An Implementation of Standard ML Modules

David MacQueen

AT&T Bell Laboratories
Murray Hill, NJ 07974

ABSTRACT

Standard ML includes a set of module constructs that support programming in the
large. These constructs extend ML’s basic polymorphic type system by introducing the
dependent types of Martin Ldf's Intuitionistic Type Theory. This paper discusses the
problems involved in implementing Standard ML’s modules and describes a practical,
efficient solution to these problems. The representations and algorithms of this imple-
mentation were inspired by a detailed forma semantics of Standard ML developed by
Milner, Tofte, and Harper. The implementation is part of a new Standard ML compiler
that iswritten in Standard ML using the module system.

March 11, 1988

An Implementation of Standard ML Modules

David MacQueen

AT&T Bell Laboratories
Murray Hill, NJ 07974

1. Introduction

An important part of the revision of ML that led to the Standard ML language was the inclusion of
module facilities for the support of ‘‘programming in the large.’’ The design of these facilities went
through several versions [8] and was supported by concurrent investigations of the type theory of ML and
related systems [9,11]. The central idea behind the design was to support modularity by introducing a stra-
tified system of dependent types as suggested by Martin L&f’s Intuitionistic Type Theory [10]. In late 1985
Bob Harper added a prototype implementation of most of the module facilities to the Edinburgh ML com-
piler, which was serving as a test-bed for the evolving Standard ML design.

Starting in the spring of 1986, Andrew Appel, Trevor Jim, and | have implemented a new Standard
ML compiler, written in Standard ML, and initialy bootstrapped from the Edinburgh compiler. An over-
view of this new compiler, known as Standard ML of New Jersey, is given in [1]. The implementation of
modules in this new compiler went through two generations. A first version was done in the fall of 1986,
but it was completely rewritten in the summer of 1987 following discussions of the operational static
semantics of modules with Robin Milner, Mads Tofte, and Bob Harper [6,7,12]. Like Harper's prototype
implementation, the new modules implementation was inspired by the static semantics, but it uses a struc-
ture sharing strategy [3,13] to avoid serious performance problems associated with a naive implementation
of the static semantics. Although precise comparative measurements are not yet available, our experience
shows that the symbol table size for alarge ML program such as the ML compiler is several times smaller
with the new compiler than with the old compiler.

The objective of this paper is to describe our implementation of the Standard ML module facilities,
with particular emphasis on the techniques used to minimize the space consumed by static representations
of modules (i.e. symbol table structures). We begin by reviewing the elements of the module language.

2. Summary of the module constructs

Before describing the basic issues concerning implementation of Standard ML modules, we need to
review the main elements of the module language. There are three principal notions:

(1) signature—interface specification or ‘‘type’’ of modules.

(2) structure — an environment; a collection of type, structure, value, and exception bindings;
corresponds to the conventional idea of a module.

(3) functor —function mapping structuresto structures; aform of parametric module.
Figure 1 below contains simple examples of each of these constructs.

signature ORD =

sig

type t

val le : t*t -> bool
end

structure S =

struct
datatype t = A| B of t
val x = A
fun le(A) = true
| le(_,A = false
| 1e(Bx, By) =le(x,y)
end

signature LEXORD =
sig
structure A: ORD
val lexord : At list * At list -> bool
end

functor LexOrd(O ORD) : LEXORD =
struct
structure A =0
fun lexord([],_) = true
| lexord(_,[]) = false
| lexord(x::l,y::m = ... Ole(x,y)
end

structure LS = LexOrd(S)

Figurel

This example contains declarations of two signatures, ORD and LEXORD, two structures, S and LS,
and one functor, LexOr d, mapping a structure of signature ORD to a new structure of signature LEXORD.
The structure LS is defined as the result of applying LexOrd to S. We refer to components of a structure
using qualified names or paths formed with the usual *‘dot’’ notation: e.g. S. t, S. X, LS. A. | e.

A signature can be regarded as aform of ‘‘type’’ for structures, or as a schematic representation of a
class of structures, and a structure matches a signature if it satisfies the specifications given in the signature.
A structure does not have to agree exactly with a signature in order for it to match the signature; in this
exampl e the structure S matches the signature ORD, even though S has an additional value component x not
specified in ORD. In such cases signature matching has a coercive effect, producing a ‘‘thinned’’ structure
that exactly agrees with the signature in terms of humber of components and their types.

Signature matching is performed in two contexts: (1) when a signature constraint is given in a struc-
ture declaration, asin:
structure R: ORD = S

and (2) when afunctor is applied to an argument structure, which must match the signature specified for the
formal parameter, asin

structure LS = LexOrd(S)

where S must match ORD. Actually, these two contexts are closely related under Landin’s principle of
correspondence. In the first case, R is bound to a thinned version of S that does not contain an x com-
ponent, and in the second case, the formal parameter O, and hence the substructure LS. A, isaso bound to a
thinned version of S.

Another kind of specification that may appear in signatures is the sharing constraint, the purpose of
which is to insure a kind of type coherence among functor parameters. The program sketch in Figure 2
illustrates the use of sharing constraints.

signature SYMBOL = sig type synbol ... end

signature LEX =
sig
structure Symbol : SYMBCL
val next : unit -> Synbol.synbol

end

si gnature SYMBOLTABLE =
sig
structure Symbol : SYMBCL
type var
val bind : Synbol.synbol * var -> unit

end

si gnat ure PARSE_ARGS =
sig
structure Lex : LEX
structure Synmlab : SYMBOLTABLE
sharing Lex. Synbol = Synirab. Synbol
end

functor Parse(A: PARSE_ARGS) =
struct ... A Synflab. bi nd(A Lex.next(), v) ... end

Figure 2

The functor Par se essentially takes two structure arguments, Lex (implementing alexical analyzer)
and Synirab (implementing a symbol table), which are bundled as components of a single parameter struc-
ture. The sharing specification in PARSE_ARGS requires that the same Synbol structure be used in both
Lex and Synifab. This insures that Lex and Synirab can consistently interact, as in the expression
A. Synt ab. bi nd(A. Lex. next (), v), which is well-typed only if A. Lex. Synbol . synbol and
A. Synt ab. Synbol . synbol arethe sametype.

An important point about datatype and structure declarations is that they are generative, meaning that
each time they are elaborated (e.g. in a functor body as a result of functor applications) a new, distinct
structure or typeis created. For example, in

functor F () =
struct
datatype t = A| B of t
end

structure S1
structure S2

F()
F()

S1 and S2 are distinct structures and S1. t and S2. t are distinct types, so S1. B(S2. A) is an ill-typed
expression.

On the other hand, simple type definitions (whether occurring inside or outside of structures) are
transparent rather than generative. For instance, in

structure IntOrd =

struct

type t = int

fun le(x,y) = x <=y
end

thetype S. t isidentical toi nt. In other words, there is no information hiding or abstraction inherent in
the formation of structures. This applies even to the results of functor applications; type information is pro-
pagated through functor applications, so that after the declaration

structure IntLexOrd = LexOrd (I ntOrd)

IntLexOrd.l e hastypeint list * int list -> bool. This reflects the dependent product
nature of functor signatures, and the fact that structures represent a form of strong dependent sum (see
[9,11] for discussion of the relation between ML modules and dependent types).

3. Implementation of modules
The principal tasks that an implementation must deal with are as follows:
(1) representation of signatures, structures, and functors.

(2) signature matching, including instantiation of the signature template and possible thinning of the
matched structure.

(3) functor application, including
(8 matching formal signature to actual parameter, with possible thinning of the parameter.

(b) creation of the result structure, including propagation of type information from parameter to
result and generation of new instances of datatypes and structures.

(4) representation and checking of sharing constraints.

Most of these tasks have two parts, the static or compile-time task and the dynamic or run-time task.
The run-time problems are straightforward and are discussed in the next subsection. Our main focus will be
on the static aspects of the module language, for which our principal implementation goals are:

(1) compact representation of structures having a given signature

(2) efficient signature matching and functor application, with minimal duplication of static (i.e. symbol
table) information

(3) efficient representation and checking of sharing constraints.

3.1. Dynamic representations and processes.

The run-time representations of modules are remarkably simple [1]. Signatures and types have no
run-time representation — they exist only at the static level. A structure is represented as a record whose
components represent the dynamic structure components (i.e. substructures, values, and exceptions) in a
canonical order. A functor is represented as an ordinary function closure, and functor application
corresponds to the normal application of this function to a record representing the argument structure. The
thinning coercions associated with signature matching give rise to in-line code to construct the thinned
record.

In the middle-end of the compiler, all module constructs are reduced to the same simple lambda-
calculus based intermediate language that is used for the core ML constructs of value declarations and
expressions. In effect, the back-end of the compiler is unaware of the existence of the module constructs —
they have been reduced to common notions of records and functions.

3.2. Static Representations

A naive representation of signatures and structures can be modeled more or less directly on the
semantic constructs used in the operational static semantics [5,6]. There a structure is modeled by an
environment E that maps component identifiers to the appropriate sort of static binding (type, structure,

variable, etc.), and a stamp,* n, that uniquely identifies the structure: str = (n,E). We can view a structure
as atree or dag with nodes labeled by stamps and edges labeled by component names. A signature isthen a
structure together with a designated set of bound or schematic stamps occurring within the structure:
sig = (N)(n,E).

We illustrate this with the definitions in Figure 3 and the corresponding graphs in Figure 4 (adapted
from [6]), in which (a) represents the structure C and (b) represents the signature SI GC. Our convention
for distinguishing between constant and bound stamps is that metavariables k; range over constant stamps,
while metavariables x; range over bound stamps in a signature. This is a more concise aternative to the
separate specification of the graph and the set of bound stamps We emphasize the distinction by using solid
circles for nodes with constant stamps and open circles for nodes with bound stamps. A structure will
always contain only constant stamps, while a signature will typically contain only bound stamps. The
graphs are ssimplified by showing only structure components, but type components are dealt with similarly.

structure A = signature SIGA =
st ruct sig
type t = int type t
fun f n =2 * n val f : t ->t
end end
structure B = signhature SIGB =
st ruct sig
structure BA = A structure BA: Sl GA
fun g x = BAf(x) + 1 val g: BA't -> BAt
end end
structure C = signature SIGC =
st ruct sig
structure CA = A structure CA : SIGA
structure CB = B structure CB : SIGB
fun h x = CB.g(CA. f Xx) val h: CAt -> CAt
end end
Figure 3
Ky X1
CB CA CB
CA ks Xo X3
A BA
k, X4
structure C signature SI GC
Figure4

The purpose of a signature matching S: Sl Gisto produce a structure S’ that has exactly the form
specified by SI Gand yet shares the identity (i.e. the stamps) of S. In somecases, Sand S’ areidentical, as
when S had already matched the signature SI G In other cases S’ is a thinned version of S having fewer
components or components whose types are generic instances of their types in S. Another product of
matching is the realization map, whose use in functor applicationsis explained in Section 3.5.

*We prefer theterm * stamp’” for this purpose, rather than the term *‘name’” used in [6,7], since*‘name’’ could aso refer to
the identifier to which a structure is bound or an identifier bound within a structure.

We can think of Sl G as a scheme analogous to a generic type scheme or polytype in the core ML
type system [4], with the bound stamps playing the role of generic type variables in a type scheme. The
product of matching is then an instance of this scheme under the substitution represented by the realization
map. The details of this analogy have been worked out by Mads Tofte, including a version of the principal
typing theorem of [4].

A naive implementation of matching would make a copy of the signature Sl G, in the process replac-
ing each bound stamp by the corresponding constant stamp from S. This would involve copying most of
the environment part of the signature, since we have to instantiate the type specifications of values and
exceptions as well as instantiating the types and substructures themselves. However, the environment or
symbol table part of the signature can be regarded as a template relative to its type and substructure com-
ponents, which are the only parts that need to change during signature matching. For instance, a type
specification likef : t->t canremain fixed if it is interpreted relative to the type component t . We can
abstract out the type and structure components carrying the bound stamps and use the rest of the informa-
tion in a signature as an unchanging template that can be shared by all instances of the signature. Thisis
the familiar structure sharing idea first proposed by Boyer and Maoore in the context of resolution theorem
proving [3] and later exploited in the implementation of Prolog [13]. The use of structure sharing in the
basic ML type system has been considered, but in that context it does not appear to have a clear advantage
over the simpler approach of instantiation by copying. In the case of signature matching, however, the
shared information in the template is typically of considerable volume, so structure sharing is quite effec-
tive in saving space relative to copying.

The definitions of the basic datatypes used to represent type constructors, structures and signatures
are given in Figure 5. The representations of structures and signatures both use the St r uct ur e datatype,
and differ only in the value of the ki nd field. The st anp field contains the identifying stamp, thet abl e
is the environment component represented as a hash table mapping symbols to the various sorts of bind-
ings, and the env field contains a pair of instance vectors for type and structure components. The si gn
field in a signature to identify the signature (the st anp field will have aformal value representing a bound
stamp); in a structure it identifies the signature the structure is an instantiation of, if any. Bound and con-
stant stamps are both represented as integers; stamps greater than some base value are constant stamps,
while stamps less than that value are bound. Within a given signature, bound stamps are canonically num-
bered starting from O.

dat at ype tycon
= TYCON of {stanp : stanp, ...}
| INDtyc of int I|ist

dat at ype Structure
= STRstr of
{stamp : stanp,
sign : stanp option,
table : syntable,

env . strenv,
kind : strkind}
| INDstr of int
and strkind
= STRKi nd
| SI&kind of

{share : sharespec,
bi ndings : binding list,
stanpcounts : {s : int, t : int}}

Figure5

The | NDt yc and | NDst r forms of type constructors and structures are used within the symbol
table to refer indirectly to components stored in the instance vectors. Theterm | NDt yc[i] refersto theith

element of the type instance vector, while | NDt yc[i, j] refersto the jth element of the type vector of the
ith element of the structure vector. The type specifications

f: t ->t
h: CAt -> CA. t

from Figure 3 are represented internally as

f: INDtyc[O] -> I NDtyc[O]
h: INDtyc[0,0] -> INDtyc[O, 0]

The representation of the entire signature SIGC from Figure 3 can be summarized as follows:

S| GC.
stamp: O
table: CA => INDstr O
CB => INDstr 1
h => VAR INDiyc[0,0] -> INDtyc[O, O]
strenv: structures = <SIGA', SI GB' >
types = <>

SI GA':
stamp: 1
table: t => INDtyc[O]
f => VAR INDtyc[O0] -> INDtyc[O]

strenv: structures = <>
types = <DUMWY 0>
SI GB
stamp: 2

table: BA => INDstr O
g => VAR BAt -> BAt

strenv: structures = <SIGA'’' >
types = <>
SI GA
stamp: 3

table: t => INDtyc[O]

f => VAR INDtyc[O] -> INDtyc[O]
strenv: structures <>

types <Dumwy 1>

Note that there are two copies of the signature SI GA, identified as SI GA' and SI GA’ ' , each with its own
stamp. Thisduplication isrequired to get the canonical numbering of stamps for each component of SI GC,
but each of these copies shares the original symbol table component from SI GA. DUMWY 0 and DUMWY 1
are dummy type constructor components, which have their own separate numbering within the context of
Sl GC.

3.3. Signature Matching

We now describe the process of signature matching in terms of the representation described above.
Given asignaturesi g and structure st r represented as

STRstr{stanmp = x, sign = n, table = sigtab, env = sigenv,
ki nd = SI Gki nd{bi ndi ngs, st anpcounts, shari ng}}

sig

str STRstr{stamp = k, sign = s, table = strtab, env = strenv,

ki nd=STRki nd}

we first check whether s=n , and if so return st r , because st r is aready an instance of si g. Otherwise
we attempt to construct a new instance of si g. We start by allocating a new pair of instance vectors,
newenv={ s=sNew, t =t New} , based on the size information in the st anpcount s field. Then we
iterate through the list of al of si g’s bindings (i.e. specifications), which is available in the field bi nd-
i ngs. For each structure binding (i d, | NDstr i) insig, welook up astructure namedid in st rt ab.
If it does not exist, matching fails. If it does exist, we recursively match it against the substructure signa
turebound toi d in si g (obtained as the ith element of the structure vector in si genv), and if successful
use the result to define the ith element of sNew. Similarly for type bindings, where we check that the type
constructor bound in st r agrees with the specification in sig (e.g. they must have the same arity). For
value specifications like x: ty, we interpret indirect type constructorsint y with respect to newenv and
check that we have a generic instance of the type of the corresponding component of st r . Checking value
components has no effect on the instance vectors, but if necessary (i.e. if si g has fewer value components
than st r) we calculate the translation between the old and new runtime positions of the components and
collect thisinformation in a thinning specification to be applied at runtime.

When we have successfully matched all the bindingsinsi g we build the result structure st r* using
si g'stableand si gn, st r “sstamp, and newenv

str’ = STRstr {stanp=n, sign=SOMVE k, tabl e=sigtab,
env=newenv, ki nd=STRki nd}

Finally any sharing constraints (from sharing) are checked as described in Section 3.5, and wereturn st r’
and a thinning specification as the result of the match. Note that the bulk of the information in the signature
isinsi gt ab, and thisisdirectly shared with the instantiationstr .

As ashortcut, when elaborating a declaration like
structure S SIG = struct declarations end

we do not build the structure on the right-hand side before doing the signature match. Instead we elaborate
the body declarations in the top-level environment and then do the signature matching using the top-level
environment in the place of the target structure.

3.4. Functorsand functor application

In the static semantics a functor F is modeled by a pair of structures representing the parameter and
body of the functor, and two sets of bound stamps.

F = (N)(Sp, (N')Sp)

N is the set of bound stamps in the parameter structure, which may also occur in the body S, while N’ is
the set of stamps associated with generative elements of the functor body. To apply F to an argument struc-
ture A we perform the following steps

r = match((N)S,, A)
g = generate(N')
F(A) = g(r(Sp))

That is, we match the parameter signature and the argument to produce a realization map r, then we gen-
erate a realization map g that maps each bound stamp in N’ to a unique, new constant stamp, and finaly we
produce the result structure by using r and g to instantiate the body structure.

The implementation of functors follows this scheme closely. The datatype used to represent functors
is defined by

dat at ype Functor = FUNCTOR of
{param : Structure,
body : Structure,
tycCount : int}

The bound stamps in the par amstructure are numbered from 0 to n and these may also occur in the body
structure. Generative stamps in the body are numbered from n+1 to n+m, which is the value of
tycCount .

If the functor declaration provides an explicit result signature, asin
functor F(X : SIGP) : SIGR = struct ... end

the body will naturally be schematic (i.e. the parts with bound stamps will be isolated in instance vectors)
as a result of the signature matching between the body and the result signature. However, if there is no
result signature, we explicitly abstract these ‘‘volatile’’ parts of the body structure to get an instantiable
scheme so that the body’ s symbol table may be shared by all structures produced by the functor.

To apply the functor, signature matching is performed between the parameter signature and the argu-
ment to build a realization map for the bound stamps in the parameter. Then the body is instantiated using
this realization map and introducing new constant stamps to replace generative bound stamps as required.
The actual algorithm is more complicated than this because functor application can occur within the body
of functor declaration, asin

functor F(X : SIGP) =
struct

structure A

structure B

H(A)

end

In cases like the applications of Gand H in this example, the actual parameter may contain parameter bound
and even generatively bound stamps, and the realization of the generative stamps in the body of Gand H
will themselves be generatively bound stamps.

3.5. Sharing

The purpose of sharing constraints is to insure a kind of compatibility between several parameter
structures of a functor, asillustrated in Figure 2. The sharing constraints are expressed as sets of equations
between paths designating structures or types (there are two kinds of sharing specifications: structure shar-
ing and type sharing) and they determine an equivalence relation amongst the components of the signature.
The strategy for incorporating sharing constraints in the representation of a signature is to force all com-
ponents of an equivalence class to have the same stamp.

Two components may be required to share either because they are directly equated in a sharing
specification, or because they are corresponding components of structures that are required to share. Thus
if

X : sig
structure C1 : SIGC
structure C2 : SIGC
sharing CL.CB = C2.CB
end

then X. C1. CB = X C2. CBisdirectly specified, and X. C1. CB. BA = X. C2. CB. BA is an inferred
consequence. This simply says that the complete sharing relation must be a congruence with respect to the
operation of selecting a named substructure or type.

Under what circumstances may two structures be constrained to share? They must be consistent, in
the sense that it is possible to find a structure that could simultaneously match both of them. In particular,
the structures that are forced to share do not necessarily have to share the same signature, and the fact that

-10-

they share does not have any effect on their signature. The idea is that various thinned versions of a given
structure may have different signatures, but they can still share because they are actually restricted views of
their common ancestor structure. This approach is supported by the fact that in signature matching, the
stamps of the matched structure are inherited by the resultant structure. Note that this is not the approach
described in [6], where signatures of sharing structures are forced to agree by formation of a kind of union
signature. We do not actually verify that signatures that are specified to share are consistent, but if they are
not, the signature containing the sharing specification can never be successfully matched.

The processing of the sharing constraints is performed in two stages. First, a union-find algorithm is
used to determine all sharing relations, direct and inferred, and to construct the equivalence classes for the
sharing relation. At this stage it is aso possible to detect certain pathological sharing specifications, such
as trying to identify a structure with one of its substructures. Second, the signature is copied and each ele-
ment of a given equivalence classis given the same representative stamp.

There are two ways in which sharing information is used. (1) When a signature with sharing con-
straints is used as a functor parameter, the identification of stampsin the signature will automatically insure
that the sharing has the desired effect during type checking, i.e. types that are specified to share will be
seen to be identical by the type checker. (2) During signature matching, any sharing relations specified in
the signature must also hold in the matched structure. One way to check this would be to make sure that
the realization map was well defined, because a failure of sharing in the target structure would cause a sin-
gle bound stamp to be mapped to more than one target stamp. However, the realization map is only expli-
citly constructed in the matching of functor parameters, where it is needed to help instantiate the functor
body. Henceit is more convenient to simply save the original sharing constraints as equations in the signa-
ture and check them explicitly in the target structure as part of signature matching.

3.6. Relation with type checking

What is the relationship between the structures and signatures and the underlying ML type checking
mechanism? Obviously signatures and structures are carriers of type information — that is one of their
principle purposes. When we look up a value component of a structure we get the same sort of bindings as
in the top-level environment, except that in some circumstances the type has been relativized to the
structure’ sinstance vectors and it contains | NDt y ¢ type constructors. The basic variable lookup functions
have been defined to eliminate these indirections by replacing them with the referenced type constructors
from the instance vectors, at the expense of partially copying the type. This would appear to undo some of
the savings achieved by the structure sharing representation of structures, but these copies tend to be
ephemeral, and they are quickly and efficiently garbage-collected. The type information in structures and
signatures is, on the other hand, long-lived, so it is more critical to minimize their space requirements.

4, Conclusions

The challenge of implementing the Standard ML module features is to perform the compile-time
matchings and instantiations necessary to propagate and check type information with a minimum of dupli-
cation of that information. Experience has shown that a naive approach leads to an explosion in the size of
the static representations.

The implementation strategy described in this paper uses a structure sharing instantiation technique
instead of instantiation by copying, and has proved to be reasonably modest in its space requirements. It
also has the advantage that it remains quite close in spirit to the formal static semantics.

Work on the Standard ML module facilities continues, and current topics of interest include explicit
functor signatures and the relation of the module constructs to separate compilation.

Acknowledgements

This implementation is inspired directly by the work done on the operational semantics of Standard
ML by Robin Milner, Mads Tofte, and Bob Harper, and | have benefited from many discussions with them.
Bob Harper passed on useful ideas from his prototype implementation of modules. Nick Rothwell helped
me explore the use of structure sharing in type checking. Andrew Appel provided valuable advice
throughout and had a direct hand in the implementation of sharing specifications, and he has been an equal

-11-

partner in the creation of Standard ML of New Jersey.

References

1

10.

11.

12.

13.

A. Appd and D. MacQueen, A Sandard ML compiler, Proceedings of the Conference on Functional
Programming and Computer Architecture, Portland, September 1987, G. Kahn, ed., LNCS Vol. 274,
Springer-Verlag, 1987.

H.-J. Boehm and A. Demers, Implementing Russell, Proceedings of SIGPLAN 86 Symposium on
Compiler Construction, Palo Alto, 1986, 186-195.

R. S. Boyer and J Moore, The sharing of structure in theorem-proving programs, Machine Intelli-
gence 7, B. Méeltzer and D. Michie, eds., Edinburgh University Press, 1972, 101-116.

L. Damas and R. Milner, Principal type schemes for functional programs, Proceedings of 9th ACM
Symposium on Principles of Programming Languages, Albuquerque, 1982, 207-212.
R. Harper, D. MacQueen, and R. Milner, Sandard ML, Laboratory for Foundations of Computer Sci-

ence, Dept. of Computer Science, University of Edinburgh, ECS-LFCS-86-2, 1986. (Also Polymor-
phism I1, 2, October 1985.)

R. Harper, R. Milner, and M. Tofte, A type discipline for program modules, Proceedings TAPSOFT
87, LNCSVoal. 250, Springer-Verlag, New Y ork, 1987, 308-319.

R. Harper, R. Milner, and M. Tofte, The semantics of Sandard ML, Version |, Laboratory for Foun-
dations of Computer Science, Dept. of Computer Science, University of Edinburgh, ECS-LFCS-87-
36, 1986.

D. MacQueen, Modules for Sandard ML, in [5]. (An earlier version appeared in Proceedings ACM
Symposium on Lisp and Functional Programming, Austin, 1984.)

D. MacQueen, Using dependent types to express modular structure, Proceedings 13th ACM Sympo-
sium on Principles of Programming Languages, St. Petersburg Beach, 1986, 277-286.

P. Martin-Lbf, Constructive mathematics and computer programming, Sixth International Congress
for Logic, Methodology, and Philosophy of Science, North Holland, Amsterdam, 1982, 153-175.

J. C. Mitchell and R. Harper, The essence of ML, Proceedings 15th ACM Symposium on Principles
of Programming Languages, San Diego, 1988, 28-46.

M. Tofte, Operational Semantics and Polymorphic Type Inference, Ph.D. Dissertation, Dept. of
Computer Science, University of Edinburgh, 1987.

D. H. D. Warren, Implementing PROLOG - Compiling Predicate Logic Programs, Vol. I, Dept. of
Artificial Intelligence Report No. 39, University of Edinburgh, 1977.

