bit of terminology used by the
designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking,
“to marshal” means to convert some data from internal to external form
(in an RPC buffer for instance) and “unmarshalling” for the reverse
process.

7 A solution would be to refuse such literals in the parser, since they are
inherently non-portable. Another solution would be to let the marshal
module raise an exception when an integer value would be truncated. At
least one of these solutions will be implemented in a future version.

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

3.8    Built-in Module imp

imp
This module provides an interface to the mechanisms used to implement

the import statement. It defines the following constants and functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

The following constants with integer values, defined in the module, are
used to indicate the search result of imp.find\s\do5(m)odule.

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

3.8.1    Examples

The following function emulates the default import statement:

import imp
import sys

def __import__(name, globals=None, locals=None,
fromlist=None):
        # Fast path: see if the module has already been
imported.
        if sys.modules.has_key(name):
                return sys.modules[name]

        # If any of the following calls raises an
exception,
        # there's a problem we can't handle -- let the
caller handle it.

25

        # See if it's a built-in module.
        m = imp.init_builtin(name)
        if m:
                return m

        # See if it's a frozen module.
        m = imp.init_frozen(name)
        if m:
                return m

        # Search the default path (i.e. sys.path).
        fp, pathname, (suffix, mode, type) =
imp.find_module(name)

        # See what we got.
        try:
                if type == imp.C_EXTENSION:
                        return imp.load_dynamic(name,
pathname)
                if type == imp.PY_SOURCE:
                        return imp.load_source(name,
pathname, fp)
                if type == imp.PY_COMPILED:
                        return imp.load_compiled(name,
pathname, fp)

                # Shouldn't get here at all.
                raise ImportError, '%s: unknown module
type (%d)' % (name, type)
        finally:
                # Since we may exit via an exception,
close fp explicitly.
                fp.close()

3.9    Built-in Module parser

parser
The parser module provides an interface to Python’s internal parser and

byte-code compiler. The primary purpose for this interface is to allow Python
code to edit the parse tree of a Python expression and create executable code
from this. This can be better than trying to parse and modify an arbitrary
Python code fragment as a string, and ensures that parsing is performed in a
manner identical to the code forming the application. It’s also faster.

There are a few things to note about this module which are important to
making use of the data structures created. This is not a tutorial on editing the
parse trees for Python code.

Most importantly, a good understanding of the Python grammar processed
by the internal parser is required. For full information on the language syntax,
refer to the Language Reference. The parser itself is created from a grammar
specification defined in the file Grammar/Grammar in the standard Python
distribution. The parse trees stored in the “AST objects” created by this
module are the actual output from the internal parser when created by the
expr() or suite() functions, described below. The AST objects created by
tuple2ast() faithfully simulate those structures.

Each element of the tuples returned by ast2tuple() has a simple form.
Tuples representing non-terminal elements in the grammar always have a
length greater than one. The first element is an integer which identifies a
production in the grammar. These integers are given symbolic names in the C
header file Include/graminit.h and the Python module Lib/symbol.py. Each
additional element of the tuple represents a component of the production as
recognized in the input string: these are always tuples which have the same
form as the parent. An important aspect of this structure which should be
noted is that keywords used to identify the parent node type, such as the
keyword if in an if_stmt, are included in the node tree without any special
treatment. For example, the if keyword is represented by the tuple (1, ’if’),
where 1 is the numeric value associated with all NAME elements, including
variable and function names defined by the user.

Terminal elements are represented in much the same way, but without any
child elements and the addition of the source text which was identified. The
example of the if keyword above is representative. The various types of
terminal symbols are defined in the C header file Include/token.h and the
Python module Lib/token.py.

The AST objects are not actually required to support the functionality of
this module, but are provided for three purposes: to allow an application to
amortize the cost of processing complex parse trees, to provide a parse tree
representation which conserves memory space when compared to the Python
tuple representation, and to ease the creation of additional modules in C
which manipulate parse trees. A simple “wrapper” module may be created in
Python if desired to hide the use of AST objects.

The parser module defines the following functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

27

3.9.1    Exceptions and Error Handling

The parser module defines a single exception, but may also pass other built-in
exceptions from other portions of the Python runtime environment. See each
function for information about the exceptions it can raise.

[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
Note that the functions compileast(), expr(), and suite() may throw

exceptions which are normally thrown by the parsing and compilation
process. These include the built in exceptions MemoryError, OverflowError,
SyntaxError, and SystemError. In these cases, these exceptions carry all the
meaning normally associated with them. Refer to the descriptions of each
function for detailed information.

3.9.2    Example

A simple example:

>>> import parser
>>> ast = parser.expr('a + 5')
>>> code = parser.compileast(ast)
>>> a = 5
>>> eval(code)
10

3.9.3    AST Objects

AST objects (returned by expr(), suite(), and tuple2ast(), described above)
have no methods of their own. Some of the functions defined which accept an
AST object as their first argument may change to object methods in the
future.

Ordered and equality comparisons are supported between AST objects.

3.10    Built-in Module
\s\do5(\s\do4())builtin\s\do5(\s\do4())

\s\do5(\s\do4())builtin\s\do5(\s\do4())
This module provides direct access to all ‘built-in’ identifiers of Python;

e.g. \s\do5(\s\do4())builtin\s\do5(\s\do4()).open is the full name for the built-in
function open. See the section on Built-in Functions in the previous chapter.

3.11    Built-in Module
\s\do5(\s\do4())main\s\do5(\s\do4())

\s\do5(\s\do4())main\s\do5(\s\do4()) This module represents the (otherwise
anonymous) scope in which the interpreter’s main program executes —
commands read either from standard input or from a script file.

29

Chapter 4

String Services

The modules described in this chapter provide a wide range of string
manipulation operations. Here’s an overview:
string — Common string operations.

regex — Regular expression search and match operations.

regsub — Substitution and splitting operations that use regular expressions.

struct — Interpret strings as packed binary data.

4.1    Standard Module string

string
This module defines some constants useful for checking character classes

and some useful string functions. See the modules regex and regsub for string
functions based on regular expressions.

The constants defined in this module are are:
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

The functions defined in this module are:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

This module is implemented in Python. Much of its functionality has been
reimplemented in the built-in module strop. However, you should never
import the latter module directly. When string discovers that strop exists, it
transparently replaces parts of itself with the implementation from strop. After
initialization, there is no overhead in using string instead of strop. strop

4.2    Built-in Module regex

regex This module provides regular expression matching operations similar to
those found in Emacs. It is always available.

By default the patterns are Emacs-style regular expressions, with one
exception. There is a way to change the syntax to match that of several well-
known utilities. The exception is that Emacs’ s pattern is not supported, since
the original implementation references the Emacs syntax tables.

This module is 8-bit clean: both patterns and strings may contain null
bytes and characters whose high bit is set.

Please note: There is a little-known fact about Python string literals which
means that you don’t usually have to worry about doubling backslashes, even
though they are used to escape special characters in string literals as well as in
regular expressions. This is because Python doesn’t remove backslashes from
string literals if they are followed by an unrecognized escape character.
However, if you want to include a literal backslash in a regular expression
represented as a string literal, you have to quadruple it. E.g. to extract
LATEX section{ …} headers from a document, you can use this pattern:

’section{(.*)}’.
The module defines these functions, and an exception:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

Compiled regular expression objects support these methods:

31

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Compiled regular expressions support these data attributes:
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

4.3    Standard Module regsub

regsub This module defines a number of functions useful for working with
regular expressions (see built-in module regex).

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

4.4    Built-in Module struct

struct Cstructures
This module performs conversions between Python values and C structs

represented as Python strings. It uses format strings (explained below) as
compact descriptions of the lay-out of the C structs and the intended
conversion to/from Python values.

See also built-in module array. array
The module defines the following exception and functions:
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Format characters have the following meaning; the conversion between C
and Python values should be obvious given their types:

[Sorry. Ignored \begin{tableiii} ... \end{tableiii}]
A format character may be preceded by an integral repeat count; e.g. the

format string ’4h’ means exactly the same as ’hhhh’.
C numbers are represented in the machine’s native format and byte order,

and properly aligned by skipping pad bytes if necessary (according to the
rules used by the C compiler).

Examples (all on a big-endian machine):

pack('hhl', 1, 2, 3) ==
'\000\001\000\002\000\000\000\003'

unpack('hhl', '\000\001\000\002\000\000\000\003') ==
(1, 2, 3)
calcsize('hhl') == 8

Hint: to align the end of a structure to the alignment requirement of a
particular type, end the format with the code for that type with a repeat count
of zero, e.g. the format ’llh0l’ specifies two pad bytes at the end, assuming
longs are aligned on 4-byte boundaries.

(More format characters are planned, e.g. ’s’ for character arrays, upper
case for unsigned variants, and a way to specify the byte order, which is
useful for [de]constructing network packets and reading/writing portable
binary file formats like TIFF and AIFF.)

33

Chapter 5

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are
available in all Python versions. Here’s an overview:
math — Mathematical functions (sin() etc.).

rand — Integer random number generator.

whrandom — Floating point random number generator.

array — Efficient arrays of uniformly typed numeric values.

5.1    Built-in Module math

math
This module is always available. It provides access to the mathematical

functions defined by the C standard. They are:   
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

acos(x), asin(x), atan(x), atan2(x y), ceil(x), cos(x), cosh(x), exp(x), fabs(x),
floor(x), fmod(x y), frexp(x), hypot(x y), ldexp(x y), log(x), log10(x), modf(x),
pow(x y), sin(x), sinh(x), sqrt(x), tan(x), tanh(x). "

Note that frexp and modf have a different call/return pattern than their C
equivalents: they take a single argument and return a pair of values, rather
than returning their second return value through an ‘output parameter’ (there
is no such thing in Python).

The hypot function, which is not standard C, is not available on all
platforms.

The module also defines two mathematical constants:
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

pi and e. "

5.2    Standard Module rand

rand This module implements a pseudo-random number generator with an
interface similar to rand() in C. It defines the following functions:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

5.3    Standard Module whrandom

whrandom This module implements a Wichmann-Hill pseudo-random
number generator. It defines the following functions:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

5.4    Built-in Module array

array
This module defines a new object type which can efficiently represent an

array of basic values: characters, integers, floating point numbers. Arrays are
sequence types and behave very much like lists, except that the type of
objects stored in them is constrained. The type is specified at object creation
time by using a type code, which is a single character. The following type
codes are defined:

[Sorry. Ignored \begin{tableiii} ... \end{tableiii}]
The actual representation of values is determined by the machine

architecture (strictly speaking, by the C implementation). The actual size can
be accessed through the itemsize attribute.

See also built-in module struct. struct
The module defines the following function:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
Array objects support the following data items and methods:

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

When an array object is printed or converted to a string, it is represented
as array(typecode, initializer). The initializer is omitted if the array is empty,
otherwise it is a string if the typecode is ’c’, otherwise it is a list of numbers.
The string is guaranteed to be able to be converted back to an array with the
same type and value using reverse quotes (“). Examples:

array('l')
array('c', 'hello world')
array('l', [1, 2, 3, 4, 5])

35

array('d', [1.0, 2.0, 3.14])

Chapter 6

Generic Operating System Services

The modules described in this chapter provide interfaces to operating system
features that are available on (almost) all operating systems, such as files and
a clock. The interfaces are generally modelled after the or C interfaces but
they are available on most other systems as well. Here’s an overview:
os — Miscellaneous OS interfaces.

time — Time access and conversions.

getopt — Parser for command line options.

tempfile — Generate temporary file names.

6.1    Standard Module os

os This module provides a more portable way of using operating system (OS)
dependent functionality than importing an OS dependent built-in module like
posix.

When the optional built-in module posix is available, this module exports
the same functions and data as posix; otherwise, it searches for an OS
dependent built-in module like mac and exports the same functions and data
as found there. The design of all Python’s built-in OS dependent modules is
such that as long as the same functionality is available, it uses the same
interface; e.g., the function os.stat(file) returns stat info about a file in a
format compatible with the POSIX interface.

Extensions peculiar to a particular OS are also available through the os
module, but using them is of course a threat to portability!

Note that after the first time os is imported, there is no performance
penalty in using functions from os instead of directly from the OS dependent
built-in module, so there should be no reason not to use os!

In addition to whatever the correct OS dependent module exports, the
following variables and functions are always exported by os:

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

37

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

(The functions os.execv() and execve() are not documented here, since
they are implemented by the OS dependent module. If the OS dependent
module doesn’t define either of these, the functions that rely on it will raise an
exception. They are documented in the section on module posix, together with
all other functions that os imports from the OS dependent module.)

6.2    Built-in Module time

time This module provides various time-related functions. It is always
available.

An explanation of some terminology and conventions is in order.
• The “epoch” is the point where the time starts. On January 1st of that year,

at 0 hours, the “time since the epoch” is zero. For UNIX, the epoch is
1970. To find out what the epoch is, look at gmtime(0).

• UTC is Coordinated Universal Time (formerly known as Greenwich Mean
Time). The acronym UTC is not a mistake but a compromise between
English and French.

• DST is Daylight Saving Time, an adjustment of the timezone by (usually)
one hour during part of the year. DST rules are magic (determined by local
law) and can change from year to year. The C library has a table
containing the local rules (often it is read from a system file for flexibility)
and is the only source of True Wisdom in this respect.

• The precision of the various real-time functions may be less than
suggested by the units in which their value or argument is expressed. E.g.
on most UNIX systems, the clock “ticks” only 50 or 100 times a second,
and on the Mac, times are only accurate to whole seconds.

The module defines the following functions and data items:
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

6.3    Standard Module getopt

getopt This module helps scripts to parse the command line arguments in
sys.argv. It uses the same conventions as the getopt() function (including the
special meanings of arguments of the form - and –). It defines the function
getopt.getopt(args, options) and the exception getopt.error.

The first argument to getopt() is the argument list passed to the script with
its first element chopped off (i.e., sys.argv[1:]). The second argument is the
string of option letters that the script wants to recognize, with options that
require an argument followed by a colon (i.e., the same format that getopt()
uses). The return value consists of two elements: the first is a list of option-
and-value pairs; the second is the list of program arguments left after the
option list was stripped (this is a trailing slice of the first argument). Each
option-and-value pair returned has the option as its first element, prefixed
with a hyphen (e.g., ’-x’), and the option argument as its second element, or
an empty string if the option has no argument. The options occur in the list in
the same order in which they were found, thus allowing multiple occurrences.
Example:

>>> import getopt, string
>>> args = string.split('-a -b -cfoo -d bar a1 a2')
>>> args
['-a', '-b', '-cfoo', '-d', 'bar', 'a1', 'a2']
>>> optlist, args = getopt.getopt(args, 'abc:d:')
>>> optlist
[('-a', ''), ('-b', ''), ('-c', 'foo'), ('-d',
'bar')]
>>> args
['a1', 'a2']
>>>

The exception getopt.error = ’getopt error’ is raised when an
unrecognized option is found in the argument list or when an option requiring
an argument is given none. The argument to the exception is a string
indicating the cause of the error.

6.4    Standard Module tempfile

tempfile temporaryfile name temporaryfile

39

This module generates temporary file names. It is not specific, but it may
require some help on non- systems.

Note: the modules does not create temporary files, nor does it
automatically remove them when the current process exits or dies.

The module defines a single user-callable function:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

The module uses two global variables that tell it how to construct a
temporary name. The caller may assign values to them; by default they are
initialized at the first call to mktemp().

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
TMPDIR

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
Warning: if a process uses mktemp(), then calls fork() and both parent

and child continue to use mktemp(), the processes will generate conflicting
temporary names. To resolve this, the child process should assign None to
template, to force recomputing the default on the next call to mktemp().

Chapter 7

Optional Operating System Services

The modules described in this chapter provide interfaces to operating system
features that are available on selected operating systems only. The interfaces
are generally modelled after the or C interfaces but they are available on
some other systems as well (e.g. Windows or NT). Here’s an overview:
signal — Set handlers for asynchronous events.

socket — Low-level networking interface.

select — Wait for I/O completion on multiple streams.

thread — Create multiple threads of control within one namespace.

7.1    Built-in Module signal

signal This module provides mechanisms to use signal handlers in Python.
Some general rules for working with signals handlers:
• A handler for a particular signal, once set, remains installed until it is

explicitly reset (i.e. Python uses the BSD style interface).

• There is no way to “block” signals temporarily from critical sections (since
this is not supported by all flavors).

• Although Python signal handlers are called asynchronously as far as the
Python user is concerned, they can only occur between the “atomic”
instructions of the Python interpreter. This means that signals arriving
during long calculations implemented purely in C (e.g. regular expression
matches on large bodies of text) may be delayed for an arbitrary amount of
time.

• When a signal arrives during an I/O operation, it is possible that the I/O
operation raises an exception after the signal handler returns. This is
dependent on the underlying system’s semantics regarding interrupted
system calls.

• Because the C signal handler always returns, it makes little sense to catch
synchronous errors like SIGFPE or SIGSEGV.

• Python installs a small number of signal handlers by default: SIGPIPE is
ignored (so write errors on pipes and sockets can be reported as ordinary

41

Python exceptions), SIGINT is translated into a KeyboardInterrupt
exception, and SIGTERM is caught so that necessary cleanup (especially
sys.exitfunc) can be performed before actually terminating. All of these
can be overridden.

• Some care must be taken if both signals and threads are used in the same
program. The fundamental thing to remember in using signals and threads
simultaneously is: always perform signal() operations in the main thread of
execution. Any thread can perform an alarm(), getsignal(), or pause(); only
the main thread can set a new signal handler, and the main thread will be
the only one to receive signals (this is enforced by the Python signal
module, even if the underlying thread implementation supports sending
signals to individual threads). This means that signals can’t be used as a
means of interthread communication. Use locks instead.

The variables defined in the signal module are:
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

The signal module defines the following functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

7.2    Built-in Module socket

socket This module provides access to the BSD socket interface. It is
available on systems that support this interface.

For an introduction to socket programming (in C), see the following
papers: An Introductory 4.3BSD Interprocess Communication Tutorial, by
Stuart Sechrest and An Advanced 4.3BSD Interprocess Communication
Tutorial, by Samuel J. Leffler et al, both in the Programmer’s Manual,
Supplementary Documents 1 (sections PS1:7 and PS1:8). The manual pages
for the various socket-related system calls are also a valuable source of
information on the details of socket semantics.

The Python interface is a straightforward transliteration of the system call
and library interface for sockets to Python’s object-oriented style: the socket()
function returns a socket object whose methods implement the various socket
system calls. Parameter types are somewhat higer-level than in the C
interface: as with read() and write() operations on Python files, buffer
allocation on receive operations is automatic, and buffer length is implicit on
send operations.

Socket addresses are represented as a single string for the
AF\s\do5(U)NIX address family and as a pair (host, port) for the
AF\s\do5(I)NET address family, where host is a string representing either a
hostname in Internet domain notation like ’daring.cwi.nl’ or an IP address like
’100.50.200.5’, and port is an integral port number. Other address families are
currently not supported. The address format required by a particular socket
object is automatically selected based on the address family specified when
the socket object was created.

All errors raise exceptions. The normal exceptions for invalid argument
types and out-of-memory conditions can be raised; errors related to socket or
address semantics raise the error socket.error.

Non-blocking mode is supported through the setblocking() method.
The module socket exports the following constants and functions:
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

7.2.1    Socket Objects

Socket objects have the following methods. Except for makefile() these
correspond to system calls applicable to sockets.

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

43

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Note that there are no methods read() or write(); use recv() and send()
without flags argument instead.

7.2.2    Example

Socket Example
Here are two minimal example programs using the TCP/IP protocol: a

server that echoes all data that it receives back (servicing only one client), and
a client using it. Note that a server must perform the sequence socket, bind,
listen, accept (possibly repeating the accept to service more than one client),
while a client only needs the sequence socket, connect. Also note that the
server does not send/receive on the socket it is listening on but on the new
socket returned by accept.

Echo server program
from socket import *
HOST = ''                                  # Symbolic name
meaning the local host
PORT = 50007                            # Arbitrary non-
privileged server
s = socket(AF_INET, SOCK_STREAM)
s.bind(HOST, PORT)
s.listen(1)
conn, addr = s.accept()
print 'Connected by', addr
while 1:
        data = conn.recv(1024)
        if not data: break
        conn.send(data)
conn.close()

Echo client program
from socket import *
HOST = 'daring.cwi.nl'        # The remote host
PORT = 50007                            # The same port as
used by the server
s = socket(AF_INET, SOCK_STREAM)
s.connect(HOST, PORT)
s.send('Hello, world')
data = s.recv(1024)
s.close()

print 'Received', `data`

7.3    Built-in Module select

select
This module provides access to the function select available in most

versions. It defines the following:
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
socket stdwin

7.4    Built-in Module thread

thread
This module provides low-level primitives for working with multiple

threads (a.k.a. light-weight processes or tasks) — multiple threads of control
sharing their global data space. For synchronization, simple locks (a.k.a.
mutexes or binary semaphores) are provided.

The module is optional and supported on SGI IRIX 4.x and 5.x and Sun
Solaris 2.x systems, as well as on systems that have a PTHREAD
implementation (e.g. KSR).

It defines the following constant and functions:
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Lock objects have the following methods:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Caveats:
• Threads interact strangely with interrupts: the KeyboardInterrupt exception

will be received by an arbitrary thread. (When the signal module is
available, interrupts always go to the main thread.)

• Calling sys.exit() or raising the SystemExit is equivalent to calling
thread.exit\s\do5(t)hread().

• Not all built-in functions that may block waiting for I/O allow other
threads to run. (The most popular ones (sleep, read, select) work as
expected.)

45

Chapter 8

UNIX Specific Services

The modules described in this chapter provide interfaces to features that are
unique to the operating system, or in some cases to some or many variants of
it. Here’s an overview:
posix — The most common Posix system calls (normally used via module

os).

posixpath — Common Posix pathname manipulations (normally used via
os.path).

pwd — The password database (getpwnam() and friends).

grp — The group database (getgrnam() and friends).

dbm — The standard “database” interface, based on ndbm.

gdbm — GNU’s reinterpretation of dbm.

termios — Posix style tty control.

fcntl — The fcntl() and ioctl() system calls.

posixfile — A file-like object with support for locking.

8.1    Built-in Module posix

posix
This module provides access to operating system functionality that is

standardized by the C Standard and the POSIX standard (a thinly disguised
interface).

Do not import this module directly. Instead, import the module os, which
provides a portable version of this interface. On , the os module provides a
superset of the posix interface. On non- operating systems the posix module is
not available, but a subset is always available through the os interface. Once
os is imported, there is no performance penalty in using it instead of posix. os

The descriptions below are very terse; refer to the corresponding manual
entry for more information. Arguments called path refer to a pathname given
as a string.

Errors are reported as exceptions; the usual exceptions are given for type
errors, while errors reported by the system calls raise posix.error, described
below.

Module posix defines the following data items:
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
It defines the following functions and constants:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

47

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

8.2    Standard Module posixpath

posixpath
This module implements some useful functions on POSIX pathnames.
Do not import this module directly. Instead, import the module os and use

os.path. os
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

8.3    Built-in Module pwd

pwd This module provides access to the password database. It is available on
all versions.

Password database entries are reported as 7-tuples containing the
following items from the password database (see <pwd.h>), in order:
pw\s\do5(n)ame, pw\s\do5(p)asswd, pw\s\do5(u)id, pw\s\do5(g)id,
pw\s\do5(g)ecos, pw\s\do5(d)ir, pw\s\do5(s)hell. The uid and gid items are
integers, all others are strings. An exception is raised if the entry asked for
cannot be found.

It defines the following items:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

8.4    Built-in Module grp

grp This module provides access to the group database. It is available on all
versions.

Group database entries are reported as 4-tuples containing the following
items from the group database (see <grp.h>), in order: gr\s\do5(n)ame,
gr\s\do5(p)asswd, gr\s\do5(g)id, gr\s\do5(m)em. The gid is an integer, name
and password are strings, and the member list is a list of strings. (Note that
most users are not explicitly listed as members of the group they are in
according to the password database.) An exception is raised if the entry asked
for cannot be found.

It defines the following items:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

8.5    Built-in Module dbm

dbm
The dbm module provides an interface to the (n)dbm library. Dbm

objects behave like mappings (dictionaries), except that keys and values are
always strings. Printing a dbm object doesn’t print the keys and values, and
the items() and values() methods are not supported.

See also the gdbm module, which provides a similar interface using the
GNU GDBM library. gdbm

The module defines the following constant and functions:
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

8.6    Built-in Module gdbm

gdbm
This module is nearly identical to the dbm module, but uses GDBM

instead. Its interface is identical, and not repeated here.
Warning: the file formats created by gdbm and dbm are incompatible.

dbm

49

8.7    Built-in Module termios

termios PosixI/O control ttyI/O control
This module provides an interface to the Posix calls for tty I/O control.

For a complete description of these calls, see the Posix or manual pages. It is
only available for those versions that support Posix termios style tty I/O
control (and then only if configured at installation time).

All functions in this module take a file descriptor fd as their first
argument. This must be an integer file descriptor, such as returned by
sys.stdin.fileno().

This module should be used in conjunction with the TERMIOS module,
which defines the relevant symbolic constants (see the next section).

The module defines the following functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

8.7.1    Example

termios Example
Here’s a function that prompts for a password with echoing turned off.

Note the technique using a separate termios.tcgetattr() call and a try … finally
statement to ensure that the old tty attributes are restored exactly no matter
what happens:

def getpass(prompt = "Password: "):
        import termios, TERMIOS, sys
        fd = sys.stdin.fileno()
        old = termios.tcgetattr(fd)
        new = termios.tcgetattr(fd)
        new[3] = new[3] & ~TERMIOS.ECHO                    #
lflags
        try:
                termios.tcsetattr(fd, TERMIOS.TCSADRAIN,
new)
                passwd = raw_input(prompt)
        finally:
                termios.tcsetattr(fd, TERMIOS.TCSADRAIN,
old)
        return passwd

8.8    Standard Module TERMIOS

TERMIOS PosixI/O control ttyI/O control
This module defines the symbolic constants required to use the termios

module (see the previous section). See the Posix or manual pages (or the
source) for a list of those constants.

Note: this module resides in a system-dependent subdirectory of the
Python library directory. You may have to generate it for your particular
system using the script Tools/scripts/h2py.py.

8.9    Built-in Module fcntl

fcntl file control I/O control
This module performs file control and I/O control on file descriptors. It is

an interface to the fcntl() and ioctl() routines. File descriptors can be obtained
with the fileno() method of a file or socket object.

The module defines the following functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

If the library modules FCNTL or IOCTL are missing, you can find the
opcodes in the C include files sys/fcntl and sys/ioctl. You can create the
modules yourself with the h2py script, found in the Tools/scripts directory.
FCNTL IOCTL

Examples (all on a SVR4 compliant system):

import struct, FCNTL

file = open(...)
rv = fcntl(file.fileno(), FCNTL.O_NDELAY, 1)

lockdata = struct.pack('hhllhh', FCNTL.F_WRLCK, 0,
0, 0, 0, 0)
rv = fcntl(file.fileno(), FCNTL.F_SETLKW, lockdata)

Note that in the first example the return value variable rv will hold an
integer value; in the second example it will hold a string value.

8.10    Standard Module posixfile

posixfile posixfile object
This module implements some additional functionality over the built-in

file objects. In particular, it implements file locking, control over the file
flags, and an easy interface to duplicate the file object. The module defines a
new file object, the posixfile object. It has all the standard file object methods

51

and adds the methods described below. This module only works for certain
flavors of , since it uses fcntl() for file locking.

To instantiate a posixfile object, use the open() function in the posixfile
module. The resulting object looks and feels roughly the same as a standard
file object.

The posixfile module defines the following constants:
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

The posixfile module defines the following functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

The posixfile object defines the following additional methods:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

All methods return IOError when the request fails.
Format characters for the lock() method have the following meaning:

[Sorry. Ignored \begin{tableiii} ... \end{tableiii}]
In addition the following modifiers can be added to the format:

[Sorry. Ignored \begin{tableiii} ... \end{tableiii}]
Note:
(1) The lock returned is in the format (mode, len, start, whence, pid)

where mode is a character representing the type of lock (’r’ or ’w’). This
modifier prevents a request from being granted; it is for query purposes only.

Format character for the flags() method have the following meaning:
[Sorry. Ignored \begin{tableiii} ... \end{tableiii}]

In addition the following modifiers can be added to the format:
[Sorry. Ignored \begin{tableiii} ... \end{tableiii}]

Note:
(1) The ! and = modifiers are mutually exclusive.
(2) This string represents the flags after they may have been altered by the

same call.
Examples:

from posixfile import *

file = open('/tmp/test', 'w')
file.lock('w|')
...
file.lock('u')
file.close()

8.11    Built-in Module syslog

syslog
This module provides an interface to the Unix syslog library routines.

Refer to the manual pages for a detailed description of the syslog facility.
The module defines the following functions:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

The module defines the following constants:
Priority levels (high to low): LOG\s\do5(E)MERG, LOG\s\do5(A)LERT,

LOG\s\do5(C)RIT, LOG\s\do5(E)RR, LOG\s\do5(W)ARNING,
LOG\s\do5(N)OTICE, LOG\s\do5(I)NFO, LOG\s\do5(D)EBUG.

Facilities: LOG\s\do5(K)ERN, LOG\s\do5(U)SER, LOG\s\do5(M)AIL,
LOG\s\do5(D)AEMON, LOG\s\do5(A)UTH, LOG\s\do5(L)PR,
LOG\s\do5(N)EWS, LOG\s\do5(U)UCP, LOG\s\do5(C)RON and
LOG\s\do5(L)OCAL0 to LOG\s\do5(L)OCAL7.

Log options: LOG\s\do5(P)ID, LOG\s\do5(C)ONS, LOG\s\do5(N)DELAY,
LOG\s\do5(N)OWAIT and LOG\s\do5(P)ERROR if defined in syslog.h.

53

Chapter 9

The Python Debugger

pdb
The module pdb defines an interactive source code debugger for Python

programs. It supports setting breakpoints and single stepping at the source
line level, inspection of stack frames, source code listing, and evaluation of
arbitrary Python code in the context of any stack frame. It also supports post-
mortem debugging and can be called under program control.

The debugger is extensible — it is actually defined as a class Pdb. This is
currently undocumented but easily understood by reading the source. The
extension interface uses the (also undocumented) modules bdb and cmd. Pdb
bdb cmd

A primitive windowing version of the debugger also exists — this is
module wdb, which requires STDWIN (see the chapter on STDWIN specific
modules). wdb

The debugger’s prompt is “(Pdb) ”. Typical usage to run a program under
control of the debugger is:

>>> import pdb
>>> import mymodule
>>> pdb.run('mymodule.test()')
> <string>(0)?()
(Pdb) continue
> <string>(1)?()
(Pdb) continue
NameError: 'spam'
> <string>(1)?()
(Pdb)

Typical usage to inspect a crashed program is:

>>> import pdb
>>> import mymodule
>>> mymodule.test()
Traceback (innermost last):
    File "<stdin>", line 1, in ?
    File "./mymodule.py", line 4, in test
        test2()
    File "./mymodule.py", line 3, in test2
        print spam
NameError: spam

>>> pdb.pm()
> ./mymodule.py(3)test2()
-> print spam
(Pdb)

The module defines the following functions; each enters the debugger in a
slightly different way:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

9.1    Debugger Commands

The debugger recognizes the following commands. Most commands can be
abbreviated to one or two letters; e.g. “h(elp)” means that either “h” or “help”
can be used to enter the help command (but not “he” or “hel”, nor “H” or
“Help or “HELP”). Arguments to commands must be separated by whitespace
(spaces or tabs). Optional arguments are enclosed in square brackets (“[]”) in
the command syntax; the square brackets must not be typed. Alternatives in
the command syntax are separated by a vertical bar (“—”).

Entering a blank line repeats the last command entered. Exception: if the
last command was a “list” command, the next 11 lines are listed.

Commands that the debugger doesn’t recognize are assumed to be Python
statements and are executed in the context of the program being debugged.
Python statements can also be prefixed with an exclamation point (“!”). This
is a powerful way to inspect the program being debugged; it is even possible
to change a variable or call a function. When an exception occurs in such a
statement, the exception name is printed but the debugger’s state is not
changed.
h(elp) [command]

Without argument, print the list of available commands. With a
command as argument, print help about that command. “help pdb”
displays the full documentation file; if the environment variable
PAGER is defined, the file is piped through that command instead.
Since the command argument must be an identifier, “help exec” must
be entered to get help on the “!” command.

w(here) Print a stack trace, with the most recent frame at the bottom. An
arrow indicates the current frame, which determines the context of most
commands.

55

d(own) Move the current frame one level down in the stack trace (to an older
frame).

u(p) Move the current frame one level up in the stack trace (to a newer
frame).

b(reak) [lineno—function]

With a lineno argument, set a break there in the current file. With a
function argument, set a break at the entry of that function. Without
argument, list all breaks.

cl(ear) [lineno]

With a lineno argument, clear that break in the current file. Without
argument, clear all breaks (but first ask confirmation).

s(tep) Execute the current line, stop at the first possible occasion (either in a
function that is called or on the next line in the current function).

n(ext) Continue execution until the next line in the current function is reached
or it returns. (The difference between next and step is that step stops inside
a called function, while next executes called functions at (nearly) full
speed, only stopping at the next line in the current function.)

r(eturn) Continue execution until the current function returns.

c(ont(inue)) Continue execution, only stop when a breakpoint is encountered.

l(ist) [first [, last]]

List source code for the current file. Without arguments, list 11 lines
around the current line or continue the previous listing. With one
argument, list 11 lines around at that line. With two arguments, list the
given range; if the second argument is less than the first, it is
interpreted as a count.

a(rgs) Print the argument list of the current function.

p expression Evaluate the expression in the current context and print its
value. (Note: print can also be used, but is not a debugger command —
this executes the Python print statement.)

[! statement]

Execute the (one-line) statement in the context of the current stack
frame. The exclamation point can be omitted unless the first word of
the statement resembles a debugger command. To set a global variable,
you can prefix the assignment command with a “global” command on
the same line, e.g.:

(Pdb) global list_options; list_options = ['-
l']

(Pdb)

q(uit) Quit from the debugger. The program being executed is aborted.

9.2    How It Works

Some changes were made to the interpreter:
• sys.settrace(func) sets the global trace function

• there can also a local trace function (see later)

Trace functions have three arguments: (frame, event, arg)
frame is the current stack frame

event is a string: ’call’, ’line’, ’return’ or ’exception’

arg is dependent on the event type

A trace function should return a new trace function or None. Class
methods are accepted (and most useful!) as trace methods.

The events have the following meaning:
’call’ A function is called (or some other code block entered). The global trace

function is called; arg is the argument list to the function; the return value
specifies the local trace function.

’line’ The interpreter is about to execute a new line of code (sometimes
multiple line events on one line exist). The local trace function is called;
arg in None; the return value specifies the new local trace function.

’return’ A function (or other code block) is about to return. The local trace
function is called; arg is the value that will be returned. The trace
function’s return value is ignored.

’exception’ An exception has occurred. The local trace function is called; arg
is a triple (exception, value, traceback); the return value specifies the new
local trace function

Note that as an exception is propagated down the chain of callers, an
’exception’ event is generated at each level.

Stack frame objects have the following read-only attributes:
f\s\do5(c)ode the code object being executed

f\s\do5(l)ineno the current line number (-1 for ’call’ events)

f\s\do5(b)ack the stack frame of the caller, or None

f\s\do5(l)ocals dictionary containing local name bindings

57

f\s\do5(g)lobals dictionary containing global name bindings

Code objects have the following read-only attributes:
co\s\do5(c)ode the code string

co\s\do5(n)ames the list of names used by the code

co\s\do5(c)onsts the list of (literal) constants used by the code

co\s\do5(f)ilename the filename from which the code was compiled

Chapter 10

The Python Profiler

profile pstats
Copyright © 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind8

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose (subject to the restriction in the
following sentence) without fee is hereby granted, provided that the above
copyright notice appears in all copies, and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name
of InfoSeek not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission. This permission is
explicitly restricted to the copying and modification of the software to remain
in Python, compiled Python, or other languages (such as C) wherein the
modified or derived code is exclusively imported into a Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT
SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS SOFTWARE.

The profiler was written after only programming in Python for 3 weeks.
As a result, it is probably clumsy code, but I don’t know for sure yet ’cause
I’m a beginner :-). I did work hard to make the code run fast, so that profiling
would be a reasonable thing to do. I tried not to repeat code fragments, but
I’m sure I did some stuff in really awkward ways at times. Please send
suggestions for improvements to: jar@infoseek.com. I won’t promise any
support. ...but I’d appreciate the feedback.

10.1    Introduction to the profiler

Profiler Introduction
A profiler is a program that describes the run time performance of a

program, providing a variety of statistics. This documentation describes the

8 Updated and converted to LATEX by Guido van Rossum. The

references to the old profiler are left in the text, although it no longer
exists.

59

profiler functionality provided in the modules profile and pstats. This profiler
provides deterministic profiling of any Python programs. It also provides a
series of report generation tools to allow users to rapidly examine the results
of a profile operation.

10.2    How Is This Profiler Different From The
Old Profiler?

Profiler Changes
The big changes from old profiling module are that you get more

information, and you pay less CPU time. It’s not a trade-off, it’s a trade-up.
To be specific:

Bugs removed: Local stack frame is no longer molested, execution time is
now charged to correct functions.

Accuracy increased: Profiler execution time is no longer charged to user’s
code, calibration for platform is supported, file reads are not done by
profiler during profiling (and charged to user’s code!).

Speed increased: Overhead CPU cost was reduced by more than a factor of
two (perhaps a factor of five), lightweight profiler module is all that must
be loaded, and the report generating module (pstats) is not needed during
profiling.

Recursive functions support: Cumulative times in recursive functions are
correctly calculated; recursive entries are counted.

Large growth in report generating UI: Distinct profiles runs can be added
together forming a comprehensive report; functions that import statistics
take arbitrary lists of files; sorting criteria is now based on keywords
(instead of 4 integer options); reports shows what functions were profiled
as well as what profile file was referenced; output format has been
improved.

10.3    Instant Users Manual

This section is provided for users that “don’t want to read the manual.” It
provides a very brief overview, and allows a user to rapidly perform profiling
on an existing application.

To profile an application with a main entry point of foo(), you would add
the following to your module:

        import profile
        profile.run("foo()")

The above action would cause foo() to be run, and a series of informative
lines (the profile) to be printed. The above approach is most useful when
working with the interpreter. If you would like to save the results of a profile
into a file for later examination, you can supply a file name as the second
argument to the run() function:

        import profile
        profile.run("foo()", 'fooprof')

When you wish to review the profile, you should use the methods in the
pstats module. Typically you would load the statistics data as follows:

        import pstats
        p = pstats.Stats('fooprof')

The class Stats (the above code just created an instance of this class) has a
variety of methods for manipulating and printing the data that was just read
into p. When you ran profile.run() above, what was printed was the result of
three method calls:

        p.strip_dirs().sort_stats(-1).print_stats()

The first method removed the extraneous path from all the module names.
The second method sorted all the entries according to the standard
module/line/name string that is printed (this is to comply with the semantics
of the old profiler). The third method printed out all the statistics. You might
try the following sort calls:

        p.sort_stats('name')
        p.print_stats()

The first call will actually sort the list by function name, and the second
call will print out the statistics. The following are some interesting calls to
experiment with:

        p.sort_stats('cumulative').print_stats(10)

This sorts the profile by cumulative time in a function, and then only
prints the ten most significant lines. If you want to understand what
algorithms are taking time, the above line is what you would use.

If you were looking to see what functions were looping a lot, and taking a
lot of time, you would do:

        p.sort_stats('time').print_stats(10)

61

to sort according to time spent within each function, and then print the
statistics for the top ten functions.

You might also try:

        p.sort_stats('file').print_stats('__init__')

This will sort all the statistics by file name, and then print out statistics for
only the class init methods (’cause they are spelled with
\s\do5(\s\do4())init\s\do5(\s\do4()) in them). As one final example, you could try:

        p.sort_stats('time', 'cum').print_stats(.5,
'init')

This line sorts statistics with a primary key of time, and a secondary key
of cumulative time, and then prints out some of the statistics. To be specific,
the list is first culled down to 50% (re: .5) of its original size, then only lines
containing init are maintained, and that sub-sub-list is printed.

If you wondered what functions called the above functions, you could
now (p is still sorted according to the last criteria) do:

        p.print_callers(.5, 'init')

and you would get a list of callers for each of the listed functions.
If you want more functionality, you’re going to have to read the manual,

or guess what the following functions do:

        p.print_callees()
        p.add('fooprof')

10.4    What Is Deterministic Profiling?

Deterministic Profiling
Deterministic profiling is meant to reflect the fact that all function call,

function return, and exception events are monitored, and precise timings are
made for the intervals between these events (during which time the user’s
code is executing). In contrast, statistical profiling (which is not done by this
module) randomly samples the effective instruction pointer, and deduces
where time is being spent. The latter technique traditionally involves less
overhead (as the code does not need to be instrumented), but provides only
relative indications of where time is being spent.

In Python, since there is an interpreter active during execution, the
presence of instrumented code is not required to do deterministic profiling.

Python automatically provides a hook (optional callback) for each event. In
addition, the interpreted nature of Python tends to add so much overhead to
execution, that deterministic profiling tends to only add small processing
overhead in typical applications. The result is that deterministic profiling is
not that expensive, yet provides extensive run time statistics about the
execution of a Python program.

Call count statistics can be used to identify bugs in code (surprising
counts), and to identify possible inline-expansion points (high call counts).
Internal time statistics can be used to identify “hot loops” that should be
carefully optimized. Cumulative time statistics should be used to identify high
level errors in the selection of algorithms. Note that the unusual handling of
cumulative times in this profiler allows statistics for recursive
implementations of algorithms to be directly compared to iterative
implementations.

10.5    Reference Manual

The primary entry point for the profiler is the global function profile.run(). It
is typically used to create any profile information. The reports are formatted
and printed using methods of the class pstats.Stats. The following is a
description of all of these standard entry points and functions. For a more in-
depth view of some of the code, consider reading the later section on Profiler
Extensions, which includes discussion of how to derive “better” profilers
from the classes presented, or reading the source code for these modules.

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

10.5.1    The Stats Class

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

10.6    Limitations

There are two fundamental limitations on this profiler. The first is that it relies
on the Python interpreter to dispatch call, return, and exception events.
Compiled C code does not get interpreted, and hence is “invisible” to the
profiler. All time spent in C code (including builtin functions) will be charged

63

to the Python function that invoked the C code. If the C code calls out to some
native Python code, then those calls will be profiled properly.

The second limitation has to do with accuracy of timing information.
There is a fundamental problem with deterministic profilers involving
accuracy. The most obvious restriction is that the underlying “clock” is only
ticking at a rate (typically) of about .001 seconds. Hence no measurements
will be more accurate that that underlying clock. If enough measurements are
taken, then the “error” will tend to average out. Unfortunately, removing this
first error induces a second source of error...

The second problem is that it “takes a while” from when an event is
dispatched until the profiler’s call to get the time actually gets the state of the
clock. Similarly, there is a certain lag when exiting the profiler event handler
from the time that the clock’s value was obtained (and then squirreled away),
until the user’s code is once again executing. As a result, functions that are
called many times, or call many functions, will typically accumulate this
error. The error that accumulates in this fashion is typically less than the
accuracy of the clock (i.e., less than one clock tick), but it can accumulate and
become very significant. This profiler provides a means of calibrating itself
for a given platform so that this error can be probabilistically (i.e., on the
average) removed. After the profiler is calibrated, it will be more accurate (in
a least square sense), but it will sometimes produce negative numbers (when
call counts are exceptionally low, and the gods of probability work against
you :-).) Do NOT be alarmed by negative numbers in the profile. They should
only appear if you have calibrated your profiler, and the results are actually
better than without calibration.

10.7    Calibration

The profiler class has a hard coded constant that is added to each event
handling time to compensate for the overhead of calling the time function,
and socking away the results. The following procedure can be used to obtain
this constant for a given platform (see discussion in section Limitations
above).

        import profile
        pr = profile.Profile()
        pr.calibrate(100)
        pr.calibrate(100)
        pr.calibrate(100)

The argument to calibrate() is the number of times to try to do the sample
calls to get the CPU times. If your computer is very fast, you might have to
do:

        pr.calibrate(1000)

or even:

        pr.calibrate(10000)

The object of this exercise is to get a fairly consistent result. When you
have a consistent answer, you are ready to use that number in the source code.
For a Sun Sparcstation 1000 running Solaris 2.3, the magical number is about
.00053. If you have a choice, you are better off with a smaller constant, and
your results will “less often” show up as negative in profile statistics.

The following shows how the trace\s\do5(d)ispatch() method in the
Profile class should be modified to install the calibration constant on a Sun
Sparcstation 1000:

        def trace_dispatch(self, frame, event, arg):
                t = self.timer()
                t = t[0] + t[1] - self.t - .00053 #
Calibration constant

                if self.dispatch[event](frame,t):
                        t = self.timer()
                        self.t = t[0] + t[1]
                else:
                        r = self.timer()
                        self.t = r[0] + r[1] - t # put back
unrecorded delta
                return

Note that if there is no calibration constant, then the line containing the
callibration constant should simply say:

                t = t[0] + t[1] - self.t    # no
calibration constant

You can also achieve the same results using a derived class (and the
profiler will actually run equally fast!!), but the above method is the simplest
to use. I could have made the profiler “self calibrating”, but it would have
made the initialization of the profiler class slower, and would have required
some very fancy coding, or else the use of a variable where the constant
.00053 was placed in the code shown. This is a VERY critical performance
section, and there is no reason to use a variable lookup at this point, when a
constant can be used.

65

10.8    Extensions — Deriving Better Profilers

Profiler Extensions
The Profile class of module profile was written so that derived classes

could be developed to extend the profiler. Rather than describing all the
details of such an effort, I’ll just present the following two examples of
derived classes that can be used to do profiling. If the reader is an avid Python
programmer, then it should be possible to use these as a model and create
similar (and perchance better) profile classes.

If all you want to do is change how the timer is called, or which timer
function is used, then the basic class has an option for that in the constructor
for the class. Consider passing the name of a function to call into the
constructor:

        pr = profile.Profile(your_time_func)

The resulting profiler will call your\s\do5(t)ime\s\do5(f)unc() instead of
os.times(). The function should return either a single number or a list of
numbers (like what os.times() returns). If the function returns a single time
number, or the list of returned numbers has length 2, then you will get an
especially fast version of the dispatch routine.

Be warned that you should calibrate the profiler class for the timer
function that you choose. For most machines, a timer that returns a lone
integer value will provide the best results in terms of low overhead during
profiling. (os.times is pretty bad, ’cause it returns a tuple of floating point
values, so all arithmetic is floating point in the profiler!). If you want to
substitute a better timer in the cleanest fashion, you should derive a class, and
simply put in the replacement dispatch method that better handles your timer
call, along with the appropriate calibration constant :-).

10.8.1    OldProfile Class

The following derived profiler simulates the old style profiler, providing
errant results on recursive functions. The reason for the usefulness of this
profiler is that it runs faster (i.e., less overhead) than the old profiler. It still
creates all the caller stats, and is quite useful when there is no recursion in the
user’s code. It is also a lot more accurate than the old profiler, as it does not
charge all its overhead time to the user’s code.

class OldProfile(Profile):

        def trace_dispatch_exception(self, frame, t):
                rt, rtt, rct, rfn, rframe, rcur = self.cur
                if rcur and not rframe is frame:

                        return
self.trace_dispatch_return(rframe, t)
                return 0

        def trace_dispatch_call(self, frame, t):
                fn = `frame.f_code`
 
                self.cur = (t, 0, 0, fn, frame, self.cur)
                if self.timings.has_key(fn):
                        tt, ct, callers = self.timings[fn]
                        self.timings[fn] = tt, ct, callers
                else:
                        self.timings[fn] = 0, 0, {}
                return 1

        def trace_dispatch_return(self, frame, t):
                rt, rtt, rct, rfn, frame, rcur = self.cur
                rtt = rtt + t
                sft = rtt + rct

                pt, ptt, pct, pfn, pframe, pcur = rcur
                self.cur = pt, ptt+rt, pct+sft, pfn,
pframe, pcur

                tt, ct, callers = self.timings[rfn]
                if callers.has_key(pfn):
                        callers[pfn] = callers[pfn] + 1
                else:
                        callers[pfn] = 1
                self.timings[rfn] = tt+rtt, ct + sft,
callers

                return 1

        def snapshot_stats(self):
                self.stats = {}
                for func in self.timings.keys():
                        tt, ct, callers = self.timings[func]
                        nor_func = self.func_normalize(func)
                        nor_callers = {}
                        nc = 0
                        for func_caller in callers.keys():
                               
nor_callers[self.func_normalize(func_caller)]=\
  callers[func_caller]

67

                                nc = nc + callers[func_caller]
                        self.stats[nor_func] = nc, nc, tt,
ct, nor_callers

10.8.2    HotProfile Class

This profiler is the fastest derived profile example. It does not calculate caller-
callee relationships, and does not calculate cumulative time under a function.
It only calculates time spent in a function, so it runs very quickly (re: very
low overhead). In truth, the basic profiler is so fast, that is probably not worth
the savings to give up the data, but this class still provides a nice example.

class HotProfile(Profile):

        def trace_dispatch_exception(self, frame, t):
                rt, rtt, rfn, rframe, rcur = self.cur
                if rcur and not rframe is frame:
                        return
self.trace_dispatch_return(rframe, t)
                return 0

        def trace_dispatch_call(self, frame, t):
                self.cur = (t, 0, frame, self.cur)
                return 1

        def trace_dispatch_return(self, frame, t):
                rt, rtt, frame, rcur = self.cur

                rfn = `frame.f_code`

                pt, ptt, pframe, pcur = rcur
                self.cur = pt, ptt+rt, pframe, pcur

                if self.timings.has_key(rfn):
                        nc, tt = self.timings[rfn]
                        self.timings[rfn] = nc + 1, rt + rtt
+ tt
                else:
                        self.timings[rfn] =            1, rt +
rtt

                return 1

        def snapshot_stats(self):

                self.stats = {}
                for func in self.timings.keys():
                        nc, tt = self.timings[func]
                        nor_func = self.func_normalize(func)
                        self.stats[nor_func] = nc, nc, tt,
0, {}

69

Chapter 11

Internet and WWW Services

Internet and WWW
The modules described in this chapter provide various services to World-

Wide Web (WWW) clients and/or services, and a few modules related to
news and email. They are all implemented in Python. Some of these modules
require the presence of the system-dependent module sockets, which is
currently only fully supported on Unix and Windows NT. Here is an
overview:
cgi — Common Gateway Interface, used to interpret forms in server-side

scripts.

urllib — Open an arbitrary object given by URL (requires sockets).

httplib — HTTP protocol client (requires sockets).

ftplib — FTP protocol client (requires sockets).

gopherlib — Gopher protocol client (requires sockets).

nntplib — NNTP protocol client (requires sockets).

urlparse — Parse a URL string into a tuple (addressing scheme identifier,
network location, path, parameters, query string, fragment identifier).

htmllib — A (slow) parser for HTML files.

sgmllib — Only as much of an SGML parser as needed to parse HTML.

rfc822 — Parse RFC-822 style mail headers.

mimetools — Tools for parsing MIME style message bodies.

11.1    Standard Module cgi

cgi WWWserver CGIprotocol HTTPprotocol MIMEheaders
This module makes it easy to write Python scripts that run in a WWW

server using the Common Gateway Interface. It was written by Michael
McLay and subsequently modified by Steve Majewski and Guido van
Rossum.

When a WWW server finds that a URL contains a reference to a file in a
particular subdirectory (usually /cgibin), it runs the file as a subprocess.
Information about the request such as the full URL, the originating host etc.,

is passed to the subprocess in the shell environment; additional input from the
client may be read from standard input. Standard output from the subprocess
is sent back across the network to the client as the response from the request.
The CGI protocol describes what the environment variables passed to the
subprocess mean and how the output should be formatted. The official
reference documentation for the CGI protocol can be found on the World-
Wide Web at <URL:http://hoohoo.ncsa.uiuc.edu/cgi/overview.html>. The cgi
module was based on version 1.1 of the protocol and should also work with
version 1.0.

The cgi module defines several classes that make it easy to access the
information passed to the subprocess from a Python script; in particular, it
knows how to parse the input sent by an HTML “form” using either a POST
or a GET request (these are alternatives for submitting forms in the HTTP
protocol).

The formatting of the output is so trivial that no additional support is
needed. All you need to do is print a minimal set of MIME headers describing
the output format, followed by a blank line and your actual output. E.g. if you
want to generate HTML, your script could start as follows:

Header -- one or more lines:
print "Content-type: text/html"
Blank line separating header from body:
print
Body, in HTML format:
print "<TITLE>The Amazing SPAM Homepage!</TITLE>"
etc...

The server will add some header lines of its own, but it won’t touch the
output following the header.

The cgi module defines the following functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

The module defines the following classes. Since the base class initializes
itself by calling parse(), at most one instance of at most one of these classes
should be created per script invocation:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

(It currently defines some more classes, but these are experimental and/or
obsolescent, and are thus not documented — see the source for more
informations.)

The module defines the following variable:

71

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

11.1.1    Example

CGI Example
This example assumes that you have a WWW server up and running, e.g.

NCSA’s httpd.
Place the following file in a convenient spot in the WWW server’s

directory tree. E.g., if you place it in the subdirectory test of the root directory
and call it test.html, its URL will be http://yourservername/test/test.html.

<TITLE>Test Form Input</TITLE>
<H1>Test Form Input</H1>
<FORM METHOD="POST" ACTION="/cgi-bin/test.py">
<INPUT NAME=Name> (Name)

<INPUT NAME=Address> (Address)

<INPUT TYPE=SUBMIT>
</FORM>

Selecting this file’s URL from a forms-capable browser such as Mosaic or
Netscape will bring up a simple form with two text input fields and a
“submit” button.

But wait. Before pressing “submit”, a script that responds to the form
must also be installed. The test file as shown assumes that the script is called
test.py and lives in the server’s cgi-bin directory. Here’s the test script:

#!/usr/local/bin/python

import cgi

print "Content-type: text/html"
print  #
End of headers!
print "<TITLE>Test Form Output</TITLE>"
print "<H1>Test Form Output</H1>"

form = cgi.SvFormContentDict()                    # Load
the form

name = addr = None  #
Default: no name and address

Extract name and address from the form, if given

if form.has_key('Name'):
                name = form['Name']

if form.has_key('Address'):
                addr = form['Address']
 
Print an unnumbered list of the name and address,
if present

print ""
if name is not None:
                print "Name:", cgi.escape(name)
if addr is not None:
                print "Address:", cgi.escape(addr)
print ""

The script should be made executable (chmod +x script). If the Python
interpreter is not located at /usr/local/bin/python but somewhere else, the first
line of the script should be modified accordingly.

Now that everything is installed correctly, we can try out the form. Bring
up the test form in your WWW browser, fill in a name and address in the
form, and press the “submit” button. The script should now run and its output
is sent back to your browser. This should roughly look as follows:

Test Form Output
• Name: the name you entered

• Address: the address you entered

If you didn’t enter a name or address, the corresponding line will be
missing (since the browser doesn’t send empty form fields to the server).

11.2    Standard Module urllib

urllib
This module provides a high-level interface for fetching data across the

World-Wide Web. In particular, the urlopen function is similar to the built-in
function open, but accepts URLs (Universal Resource Locators) instead of
filenames. Some restrictions apply — it can only open URLs for reading, and
no seek operations are available.

it defines the following public functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Restrictions:
• Currently, only the following protocols are supported: HTTP, (versions 0.9

and 1.0), Gopher (but not Gopher-+), FTP, and local files.

73

• The caching feature of urlretrieve() has been disabled until I find the time
to hack proper processing of Expiration time headers.

• There should be a function to query whether a particular URL is in the
cache.

• For backward compatibility, if a URL appears to point to a local file but
the file can’t be opened, the URL is re-interpreted using the FTP protocol.
This can sometimes cause confusing error messages.

• The urlopen() and urlretrieve() functions can cause arbitrarily long delays
while waiting for a network connection to be set up. This means that it is
difficult to build an interactive web client using these functions without
using threads.

• The data returned by urlopen() or urlretrieve() is the raw data returned by
the server. This may be binary data (e.g. an image), plain text or (for
example) HTML. The HTTP protocol provides type information in the
reply header, which can be inspected by looking at the Content-type
header. For the Gopher protocol, type information is encoded in the URL;
there is currently no easy way to extract it. If the returned data is HTML,
you can use the module htmllib to parse it. htmllib

• Although the urllib module contains (undocumented) routines to parse and
unparse URL strings, the recommended interface for URL manipulation is
in module urlparse. urlparse

11.3    Standard Module httplib

httplib
This module defines a class which implements the client side of the HTTP

protocol. It is normally not used directly — the module urllib uses it to handle
URLs that use HTTP. urllib

The module defines one class, HTTP. An HTTP instance represents one
transaction with an HTTP server. It should be instantiated passing it a host
and optional port number. If no port number is passed, the port is extracted
from the host string if it has the form host:port, else the default HTTP port
(80) is used. If no host is passed, no connection is made, and the connect
method should be used to connect to a server. For example, the following
calls all create instances that connect to the server at the same host and port:

>>> h1 = httplib.HTTP('www.cwi.nl')
>>> h2 = httplib.HTTP('www.cwi.nl:80')
>>> h3 = httplib.HTTP('www.cwi.nl', 80)

Once an HTTP instance has been connected to an HTTP server, it should
be used as follows:
1. Make exactly one call to the putrequest() method.

2. Make zero or more calls to the putheader() method.

3. Call the endheaders() method (this can be omitted if step 4 makes no
calls).

4. Optional calls to the send() method.

5. Call the getreply() method.

6. Call the getfile() method and read the data off the file object that it returns.

11.3.1    HTTP Objects

HTTP instances have the following methods:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

11.3.2    Example

HTTP Example
Here is an example session:

>>> import httplib
>>> h = httplib.HTTP('www.cwi.nl')
>>> h.putrequest('GET', '/index.html')
>>> h.putheader('Accept', 'text/html')
>>> h.putheader('Accept', 'text/plain')
>>> h.endheaders()
>>> errcode, errmsg, headers = h.getreply()
>>> print errcode # Should be 200
>>> f = h.getfile()
>>> data f.read() # Get the raw HTML
>>> f.close()
>>>

75

11.4    Standard Module ftplib

ftplib
This module defines the class FTP and a few related items. The FTP class

implements the client side of the FTP protocol. You can use this to write
Python programs that perform a variety of automated FTP jobs, such as
mirroring other ftp servers. It is also used by the module urllib to handle
URLs that use FTP. For more information on FTP (File Transfer Protocol),
see Internet RFC 959.

Here’s a sample session using the ftplib module:

>>> from ftplib import FTP
>>> ftp = FTP('ftp.cwi.nl')      # connect to host,
default port
>>> ftp.login()                              # user anonymous,
passwd user@hostname
>>> ftp.retrlines('LIST')          # list directory
contents
total 24418
drwxrwsr-x      5 ftp-usr    pdmaint          1536 Mar 20
09:48 .
dr-xr-srwt 105 ftp-usr    pdmaint          1536 Mar 21
14:32 ..
-rw-r--r--      1 ftp-usr    pdmaint          5305 Mar 20
09:48 INDEX
 .
 .
 .
>>> ftp.quit()

The module defines the following items:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]

11.4.1    FTP Objects

FTP instances have the following methods:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

11.5    Standard Module gopherlib

gopherlib
This module provides a minimal implementation of client side of the the

Gopher protocol. It is used by the module urllib to handle URLs that use the
Gopher protocol.

The module defines the following functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Note that the data returned by the Gopher server can be of any type,
depending on the first character of the selector string. If the data is text (first
character of the selector is 0), lines are terminated by CRLF, and the data is
terminated by a line consisting of a single ., and a leading . should be stripped
from lines that begin with ... Directory listings (first charactger of the selector
is 1) are transferred using the same protocol.

11.6    Standard Module nntplib

nntplib
This module defines the class NNTP which implements the client side of

the NNTP protocol. It can be used to implement a news reader or poster, or
automated news processors. For more information on NNTP (Network News
Transfer Protocol), see Internet RFC 977.

Here are two small examples of how it can be used. To list some statistics
about a newsgroup and print the subjects of the last 10 articles:

>>> s = NNTP('news.cwi.nl')

77

>>> resp, count, first, last, name =
s.group('comp.lang.python')
>>> print 'Group', name, 'has', count, 'articles, range',
first, 'to', last
Group comp.lang.python has 59 articles, range 3742 to
3803
>>> resp, subs = s.xhdr('subject', first + '-' + last)
>>> for id, sub in subs[-10:]: print id, sub
...
3792 Re: Removing elements from a list while iterating...
3793 Re: Who likes Info files?
3794 Emacs and doc strings
3795 a few questions about the Mac implementation
3796 Re: executable python scripts
3797 Re: executable python scripts
3798 Re: a few questions about the Mac implementation
3799 Re: PROPOSAL: A Generic Python Object Interface for
Python C Modules
3802 Re: executable python scripts
3803 Re: POSIX wait and SIGCHLD
>>> s.quit()
'205 news.cwi.nl closing connection.    Goodbye.'
>>>

To post an article from a file (this assumes that the article has valid headers):

>>> s = NNTP('news.cwi.nl')
>>> f = open('/tmp/article')
>>> s.post(f)
'240 Article posted successfully.'
>>> s.quit()
'205 news.cwi.nl closing connection.    Goodbye.'
>>>

The module itself defines the following items:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]

11.6.1    NNTP Objects

NNTP instances have the following methods. The response that is returned as the first
item in the return tuple of almost all methods is the server’s response: a string
beginning with a three-digit code. If the server’s response indicates an error, the
method raises one of the above exceptions.

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

11.7    Standard Module urlparse

urlparse URLparsing relativeURL
This module defines a standard interface to break URL strings up in

components (addessing scheme, network location, path etc.), to combine the
components back into a URL string, and to convert a “relative URL” to an
absolute URL given a “base URL”.

The module has been designed to match the current Internet draft on
Relative Uniform Resource Locators (and discovered a bug in an earlier
draft!).

It defines the following functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

11.8    Standard Module htmllib

htmllib
This module defines a number of classes which can serve as a basis for

parsing text files formatted in HTML (HyperText Mark-up Language). The
classes are not directly concerned with I/O — the have to be fed their input in
string form, and will make calls to methods of a “formatter” object in order to
produce output. The classes are designed to be used as base classes for other
classes in order to add functionality, and allow most of their methods to be
extended or overridden. In turn, the classes are derived from and extend the
class SGMLParser defined in module sgmllib. sgmllib SGMLParser

79

The following is a summary of the interface defined by
sgmllib.SGMLParser:
• The interface to feed data to an instance is through the feed() method,

which takes a string argument. This can be called with as little or as much
text at a time as desired; p.feed(a); p.feed(b) has the same effect as
p.feed(a+b). When the data contains complete HTML elements, these are
processed immediately; incomplete elements are saved in a buffer. To
force processing of all unprocessed data, call the close() method.

Example: to parse the entire contents of a file, do
parser.feed(open(file).read()); parser.close().

• The interface to define semantics for HTML tags is very simple: derive a
class and define methods called start\s\do5()tag(), end\s\do5()tag(), or
do\s\do5()tag(). The parser will call these at appropriate moments:
start\s\do5()tag or do\s\do5()tag is called when an opening tag of the form
<tag ...> is encountered; end\s\do5()tag is called when a closing tag of the
form <tag> is encountered. If an opening tag requires a corresponding
closing tag, like <H1> ... </H1>, the class should define the
start\s\do5()tag method; if a tag requires no closing tag, like <P>, the class
should define the do\s\do5()tag method.

The module defines the following classes:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Instances of CollectingParser (and thus also instances of FormattingParser
and AnchoringParser) have the following instance variables:

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

The anchors, anchornames and anchortypes lists are “parallel arrays”:
items in these lists with the same index pertain to the same anchor. Missing
attributes default to the empty string. Anchors with neither a HREF nor a
NAME attribute are not entered in these lists at all.

The module also defines a number of style sheet classes. These should
never be instantiated — their class variables are the only behavior required.
Note that style sheets are specifically designed for a particular formatter
implementation. The currently defined style sheets are:

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

Style sheets have the following class variables:
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

Although no documented implementation of a formatter exists, the
FormattingParser class assumes that formatters have a certain interface. This
interface requires the following methods:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

A sample formatter implementation can be found in the module fmt,
which in turn uses the module Para. These modules are not intended as
standard library modules; they are available as an example of how to write a
formatter. fmt Para

11.9    Standard Module sgmllib

sgmllib
This module defines a class SGMLParser which serves as the basis for

parsing text files formatted in SGML (Standard Generalized Mark-up
Language). In fact, it does not provide a full SGML parser — it only parses
SGML insofar as it is used by HTML, and the module only exists as a basis
for the htmllib module. htmllib

In particular, the parser is hardcoded to recognize the following elements:
• Opening and closing tags of the form “<tag attr="value" ...>” and

“</tag>”, respectively.

• Character references of the form “&#name;”.

81

• Entity references of the form “&name;”.

• SGML comments of the form “<!–text>”.

The SGMLParser class must be instantiated without arguments. It has the
following interface methods:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Apart from overriding or extending the methods listed above, derived
classes may also define methods of the following form to define processing of
specific tags. Tag names in the input stream are case independent; the tag
occurring in method names must be in lower case:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Note that the parser maintains a stack of opening tags for which no
matching closing tag has been found yet. Only tags processed by
start\s\do5()tag() are pushed on this stack. Definition of a end\s\do5()tag()
method is optional for these tags. For tags processed by do\s\do5()tag() or by
unknown\s\do5(t)ag(), no end\s\do5()tag() method must be defined.

11.10    Standard Module rfc822

rfc822
This module defines a class, Message, which represents a collection of

“email headers” as defined by the Internet standard RFC 822. It is used in
various contexts, usually to read such headers from a file.

A Message instance is instantiated with an open file object as parameter.
Instantiation reads headers from the file up to a blank line and stores them in
the instance; after instantiation, the file is positioned directly after the blank
line that terminates the headers.

Input lines as read from the file may either be terminated by CR-LF or by
a single linefeed; a terminating CR-LF is replaced by a single linefeed before
the line is stored.

All header matching is done independent of upper or lower case; e.g.
m[’From’], m[’from’] and m[’FROM’] all yield the same result.

11.10.1    Message Objects

A Message instance has the following methods:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Message instances also support a read-only mapping interface. In
particular: m[name] is the same as m.getheader(name); and len(m),
m.has\s\do5(k)ey(name), m.keys(), m.values() and m.items() act as expected
(and consistently).

Finally, Message instances have two public instance variables:
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

11.11    Standard Module mimetools

mimetools
This module defines a subclass of the class rfc822.Message and a number

of utility functions that are useful for the manipulation for MIME style
multipart or encoded message.

It defines the following items:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

11.11.1    Additional Methods of Message objects

mimetools.Message Methods
The mimetools.Message class defines the following methods in addition

to the rfc822.Message class:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

83

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

11.12    Standard module binhex

binhex
This module encodes and decodes files in binhex4 format, a format

allowing representation of Macintosh files in ASCII. On the macintosh, both
forks of a file and the finder information are encoded (or decoded), on other
platforms only the data fork is handled.

The binhex module defines the following functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

11.12.1    notes

There is an alternative, more powerful interface to the coder and decoder, see
the source for details.

If you code or decode textfiles on non-Macintosh platforms they will still
use the macintosh newline convention (carriage-return as end of line).

As of this writing, hexbin appears to not work in all cases.

11.13    Standard module uu

uu
This module encodes and decodes files in uuencode format, allowing

arbitrary binary data to be transferred over ascii-only connections. Whereever
a file argument is expected, the methods accept either a pathname (’-’ for
stdin/stdout) or a file-like object.

Normally you would pass filenames, but there is one case where you have
to open the file yourself: if you are on a non-unix platform and your binary
file is actually a textfile that you want encoded unix-compatible you will have
to open the file yourself as a textfile, so newline conversion is performed.

This code was contributed by Lance Ellinghouse, and modified by Jack
Jansen.

The uu module defines the following functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

11.14    Built-in Module binascii

binascii
The binascii module contains a number of methods to convert between

binary and various ascii-encoded binary representations. Normally, you will

not use these modules directly but use wrapper modules like uu or hexbin in
stead, this module solely exists because bit-manipuation of large amounts of
data is slow in python.

The binascii module defines the following functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]

85

Chapter 12

Multimedia Services

The modules described in this chapter implement various algorithms or
interfaces that are mainly useful for multimedia applications. They are
available at the discretion of the installation. Here’s an overview:
audioop — Manipulate raw audio data.

imageop — Manipulate raw image data.

aifc — Read and write audio files in AIFF or AIFC format.

jpeg — Read and write image files in compressed JPEG format.

rgbimg — Read and write image files in “SGI RGB” format (the module is
not SGI specific though)!

12.1    Built-in Module audioop

audioop
The audioop module contains some useful operations on sound fragments.

It operates on sound fragments consisting of signed integer samples 8, 16 or
32 bits wide, stored in Python strings. This is the same format as used by the
al and sunaudiodev modules. All scalar items are integers, unless specified
otherwise.

A few of the more complicated operations only take 16-bit samples,
otherwise the sample size (in bytes) is always a parameter of the operation.

The module defines the following variables and functions:
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Note that operations such as mul or max make no distinction between
mono and stereo fragments, i.e. all samples are treated equal. If this is a
problem the stereo fragment should be split into two mono fragments first and
recombined later. Here is an example of how to do that:

def mul_stereo(sample, width, lfactor, rfactor):
        lsample = audioop.tomono(sample, width, 1, 0)
        rsample = audioop.tomono(sample, width, 0, 1)
        lsample = audioop.mul(sample, width, lfactor)
        rsample = audioop.mul(sample, width, rfactor)
        lsample = audioop.tostereo(lsample, width, 1,
0)
        rsample = audioop.tostereo(rsample, width, 0,
1)
        return audioop.add(lsample, rsample, width)

If you use the ADPCM coder to build network packets and you want your
protocol to be stateless (i.e. to be able to tolerate packet loss) you should not
only transmit the data but also the state. Note that you should send the initial
state (the one you passed to lin2adpcm) along to the decoder, not the final
state (as returned by the coder). If you want to use struct to store the state in
binary you can code the first element (the predicted value) in 16 bits and the
second (the delta index) in 8.

The ADPCM coders have never been tried against other ADPCM coders,
only against themselves. It could well be that I misinterpreted the standards in
which case they will not be interoperable with the respective standards.

The find... routines might look a bit funny at first sight. They are
primarily meant to do echo cancellation. A reasonably fast way to do this is to
pick the most energetic piece of the output sample, locate that in the input
sample and subtract the whole output sample from the input sample:

87

def echocancel(outputdata, inputdata):
        pos = audioop.findmax(outputdata, 800)        #
one tenth second
        out_test = outputdata[pos*2:]
        in_test = inputdata[pos*2:]
        ipos, factor = audioop.findfit(in_test,
out_test)
        # Optional (for better cancellation):
        # factor =
audioop.findfactor(in_test[ipos*2:ipos*2+len(out_tes
t)],
        #                            out_test)
        prefill = '\0'*(pos+ipos)*2
        postfill = '\0'*(len(inputdata)-len(prefill)-
len(outputdata))
        outputdata = prefill +
audioop.mul(outputdata,2,-factor) + postfill
        return audioop.add(inputdata, outputdata, 2)

12.2    Built-in Module imageop

imageop
The imageop module contains some useful operations on images. It

operates on images consisting of 8 or 32 bit pixels stored in Python strings.
This is the same format as used by gl.lrectwrite and the imgfile module.

The module defines the following variables and functions:
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

12.3    Standard Module aifc

aifc

This module provides support for reading and writing AIFF and AIFF-C
files. AIFF is Audio Interchange File Format, a format for storing digital
audio samples in a file. AIFF-C is a newer version of the format that includes
the ability to compress the audio data.

Audio files have a number of parameters that describe the audio data. The
sampling rate or frame rate is the number of times per second the sound is
sampled. The number of channels indicate if the audio is mono, stereo, or
quadro. Each frame consists of one sample per channel. The sample size is the
size in bytes of each sample. Thus a frame consists of nchannels*samplesize
bytes, and a second’s worth of audio consists of
nchannels*samplesize*framerate bytes.

For example, CD quality audio has a sample size of two bytes (16 bits),
uses two channels (stereo) and has a frame rate of 44,100 frames/second. This
gives a frame size of 4 bytes (2*2), and a second’s worth occupies 2*2*44100
bytes, i.e. 176,400 bytes.

Module aifc defines the following function:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Objects returned by aifc.open() when a file is opened for reading have the
following methods:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Objects returned by aifc.open() when a file is opened for writing have all
the above methods, except for readframes and setpos. In addition the
following methods exist. The get methods can only be called after the
corresponding set methods have been called. Before the first writeframes or
writeframesraw, all parameters except for the number of frames must be filled
in.

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

89

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

12.4    Built-in Module jpeg

jpeg
The module jpeg provides access to the jpeg compressor and

decompressor written by the Independent JPEG Group. JPEG is a (draft?)
standard for compressing pictures. For details on jpeg or the Independent
JPEG Group software refer to the JPEG standard or the documentation
provided with the software.

The jpeg module defines these functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Compress and uncompress raise the error jpeg.error in case of errors.

12.5    Built-in Module rgbimg

rgbimg
The rgbimg module allows python programs to access SGI imglib image

files (also known as .rgb files). The module is far from complete, but is
provided anyway since the functionality that there is is enough in some cases.
Currently, colormap files are not supported.

The module defines the following variables and functions:
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Chapter 13

Cryptographic Services

The modules described in this chapter implement various algorithms of a
cryptographic nature. They are available at the discretion of the installation.
Here’s an overview:
md5 — RSA’s MD5 message digest algorithm.

mpz — Interface to the GNU MP library for arbitrary precision arithmetic.

rotor — Enigma-like encryption and decryption.

Hardcore cypherpunks will probably find the Python Cryptography Kit of
further interest; the package adds built-in modules for DES and IDEA
encryption, and provides a Python module for reading and decrypting PGP
files. The Python Cryptography Kit is not distributed with Python but
available separately. See the URL
http://www.cs.mcgill.ca/%7Efnord/crypt.html for more information.
DEScipher IDEAcipher

13.1    Built-in Module md5

md5
This module implements the interface to RSA’s MD5 message digest

algorithm (see also Internet RFC 1321). Its use is quite straightforward: use
the md5.new() to create an md5 object. You can now feed this object with
arbitrary strings using the update() method, and at any point you can ask it for
the digest (a strong kind of 128-bit checksum, a.k.a. “fingerprint”) of the
contatenation of the strings fed to it so far using the digest() method.

For example, to obtain the digest of the string "Nobody inspects
the spammish repetition":

>>> import md5
>>> m = md5.new()
>>> m.update("Nobody inspects")
>>> m.update(" the spammish repetition")
>>> m.digest()
'\273d\234\203\335\036\245\311\331\336\311\241\215\3
60\377\351'

91

More condensed:

>>> md5.new("Nobody inspects the spammish
repetition").digest()
'\273d\234\203\335\036\245\311\331\336\311\241\215\3
60\377\351'

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

An md5 object has the following methods:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

13.2    Built-in Module mpz

mpz
This is an optional module. It is only available when Python is configured

to include it, which requires that the GNU MP software is installed.
This module implements the interface to part of the GNU MP library,

which defines arbitrary precision integer and rational number arithmetic
routines. Only the interfaces to the integer (mpz\s\do5(…)) routines are
provided. If not stated otherwise, the description in the GNU MP
documentation can be applied.

In general, mpz-numbers can be used just like other standard Python
numbers, e.g. you can use the built-in operators like +, *, etc., as well as the
standard built-in functions like abs, int, …, divmod, pow. Please note: the
bitwise-xor operation has been implemented as a bunch of ands, inverts and
ors, because the library lacks an mpz\s\do5(x)or function, and I didn’t need
one.

You create an mpz-number by calling the function called mpz (see below
for an exact description). An mpz-number is printed like this: mpz(value).

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
A number of extra functions are defined in this module. Non mpz-

arguments are converted to mpz-values first, and the functions return mpz-
numbers.

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

An mpz-number has one method:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

13.3    Built-in Module rotor

rotor
This module implements a rotor-based encryption algorithm, contributed

by Lance Ellinghouse. The design is derived from the Enigma device, a
machine used during World War II to encipher messages. A rotor is simply a
permutation. For example, if the character ‘A’ is the origin of the rotor, then a
given rotor might map ‘A’ to ‘L’, ‘B’ to ‘Z’, ‘C’ to ‘G’, and so on. To encrypt,
we choose several different rotors, and set the origins of the rotors to known
positions; their initial position is the ciphering key. To encipher a character,
we permute the original character by the first rotor, and then apply the second
rotor’s permutation to the result. We continue until we’ve applied all the
rotors; the resulting character is our ciphertext. We then change the origin of
the final rotor by one position, from ‘A’ to ‘B’; if the final rotor has made a
complete revolution, then we rotate the next-to-last rotor by one position, and
apply the same procedure recursively. In other words, after enciphering one
character, we advance the rotors in the same fashion as a car’s odometer.
Decoding works in the same way, except we reverse the permutations and
apply them in the opposite order. Enigmacipher

The available functions in this module are:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Rotor objects have the following methods:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

An example usage:

>>> import rotor
>>> rt = rotor.newrotor('key', 12)
>>> rt.encrypt('bar')
'\2534\363'
>>> rt.encryptmore('bar')
'\357\375$'
>>> rt.encrypt('bar')
'\2534\363'
>>> rt.decrypt('\2534\363')
'bar'
>>> rt.decryptmore('\357\375$')
'bar'
>>> rt.decrypt('\357\375$')
'l(\315'

93

>>> del rt

The module’s code is not an exact simulation of the original Enigma
device; it implements the rotor encryption scheme differently from the
original. The most important difference is that in the original Enigma, there
were only 5 or 6 different rotors in existence, and they were applied twice to
each character; the cipher key was the order in which they were placed in the
machine. The Python rotor module uses the supplied key to initialize a
random number generator; the rotor permutations and their initial positions
are then randomly generated. The original device only enciphered the letters
of the alphabet, while this module can handle any 8-bit binary data; it also
produces binary output. This module can also operate with an arbitrary
number of rotors.

The original Enigma cipher was broken in 1944. The version
implemented here is probably a good deal more difficult to crack (especially
if you use many rotors), but it won’t be impossible for a truly skilful and
determined attacker to break the cipher. So if you want to keep the NSA out
of your files, this rotor cipher may well be unsafe, but for discouraging casual
snooping through your files, it will probably be just fine, and may be
somewhat safer than using the Unix crypt command.

Chapter 14

Macintosh Specific Services

The modules in this chapter are available on the Apple Macintosh only.

14.1    Built-in Module mac

mac This module provides a subset of the operating system dependent
functionality provided by the optional built-in module posix. It is best
accessed through the more portable standard module os.

The following functions are available in this module: chdir, getcwd,
listdir, mkdir, rename, rmdir, stat, sync, unlink, as well as the exception error.

14.2    Standard Module macpath

macpath This module provides a subset of the pathname manipulation
functions available from the optional standard module posixpath. It is best
accessed through the more portable standard module os, as os.path.

The following functions are available in this module: normcase, isabs,
join, split, isdir, isfile, exists.

14.3    Built-in Module ctb

ctb
This module provides a partial interface to the Macintosh

Communications Toolbox. Currently, only Connection Manager tools are
supported. It may not be available in all Mac Python versions.

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

14.3.1    connection object

For all connection methods that take a timeout argument, a value of -1 is
indefinite, meaning that the command runs to completion.

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

95

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

14.4    Built-in Module macconsole

macconsole
This module is available on the Macintosh, provided Python has been

built using the Think C compiler. It provides an interface to the Think console
package, with which basic text windows can be created.

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

14.4.1    macconsole options object

These options are examined when a window is created:
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

14.4.2    console window object

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

14.5    Built-in Module macdnr

macdnr
This module provides an interface to the Macintosh Domain Name

Resolver. It is usually used in conjunction with the mactcp module, to map
hostnames to IP-addresses. It may not be available in all Mac Python
versions.

The macdnr module defines the following functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

14.5.1    dnr result object

Since the DNR calls all execute asynchronously you do not get the results
back immediately. Instead, you get a dnr result object. You can check this
object to see whether the query is complete, and access its attributes to obtain
the information when it is.

Alternatively, you can also reference the result attributes directly, this will
result in an implicit wait for the query to complete.

The rtnCode and cname attributes are always available, the others depend
on the type of query (address, hinfo or mx).

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

The simplest way to use the module to convert names to dotted-decimal
strings, without worrying about idle time, etc:

>>> def gethostname(name):
...          import macdnr

97

...          dnrr = macdnr.StrToAddr(name)

...          return macdnr.AddrToStr(dnrr.ip0)

14.6    Built-in Module macfs

macfs
This module provides access to macintosh FSSpec handling, the Alias

Manager, finder aliases and the Standard File package.
Whenever a function or method expects a file argument, this argument

can be one of three things: (1) a full or partial Macintosh pathname, (2) an
FSSpec object or (3) a 3-tuple (wdRefNum, parID, name) as described in
Inside Mac VI. A description of aliases and the standard file package can also
be found there.

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

14.6.1    FSSpec objects

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

14.6.2    alias objects

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Note that it is currently not possible to directly manipulate a resource as
an alias object. Hence, after calling Update or after Resolve indicates that the
alias has changed the Python program is responsible for getting the data from
the alias object and modifying the resource.

14.6.3    FInfo objects

See Inside Mac for a complete description of what the various fields mean.
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

14.7    Built-in Module MacOS

MacOS
This module provides access to MacOS specific functionality in the

python interpreter, such as how the interpreter eventloop functions and the
like. Use with care.

Note the capitalisation of the module name, this is a historical artefact.
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

14.8    Standard module macostools

macostools
This module contains some convenience routines for file-manipulation on

the Macintosh.
The macostools module defines the following functions:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

Note that the process of creating finder aliases is not specified in the
Apple documentation. Hence, aliases created with mkalias could conceivably
have incompatible behaviour in some cases.

99

14.9    Built-in Module mactcp

mactcp
This module provides an interface to the Macintosh TCP/IP driver

MacTCP. There is an accompanying module macdnr which provides an
interface to the name-server (allowing you to translate hostnames to ip-
addresses), a module MACTCP which has symbolic names for constants
constants used by MacTCP and a wrapper module socket which mimics the
socket interface (as far as possible). It may not be available in all Mac Python
versions.

A complete description of the MacTCP interface can be found in the
Apple MacTCP API documentation.

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

14.9.1    TCP Stream Objects

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

14.9.2    TCP Status Objects

This object has no methods, only some members holding information on the
connection. A complete description of all fields in this objects can be found in
the Apple documentation. The most interesting ones are:

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

14.9.3    UDP Stream Objects

Note that, unlike the name suggests, there is nothing stream-like about UDP.
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

14.10    Built-in Module macspeech

macspeech
This module provides an interface to the Macintosh Speech Manager,

allowing you to let the Macintosh utter phrases. You need a version of the
speech manager extension (version 1 and 2 have been tested) in your
Extensions folder for this to work. The module does not provide full access to
all features of the Speech Manager yet. It may not be available in all Mac
Python versions.

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

14.10.1    voice objects

Voice objects contain the description of a voice. It is currently not yet possible
to access the parameters of a voice.

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

14.10.2    speech channel objects

A speech channel object allows you to speak strings with slightly more
control than SpeakString(), and allows you to use multiple speakers at the
same time. Please note that channel pitch and rate are interrelated in some
way, so that to make your Macintosh sing you will have to adjust both.

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

101

14.11    Standard module EasyDialogs

EasyDialogs
The EasyDialogs module contains some simple dialogs for the Macintosh,

modelled after the stdwin dialogs with similar names.
The EasyDialogs module defines the following functions:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Note that EasyDialogs does not currently use the notification manager.
This means that displaying dialogs while the program is in the background
will need to unexpected results and possibly crashes.

14.12    Standard module FrameWork

FrameWork
The FrameWork module contains classes that together provide a

framework for an interactive Macintosh application. The programmer builds
an application by creating subclasses that override various methods of the
bases classes, thereby implementing the functionality wanted. Overriding
functionality can often be done on various different levels, i.e. to handle
clicks in a single dialog window in a non-standard way it is not necessary to
override the complete event handling.

The FrameWork is still very much work-in-progress, and the
documentation describes only the most important functionality, and not in the
most logical manner at that. Examine the source for more esoteric needs.

The EasyDialogs module defines the following functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

14.12.1    Application objects

Application objects have the following methods, among others:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

14.12.2    Window Objects

Window objects have the following methods, among others:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

14.12.3    DialogWindow Objects

DialogWindow objects have the following methods besides those of Window
objects:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

103

Chapter 15

Standard Windowing Interface

The modules in this chapter are available only on those systems where the
STDWIN library is available. STDWIN runs on under X11 and on the
Macintosh. See CWI report CS-R8817.

Warning: Using STDWIN is not recommended for new applications. It
has never been ported to Microsoft Windows or Windows NT, and for X11 or
the Macintosh it lacks important functionality — in particular, it has no tools
for the construction of dialogs. For most platforms, alternative, native
solutions exist (though none are currently documented in this manual):
Tkinter for under X11, native Xt with Motif or Athena widgets for under
X11, Win32 for Windows and Windows NT, and a collection of native toolkit
interfaces for the Macintosh.

15.1    Built-in Module stdwin

stdwin
This module defines several new object types and functions that provide

access to the functionality of STDWIN.
On Unix running X11, it can only be used if the DISPLAY environment

variable is set or an explicit -display displayname argument is passed to the
Python interpreter.

Functions have names that usually resemble their C STDWIN
counterparts with the initial ‘w’ dropped. Points are represented by pairs of
integers; rectangles by pairs of points. For a complete description of
STDWIN please refer to the documentation of STDWIN for C programmers
(aforementioned CWI report).

15.1.1    Functions Defined in Module stdwin

STDWIN Functions
The following functions are defined in the stdwin module:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

15.1.2    Window Objects

Window objects are created by stdwin.open(). They are closed by their close()
method or when they are garbage-collected. Window objects have the
following methods:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

105

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

15.1.3    Drawing Objects

Drawing objects are created exclusively by the window method
begindrawing(). Only one drawing object can exist at any given time; the
drawing object must be deleted to finish drawing. No drawing object may
exist when stdwin.getevent() is called. Drawing objects have the following
methods:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

15.1.4    Menu Objects

A menu object represents a menu. The menu is destroyed when the menu
object is deleted. The following methods are defined:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

15.1.5    Bitmap Objects

A bitmap represents a rectangular array of bits. The top left bit has coordinate
(0, 0). A bitmap can be drawn with the bitmap method of a drawing object.
Bitmaps are currently not available on the Macintosh.

The following methods are defined:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

15.1.6    Text-edit Objects

A text-edit object represents a text-edit block. For semantics, see the
STDWIN documentation for C programmers. The following methods exist:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

15.1.7    Example

STDWIN Example

107

Here is a minimal example of using STDWIN in Python. It creates a
window and draws the string “Hello world” in the top left corner of the
window. The window will be correctly redrawn when covered and re-
exposed. The program quits when the close icon or menu item is requested.

import stdwin
from stdwinevents import *

def main():
        mywin = stdwin.open('Hello')
        #
        while 1:
                (type, win, detail) = stdwin.getevent()
                if type == WE_DRAW:
                        draw = win.begindrawing()
                        draw.text((0, 0), 'Hello, world')
                        del draw
                elif type == WE_CLOSE:
                        break

main()

15.2    Standard Module stdwinevents

stdwinevents
This module defines constants used by STDWIN for event types

(WE\s\do5(A)CTIVATE etc.), command codes (WC\s\do5(L)EFT etc.) and
selection types (WS\s\do5(P)RIMARY etc.). Read the file for details.
Suggested usage is

>>> from stdwinevents import *
>>>

15.3    Standard Module rect

rect
This module contains useful operations on rectangles. A rectangle is

defined as in module stdwin: a pair of points, where a point is a pair of
integers. For example, the rectangle

(10, 20), (90, 80)

is a rectangle whose left, top, right and bottom edges are 10, 20, 90 and
80, respectively. Note that the positive vertical axis points down (as in
stdwin).

The module defines the following objects:
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]

[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

109

Chapter 16

SGI IRIX Specific Services

The modules described in this chapter provide interfaces to features that are
unique to SGI’s IRIX operating system (versions 4 and 5).

16.1    Built-in Module al

al
This module provides access to the audio facilities of the SGI Indy and

Indigo workstations. See section 3A of the IRIX man pages for details. You’ll
need to read those man pages to understand what these functions do! Some of
the functions are not available in IRIX releases before 4.0.5. Again, see the
manual to check whether a specific function is available on your platform.

All functions and methods defined in this module are equivalent to the C
functions with AL prefixed to their name.

Symbolic constants from the C header file <audio.h> are defined in the
standard module AL, see below.

Warning: the current version of the audio library may dump core when
bad argument values are passed rather than returning an error status.
Unfortunately, since the precise circumstances under which this may happen
are undocumented and hard to check, the Python interface can provide no
protection against this kind of problems. (One example is specifying an
excessive queue size — there is no documented upper limit.)

The module defines the following functions:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

16.1.1    Configuration Objects

Configuration objects (returned by al.newconfig() have the following
methods:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

16.1.2    Port Objects

Port objects (returned by al.openport() have the following methods:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

16.2    Standard Module AL

AL (uppercase) AL
This module defines symbolic constants needed to use the built-in module

al (see above); they are equivalent to those defined in the C header file
<audio.h> except that the name prefix AL\s\do5()is omitted. Read the module
source for a complete list of the defined names. Suggested use:

import al
from AL import *

16.3    Built-in Module cd

cd
This module provides an interface to the Silicon Graphics CD library. It is

available only on Silicon Graphics systems.
The way the library works is as follows. A program opens the CD-ROM

device with cd.open() and creates a parser to parse the data from the CD with
cd.createparser(). The object returned by cd.open() can be used to read data
from the CD, but also to get status information for the CD-ROM device, and
to get information about the CD, such as the table of contents. Data from the

111

CD is passed to the parser, which parses the frames, and calls any callback
functions that have previously been added.

An audio CD is divided into tracks or programs (the terms are used
interchangeably). Tracks can be subdivided into indices. An audio CD
contains a table of contents which gives the starts of the tracks on the CD.
Index 0 is usually the pause before the start of a track. The start of the track as
given by the table of contents is normally the start of index 1.

Positions on a CD can be represented in two ways. Either a frame number
or a tuple of three values, minutes, seconds and frames. Most functions use
the latter representation. Positions can be both relative to the beginning of the
CD, and to the beginning of the track.

Module cd defines the following functions and constants:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

The module defines the following variables:
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

The following variables are states as returned by getstatus:
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]
[Sorry. Ignored \begin{datadesc} ... \end{datadesc}]

Player objects (returned by cd.open()) have the following methods:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Parser objects (returned by cd.createparser()) have the following methods:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

16.4    Built-in Module fl

fl
This module provides an interface to the FORMS Library by Mark

Overmars. The source for the library can be retrieved by anonymous ftp from
host ftp.cs.ruu.nl, directory SGI/FORMS. It was last tested with version 2.0b.

Most functions are literal translations of their C equivalents, dropping the
initial fl\s\do5()from their name. Constants used by the library are defined in
module FL described below.

The creation of objects is a little different in Python than in C: instead of
the ‘current form’ maintained by the library to which new FORMS objects are
added, all functions that add a FORMS object to a form are methods of the
Python object representing the form. Consequently, there are no Python
equivalents for the C functions fl\s\do5(a)ddto\s\do5(f)orm and
fl\s\do5(e)nd\s\do5(f)orm, and the equivalent of fl\s\do5(b)gn\s\do5(f)orm is
called fl.make\s\do5(f)orm.

Watch out for the somewhat confusing terminology: FORMS uses the
word object for the buttons, sliders etc. that you can place in a form. In
Python, ‘object’ means any value. The Python interface to FORMS introduces
two new Python object types: form objects (representing an entire form) and
FORMS objects (representing one button, slider etc.). Hopefully this isn’t too
confusing...

There are no ‘free objects’ in the Python interface to FORMS, nor is there
an easy way to add object classes written in Python. The FORMS interface to
GL event handling is available, though, so you can mix FORMS with pure GL
windows.

Please note: importing fl implies a call to the GL function foreground()
and to the FORMS routine fl\s\do5(i)nit().

16.4.1    Functions Defined in Module fl

FL Functions

113

Module fl defines the following functions. For more information about
what they do, see the description of the equivalent C function in the FORMS
documentation:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

16.4.2    Form Objects

Form objects (returned by fl.make\s\do5(f)orm() above) have the following
methods. Each method corresponds to a C function whose name is prefixed
with fl\s\do5(); and whose first argument is a form pointer; please refer to the
official FORMS documentation for descriptions.

All the add\s\do5(…) functions return a Python object representing the
FORMS object. Methods of FORMS objects are described below. Most kinds
of FORMS object also have some methods specific to that kind; these
methods are listed here.
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Form objects have the following data attributes; see the FORMS
documentation:

[Sorry. Ignored \begin{tableiii} ... \end{tableiii}]

16.4.3    FORMS Objects

Besides methods specific to particular kinds of FORMS objects, all FORMS
objects also have the following methods:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

FORMS objects have these data attributes; see the FORMS
documentation:

[Sorry. Ignored \begin{tableiii} ... \end{tableiii}]

16.5    Standard Module FL

FL (uppercase) FL
This module defines symbolic constants needed to use the built-in module

fl (see above); they are equivalent to those defined in the C header file
<forms.h> except that the name prefix FL\s\do5()is omitted. Read the module
source for a complete list of the defined names. Suggested use:

import fl
from FL import *

115

16.6    Standard Module flp

flp
This module defines functions that can read form definitions created by

the ‘form designer’ (fdesign) program that comes with the FORMS library
(see module fl above).

For now, see the file flp.doc in the Python library source directory for a
description.

XXX A complete description should be inserted here!

16.7    Built-in Module fm

fm
This module provides access to the IRIS Font Manager library. It is

available only on Silicon Graphics machines. See also: 4Sight User’s Guide,
Section 1, Chapter 5: Using the IRIS Font Manager.

This is not yet a full interface to the IRIS Font Manager. Among the
unsupported features are: matrix operations; cache operations; character
operations (use string operations instead); some details of font info; individual
glyph metrics; and printer matching.

It supports the following operations:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Font handle objects support the following operations:
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

16.8    Built-in Module gl

gl
This module provides access to the Silicon Graphics Graphics Library. It

is available only on Silicon Graphics machines.
Warning: Some illegal calls to the GL library cause the Python interpreter

to dump core. In particular, the use of most GL calls is unsafe before the first
window is opened.

The module is too large to document here in its entirety, but the following
should help you to get started. The parameter conventions for the C functions
are translated to Python as follows:
• All (short, long, unsigned) int values are represented by Python integers.

• All float and double values are represented by Python floating point
numbers. In most cases, Python integers are also allowed.

• All arrays are represented by one-dimensional Python lists. In most cases,
tuples are also allowed.

• All string and character arguments are represented by Python strings, for
instance, winopen(’Hi There!’) and rotate(900, ’z’).

• All (short, long, unsigned) integer arguments or return values that are only
used to specify the length of an array argument are omitted. For example,
the C call

lmdef(deftype, index, np, props)

is translated to Python as

lmdef(deftype, index, props)

• Output arguments are omitted from the argument list; they are transmitted
as function return values instead. If more than one value must be returned,
the return value is a tuple. If the C function has both a regular return value
(that is not omitted because of the previous rule) and an output argument,
the return value comes first in the tuple. Examples: the C call

getmcolor(i, &red, &green, &blue)

is translated to Python as

red, green, blue = getmcolor(i)

The following functions are non-standard or have special argument
conventions:

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

117

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

Here is a tiny but complete example GL program in Python:

import gl, GL, time

def main():
        gl.foreground()
        gl.prefposition(500, 900, 500, 900)
        w = gl.winopen('CrissCross')
        gl.ortho2(0.0, 400.0, 0.0, 400.0)
        gl.color(GL.WHITE)
        gl.clear()
        gl.color(GL.RED)
        gl.bgnline()
        gl.v2f(0.0, 0.0)
        gl.v2f(400.0, 400.0)
        gl.endline()
        gl.bgnline()
        gl.v2f(400.0, 0.0)
        gl.v2f(0.0, 400.0)
        gl.endline()
        time.sleep(5)

main()

16.9    Standard Modules GL and DEVICE

GL and DEVICE GL DEVICE
These modules define the constants used by the Silicon Graphics

Graphics Library that C programmers find in the header files <gl/gl.h> and
<gl/device.h>. Read the module source files for details.

16.10    Built-in Module imgfile

imgfile
The imgfile module allows python programs to access SGI imglib image

files (also known as .rgb files). The module is far from complete, but is
provided anyway since the functionality that there is is enough in some cases.
Currently, colormap files are not supported.

The module defines the following variables and functions:
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

119

Chapter 17

SunOS Specific Services

The modules described in this chapter provide interfaces to features that are
unique to the SunOS operating system (versions 4 and 5; the latter is also
known as Solaris version 2).

17.1    Built-in Module sunaudiodev

sunaudiodev
This module allows you to access the sun audio interface. The sun audio

hardware is capable of recording and playing back audio data in U-LAW
format with a sample rate of 8K per second. A full description can be gotten
with man audio.

The module defines the following variables and functions:
[Sorry. Ignored \begin{excdesc} ... \end{excdesc}]

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

17.1.1    Audio Device Objects

The audio device objects are returned by open define the following methods
(except control objects which only provide getinfo, setinfo and drain):

[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]
[Sorry. Ignored \begin{funcdesc} ... \end{funcdesc}]

There is a companion module, SUNAUDIODEV, which defines useful
symbolic constants like MIN\s\do5(G)AIN, MAX\s\do5(G)AIN, SPEAKER,
etc. The names of the constants are the same names as used in the C include
file <sun/audioio.h>, with the leading string AUDIO\s\do5()stripped.

Useability of the control device is limited at the moment, since there is no
way to use the “wait for something to happen” feature the device provides.

