
Asynchronous Signals in Standard ML�

John H. Reppy

TR 90-1144
August 1990

Department of Computer Science
Cornell University
Ithaca, NY 14853

�This work was supported, in part, by the NSF and ONR under NSF grant CCR-85-14862

Asynchronous Signals in Standard ML�

John H. Reppy
Cornell University

jhr@cs.cornell.edu

August 1, 1990

Abstract

We describe the design, implementation and use of a mechanism for handling asynchronous
signals, such as user interrupts, in the New Jersey implementation of Standard ML. Providing
this kind of mechanism is a necessary requirement for the development of real-world application
programs. Our mechanism uses first-class continuations to represent the execution state at the
time at which a signal occurs. It has been used to support pre-emptive scheduling in concurrency
packages and for forcing break-points in debuggers, as well as for handling user interrupts in
the SML/NJ interactive environment.

1 Introduction

Programs normally receive communication from the outsideworld via input operations. This method

of communication is inherently synchronous: there is no way for the outside world to force the

program to accept communication. But sometimes it is necessary to communicate asynchronously;

for example, if the user wants to interrupt execution, or if the operating system needs to inform a

program that its terminal connection has been lost. Most operating systems provide a mechanism

for asynchronously signaling a program in these situations. For example, on UNIX systems, when

a user types the break character (e.g., control-C), the terminal driver sends a SIGINT signal to the

process attached to the terminal. Under UNIX a program can establish a handler that the operating

system will call when a given signal occurs. The signal handler is, in effect, a limited co-routine

of the main program. Most programs use the default signal handlers, but some applications require

specialized handlers. For example, an editor will save the edited state of a file when the terminal

connection is lost (signified by SIGHUP on UNIX). Providing a signal handling mechanism is a

necessary requirement for implementing programs such as editors.

The SML definition ([MTH90]) includes a weak mechanism for handling asynchronous inter-

rupts generated from the keyboard (e.g., SIGINT on UNIX systems). When the user types the break

character, the exception Interrupt is raised. This exception is primarily used to force control

back up to the top-level read-eval-print loop, and it has a number of problems:
�This work was supported, in part, by the NSF and ONR under NSF grant CCR-85-14862

� Lack of robustness: it is not possible to write a robust Interrupt handler. Multiple

SIGINTs can create race conditions in an exception handler that handlesInterrupt, and,

in addition, there is no mechanism for masking interrupts. The race conditions are a direct

result of using exceptions, which are otherwise a synchronous control-flow mechanism, to

support asynchronous control-flow.

� Lack of generality: there is no support for other kinds of signals, such as hang-ups or interval

timer interrupts. Real-world applications must be able to deal with these situations.

� Lack of flexibility: there is no way to reliably resume execution at the point where the signal

occurred. A general mechanism should provide a way to restart after a signal.

We have designed and implemented a general-purpose signal mechanism for the New Jersey

implementation of SMLthat addresses these concerns.

Standard ML of NJ (SML/NJ) is a publicly available implementation of SML developed by

Dave MacQueen and Andrew Appel, with contributions from a number of other people[AM87]. It

runs on a variety of UNIX-based systems and has a highly portable run-time system[Appel90]. SML/NJ

supports first-class continuations as an extension[DHM]. Our mechanism treats asynchronous signals

as continuation producing operations. A signal handler is a function from continuations to continua-

tions: it takes take the current continuation at the time of the signal and returns a, possibly different,

continuation. Because of the problems with asynchronous exceptions, we have chosen to replace

the use of the exception Interrupt by our mechanism. This means that exceptions are always

synchronous in SML/NJ, which has advantages for compiling and reasoning about the language.

This paper describes the mechanism and its implementation, and describes some applications1.

2 Continuations in SML/NJ

SML/NJ uses a continuation-passing style (CPS) code generator, which produces high quality

code[AJ89]. The use of CPS in the compiler allows the easy introduction of first-class continuations

into the language. Unlike in Scheme, continuations are statically typed[DHM]; they have the

polymorphic type “� cont.” There are two built-in operations on continuations:

val callcc : (’a cont -> ’a) -> ’a
val throw : ’a cont -> (’a -> ’b)

A � cont is the type of a function representing the rest of the program with a formal parameter of

type � . Continuations are created using callcc (call with current continuation) and are applied

using throw. A simple example is the expression:

1This paper faithfully describes the mechanism as provided in August 1, 1990 release SML/NJ (version 0.62).

2

callcc (fn (k : int cont) => (throw k 5; 6)) + 7

The variable k is bound to the int cont that adds 7 to its argument; the throw applies k to 5,

giving 12. Continuations provide a natural mechanism for implementing co-routines[Wand80], such

as signal handlers.

A subtlety of the continuation mechanism is the interaction between callcc and exceptions.

Normally, exception handlers are dynamically scoped, but callcc binds the current exception

handler into the continuation it passes to its argument. To illustrate, consider the following example:

exception Foo
val (f : unit -> ’a) = (fn () => raise Foo)
val (g : unit -> ’a) = throw (

callcc (fn k => (callcc (fn k’ => throw k k’); raise Foo)))
fun h x = ((x ()) handle Foo => 1)

Applying h to f will produce the value 1; applying it to g will produce an uncaught exception

Foo. This is because g raises Foo in the exception context in which it was bound, instead of in the

context of h’s handler.

3 ML signal handling

Our approach to supporting asynchronous signals in ML is to view them a continuation producing

operations. When a signal occurs, the run-time system captures the current ML state as a contin-

uation, which we call the resumption continuation, and passes it to a signal handler. The signal

handler returns a new continuation with which the run-time system resumes ML. As with the UNIX

signal mechanism, the interrupted thread and signal handler are co-routines.

3.1 System.Signals

The structure System.Signals in the SML/NJ pervasive environment provides a low-level

interface to the ML signal handling (see figure 1). There are a number of signals, corresponding

to a subset of the UNIX signals[UNIX] plus a signal generated after garbage collections (SIGGC). A

signal may be either be ignored or caught. The function setHandler is used to install a handler

for a given signal, and the function inqHandler is used to get the current handler. A value of

NONE for the handler in these operations specifies an ignored signal. The function maskSignals

is used to turn signal masking on and off. This operation is cumulative, so that multiple masking

operations will nest.

An ML signal handler has the type:

(int * unit cont) -> unit cont

3

signature SIGNALS =
sig

datatype signal
= SIGHUP | SIGINT | SIGQUIT | SIGALRM | SIGTERM | SIGURG
| SIGCHLD | SIGIO | SIGWINCH | SIGUSR1 | SIGUSR2
| SIGTSTP | SIGCONT (* not yet supported *)
| SIGGC

val setHandler : (signal * ((int * unit cont) -> unit cont) option)
-> unit

val inqHandler : signal -> ((int * unit cont) -> unit cont) option
val maskSignals : bool -> unit

end

Figure 1: Signature SIGNALS

It takes a count of pending signals2 and the interrupted thread’s resumption continuation as argu-

ments. The signal that is to be handled is not given as an argument, but is implicit in the choice of

handler called. The return value of the handler is the continuation with which execution is resumed.

All signals are masked while the handler is executing: if a signal occurs, then it is delayed until the

handler returns. This is why the handler returns a continuation instead of directly throwing to it. If

a signal handler raises an exception, instead of returning normally, it is treated as a run-time system

error, and SML/NJ will exit with an uncaught exception error.3 .

In order to write robust signal handlers, there needs to be some mechanism for atomic actions:

i.e., actions that cannot be interrupted by a signal. We guarantee that signal handlers will execute

atomically. Signals are masked upon entry to the handler and unmasked when the handler returns.

Signals that occur during execution of a handler are postponed until they are unmasked. Signals

may also be masked by calling the maskSignals function with the value true. Note that it

is not possible to unmask signals during the execution of a signal handler, although one can turn

masking on. To avoid delaying the servicing of a signal unnecessarily, it is good practice to write

short and simple signal handlers. If an application requires a more complicated and time consuming

handler action, then techniques similar to those of section 4.1 should be used.

3.2 Exceptions

The signal handler executes in a different exception handler context than that of the interrupted

thread. For this reason, the use of callcc to build the return value of the handler requires care.

For example, consider the following handler:

2The pending signal count is necessary because delays in the handling of a signal can result in multiple occurrences
of the signal before being handled.

3A higher-level signal interface would presumably implement something more tolerant.

4

fun handler (_, resumek) =
callcc (fn k1 => (

callcc (fn k2 => (throw k1 k2));
doSomething();
throw resumek ()))

The functiondoSomething is called in the exception handler context bound by the outercallcc,

which is the context in which the handler was called. If doSomething raises an unhandled

exception, it will cause SML/NJ to terminate with an uncaught exception error.

3.3 The default handlers

The structure Signals defines default handlers for some signals. Table 1 lists the signals with

a short description and the default handler action provided by the structure Signals. Most of

signal default action description
SIGHUP quit hangup
SIGINT raise Interrupt interrupt (e.g., control-C)
SIGQUIT quit quit (e.g., control-n)
SIGALRM ignore alarm clock (interval timer)
SIGTERM quit software termination signal
SIGURG ignore urgent condition present on a socket
SIGCHLD ignore child status has been changed
SIGIO ignore I/O is possible on a descriptor
SIGWINCH ignore window changed
SIGUSR1 ignore user-defined signal 1
SIGUSR2 ignore user-defined signal 2
SIGTSTP n.a. currently unsupported
SIGCONT n.a. currently unsupported
SIGGC ignore garbage collection

Table 1: Default signal actions

these signals correspond to standard UNIX signals[UNIX]. The signals SIGTSTP and SIGCONT are

currently unsupported, but will be implemented in the near future. SIGGC is generated following

every garbage collection.

3.4 Handling SIGINT

As we noted above, we implement a non-standard policy for handling user interrupts. We decided on

this policy after struggling with a version of this mechanism that supported asynchronous exceptions

(such as Interrupt)[Reppy90].

Our approach is to eliminate asynchronous exceptions, including the exception Interrupt.

Although this means a variance with the definition, it is a fairly minor one. The definition states:

5

If the evaluation of a topdec yields an exception (for instance because of a raise

expression or external intervention) then the result of executing the program “topdec ;”

is the original basis together with the state which is in force when the exception is

generated.

([MTH90], page 64)

We believe that the intent here is to specify a policy with respect to the top-level read-eval-print loop.

This policy can be easily implemented without the exceptionInterrupt. The read-eval-print loop

captures its state at the beginning of each iteration as a continuation. The SIGINT handler throws

to this continuation, which restores the original basis. By banishing asynchronous exceptions we

make reasoning about programs that use exceptions more tractable, as well as allowing the compiler

more latitude in optimizing away exception handlers.

4 Applications

The interface provided by structure Signals is low-level, but general enough to provide the basis

for more sophisticated mechanisms. In this section we illustrate the use of oure mechanism by

describing a number of applications and programming techniques.

4.1 Masking signals

Our mechanism allows all signals to be masked; but there is no mechanism for masking individual

signals. In this section, we describe a signal handling package that allows a mask to be attached to

each handler. This mask specifies a set of signals to be masked during the handler’s execution. We

have the following interface:

type handler = (int * unit cont) -> unit cont
type mask = signal list
val install : (signal * (handler * mask) option) -> handler option

Install installs a signal handler and associated signal mask, returning the previous handler.

In order to provide this finer grain masking of signals, the installed signal handlers are run

outside the context of the handlers provided by System.Signals (recall that those handlers

mask all signals). When a signal occurs, the ML signal handler sets the handler mask and returns a

continuation that will call the installed handler. When the installed handler returns, the signal mask

is reset and control is thrown to the returned continuation. If a masked signal occurs, it is added

to a list of pending signals. This list is checked when the installed handler returns and, if there are

pending signals, then the returned continuation is passed to the installed handler of the first signal

on the pending list. This implementation requires about 100 lines of ML code.

6

4.2 Concurrency

First-class continuations provide an attractive basis for implementing light-weight threads[Wand80].

The continuations of SML/NJ have been used to implement co-routine packages (e.g. [Reppy89,

Ramsey90]), but providing pre-emptive scheduling requires additional run-time system support.

This was one of the major reasons for developing the signal handling mechanism described in this

paper.

Shared data-structures, such as the process ready queue, must be accessed atomically with

respect to process switches. To insure this, we use a simple scheme to mark the beginning and end

of critical regions (see figure 2)4. We assume that threads are represented by unit continuations,

val atomicLevel = ref 0
val signalPending = ref false
fun atomicBegin () = (atomicLevel := !atomicLevel + 1)
fun atomicEnd () = let val level = !atomicLevel - 1

in
if (!signalPending andalso (level = 0))

then callcc (fn k => (
enqueue k;
let val next = dequeue ()
in
atomicLevel := 0;
signalPending := false;
throw next ()

end))
else

atomicLevel := level
end

fun alrmHandler (_, k : unit cont) =
if (!atomicLevel > 0)

then (signalPending := true; k)
else (enqueue k; dequeue ())

Figure 2: Pre-emptive scheduling with atomic regions

and that we have functions enqueue and dequeue to manipulate the queue of ready threads. If

a signal occurs in an atomic region, then the handler sets the signalPending flag and doesn’t

switch threads. When the thread leaves the critical region, it will note the pending fault and

relinquish control. The pre-emptive scheduler is quite simple; if the current thread is in a critical

region, then the signalPending flag is set and the current thread is resumed, otherwise the

current thread is placed in the ready queue and another thread is dispatched.

4To simplify this presentation, we only concern ourselves with SIGALRM.

7

4.3 Debugging

Tolmach and Appel have built a replay debugger for SML/NJ[TA90]. They use source-to-source

transformations in the compiler to instrument the user’s code. The debugger uses a software counter

to keep track of the current “time.” The instrumentation code increments this counter and compares

it against a “target” time at important points, called events, in the code (e.g., binding sites and

function entry-points). When the current time matches the target time, then control is transferred

to the debugger thread (the debugger and user program are co-routines). One thing that debuggers

should provide is a way for the user to asynchronously force a break-point in the execution of the

program. With our signal mechanism, this function is easy to provide. The following handler for

SIGINT will force a break-point at the next debugger event, by resetting the target time and then

resuming the user’s thread.

fun sigintHandler (_, k) = (targetTime := !currentTime+1; k)

Of course, a more sophisticated implementation is possible that would allow programs that handle

signals (such as concurrent programs) to be debugged. The debugger would provide its own

implementation of the Signal structure, which would intercept interesting signals.

5 Implementation

There are two levels to the implementation: the underlying run-time support for mapping UNIX

signals to ML signals, and the implementation of the structure System.Signals. Following

a quick introduction to the SML/NJ run-time system, we describe the implementation bottom-up.

Then there is a discussion of the implementation of robust I/O, followed by some performance

measurements.

5.1 The SML/NJ run-time system

The SML/NJ run-time system is described in [Appel90]), but it has been extensively modified to

support signals. We describe the relevant features here.

The SML/NJ compiler uses continuation-passing style (CPS) code generation[AJ89]. Unlike

other CPS-based compilers ([KKR+86] for example), SML/NJ has no run-time stack; the function

return continuations are heap allocated. The generated code is also heap allocated, so special tagging

techniques are used to allow the garbage collector to deal with program counters and code objects.

Because there is no run-time stack, the SML/NJ code generator uses a register model. The

ML state consists of a three special-purpose registers and a machine dependent number of root

registers. Other registers may be used as temporaries, but these are not visible to the run-time

8

system. Five of the root registers have special meaning: one is the program counter, one holds the

current exception handler context, and the other three are used in the standard calling convention.

There are two kinds of functions: a two-argument function has the standard argument and closure

registers as parameters; a three-argument function also has the standard return continuation register

as a parameter. Two-argument functions are functions that never return, such as return continuations

and the continuations produced by callcc.

A C structure, called the state vector, is used to hold the ML state in the run-time system. Two

assembly routines provide the interface between C and ML code. The run-time system invokes

ML code by loading the state vector and callingrestoreregs, which loads the machine registers

from the state vector and jumps to the given program counter. When ML code requires a service

from the run-time system, it loads a global variable request with a request code, and calls

saveregs, which saves the ML state and returns to the C code that called restoreregs. The

restoreregs/saveregs protocol is essentially a co-routine switch.

SML/NJ has a simple, but efficient, semi-generational garbage collector[Appel89a]. Allocation is

also fast: it is open-coded and only requires a couple more instructions than object initialization. A

heap limit check is generated at the entry point of each code tree5. If there is not enough free space

for the maximum possible allocation in the code tree, then a garbage collection trap (GC-trap)

occurs6. The entry-point of a code tree is proceeded by an object descriptor word, thus the program

counter at the trap point is a valid heap pointer. Handling a GC-trap involves the following steps:

1. The run-time routine ghandle catches the trap and records the program counter of the trap

location in the state vector, sets request to REQ_GC and returns control to the assembly

coded routine saveregs.

2. Saveregs saves the ML state in the state vector and passes control up to run_ml.

3. The garbage collector is then run, using the state vector as the root set.

4. After garbage collection, run_ml calls restoreregs, which loads the machine registers

from the state vector, and jumps to the trap location.

5.2 Run-time support for signals

The major problem with handling an asynchronous signal is to avoid corrupting the heap. The ML

signal handler cannot be dispatched immediately, since the current thread may be in the middle of

an allocation. There are a number of ways to deal with this problem. One approach is to have the

run-time system recognize this situation and emulate the instruction stream until the allocation is

5A code tree (or extended basic block) is an acyclic set of blocks with one entry-point and one, or more, exits.
6The GC-trap is just a UNIX signal.

9

complete[MK87, Appel89b]. This approach has the substantial disadvantage that it requires an emulator

for every different architecture, reducing portability7.

Instead, we use an approach similar to the one used by Argus for light-weight context

switches[LCJS87]: we synchronize signals with “safe” points in the code. The heap limit checks

at the code tree entry-points are a convenient choice for the synchronization points; by delaying a

signal until the next check we can guarantee safety. When an asynchronous signal occurs, we adjust

the limit register to force a garbage collection trap on the next limit check. The run-time system

recognizes this as really being a signal, and passes it to the SML signal handler8. This technique has

the additional advantage that it doesn’t incur any additional run-time overhead on normal execution.

More specifically, let us consider the case of a signal occurring during the execution of ML

code. When a signal occurs, the following steps are taken:

1. The run-time routine sighandler catches the signal. It records the signal and resumes

execution of ML code via an assembly routine that adjusts the heap limit register.

2. The ML code executes until the next heap limit check, which will trap.

3. Ghandle recognizes that the GC-trap is really a signal trap, and setsrequest toREQ_SIGNAL.

It saves the faulting program counter and returns control to the assembly coded routine

saveregs.

4. As with a GC-trap, saveregs saves the ML state in the state vector and passes control up

to run_ml.

5. Run_ml allocates a resume continuation using the saved state, builds an argument tuple and

calls the ML signal handler (via restoreregs).

6. The ML handler deals with the signal and then returns a resume continuation. The return

continuation of the ML handler is a piece of assembly code that calls saveregs with

request set to REQ_SIG_RETURN.

7. Run_ml calls the resume continuation (via restoreregs).

Of course, another signal can occur while we are in the process of handling a signal, so it is necessary

to provide some concurrency control. We use a small collection of global variables for this purpose

(see figure 3). The inML flag is set by restoreregs and cleared by saveregs; it marks

when execution is in ML code. The flag handlerPending is set by sighandler (step 1)

to note that a handler trap is pending. This flag is cleared by ghandle (step 3), which sets the

7SML/NJ is currently supported for 5 different machine architectures, so this is a major concern.
8The run-time system checks on the available memory and, if necessary, does a garbage collection prior to invoking

the ML signal handler.

10

int inML; /* This flag is set when we are executing ML code. */
int handlerPending; /* This flag is set when a handler trap is pending, */

/* and cleared when the handler trap occurs. */
int inSigHandler; /* This flag is set when a handler trap occurs and */

/* is cleared when the ML handler returns. */
int maskSignals = 0;/* When set, signals are masked. */
int NumPendingSigs; /* This is the total number of signals pending. */

Figure 3: Concurrency control globals

inSigHandler flag. The inSigHandler flag is cleared by restoreregs (step 7), after the

signal has been handled. If either handlerPending or inSigHandler is set when a signal

occurs, then sighandler records the signal, but does not adjust the heap limit register or set the

handlerPending flag. The UNIX signal handlers sighandler and ghandle are installed

with all signals masked, so they execute atomically. This atomicity, coupled with the two-phase

structure of handling signals, guarantees that any signal that occurs during signal handling will be

postponed until after the first signal is handled. The flag maskSignals is used to implement

signal masking outside of a signal handler.

If a signal occurs during execution of C code (e.g., during a garbage collection), then we record

it and resume execution. The assembly routine restoreregs checks for pending signals just

prior to resuming ML execution. Figure 4 contains the Motorola MC680x0 code for this operation

After setting the inML flags, this code tests for pending signals. If there are any, then it checks

_restoreregs:
...
addql #1,_inML /* note that we are executing ML code */
tstl _NumPendingSigs /* check for pending signals */
jeq call_ml
tstl _maskSignals /* are signals masked? */
jne call_ml
tstl _inSigHandler /* are we currently handling a signal? */
jne call_ml
addql #1,_handlerPending /* note that a handler trap is pending */
clrl d5 /* force a trap on the next limit check */

call_ml:
jmp a5@ /* jump to the ML code */

Figure 4: Returning to ML

to see if it is in the second phase of signal handling, and, if not, it starts the first phase of signal

handling. Since starting the first phase is an idempotent operation, it doesn’t matter if a signal

occurs at this point.

11

5.3 The implementation of System.Signals

The implementation of System.Signals is fairly straight-forward. At the core of the imple-

mentation is the root ML signal handler, which is called by the run-time code. A global array is

maintained, that records the current status of each signal:

datatype sig_sts
= ENABLED of ((int * unit cont) -> unit cont)
| DISABLED

val sigvec : sig_sts array

The functions setHandler and inqHandler update the array appropriately. If a call to

setHandler makes a disabled signal enabled, or visa-versa, then the run-time system is notified

by a call to the C function enablesig9 . The code for the root ML signal handler is given in

figure 5. The signal handler should never get called on a disabled signal, since the run-time system

fun sigHandler (code, count, resume_k) = (
case (InLine.subscript(sigvec, code))
of DISABLED => resume_k
| (ENABLED handler) => handler (count, resume_k))

Figure 5: Root ML signal handler

blocks them. A global counter is used to keep track of the nesting level of signal masking. A call

to maskSignals increments or decrements this counter depending on the argument. On a 0–1

(1–0) transition, a call is made to a C routine that sets (clears) the maskSignals flag.

5.4 Signals and I/O operations

SML/NJ implements in and out streams as a buffered I/O library written in ML. The run-time

system provides an interface to the read and write system calls[UNIX], which are used by the I/O

library. The implementation of the stream operations raise a number of problems with respect to

signals:

� An input operation, such as reading the line from the terminal, can block indefinitely (i.e.,

until the user hits the “return” key), which conflicts with the desire to have a user interrupt to

force control back to the top-level prompt.

� A signal that occurs during an I/O operation may cause inconsistencies between the buffer

and the operating system. This results in input being lost and output being printed twice.

9The run-time system also shadows the status of ML signals, in order that the state can be restored for exported
images.

12

� A signal that occurs during an I/O operation may cause inconsistencies between the user

program and the buffer.

Our approach to implementing I/O solves the first two problems, and the third problem can easily

be solved, using signal masking, in applications that require it.

To understand the subtleties of this interaction, consider the case of signal occurring during a

call toread. The signal handler10 has two options: it can either interrupt the operation or resume it.

Unfortunately, neither option will work. If the signal occurs immediately following the completion

of the read, then interrupting it will result in data loss. On the other hand, if the signal occurs

just prior to the initiation of the read, then indefinite blocking may occur. Another problem with

interrupting an I/O operation is that we may need to to restart it (e.g., if the signal is SIGALRM and

it causes a context switch).

To address these problems, we divide the buffered I/O operations into two phases. First we wait

for the operation to be ready, and then we actually do the operation. The first phase is idempotent,

and so can restarted safely. Once the I/O operation is ready, we make the read/write system call

and update the buffers. To illustrate, the ML code to fill an input buffer looks something like

fun filbuf (INSTRMfilid, buf, pos, len, ...) = (
in_wait filid;
protect (fn _ => (pos := 0; len := read(filid, buf, bufsize))) ())

The protect function (figure 6) is used to guarantee that the buffer and operating system have a

fun protect f x = let
open System.Signals
val _ = maskSignals true
val y = (f x) handle ex => (maskSignals false; raise ex)
in

maskSignals false;
y

end

Figure 6: Protect a function call

consistent view of the file.

The run-time system provides wait for input/output operations to ML. These operations are

unique among the run-time routines in that sighandler will interrupt them. Figure 7 gives

pseudo C code for the wait for input routine. The ioWaitFlag is used to mark that we are waiting

for I/O. If it is set when a signal occurs, thensighandler does a longjmp to the waiting routine,

which restores the ML state vector to the value it had when the input wait routine was called by ML.

10This is the C function sighandler, not an ML handler.

13

if (setjmp(env) == 0) {
ioWaitFlg = 1;
if (NumPending Sigs == 0) {

wait for input to be available
} else {

/* A signal was already pending */
restore the ML state vector

}
ioWaitFlg = 0;

} else {
/* A signal occured while waiting */

restore the ML state vector
}

Figure 7: Wait for input

The ML signal handler is then called with a resumption continuation that will retry the I/O wait

operation. If a signal occurs before we set the ioWaitFlag, then we also restore the ML state. If

a signal occurs after the ioWaitFlag has been cleared, then the wait operation completes.

5.5 Performance

Signals such as SIGINT occur infrequently enough that performance is not a major concern, but

for concurrency packages that use SIGALRM to provide pre-emption, signal handling overhead is

an issue. Table 2 contains measurements of the overhead of handlingSIGALRM signals in ML. Our

System Relative �S per Overhead
Speed signal (50 signals/sec)

Sun 4/490 7.3 350 1.7%
Sun SPARCstation 1+ 4.6 530 2.6%
DECstation 3100 4.2 420 2.1%
Sun SPARCstation 1 3.8 600 3.0%
Sun 4/280 3.2 460 2.3%
NeXT 1.3 2,400 12%
Sun 3/60 1.0 1,300 6.3%

Table 2: Signal handling costs

benchmark is a simple program that doesn’t do any allocation. We measured the time it took to run

with the interval timer turned off and the time needed with the timer on, and used the difference in

these times to compute the overhead. The relative speed column in table 2 relates the time it took

to run the benchmark (without signals) on the various systems. The Sun systems were all running

SunOS 4.0.3, the DECstation was running Ultrix V2.2, and the NeXT was running release 1.0.

The relatively high cost of signal handling on the NeXT machine is probably because the NeXT’s

14

implementation of UNIX signal handling is built on top of the MACH exception mechanism.

6 Future work

We know of a few remaining problems with the current implementation; the following is a brief

discussion of some of these.

6.1 Incremental garbage collection

One problem area in our implementation is the interaction between signals and the garbage collector.

A signal that occurs during execution of C code in the run-time kernel cannot be safely handled,

but must be delayed until the next heap-limit check in ML code. Most of the run-time routines

are quick enough so that this isn’t a problem, but, unfortunately, a garbage collection can take

several seconds11, during which several hundred timer signals can occur. One solution would be to

use a full generational collector, such as those described in [Ungar84] and [WM89]. We suspect,

however, that this will still be inadequate for concurrent applications with real-time responsiveness

requirements. What is really needed is a way to interleave small amounts of garbage collection work

with program execution. The Pegasus garbage collector has this property, but its heap architecture

involves substantial overhead on allocation and object accesses[NR87]. Another approach is to use

page-protection tricks[Shaw87, AEL88], but these techniques may be too expensive on some systems

and not possible on others. We are exploring these, and some other, ways of addressing the problem.

6.2 Unimplemented signals

The current implementation does not support the signals SIGTSTP and SIGCONT, which are

generated as a result of suspending and resuming the process. Because these signals cannot be

masked, the assumption that sig_handler and ghandle are atomic with respect to signals

doesn’t hold. This means that supporting these signals will require some cleverness.

6.3 MACH support

As the benchmarks attest, the performance under MACH leaves something to be desired. The

problem is that we are using the UNIX signal mechanism, which is not directly supported by the

MACH kernel. Providing an implementation based directly on the MACH exception ports will

improve performance substantially.

11About 2 ms. of CPU time per kilobyte of live data on a Sun SPARCstation. The real-time delays are often much
worse, because of paging.

15

Acknowledgements

Bill Aitken made the suggestion that SML ought to have a signal handling mechanism. Andrew

Appel helped with implementing the heap limit checks, and discussions with Andrew Appel, Dave

MacQueen and Norman Ramsey helped in cleaning up the interface.

16

References

[AEL88] Appel, A.W., J.R. Ellis and K. Li. “Real-time concurrent collection on stock multi-
processors,” Proceedings of the SIGPLAN ’88 Conference on Programming Language
Design and Implementation, June 1988, pp. 11-20.

[Appel89a] Appel, A.W. “Simple generational garbage collection and fast allocation,” Software –
Practice and Experience, V 19, Nr. 2, February 1989, pp. 171-183.

[Appel89b] Appel, A.W. “Allocation without locking,” Software – Practice and Experience, V 19,
Nr. 7, July 1989, pp. 703-705.

[Appel90] Appel, A.W. “A runtime system,” to appear in the Journal of Lisp and Symbolic
Computation, 1990.

[AJ89] Appel, A.W. and T. Jim. “Continuation-passing, closure-passing style,” Conference
Record of the 16th Annual ACM Symposium on Principles of Programming Languages,
January 1989, pp. 293-302.

[AM87] Appel, A.W. and D.B. MacQueen. “A standard ml compiler,” Functional Program-
ming Languages and Computer Architecture, Lecture Notes in Computer Science 274,
Springer-Verlag, September 1987, pp. 301-324.

[DHM] Duba, B., R. Harper and D.B. MacQueen. “Type-checking first-class continuations,”
in preparation.

[MTH90] Milner, R., M. Tofte and R. Harper. The definition of standard ml, The MIT Press,
Cambridge, Mass., 1990.

[KKR+86] Kranz, D., R. Kelsey, J. Rees, P. Hudak, J. Philbin and N. Adams. “Orbit: an optimizing
compiler for scheme,” Proceedings of the SIGPLAN ’86 Symposium on Compiler
Construction, July 1986, pp. 219-233.

[LCJS87] Liskov, B., D. Curtis, P. Johnson and R. Scheifler. “Implementation of Argus,” Pro-
ceedings of the Eleventh ACM Symposium on Operating System Principles, November
1987, pp. 111-122.

[MK87] Moss, J.E.B. and W.H. Kohler. “Concurrency features for the trellis/owl language,”
ECOOP’87, Lecture Notes in Computer Science 276, Springer-Verlag, pp. 171-180.

[NR87] North, S.C. and J.H. Reppy. “Concurrent garbage collection on stock hardware,”
Functional Programming Languages and Computer Architecture, Lecture Notes in
Computer Science 274, Springer-Verlag, September 1987, pp. 113-133.

[Ramsey90] Ramsey, N. “Concurrent programming in ml,” Technical Report CS-TR-262-90, De-
partment of Computer Science, Princeton University, April 1990.

[Reppy89] Reppy, J.H. “First-class synchronous operations in standard ml,” Technical Report TR
89-1068, Computer Science Department, Cornell University, December 1989.

[Reppy90] Reppy, J.H. “Asynchronous signals in standard ml (SML/NJ version 0.56),” unpub-
lished draft, May 1990.

17

[Shaw87] Shaw, R.A. “Improving garbage collection performance in virtual memory,” Technical
Report CSL-TR-87-323, Computer Systems Laboratory, Stanford, March 1987.

[TA90] Tolmach, A.P. and A.W. Appel. “Debugging standard ml without reverse engineering,”
Proceedings of the 1990 ACM Conference on Lisp and Functional Programming, June
1990, pp. 1-12.

[Ungar84] Ungar, D. “Generation scavenging: a non-disruptive high performance storage recla-
mation algorithm,” Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineer-
ing Symposium on Practical Software Development Environments, April 1984, pp.
157-167.

[UNIX] UNIX programmer’s reference manual, 4.3 Berkeley software distribution, April 1986.

[Wand80] Wand, M. “Continuation-based multiprocessing,” Conference Record of the 1980 Lisp
Conference, August 1980, pp. 19-28.

[WM89] Wilson, P.R. and T.G. Moher, “Design of the opportunistic garbage collector,” Pro-
ceedings of OOPSLA’89, October 1989, pp. 23-35.

18

