Asynchronous Signalsin Standard ML*
John H. Reppy

TR 90-1144
August 1990

Department of Computer Science
Cornell University
Ithaca, NY 14853

*Thiswork was supported, in part, by the NSF and ONR under NSF grant CCR-85-14862

Asynchronous Signals in Standard ML*

John H. Reppy
Cornell University
jhr@s. cornel |l . edu

August 1, 1990

Abstract

We describe the design, implementation and use of amechanism for handling asynchronous
signals, such as user interrupts, in the New Jersey implementation of Standard ML. Providing
thiskind of mechanism isanecessary requirement for the devel opment of real-world application
programs. Our mechanism uses first-class continuationsto represent the execution state at the
timeat whichasignal occurs. It hasbeen used to support pre-emptive schedulingin concurrency
packages and for forcing break-pointsin debuggers, as well as for handling user interruptsin
the SML/NJ interactive environment.

1 Introduction

Programsnormally receive communication from the outsideworld viainput operations. Thismethod
of communication is inherently synchronous: there is no way for the outside world to force the
program to accept communication. But sometimesit is necessary to communicate asynchronously;
for example, if the user wants to interrupt execution, or if the operating system needs to inform a
program that its termina connection has been lost. Most operating systems provide a mechanism
for asynchronously signaling a program in these situations. For example, on UNIX systems, when
auser types the break character (e.g., control-C), the terminal driver sendsaSI G NT signal to the
process attached to the terminal. Under UNIX a program can establish a handler that the operating
system will call when a given signal occurs. The signal handler is, in effect, a limited co-routine
of the main program. Most programs use the default signal handlers, but some applications require
specialized handlers. For example, an editor will save the edited state of a file when the terminal
connection is lost (signified by SI GHUP on UNIX). Providing a signal handling mechanism is a
necessary requirement for implementing programs such as editors.

The SML definition ((MTH90]) includes a weak mechanism for handling asynchronous inter-
rupts generated from the keyboard (e.g., SI G NT on UNix systems). When the user typesthe break
character, the exception | nt er r upt israised. This exception is primarily used to force control
back up to the top-level read-eval-print loop, and it has a number of problems:

*This work was supported, in part, by the NSF and ONR under NSF grant CCR-85-14862

e Lack of robustness: it is not possible to write a robust | nt er r upt handler. Multiple
SI G NTs can create race conditionsin an exception handler that handles| nt er r upt , and,
in addition, there is no mechanism for masking interrupts. The race conditions are a direct
result of using exceptions, which are otherwise a synchronous control-flow mechanism, to
support asynchronous control-flow.

e Lack of generality: thereisno support for other kinds of signals, such as hang-upsor interval
timer interrupts. Real-world applications must be able to deal with these situations.

e Lack of flexibility: thereisno way to reliably resume execution at the point where the signal
occurred. A general mechanism should provide away to restart after asignal.

We have designed and implemented a general-purpose signal mechanism for the New Jersey
implementation of SM L that addresses these concerns.

Standard ML of NJ (SML/NJ) is a publicly available implementation of SML developed by
Dave MacQueen and Andrew Appel, with contributions from a number of other peopldAM&7, |t
runson avariety of UNIX-based systemsand hasahighly portable run-timesystemlAprelod, SML/NJ
supportsfirst-class continuationsas an extension!P"M]. Our mechanism treats asynchronoussignals
as continuation producing operations. A signal handler isafunction from continuationsto continua-
tions: it takes take the current continuation at the time of thesignal and returns a, possibly different,
continuation. Because of the problems with asynchronous exceptions, we have chosen to replace
the use of the exception | nt er r upt by our mechanism. This means that exceptions are always
synchronous in SML/NJ, which has advantages for compiling and reasoning about the language.
This paper describes the mechanism and itsimplementation, and describes some applications'.

2 Continuationsin SML/NJ

SML/NJ uses a continuation-passing style (CPS) code generator, which produces high quality
codelAB, The use of CPS in the compiler allows the easy introduction of first-class continuations
into the language. Unlike in Scheme, continuations are statically typed®"MI; they have the
polymorphictype”« cont .” There are two built-in operations on continuations:

val callcc : ("acont ->'a) ->"a
val throw : 'acont -> ("a ->"'b)

A 7 cont isthe type of afunction representing the rest of the program with aformal parameter of
type 7. Continuations are created using cal | cc (cal with current continuation) and are applied
usingt hr ow. A simple exampleisthe expression:

YThis paper faithfully describesthe mechanism as provided in August 1, 1990 release SML/NJ (version 0.62).

callcc (fn (k : int cont) => (throw k 5; 6)) + 7

Thevariable k isbound to thei nt cont that adds 7 to its argument; thet hr ow appliesk to 5,
giving 12. Continuations provide a natural mechanism for implementing co-routinesWa"d80l gch
assigna handlers.

A subtlety of the continuation mechanism is the interaction between cal | cc and exceptions.
Normally, exception handlers are dynamically scoped, but cal | cc binds the current exception
handler into the continuationit passestoitsargument. Toillustrate, consider thefollowing example:

exception Foo
val (f : unit -> 'a) (fn () => raise Foo)
val (g : unit ->"a) throw (
callcc (fn k => (callcc (fn k» => throw k k’); raise Foo0)))
fun h x = ((x ()) handle Foo => 1)

Applying h to f will produce the value 1; applying it to g will produce an uncaught exception
Foo. Thisisbecause g raises Foo in the exception context in which it was bound, instead of in the
context of h’s handler.

3 ML signal handling

Our approach to supporting asynchronous signalsin ML isto view them a continuation producing
operations. When a signal occurs, the run-time system captures the current ML state as a contin-
uation, which we call the resumption continuation, and passes it to a signal handler. The signal
handler returns a new continuation with which the run-time system resumes M L. Aswith the UNix
signal mechanism, the interrupted thread and signal handler are co-routines.

3.1 System Signals

The structure Syst em Si gnal s in the SML/NJ pervasive environment provides a low-level
interface to the ML signal handling (see figure 1). There are a number of signals, corresponding
to a subset of the UNix signalUN'X] plus asignal generated after garbage collections (SI G&O). A
signal may be either be ignored or caught. The function set Handl er isused to install ahandler
for a given signal, and the function i ngHand! er is used to get the current handler. A value of
NONE for the handler in these operations specifies an ignored signal. ThefunctionmaskSi gnal s
is used to turn signal masking on and off. This operation is cumulative, so that multiple masking
operations will nest.

An ML signal handler has the type:

(int * unit cont) -> unit cont

signature S| GNALS =
sig
dat at ype si gnal
= SIGHUP | SIGNT | SIGQU T | SIGALRM | SIGIERM | SI GURG
| SIGCCHLD | SIGO | SIGAHNCH | SIGUSRL | Sl GUSR2
| SIGISTP | SIGCONT (* not yet supported *)
| SIceC
| setHandler : (signal * ((int * unit cont) -> unit cont) option)
-> unit
val ingHandler : signal -> ((int * unit cont) -> unit cont) option
val maskSignals : bool -> unit
end

va

Figure 1. Signature SI GNALS

It takes a count of pending signals®> and the interrupted thread’s resumption continuation as argu-
ments. The signal that isto be handled is not given as an argument, but isimplicit in the choice of
handler called. Thereturn value of the handler isthe continuation with which execution isresumed.
All signals are masked while the handler isexecuting: if asignal occurs, thenitis delayed until the
handler returns. Thisiswhy the handler returns a continuation instead of directly throwing toit. If
asignal handler raises an exception, instead of returning normally, it istreated as arun-time system
error, and SML/NJ will exit with an uncaught exception error.3.

In order to write robust signal handlers, there needs to be some mechanism for atomic actions:
i.e., actions that cannot be interrupted by a signal. We guarantee that signal handlers will execute
atomically. Signals are masked upon entry to the handler and unmasked when the handler returns.
Signals that occur during execution of a handler are postponed until they are unmasked. Signals
may also be masked by calling the maskSi gnal s function with the value t r ue. Note that it
is not possible to unmask signals during the execution of a signal handler, athough one can turn
masking on. To avoid delaying the servicing of a signal unnecessarily, it is good practice to write
short and simplesignal handlers. If an application requires amore complicated and time consuming
handler action, then techniques similar to those of section 4.1 should be used.

3.2 Exceptions

The signal handler executes in a different exception handler context than that of the interrupted
thread. For thisreason, the use of cal | cc to build the return value of the handler requires care.
For example, consider the following handler:

2The pending signal count is necessary because delays in the handling of a signal can result in multiple occurrences
of the signal before being handled.
3A higher-level signal interface would presumably implement something more tolerant.

fun handler (_, resumek) =
callcc (fn k1 => (
callcc (fn k2 => (throw k1 k2));
doSonet hi ng() ;
throw resumek ()))

ThefunctiondoSornet hi ng iscalledintheexception handler context bound by theoutercal | cc,
which is the context in which the handler was caled. If doSomnet hi ng raises an unhandled
exception, it will cause SML/NJ to terminate with an uncaught exception error.

3.3 Thedefault handlers

The structure Si gnal s defines default handlers for some signals. Table 1 lists the signals with
a short description and the default handler action provided by the structure Si gnal s. Most of

signal default action | description

SI GHUP quit hangup

SI G NT raise Interrupt | interrupt (e.g., control-C)
SIGU T | quit quit (e.g., control-\)

SI GALRM | ignore alarm clock (interval timer)
SI GTERM | quit software termination signal

SI GURG ignore urgent condition present on a socket
SI GCHLD | ignore child status has been changed
SIG 0O ignore I/O is possible on a descriptor
SI GN NCH | ignore window changed

SI GUSR1 ignore user-defined signal 1

SI GUSR2 ignore user-defined signal 2
SIGISTP | na currently unsupported

SI GCONT | na currently unsupported

SI G&C ignore garbage collection

Table 1: Default signal actions

these signals correspond to standard UNix signaldUN'X]. The signals SI GTSTP and SI GCONT are
currently unsupported, but will be implemented in the near future. SI GGC is generated following
every garbage collection.

34 Handling SI G NT

Aswenoted above, weimplement anon-standard policy for handling user interrupts. We decided on
thispolicy after strugglingwith aversion of thismechanism that supported asynchronous exceptions
(such as| nt er r upt)IReppyS0],

Our approach is to eliminate asynchronous exceptions, including the exception | nt er r upt .
Although this means a variance with the definition, it isafairly minor one. The definition states:

5

If the evaluation of a topdec yields an exception (for instance because of ar ai se
expression or external intervention) then the result of executing the program “topdec ;”
is the original basis together with the state which is in force when the exception is
generated.

(IMTH9Q], page 64)

We believethat theintent hereisto specify apolicy with respect to thetop-level read-eval -print loop.
Thispolicy can beeasily implemented without theexception| nt er r upt . Theread-eval-print loop
captures its state at the beginning of each iteration as a continuation. The SI G NT handler throws
to this continuation, which restores the origina basis. By banishing asynchronous exceptions we
make reasoning about programsthat use exceptions more tractable, aswell as allowing the compiler
more | atitude in optimizing away exception handlers.

4 Applications

Theinterface provided by structure Si gnal s islow-level, but general enough to providethe basis
for more sophisticated mechanisms. In this section we illustrate the use of oure mechanism by
describing a number of applications and programming techniques.

4.1 Maskingsignals

Our mechanism allows all signalsto be masked; but there is no mechanism for masking individua
signals. In this section, we describe a signal handling package that allows a mask to be attached to
each handler. Thismask specifies a set of signalsto be masked during the handler’s execution. We
have the following interface:

type handler = (int * unit cont) -> unit cont

type mask = signal |ist
val install : (signal * (handler * mask) option) -> handler option

I nst al | installsasignal handler and associated signal mask, returning the previous handler.

In order to provide this finer grain masking of signals, the installed signal handlers are run
outside the context of the handlers provided by Syst em Si gnal s (recall that those handlers
mask all signals). When asignal occurs, the ML signal handler sets the handler mask and returns a
continuation that will call theinstalled handler. When the installed handler returns, the signal mask
is reset and control is thrown to the returned continuation. If a masked signal occurs, it is added
to alist of pending signals. Thislist is checked when the installed handler returns and, if there are
pending signals, then the returned continuation is passed to the installed handler of the first signal
on the pending list. Thisimplementation requires about 100 linesof ML code.

6

4.2 Concurrency

First-class continuations provide an attractive basis for implementing light-weight threaddWandso],
The continuations of SML/NJ have been used to implement co-routine packages (e.g. [Reppy89,
Ramsey90]), but providing pre-emptive scheduling requires additiona run-time system support.
Thiswas one of the major reasons for developing the signal handling mechanism described in this
paper.

Shared data-structures, such as the process ready queue, must be accessed atomically with

respect to process switches. To insure this, we use a simple scheme to mark the beginning and end
of critical regions (see figure 2)*. We assume that threads are represented by uni t continuations,

val atom cLevel =ref O
val signal Pending = ref false
fun atom cBegin () = (atomicLevel := latom cLevel + 1)
fun atomicEnd () = let val level = latonicLevel - 1
in
if (!signal Pending andalso (level = 0))
then callcc (fn k => (
enqueue k;

l et val next = dequeue ()
in

atom cLevel := 0;
si gnal Pendi ng : = fal se;
throw next ()
end))
el se
atom cLevel := |evel

end
fun alrmHandler (_, k : unit cont) =
if (!atom cLevel > 0)
then (signal Pending := true; k)
el se (enqueue k; dequeue ())

Figure 2: Pre-emptive scheduling with atomic regions

and that we have functionsenqueue and dequeue to manipulate the queue of ready threads. If
a signal occurs in an atomic region, then the handler sets the si gnal Pendi ng flag and doesn’'t
switch threads. When the thread |leaves the critical region, it will note the pending fault and
relinquish control. The pre-emptive scheduler is quite simple; if the current thread isin a critical
region, then the si gnal Pendi ng flag is set and the current thread is resumed, otherwise the
current thread is placed in the ready queue and another thread is dispatched.

“To simplify this presentation, we only concern ourselves with SI GALRM

4.3 Debugging

Tolmach and Appel have built a replay debugger for SML/NJITA%, They use source-to-source
transformationsin the compiler to instrument the user’s code. The debugger usesa software counter
to keep track of the current “time.” Theinstrumentation code incrementsthis counter and compares
it against a “target” time at important points, called events, in the code (e.g., binding sites and
function entry-points). When the current time matches the target time, then control is transferred
to the debugger thread (the debugger and user program are co-routines). One thing that debuggers
should provideis away for the user to asynchronously force a break-point in the execution of the
program. With our signal mechanism, this function is easy to provide. The following handler for
SI G NT will force a break-point at the next debugger event, by resetting the target time and then
resuming the user’s thread.

fun sigintHandler (_, k) = (targetTinme := !currentTime+l; k)

Of course, a more sophisticated implementation is possible that would allow programs that handle
signals (such as concurrent programs) to be debugged. The debugger would provide its own
implementation of the Si gnal structure, which would intercept interesting signals.

5 Implementation

There are two levels to the implementation: the underlying run-time support for mapping UNiX
signalsto ML signals, and the implementation of the structure Syst em Si gnal s. Following
aquick introduction to the SML/NJ run-time system, we describe the implementation bottom-up.
Then there is a discussion of the implementation of robust 1/0O, followed by some performance
measurements.

5.1 The SML/NJ run-timesystem

The SML/NJ run-time system is described in [Appel90]), but it has been extensively modified to
support signals. We describe the relevant features here.

The SML/NJ compiler uses continuation-passing style (CPS) code generationA%9, Unlike
other CPS-based compilers ([KKR+86] for example), SML/NJ has no run-time stack; the function
return continuationsare heap allocated. Thegenerated codeisalso heap all ocated, so specia tagging
techniques are used to allow the garbage collector to deal with program counters and code objects.

Because there is no run-time stack, the SML/NJ code generator uses a register model. The
ML state consists of a three special-purpose registers and a machine dependent number of root
registers. Other registers may be used as temporaries, but these are not visible to the run-time

system. Five of the root registers have special meaning: one isthe program counter, one holds the
current exception handler context, and the other three are used in the standard calling convention.
There are two kinds of functions: a two-argument function has the standard argument and closure
registers as parameters; athree-argument function also has the standard return continuation register
asaparameter. Two-argument functionsare functionsthat never return, such asreturn continuations
and the continuations produced by cal | cc.

A C structure, called the state vector, isused to hold the ML state in the run-time system. Two
assembly routines provide the interface between C and ML code. The run-time system invokes
ML code by loading the state vector and callingr est or er egs, which loads the machineregisters
from the state vector and jumps to the given program counter. When ML code requires a service
from the run-time system, it loads a globa variable r equest with a request code, and calls
saver egs, which savesthe ML state and returns to the C code that called r est or er egs. The
rest or er egs/saver egs protocol isessentialy a co-routine switch.

SML/NJ hasasimple, but efficient, semi-generationa garbage collectorlAPreiddd Allocationis
alsofast: itisopen-coded and only requires a couple more instructions than object initiaization. A
heap limit check is generated at the entry point of each codetree®. If there is not enough free space
for the maximum possible alocation in the code tree, then a garbage collection trap (GC-trap)
occurs?. The entry-point of acodetree is proceeded by an object descriptor word, thusthe program
counter at the trap point isavalid heap pointer. Handling a GC-trap involves the following steps:

1. Therun-timeroutineghand!| e catches the trap and records the program counter of the trap
location in the state vector, setsr equest to REQ _GC and returns control to the assembly
coded routinesaver egs.

2. Saver egs savesthe ML statein the state vector and passes control uptor un_mni .
3. Thegarbage collector isthen run, using the state vector asthe root set.
4. After garbage collection, r un_m callsr est or er egs, which loads the machine registers

from the state vector, and jumpsto the trap location.

5.2 Run-timesupport for signals

The major problem with handling an asynchronous signal isto avoid corrupting the heap. TheML
signal handler cannot be dispatched immediately, since the current thread may be in the middle of
an alocation. There are anumber of ways to deal with this problem. One approach is to have the
run-time system recognize this situation and emulate the instruction stream until the alocation is

5A codetree (or extended basic block) is an acyclic set of blocks with one entry-point and one, or more, exits.
5The GC-trap is just a UNIx signal.

compl etelMK87, Appel8db] - This approach has the substantial disadvantagethat it requires an emulator
for every different architecture, reducing portability’.

Instead, we use an approach similar to the one used by Argus for light-weight context
switched-&87]: we synchronize signals with “safe’ points in the code. The heap limit checks
at the code tree entry-points are a convenient choice for the synchronization points; by delaying a
signal until the next check we can guarantee safety. \When an asynchronous signal occurs, we adjust
the limit register to force a garbage collection trap on the next limit check. The run-time system
recognizesthisasreally being asignal, and passesit to the SM L signal handler®. Thistechniquehas
the additional advantagethat it doesn’t incur any additional run-time overhead on normal execution.

More specifically, let us consider the case of a signal occurring during the execution of ML
code. When asignal occurs, the following steps are taken:

1. The run-time routine si ghandl er catches the signal. It records the signal and resumes
execution of ML code viaan assembly routine that adjusts the heap limit register.

2. TheML code executes until the next heap limit check, which will trap.

3. Ghandl e recognizesthat the GC-trapisreally asigna trap, and setsr equest toREQ _SI GNAL.
It saves the faulting program counter and returns control to the assembly coded routine
saver egs.

4. Aswith aGC-trap, saver egs savesthe ML state in the state vector and passes control up
torun_m.

5. Run_mni alocates aresume continuation using the saved state, builds an argument tuple and
callsthe ML signa handler (viar est or er egs).

6. The ML handler deals with the signal and then returns a resume continuation. The return
continuation of the ML handler is a piece of assembly code that cals saver egs with
request settoREQ _SI G_RETURN.

7. Run_nl calstheresume continuation (viar est or er egs).

Of course, another signal can occur whileweareinthe process of handlingasignal, soitisnecessary
to provide some concurrency control. We use asmall collection of global variablesfor this purpose
(see figure 3). Thei nM. flag is set by r est or er egs and cleared by saver egs; it marks
when execution isin ML code. The flag handl er Pendi ng is set by si ghandl er (step 1)
to note that a handler trap is pending. This flag is cleared by ghandl e (step 3), which sets the

"SML/NJ is currently supported for 5 different machine architectures, so thisis amajor concern.
8The run-time system checkson the available memory and, if necessary, does a garbage collection prior to invoking
the ML signal handler.

10

int i nM_; [* This flag is set when we are executing M code. */
int handl erPending; /* This flag is set when a handler trap is pending, */

/* and cl eared when the handler trap occurs. */
int i nSi gHandl er; /* This flag is set when a handler trap occurs and */
/* is cleared when the M. handl er returns. */
int maskSignals = 0;/* Wen set, signals are nasked. */
int NunmPendi ngSigs; /* This is the total nunber of signals pending. */

Figure 3: Concurrency control globals

i nSi gHandl er flag. Thei nSi gHandl er flagiscleared by r est or er egs (step 7), after the
signa has been handled. If either handl er Pendi ng or i nSi gHandl er is set when a signal
occurs, then si ghandl er records the signal, but does not adjust the heap limit register or set the
handl er Pendi ng flag. The UNix signal handlers si ghandl er and ghandl e areinstaled
with all signals masked, so they execute atomically. This atomicity, coupled with the two-phase
structure of handling signals, guarantees that any signal that occurs during signal handling will be
postponed until after the first signal is handled. The flag maskSi gnal s is used to implement
signal masking outside of a signal handler.

If asignal occurs during execution of C code (e.g., during a garbage collection), then we record
it and resume execution. The assembly routiner est or er egs checks for pending signals just
prior to resuming ML execution. Figure 4 contains the Motorola M C680x0 code for this operation
After setting the i nML flags, this code tests for pending signals. If there are any, then it checks

_restoreregs:

addql #1, _inM /* note that we are executing M. code */
tstl _NunPendi ngSi gs /* check for pending signals */

jeq call _m

tstl _maskSignal s /* are signals masked? */

j ne call _m

tstl _inSigHandl er /* are we currently handling a signal? */

j ne call _m
addql #1, handl er Pendi ng /* note that a handler trap is pending */

clrl d5 /* force a trap on the next limt check */
call _m:
j mp ab@ /* junp to the M. code */

Figure 4. Returningto ML

to seeif it is in the second phase of signal handling, and, if not, it starts the first phase of signa
handling. Since starting the first phase is an idempotent operation, it doesn’t matter if a signal
occurs at this point.

11

5.3 Theimplementation of Syst em Si gnal s

The implementation of Syst em Si gnal s isfairly straight-forward. At the core of the imple-
mentation is the root ML signa handler, which is called by the run-time code. A globa array is
maintained, that records the current status of each signal:

dat at ype sig_sts
= ENABLED of ((int * unit cont) -> unit cont)
| DI SABLED

val sigvec : sig_sts array

The functions set Handl er and i ngHandl er update the array appropriately. If a call to
set Handl er makesadisabled signal enabled, or visa-versa, then the run-time systemis notified
by a call to the C function enabl esi g°. The code for the root ML signal handler is given in
figure 5. The signa handler should never get called on a disabled signal, since the run-time system

fun sigHandl er (code, count, resume_k) = (
case (InLine.subscript(sigvec, code))
of DI SABLED => resune_k
| (ENABLED handl er) => handler (count, resume_Kk))

Figure 5: Root ML signal handler

blocks them. A global counter is used to keep track of the nesting level of signal masking. A call
to maskSi gnal s increments or decrements this counter depending on the argument. On a0-1
(1-0) transition, acall ismadeto a C routine that sets (clears) thenmaskSi gnal s flag.

54 Signalsand I/0O operations

SML/NJ implements in and out streams as a buffered 1/0O library written in ML. The run-time
system provides an interface to ther ead andwr i t e system callUN'X1, which are used by the 1/0
library. The implementation of the stream operations raise a number of problems with respect to
signals:

¢ An input operation, such as reading the line from the terminal, can block indefinitely (i.e.,
until the user hitsthe “return” key), which conflicts with the desire to have a user interrupt to
force control back to the top-level prompt.

e A signal that occurs during an 1/O operation may cause inconsistencies between the buffer
and the operating system. Thisresultsin input being lost and output being printed twice.

9The run-time system also shadows the status of ML signals, in order that the state can be restored for exported
images.

12

e A signa that occurs during an /O operation may cause inconsistencies between the user
program and the buffer.

Our approach to implementing I/O solves the first two problems, and the third problem can easily
be solved, using signal masking, in applicationsthat requireit.

To understand the subtleties of this interaction, consider the case of signal occurring during a
cal tor ead. Thesigna handler'® hastwo options: it can either interrupt the operation or resumeit.
Unfortunately, neither option will work. If the signal occurs immediately following the completion
of ther ead, then interrupting it will result in data loss. On the other hand, if the signal occurs
just prior to the initiation of the r ead, then indefinite blocking may occur. Another problem with
interrupting an 1/O operation is that we may need to to restart it (e.g., if the signal isSI GALRMand
it causes a context switch).

To address these problems, we divide the buffered 1/0 operationsinto two phases. First we wait
for the operation to be ready, and then we actually do the operation. The first phase isidempotent,
and so can restarted safely. Oncethe 1/O operation isready, we makether ead/wr i t e system call
and update the buffers. Toillustrate, the ML code tofill an input buffer looks something like

fun filbuf (INSTRMilid, buf, pos, len, ...) =(
inwait filid;
protect (fn _ => (pos :=0; len :=read(filid, buf, bufsize))) ())

Thepr ot ect function (figure 6) is used to guarantee that the buffer and operating system have a

fun protect f x = let
open System Signal s
val _ = naskSignals true
val y = (f x) handle ex => (maskSignals false; raise ex)
in
maskSi gnal s fal se;

y
end

Figure 6: Protect afunction call

consistent view of thefile.

The run-time system provides wait for input/output operations to ML. These operations are
unique among the run-time routines in that si ghandl er will interrupt them. Figure 7 gives
pseudo C codefor thewait for input routine. Thei oWi t Fl ag isused to mark that we are waiting
for 1/0. If itisset when asignal occurs, thensi ghandl er doesal ongj np to thewaiting routine,
whichrestorestheM L state vector to thevalueit had when theinput wait routinewas called by M L.

©Thisisthe C functionsi ghandl er, not an ML handler.

13

if (setjnp(env) == 0) {
ioWitFlg = 1;
if (NunPending Sigs == 0) {
wait for input to be available
} else {
/* A signal was already pending */
restorethe ML state vector
}
ioWitFlg = 0;
} else {
/* A signal occured while waiting */
restorethe ML state vector

Figure 7: Wait for input

The ML signal handler is then called with a resumption continuation that will retry the I/0O wait
operation. If asignal occursbefore we set thei oWai t Fl ag, thenweasorestorethe ML state. If
asignal occurs after thei oWai t Fl ag has been cleared, then the wait operation completes.

55 Performance

Signals such as SI G NT occur infrequently enough that performance is not a major concern, but
for concurrency packages that use SI GALRMto provide pre-emption, signal handling overhead is
an issue. Table 2 contains measurements of the overhead of handling SI GALRMsignalsinML. Our

System Relative | uS per Overhead
Speed | signal | (50 signals/sec)
Sun 4/490 7.3 350 1.7%
Sun SPARCstation 1+ 4.6 530 2.6%
DECstation 3100 4.2 420 2.1%
Sun SPARCstation 1 3.8 600 3.0%
Sun 4/280 3.2 460 2.3%
NeXT 13 2,400 12%
Sun 3/60 1.0 1,300 6.3%

Table 2: Signal handling costs

benchmark isasimple program that doesn’t do any allocation. We measured thetimeit took to run
with theinterval timer turned off and the time needed with the timer on, and used the differencein
these times to compute the overhead. The relative speed column in table 2 relates the time it took
to run the benchmark (without signals) on the various systems. The Sun systemswere al running
SunOS 4.0.3, the DECstation was running Ultrix V2.2, and the NeXT was running release 1.0.
The relatively high cost of signal handling on the NeXT machine is probably because the NeXT’s

14

implementation of UNIx signal handling is built on top of the MACH exception mechanism.

6 Futurework

We know of a few remaining problems with the current implementation; the following is a brief
discussion of some of these.

6.1 Incremental garbage collection

Oneproblem areain our implementationisthe interaction between signalsand the garbage coll ector.
A signal that occurs during execution of C code in the run-time kernel cannot be safely handled,
but must be delayed until the next heap-limit check in ML code. Most of the run-time routines
are quick enough so that thisisn’'t a problem, but, unfortunately, a garbage collection can take
several seconds™, during which several hundred timer signals can occur. One solution would beto
use a full generational collector, such as those described in [Ungar84] and [WM89]. We suspect,
however, that thiswill still be inadequate for concurrent applications with real-time responsiveness
requirements. What isreally needed isaway to interleave small amountsof garbage collectionwork
with program execution. The Pegasus garbage collector has this property, but its heap architecture
involves substantial overhead on allocation and object accessesNR87], Another approach isto use
page-protection trickg Saws7, AEL8S] [yt these techniques may be too expensive on some systems
and not possibleon others. We are exploring these, and some other, ways of addressing the problem.

6.2 Unimplemented signals

The current implementation does not support the signals SI GTSTP and SI GCONT, which are
generated as a result of suspending and resuming the process. Because these signals cannot be
masked, the assumption that si g_handl er and ghandl e are atomic with respect to signals
doesn’t hold. This meansthat supporting these signalswill require some cleverness.

6.3 MACH support

As the benchmarks attest, the performance under MACH leaves something to be desired. The
problem is that we are using the UNIx signal mechanism, which is not directly supported by the
MACH kernel. Providing an implementation based directly on the MACH exception ports will
improve performance substantially.

2 About 2 ms. of CPU time per kilobyte of live data on a Sun SPARCstation. The real-time delays are often much
worse, because of paging.

15

Acknowledgements

Bill Aitken made the suggestion that SML ought to have a signal handling mechanism. Andrew
Appel helped with implementing the heap limit checks, and discussions with Andrew Appel, Dave
MacQueen and Norman Ramsey helped in cleaning up the interface.

16

References

[AELS8S]

[Appel89a]

[Appel89b]

[Appel90]

[AJ89]

[AM87]

[DHM]

[MTH90]

[KKR+86]

[LCJS87]

[MK87]

[NRS7]

Appd, AW., JR. Ellisand K. Li. “Rea-time concurrent collection on stock multi-
processors,” Proceedings of the S GPLAN ' 88 Conference on Programming Language
Design and Implementation, June 1988, pp. 11-20.

Appel, A.W. “Simple generational garbage collection and fast allocation,” Software —
Practice and Experience, V 19, Nr. 2, February 1989, pp. 171-183.

Appel, A.W. “Allocation without locking,” Software— Practice and Experience, V 19,
Nr. 7, July 1989, pp. 703-705.

Appel, AW. “A runtime system,” to appear in the Journal of Lisp and Symbolic
Computation, 1990.

Appe, AW. and T. Jim. “Continuation-passing, closure-passing style,” Conference
Record of the 16th Annual ACM Symposiumon Principlesof Programming Languages,
January 1989, pp. 293-302.

Appel, AW. and D.B. MacQueen. “A standard ml compiler,” Functional Program-
ming Languages and Computer Architecture, Lecture Notesin Computer Science 274,
Springer-Verlag, September 1987, pp. 301-324.

Duba, B., R. Harper and D.B. MacQueen. “Type-checking first-class continuations,”
in preparation.

Milner, R., M. Tofte and R. Harper. The definition of standard ml, The MIT Press,
Cambridge, Mass., 1990.

Kranz, D., R. Kelsey, J. Rees, P. Hudak, J. Philbinand N. Adams. “Orbit: anoptimizing
compiler for scheme,” Proceedings of the SGPLAN '86 Symposium on Compiler
Construction, July 1986, pp. 219-233.

Liskov, B., D. Curtis, P. Johnson and R. Scheifler. “Implementation of Argus,” Pro-
ceedings of the Eleventh ACM Symposiumon Operating System Principles, November
1987, pp. 111-122.

Moss, J.E.B. and W.H. Kohler. “Concurrency features for the trellis'owl language,”
ECOOP’ 87, Lecture Notesin Computer Science 276, Springer-Verlag, pp. 171-180.

North, S.C. and J.H. Reppy. “Concurrent garbage collection on stock hardware,”
Functional Programming Languages and Computer Architecture, Lecture Notes in
Computer Science 274, Springer-Verlag, September 1987, pp. 113-133.

[Ramsey90] Ramsey, N. “Concurrent programming in ml,” Technical Report CS TR-262-90, De-

[Reppy89]

[Reppy90]

partment of Computer Science, Princeton University, April 1990.

Reppy, J.H. “First-class synchronous operationsin standard ml,” Technical Report TR
89-1068, Computer Science Department, Cornell University, December 1989.

Reppy, J.H. “Asynchronous signals in standard ml (SML/NJ version 0.56),” unpub-
lished draft, May 1990.

17

[Shaw87]

[TA90]

[Ungar84]

[UNIX]
[Wand80]

[WM8Y]

Shaw, R.A. “Improving garbage collection performance in virtual memory,” Technical
Report CSL-TR-87-323, Computer Systems Laboratory, Stanford, March 1987.

Tolmach, A.P. and A.W. Appel. “ Debugging standard ml without reverse engineering,”
Proceedings of the 1990 ACM Conference on Lisp and Functional Programming, June
1990, pp. 1-12.

Ungar, D. “Generation scavenging: a non-disruptive high performance storage recla-
mation algorithm,” Proceedings of the ACM SIGSOFT/S GPLAN Software Engineer-
ing Symposium on Practical Software Development Environments, April 1984, pp.
157-167.

UNIX programmer’'sreference manual, 4.3 Berkel ey software distribution, April 1986.

Wand, M. “Continuation-based multiprocessing,” Conference Record of the 1980 Lisp
Conference, August 1980, pp. 19-28.

Wilson, PR. and T.G. Moher, “Design of the opportunistic garbage collector,” Pro-
ceedings of OOPSLA' 89, October 1989, pp. 23-35.

18

