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Abstract

The runtime data structures of the Standard ML of New Jersey compiler
are simple yet general. As a result, code generators are easy to implement,
programs execute quickly, garbage collectors are easy to implement and work
e�ciently, and a variety of runtime facilities can be provided with ease.

1 Introduction

Some languages, like Lisp, Smalltalk, ML, Prolog, etc. rely heavily on a runtime

system to provide essential services. The most important such service is the manage-

ment of dynamically-allocated storage (e.g. garbage collection), but the runtime

system may also provide facilities like

� Stream input/output: on operating systems (like Unix) that do not have

a bu�ered input/output facility, the process must provide its own; this might

be handled in the runtime system.

� Structured input/output: the ability to automatically write a large linked

data structure to a �le, and read it back in with all links adjusted, is a great

convenience that can be implemented e�ciently in the runtime system.

� Process suspension: a snapshot of an executing process may be \preserved"

in a �le, so that the execution of that �le causes a new process to start exactly

where the saved one left o�.

�Supported in part by NSF Grants DCR-8603453 and CCR-880-6121
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� Operating system calls: operating system services needed by a program

may be conveniently packaged by the runtime system.

� Handling of interrupts and asynchronous events: if the programming

language has a mechanism to handle asynchronous events, it relies on the

runtime system for its implementation.

� Handling of arithmetic exceptions: the programming language's

exception-handling mechanism must be implemented in cooperation with the

runtime system.

� Assembly-language implementation of language primitives: it may

be inconvenient for the compiler to generate code for some features of the

programming language; these functions can be implemented as calls to runtime

system routines.

� Foreign-language procedure calls: calls to subroutines written in other

languages may be mediated by the runtime system.

� Fun with continuations: Languages with features like call with current

continuation, which allows the explicit manipulation of threads of control,

require runtime-system cooperation.

� Execution pro�ling: Automatic measurement of the time spent in di�erent

parts of the user program can be accomplished with the help of the runtime

system.

� Debugging: starting, stopping, and displaying the execution state of user

programs can be accomplished only by low-level routines.

Since this list is rather long, and several of these features may interact, it is

evident that runtime systems can become nasty and complicated. The proliferation

of data types may make the implementation of the garbage collector (and other

programs that must traverse the data) ine�cient.

We particularly wanted a runtime data layout that provided fast allocation of

records and fast garbage collection, since ML makes very heavy use of dynamically-

allocated storage. To this end, we eliminated the runtime stack and use a very simple

data format. The only runtime data types are integers, pointers, records, and strings.

Then we found that this very simple structure allowed the easy implementation of

many of the services described above.
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Our runtime system has relatively few ML-speci�c features; it could be used

equally well for other languages. This paper describes the design and implemen-

tation of the SML-NJ runtime system. It should be read in conjunction with an

earlier paper on the SML-NJ generational garbage collector[3].

Text in smaller type is of interest only to those who might have to read,

modify, or maintain the source code to the runtime system.

2 Standard ML of New Jersey

The ML language originated as part of the Edinburgh LCF proof system [14], and

was soon implemented as a stand-alone compiler [10][11]. The language was \stan-

dardized" [21][20] [22][16], and Standard ML has been implemented at Edinburgh,

Cambridge, and New Jersey[8]; the New Jersey implementation is a joint e�ort

between researchers at AT&T Bell Laboratories and Princeton University.

Though ML was �rst implemented as the meta-language of a theorem-proving

system, Standard ML is a general-purpose programming language with several ad-

vantages over more conventional languages. Its important characteristics are:

� Automatic garbage collection: this is a great convenience in writing cor-

rect and readable programs.

� Static, polymorphic types: like Pascal, types are checked at compile-time

and not at runtime; but like Lisp, there is great 
exibility and re-usability of

code.

� Safety: there are no runtime insecurities (i.e. \core is never dumped"); this

is unlike the C language, where unsafe pointers run rampant, and like Lisp

(except when Lisp programmers turn o� the runtime type checking for e�-

ciency). In ML, there is no run-time type checking, but safety is guarateed by

compile-time type checking.

� Higher-order functions: like Scheme (and lambda-calculus); this can lead

to a desirable conciseness of expression.

� Typechecked Modules: like Ada and Modula.

� Exception handling: a dynamically-scoped exception mechanism allows

both hardware- and software-generated exceptions to be caught and handled

by user programs.
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One important feature of a systems programming language is not prescribed

by the list above, and in fact cannot be speci�ed by a language de�nition: an

e�cient and robust implementation. Standard ML of New Jersey[8] is meant to be

a complete, e�cient, robust, and cleanly written compiler for the language. It has

an optimizing code generator based on continuation-passing style [2].

A knowledge of ML is not necessary to understand its runtime system.

3 Tagging schemes

Almost all the pieces of the runtime system must deal with the data structures of

the executing program. Therefore, it is helpful to keep the format of this data as

simple and straightforward as possible.

ML, like Lisp, allows polymorphic functions: a function that reverses a list of

objects (for example) need not know the type of the objects. In order that the same

piece of executable code can operate on objects of arbitrary type, it is necessary that

every object be represented in the same amount of space. As in Lisp, this is achieved

by making everything be the size of a pointer; if an object's natural representation

is larger (as for a record of n objects), then it is represented by a pointer to storage

on the heap.

The garbage collector must be able to determine the size and layout of each

object it traverses. This can be accomplished in several ways:

� By encoding a type-tag inside each pointer; we chose not to do this

because it reduces the number of bits left for actual addressing. In these days

of 32-bit pointers and 100-megabyte memories, it is easy to imagine the need

for every bit of addressability we can muster.

� By reserving di�erent areas of memory for objects of di�erent types.

BIBOP (Big Bag Of Pages) schemes require that each page hold objects of a

single type, and a global table maps pages to types. This is relatively e�cient,

and doesn't reduce the number of addressable words. But it complicates the

process of allocating and copying objects, since several free regions are simul-

taneously required.

� Statically-typed languages don't require any runtime-tagging at all;

instead, the compiler can tell the garbage collectector about the type system

of the program. This has worked well in Pascal[9]. Even though it is also the-

oretically possible in ML, in practice the polymorphic type system introduces

overhead and complexity that make this method unattractive[4].
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� Each record can have a descriptor at the beginning that explains which

�elds are integers and which are pointers. This method works well in non-

polymorphic languages like Modula-2+ and Mesa, where descriptors can be

computed at compile-time and just inserted in records as they are created.

However, in polymorphic languages like Lisp and ML this descriptor would

have to be laboriously constructed each time a record is created, introducing

unacceptable overhead.

� Each record can have a descriptor at the beginning that tells the length

of the record, and each �eld can have a tag bit that tells whether it is a

pointer or a non-pointer. This is what we have done.

To have a tag word on each record, and a tag bit on each �eld, is not clever at

all; but we are not always striving for cleverness, we want simplicity and e�ciency.

If all our records were cons cells, then one-third of memory would be devoted to

tag words; but memories are large and cheap. And in Standard ML, records are of

many di�erent sizes, and two-word records are not particularly predominant.

By having only one free region, we are able to do fast allocation and also manage

the total amount of virtual memory used[3]; this would be much more di�cult with

a BIBOP scheme.

4 Data formats in our runtime system

Standard ML of New Jersey has records, strings, procedures (machine code), clo-

sures, constructors, arrays, byte-arrays, 
oating-point numbers, references (modi�-

able one-word records), modules, and integers. This large set of language primitives

and user-de�ned datatypes are represented by just two runtime data formats: one

for objects that contain pointers (records, closures, constructors, arrays, references,

modules), and the other for objects containing no pointers (strings, procedures,

byte-arrays, 
oating point). The garbage collector (and other parts of the runtime

system) need to understand only these two formats, not the many kinds of ML

objects.

A �eld is either a pointer or an integer. Pointers have a low-order bit of 0;

integers have a low-order bit of 1. It is necessary to distinguish pointers from non-

pointers in order that the garbage collector will know what structures to traverse.

On a byte-addressable machine, all pointers to aligned (4-byte) words are multiples

of 4 anyway, so pointers have a low-order bit of 0 in their natural representation.

The high-order 31 bits of an integer �eld can represent an integer in the range

[�230;+230 � 1].
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Some Lisp implementations use a similar representation except that pointers

have a low-order 1 and integers have a low-order 0. This makes arithmetic on

tagged integers somewhat easier, and takes advantage of the fact that pointers are

usually used with a displacement addressing mode; the displacement can be adjusted

by 1 with no penalty in e�ciency. This is probably a better arrangement, but either

version of this scheme will work; and a simple analysis[4] shows that the e�ciency

trade-o�s are negligible, and that doing arithmetic around the low-order integer tag

is not very costly.

An object on the heap may be either a record (containing �elds, i.e. pointers and

tagged integers) or a string (containing bytes of an arbitrary bit-pattern, but no

pointers).

A record is a sequence of n > 0 �elds numbered 0; 1; :::; n� 1. Each record has a

descriptor at position �1. The low-order bit of a descriptor is 1 (making it look like

an integer), the next three bits identify the object as a record, and the high-order 28

bits give the number of �elds. Thus, each record is limited to one gigabyte, which

should not be a signi�cant limitation (seriously, though, it is important to avoid

miserly restrictions on the sizes of objects).

In the implementation of closures, it is useful to be able to point at the interior

of records. However, it is always necessary for the garbage collector, given a pointer,

to �nd the descriptor of an object. If the �elds 0 through k � 1 of a record are all

pointers, then a pointer can point at the kth �eld of the record; since the descriptor

is unboxed (has a low-order bit of 1) and the �elds 0 through k�1 will all be boxed,

the garbage collector can easily search backward for the descriptor of the record.

So, we allow pointers to the interior of a record, providing all the previous �elds are

boxed; this is su�ciently 
exible for our needs in implementing closures, as will be

described. Otherwise, no pointer may address the interior of a record.

A string contains n > 0 bytes (numbered from 0 to n� 1), padded with trailing

zero bytes to a multiple of four. Immediately preceding the 0th byte is a one-word

descriptor whose low-order bit is 1, whose next three bits describe the type of string

(and distinguish strings from records), and whose upper 28 bits give the length in

bytes.

Strings are used for a variety of purposes; they can hold printable characters, real

numbers, machine code, or any other kind of data that doesn't contain pointers. In

fact, a string object can hold several embedded string objects. A pointer may point

at the 0th byte of a string, and may point to an embedded string at the kth byte

provided that k > 0 is a multiple of 4 and that the bytes k�4; k�3; k�2; k�1 contain

a back-pointer descriptor that contains the number k (the o�set to the beginning of

the record). This allows the beginning of a string object to be found quickly, given

a pointer into it. Note that a back-pointer couldn't be distinguished from data,
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except for the fact that it is found just before the pointed-to byte of the string.

The three tag bits of a descriptor can denote any of these kinds of records,

strings, etc:

0 record

1 forwarding-pointer (for the garbage collector)

2 back-pointer (that precedes an referenceable location in a string)

3 embedded string length (described below)

4 array (just like a record).

5 byte-array (just like a string).

6 this tag value is unused.

7 string

Because of ML's static type system, it is not necessary to put type information

in the descriptors of objects. Therefore, tags are necessary only for the garbage

collector's bene�t, since it must distinguish objects of di�erent formats.

The only exception to this rule is that mutable objects (arrays, byte-arrays) must

be distinguishable from immutable objects (records, strings) in order to implement

the polymorphic equality feature. For all purposes of the runtime system, arrays

are identical to records, and byte-arrays are identical to strings.

A dynamically-typed language like Lisp would require more than three bits to

distinguish types of objects; this would not pose a serious problem. It would still

be possible in Lisp to have just two formats (pointer-containing and pointer-free),

as in our runtime system.

5 Forwarding pointers

The Standard ML of New Jersey runtime system has a generational garbage collector

that takes advantage of object lifetime and referencing patterns[3]. But at the

heart of any generational garbage collector is a simple copying garbage collector as

originally described by Cheney[12]. Objects are copied from fromspace to tospace in

a breadth-�rst order, with the tospace itself serving as the queue for the breadth-

�rst traversal. The fromspace versions of objects are overwritten with forwarding

pointers, so that when other references to them are found, it is easy to �nd the

tospace copies of them.

7



The fundamental operation in Cheney's algorithm is to forward a pointer. This

means taking a pointer into fromspace and making it point to tospace. If the

fromspace object it points to has already been copied, then its forwarding pointer

is taken as the new value; otherwise, the object must be copied to tospace and a

forwarding pointer installed.

Forwarding is relatively easy using our runtime data format. We have a special

kind of descriptor forwarding-pointer, that indicates that a fromspace object has

already been copied. If an object has this descriptor, then the �rst word (after the

descriptor) is to be interpreted as the address of the copy. The only complications

in forwarding are that pointers may point into the middle of records and strings.

Our runtime system (and garbage collector) is implemented in C. In �gures 5,

5, 6 we show the entire core of our copying garbage collector. We could use pseudo-

code and describe the algorithm abstractly, but we want to emphasize that our

simple runtime data format does permit an e�cient and easy-to-implement garbage

collector.

We pretend that all ML values are integers, and make liberal use of casts to

maintain this pretense. Our forward function is shown in �gure 5; it takes an ML

value (by reference) and modi�es it (if a pointer into fromspace) to point into tospace.

Line 2 establishes m as a copy of the original value to be forwarded. Line 3 considers

only the case that m is a pointer, and points into fromspace. (Any pointers not into

fromspace are treated as constants.) Line 4 adjusts m to point at the descriptor of

the fromspace object.

Lines 5{38 loop until the beginning of the object is found. If [line 8] m points

to a back-pointer, the appropriate o�set is subtracted and we start again; similarly,

if [lines 35,36] m points to a pointer (which can happen if we point into the middle

of a closure record) or an embedded descriptor, then m is decremented and we try

again.

If m is a string or byte array [line 13], then we adjust its len to count in words

rather than bytes (i.e. we divide by 4, rounding up). (Lines 14{18 are explained

below.)

Now at line 22 we have either a string or record in fromspace that needs to be

copied. We verify that there's enough space remaining in tospace; if not, we call the

function gmore that will either get more space or die trying. Then we copy all the

words of the object. Finally [lines 27 and 30] we install a forwarding pointer into

the fromspace object and mark its descriptor as forwarded.

For an already forwarded object (line 33), whether it was forwarded in a previous

call or just now, adjust the reference *refloc to point at the new object. Since the

reference might have pointed at the middle of the old object, we must take care to

make it point to the corresponding location in the new object; this is accomplished
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1 forward(int *refloc)

2 {register int *m = *((int**)(refloc)), len;

3 if( (m&1)==0 && (m >= (int*)lowest && m < (int*)highest))

4 { m--; /* make m point at the descriptor */

5 while(1)

6 {len = (*m)>>4;

7 switch(m&15)

8 {case tag_backptr:

9 m -= len;

10 continue;

11 case tag_string:

12 case tag_bytearray:

13 len = (len+3)/4;

19 /* fall through */

20 case tag_record:

21 case tag_array:

22 {int **i=(int**)m, **j=to_ptr;

23 while (j+len >= to_lim)

24 do to_lim=gmore();

25 while (len-- >= 0)

26 do {*j++ = *i++;}

27 ((int**)m)[1]= 1+(int*)to_ptr;

28 to_ptr = j;

29 }

30 (*m) = tag_forwarded;

31 /* fall through */

32 case tag_forwarded:

33 *(int*)(refloc) += ((int*)m)[1] - ((int)(m+1));

34 return;

35 case tag_embedded:

36 default:

37 m--; continue;

38 }} } }

Figure 1: The forward function
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by the computation:

old pointer + beginning of new object� beginning of old object:

Then the forward function returns.

Almost without exception, all pointers to objects point to places where an imme-

diately preceding descriptor explains the format of the object. The exception is an

artifact of the very fast allocation mechanism that can create and initialize a k-word

object in k+2 instructions[3]. This mechanism relies on a page fault trap to invoke

the garbage collector when the free space is exhausted; when this trap occurs, the

program counter will point into the middle of a string object that might be moved

by the garbage collector. This is the only reference that points to a place in a string

that lacks a backpointer. It can be handled relatively simply: as each string object

is moved, we check to see if the saved program counter points into the middle of it;

if so, we adjust the saved program counter. Since the number of string objects is

typically less than one percent of the number of record objects, very costly overall.

The test occurs at line 14, as shown in �gure 5.

14 if (!trap_pc_done

15 && m < trap_pc && m+len >= trap_pc)

16 {trap_pc_done=1;

17 trap_pc += to_ptr - (int**)m;

18 }

Figure 2: Testing the (saved) program counter

6 Garbage collection

Once the forwarding procedure is written, a simple copying garbage collector is

trivial (�gure 6). The function gc is parametrized by the lower and upper bounds

of fromspace and the lower and upper bounds of tospace. The roots parameter is a

vector of pointers to the roots of accessible objects; in the Standard ML system this

is little more than the addresses of saved machine registers. The last two parameters

are the address of the saved program counter (necessary as explained in section 5)

and the address of a function which can be called to expand the tospace if necessary.

The �rst step [lines 6{9] is to put various quantities into global variables to make

them accessible to the forward procedure, since C does not have nested procedures.
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1 gc(int *from_low, int *from_high,

2 int *to_low, int *to_high,

3 int **roots,

4 int *trap_pcx, int *(*get_more)()

5 )

6 { gmore=get_more; trap_pc = *trap_pcx; to_ptr = to_low;

7 trap_pc_done = !(trap_pc>=(int*)from_low

8 && trap_pc<(int*)from_high);

9 lowest=from_low; highest=from_high;

10 while (*roots) forward(*roots++);

11 { int *x = to_low;

12 while (x<to_ptr)

13 { int *p = x+1, descr = (*x), len=descr>>4;

14 if (string_or_bytearray(descr))

15 x += (len+3)/4 + 1;

16 else {x += len+1;

17 do {forward(p++);} while (p<x);

18 } }

19 *trap_pcx = trap_pc;

20 }

Figure 3: The gc function
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The next step is to forward all the root variables (line 10).

Finally [lines 11-18], we forward each word of each record in tospace. Since the

forward procedure may increment the to_ptr variable that denotes the end of the

�lled portion of tospace, we have to keep iterating until x catches up with it. In

e�ect, the tospace between x and to_ptr is the queue of the breadth-�rst search.

The queue must eventually become empty, since there is a �nite amount of accessible

data to be copied. In this phase, integers (and strings) are just skipped, since they

contain no pointers that need forwarding.

This garbage collector is relatively simple, and therefore it's not di�cult to make

it fast. Even the fanciest of generational or concurrent collectors relies on a program

like this as its inner loop; the very simple layout of data in the Standard ML runtime

system makes e�ciency easy.

7 Fast allocation

Copying garbage collection, because it takes time proportional only to the live data

and not to the amount of garbage, can be arbitrarily e�cient[1]. That is, there is

no lower bound on the amortized cost of garbage collection for each cell allocated.

Standard ML's generational copying garbage collector[3] expends on the order of

one (amortized) machine instruction for every cell allocated; the precise amortized

cost is proportional to the ratio of live data to heap size.

Since garbage collection is so fast, it makes sense to make allocation fast too.

Standard ML of New Jersey allocates a new record every 40 to 80 machine instruc-

tions, so we want a very low overhead on the creation of an object.

Since copying garbage collectors compact the live objects into consecutive mem-

ory cells, the free region is all contiguous. This means that to create an n-word

object, we can just grab the next n words of the free space. Since objects are cre-

ated so often, it makes sense to make allocation in-line (with no procedure call) and

to reserve a register fr to point to the beginning of the free region. Then it becomes

very simple to allocate a new object: A = CONS(B,C) is implement as

1. mem[fr+2] := C

2. mem[fr+1] := B

3. mem[fr] := descriptor(2,tag record)

4. A := fr+1

5. fr := fr+3
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Each of these lines is one machine instruction. Thus, in �ve instructions (plus one

instruction of amortized garbage collection overhead) we have made a new cons

cell; it takes only twice as long to create a data structure as it does to read it!

This fast allocation encourages a simple and clean programming style; no longer do

programmers have to stand on their heads to avoid consing.

Of course, this won't work if the free region is exhausted. We can insert an

explicit test to make sure that fr is not near the end of the free region. But a

more clever trick is to make the virtual memory page at the end of the free region

inaccessible, so that we will get a page fault when the free region is exhausted. That's

why we store the last �eld (mem[fr+2]) �rst in the example above; it's simpler for

the garbage collector if the fault occurs at the very beginning of creating the new

cell. (On the MC68020, the state of the machine at a page fault is complicated,

and it's not easy to restart the faulting instruction; so on that machine we use an

explicit comparison with a limit register.)

The page fault will be caught by the hardware and handed to the operating

system, which can then pass control to the user process. The user process then has

to �nd all the registers of the faulting procedure; these registers are the roots of the

accessible data. Appel[3] and Cormack[13] both describe schemes for �nding these

registers; Cormack's is simpler and more reliable.

The ML program and the garbage collector behave like two processes (threads)

running in the same address space: while one thread executes, the other's registers

are saved. When ML suspends itself (either because of a page fault indicating end

of free space, or voluntarily), it saves its registers into a static area that looks just

like a process control block, so that the garbage collector (and other parts of the

runtime system) can access them.

Here's how Cormack's scheme works: A page fault arrives, causing the op-
erating system to invoke the C function ghandle. This function is passed (as an
argument) a structure containing the address of the faulting instruction. Other
saved registers are at undocumented locations on the stack. ghandle saves the
faulting pc in saved_pc, and modi�es its argument structure to point to the
assembly-language function saveregs. Then it returns; the operating system
restores the pc from the argument structure, restores other registers (from those
undocumented locations), and resumes. But of course, we have fooled the op-
erating system into resuming in saveregs, which stores all registers into known
global variables and returns to the C thread (i.e. in the function runML).

The C thread (typically) does garbage collection, then calls the assembly-
language function restoreregs, which loads registers (and program counter)
from their global variables and resumes execution of the ML thread.

Sometimes it's useful to invoke the C thread without a page fault, e.g. to

export the process state into a �le or to do a structured write. In this case,
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saveregs can be called directly from assembly code in the ML thread.

8 Heap allocation of procedure call frames

Since heap allocation is so cheap, we put procedure call frames on the heap instead

of on the stack. This has many advantages[2], but the one of interest here is that it

greatly simpli�es the runtime system. Many of the facilities described in this paper

would be much more complicated to implement if runtime stacks had to be dealt

with.

Any record on the stack must be initialized as it is created; otherwise it will

contain garbage data that could be interpreted by the garbage collector as spurious

pointers. However, typical code generators will allocate a call frame on entry to a

procedure and spill registers into it as needed. This must be avoided. One way to

solve this problem is to delay allocation of the frame; values can be accumulated in

registers until spilling is necessary, then all the registers can be spilled at once into

a newly-created frame, which is just a record object in runtime data format. Thus,

the frame is completely initialized as it is created.

The Standard ML of New Jersey compiler doesn't use \procedure call frames."

Since it uses continuation-passing style[24][18][2], what an ordinary mortal might

call a \frame" is really just the closure of a continuation. It is easy to create

closures as ordinary records that are completely initialized when they are created.

This simpli�es both the code generator and the runtime system, though the trick

described in the previous paragraph will work for more conventional code generators.

Since there's no runtime stack, the call-with-current-continuation[23] primitive

can be implemented very e�ciently. In implementations with a runtime stack, the

entire stack must be copied when call/cc is evaluated (or else there must be a

lot of extra complexity in stack management); without a stack, the execution of

call/cc, and the execution of saved continuations, take just a few instructions each.

This makes call/cc a practical programming tool, just as fast allocation makes cons

practical.

9 Representing ML structures in records and strings

Section 4 describes just two kinds of objects|records and strings|referenceable at

their beginning and (in a limited way) at interior points. All of the kinds of ML

data can be represented in records and strings.

An ML value must be representable in one word. A larger value can be boxed

by putting it in several words on the heap and keeping a (one-word) pointer to
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it. A small value (like a 31-bit integer) can be kept unboxed by representing it

without indirection in a machine word. Boxed values (pointers) are distinguished

from unboxed values (integers, or data represented as integers) by their low-order

bit.

An ML record is an n-tuple of values. It has a natural representation as a

record in our runtime data format. ML has a pro forma record of length 0; as our

runtime data format does not allow objects of length 0 (since that would leave no

room to put a forwarding pointer, as described in a section 5), the empty record

is represented as the unboxed integer 0. This does no harm, since no �elds can be

selected from an empty record anyway.

An ML array is also an n-tuple of values. In the ML language, record-�eld

o�sets are determined at compile-time, whereas arrays may be indexed by runtime

values; and arrays may be modi�ed after they are created, whereas records are

immutable. But neither of these di�erences matters to the runtime system. The

polymorphic equality function of ML requires distinguishing between mutable and

immutable objects at runtime, so arrays and records have di�erent tags, however;

this requires that they have di�erent tags.

ML does permit arrays of length 0, but our runtime data format does not.

Happily, all arrays of length 0 have the same behaviour, so a special object of length

0 (located outside the garbage-collectible region) serves to represent all the empty

arrays.

References in ML are mutable objects: val a = ref 5 declares a reference

variable a that may be changed by a later assignment statement, unlike most vari-

ables which cannot be modi�ed once de�ned. Reference variables behave just like

single-element arrays, and that's how they are represented in the runtime system.

ML has datatype declarations to allow tagged variant types. For example, the

declaration

datatype t = NAME of string | NUMBER of int

speci�es a type t that can be either a string or an integer, depending on whether

the constructor NAME or NUMBER is used to create it. The program can examine any

object of type t and determine whether it has the NAME or NUMBER representation|

that is, it is a tagged union. An object of type t is represented as a two-element

record: one �eld contains the tag (a small integer), and the other �eld contains the

value. The details of constructor representation may be of interest only to those

knowledgeable in ML, and are described in section 15.

ML has strings of characters. Strings can be of any non-negative length. Since

our runtime representation cannot support objects of length 0 (because one word

is needed to store the forwarding pointer, as described in a section 5), the empty
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string must be treated specially. However, it turns out that it is never necessary to

create a new empty string; the only occurrences of empty strings are as literals in

the program text. String literals (and back-pointers) will be discussed in section 11.

Strings of length one are treated specially by the compiler, though this is not nec-

essary either for the ML language or for our runtime data format. Single-character

strings are treated as unboxed integers between 0 and 255, to avoid heap-allocation

for this (frequent) special case. Though this technique may cause less allocation, it

requires special tests on every string operation. It's not clear whether this special

case saves more than it costs. However, this special case is transparent to the run-

time system anyway; all conversions, etc. are handled explicitly by the compiler; the

single-character strings are not a new runtime data format, but look like ordinary

unboxed integers.

Byte-arrays in ML are to strings as arrays are to records: they have the same

representation as strings, but their tag is di�erent to facilitate certain language

features.

Floating-point numbers are too large to �t in one word. Even if we chose to use

single-precision 
oating point, it would be di�cult to store them unboxed because

there is no bit available for use as a tag bit. Thus, all 
oating-point numbers are

stored boxed, with 8 bytes of data and one word of descriptor. The descriptor must

be one that indicates that the contents of the object contain no pointers. Since ML is

statically typed, the language never needs to distinguish (at runtime) 
oating-point

numbers from strings, so we can just represent a double-precision 
oat as an 8-byte

string. This is not an ASCII string, it is the hardware representation; a \string"

descriptor does not denote that the contents are printable characters, just that there

is an arbitrary bit-pattern not containing pointers.

Similarly,machine-code procedures do not require a separate class of descrip-

tor. From the garbage collector's point of view, machine code is just like strings: it

contains bits that are to be (perhaps) moved from place to place but which never

represent pointers. Thus, machine code is just kept in string objects. The mech-

anism by which we avoid placing pointers (or any reference to other objects) in

machine code will be described in section 12.

10 Closures

In ML, as in many lexically scoped languages, functions may have free variables.

That is, the body of a function may reference not only its own formal parameters

(the bound variables of the function), but the formal parameters of a statically

enclosing function. Consider the function

16



fun add(x) = let fun add1(y) = x+y

in add1

end

The function add(x) de�nes an internal function add1(y) that adds x and y, and

then add returns add1 as its result. The variable x is bound by add, and y is bound

by add1. Therefore, if we just consider the function de�nition fun add1(y) = x+y,

the variable x is a free variable of this internal function.

In order to evaluate add1 applied to some argument, we must have a context in

which the value x is de�ned. It will not su�ce for the add function just to return a

pointer to the machine code of add1 as its result. Instead, it must return a closure:

a combination of a code-pointer an some information about the values of all the free

variables (in this case, just x).

For example, the result of evaluating add(5) is (abstractly) the function which

will always add 5 to its argument. Figure 10 shows a possible representation as

a record object, with a descriptor at the beginning for the garbage collector. The

+------+

| desc |

+------+

p--> | o------------> machine code for add1

+------+

| 5 |

+------+

Figure 4: A simple closure.

pointer p is the runtime representation of the particular version of add1 in which x

is bound to 5. This pointer may be passed as an argument to some other function

that doesn't know anything about the add1 function. All the other function has to

know is how to \call" a closure. The calling sequence might be:

1. Put p in register 0.

2. Put the return address in register 1.

3. Fetch p[0] into register 2.

4. Jump to the address contained in register 2.
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Step 1 is necessary so that when add1 is entered, it can gain access to the closure

record where the binding of x is stored. Step 2 is just the normal saving of a return

address, which might in many cases be on a stack instead of in a register. Steps 3

and 4 are just the typical code necessary to jump to a runtime-bound address.

It is important to note that the function that calls a closure p doesn't need to

access any part of it except the machine-code pointer in p[0]. This means that the

free variables (the rest of the closure) may have an arbitrary arrangement, known

only to the function that builds the closure (add, in this case) and the function that

executes it (add1, in this case). Closures can be structured in many ways[7], and can

even point to other closures for access to free variables (i.e., they can have \static

links," in Algol terminology).

Clearly, closures are represented a lot like records. A closure has several �elds,

each of which is either a machine-code pointer or a free variable. The machine-code

pointer is just a (boxed) string pointer, and the free variables are just one-word ML

objects. Therefore, we use record objects to represent closures.

When several functions share a set of free variables, it is convenient to have a

multiple-function closure. Consider the functions

fun test(y,z) =

let fun even(i) = if i=0 then y else odd(i-1)

and odd(i) = if i=0 then z else even(i-1)

in (even,odd)

end

This function, when applied to arguments (3,7), would return two functions (let's

call them even37 and odd37). from integer to integer. Even37 applied to even

integers returns 3 and applied to odd integers returns 7, and odd37 works the other

way around.

We could represent these functions by two di�erent closures, as shown in �g-

ure 10. This is particularly unfortunate because even and odd are free variables of

each other, and this requires the construction of a cyclic data structure of closures,

which can get complicated.

A more clever trick[8][18] is to let these two functions share a closure, as shown in

�gure 10. Now, when even37 is called, its closure-pointer will be loaded in register

0, and it knows that it can access y at o�set 2 from register 0. And when odd37 is

called, its closure pointer (which is really a pointer to the second �eld of the record)

will be loaded in register 0, and it can access z at o�set 2. In some situations, the

same free variable may be accessed by di�erent functions in the closure, and the code

generator will have to remember that the o�sets from register 0 to a particular �eld
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+------+

| desc |

+------+

even37 --> | o------------> machine code for even

+------+

y | 3 |

+------+

odd | o-------> odd37

+------+

+------+

| desc |

+------+

odd37 --> | o------------> machine code for odd

+------+

z | 7 |

+------+

even | o--------> even37

+------+

Figure 5: Two mutually recursive closures

+------+

| desc |

+------+

even37 --> | o------------> machine code for even

+------+

odd37 --> | o------------> machine code for odd

+------+

y | 3 |

+------+

z | 7 |

+------+

Figure 6: Two functions sharing a closure
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depend on which closure-pointer is loaded (i.e. which function we are generating

code for).

Finally, if even wants to call odd, it can just generate the appropriate closure

value in register 0 by adding an o�set of 1 to its own closure pointer. In general, all

mutually recursive functions can be handled this way, and cyclic closure structures

are never required. But even non-mutually-recursive sets of functions can save

storage by sharing closures.

It should now be clear why (in section 4) we arranged for pointers into the middle

of record objects. Given the pointer odd37, the garbage collector can easily search

backward until it �nds the descriptor of the record; the descriptor is unboxed, while

all of the previous machine-code pointers are boxed �elds.

11 Function entry points

A typical compilation unit will contain many functions, and it would be unwieldy to

make a di�erent string object for each function: since the functions in a compilation

unit often call each other, these calls will go much faster as pc-relative jumps than

if we had to fetch addresses from closures. But to achieve pc-relative jumps, the

relative distance between two functions cannot change; and the garbage collector

moves objects around. So to achieve this constant distance, we must put several

functions in the same string object, and have several entry points.

For example, the even, odd, and test functions of section 10 could all be placed

a single string, with appropriate back-pointer descriptors (�gure 11). The numbers

[5] and [10] are back-pointers, formatted as described in section 4. They tell the

garbage collector the o�set to the beginning of the object, so it can �nd the true

descriptor.

The advantage to putting several functions in the same string is that they can

refer to each other directly, without having to access each other through closures.

Of course, it will be necessary to adjust the closure pointer in register 0. Here, even

could call odd by this (simpler) calling sequence:

1. Add 1 to register 0 (to adjust p).

2. Put the return address in register 1.

3. Jump to odd.

The garbage collector may move a code string from one place to another in

memory, so it is necessary that the jump in step 3 be a pc-relative jump.
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+------+

| desc |

+------+

test --> | t |

+ e +

| s |

+ t +

| |

+------+

| [5] |

+------+

even --> | e |

+ v +

| e |

+ n +

| |

+------+

| [10] |

+------+

odd --> | o |

+ d +

| d |

+------+

Figure 7: Three code strings embedded in a string
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ML programs may contain literal strings and 
oating point constants. These are

embedded within string objects amongst the machine-code functions. For example,

fun show(b) = if b then "true" else "false"

could almost have the representation shown in �gure 11. The function show returns

.

+------+

| desc |

+------+

show --> | s |

+ h +

| o |

+ w +

| |

+------+

| [5] |

+------+

true --> | true |

+------+

| [7] |

+------+

false --> | fals |

+ +

| e000 |

+------+

Figure 8: String literals, oversimpli�ed

a pointer to true or false; this pointer points into the middle of the large string

object at one of the embedded strings. Because the embedded string is preceded by

a back-pointer descriptor, the garbage collector won't be confused.

There's a slight problem with this. Although the garbage collector doesn't need

to know the length of the string "true", the ML program might apply the length

function to it. String lengths are kept in the descriptor word, and are accessed

by fetching �eld �1 and shifting o� the tag bits. The problem here is that the

descriptor for true is a back-pointer, not a string descriptor. The solution|simple

and inelegant|is to introduce a new kind of descriptor, an embedded string, which
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contains the length of the string and always is preceded by a backpointer. Thus,

the actual representation of the show function is more like �gure 11.

+------+

| desc |

+------+

show --> | s |

+ h +

| o |

+ w +

| |

+------+

| [6] |

+------+

| 4emb |

+------+

true --> | true |

+------+

| [9] |

+------+

| 5emb |

+------+

false --> | fals |

+ +

| e000 |

+------+

Figure 9: String literals embedded in a code string

The treatment of embedded 
oating point constants is just like that of embedded

strings. However, the ML program will never need to take the length of a 
oating

point constant, so the embedded-string descriptor can be omitted and a simple

backpointer will su�ce. Note that embedded strings of length 0 are permitted,

since there is no need for a word to install a forwarding pointer (see section 5, and

note that forwarding pointers go only at the beginning of the entire string object,

not at embedded strings).

The address of string and 
oating constants may appear in machine code, but

only in a pc-relative way, since code objects may be moved in memory by the garbage
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collector.

12 Modules and compilation units

Standard ML has a powerful module system, allowing nested modules, modules as

parameters to other modules, thinning of a richer module to form a smaller module,

etc. The module system can be represented entirely as records and functions in the

runtime system[8]; no new machinery is needed.

A compilation unit is just a sequence of function and value declarations that will

be compiled together into one string object. But one compilation unit may refer to

values de�ned in another, and a linkage mechanism is required.

We can use the power of higher-order functions to implement the linkage in a

way that is transparent to the runtime system. If unit B refers to a value in unit A,

then the compiler will treat A as an implicit parameter of B. For example, suppose

we have two compilation units

fun f(x,y) = x+y

and

fun g(z) = f(z,z)

clearly f is a free variable of g. But the compiler can parametrize the second unit,

as if it were written

fun g0(f) = let fun g(z) = f(z,z)

in g

end

This compilation unit has no free variables; the ML system will simply apply the

second unit to the �rst one, yielding the desired function g. The compiler must

keep track of inter-module references in order to do this, but at least the runtime

mechanism for linkage is simple.

So, each compilation unit is a closed function with no free variables. No special

linkage mechanism is built into the runtime system; the closure mechanism handles

linkage very elegantly.

Eliminating free variables from compilation units also simpli�es the code gen-

erator. Whenever the code generator must analyze local free variables, generate

pc-relative references, etc., its job is much simpler because there are no global ref-

erences to other objects. The interface between the front end of the compiler and

the code generator are much cleaner as a result.
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13 Linkage to assembly language

Some primitives of a programming language are best implemented in a di�erent

language (typically assembly language). Standard ML of New Jersey makes use of 8

functions written in assembly language, and 8 functions written in C. (For compar-

ison, more than 100 standard-library functions are written in ML.) The assembly-

language functions are:

1. array(n,x) creates an array of length n, each element initialized to x.

2. callc(f,a) calls a C-language function f with argument a.

3. create b(n) creates a byte-array of length n.

4. create s(n) creates a string of length n.

5. 
oor(x) returns the smallest integer less than or equal to x.

6. logb(x) returns the exponent part of (the 
oating-point) x.

7. scalb(x) inserts a new exponent into (
oating-point) x.

8. syscall(i,args,k) does operating system kernel-call i with k arguments.

The assembly-language functions are located at (constant) addresses within the

runtime system. But it's a good idea to follow the rules about free variables in

module-linkages: even the references to assembly-language primitives should not be

\hard-wired" addresses in code objects. If this were done, then all ML code would

have to be re-compiled whenever the runtime system was re-compiled.

Instead, we just treat the assembly-language functions as a special record object

containing nine elements. Other modules are parametrized by this Assemblymodule

just as if it were an ordinary one. All the assembly-language functions follow the

ML calling conventions.

Most of the C functions are to provide access to system calls with hard-to-

manage interfaces, like fork, etc. There is an added complication that the C and ML

calling conventions don't match. The assembly-language function callc arranges

the arguments for an ML function to call a C function. The details are uninteresting,

but the point is that absolute references are again avoided.

The �le boot/assembly.sig contains the signature Assembly, approxi-
mately as in �gure 13. The substructure A is the machine-dependent part
(implemented in assembly language), and the other components (exceptions,
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signature ASSEMBLY =

sig

datatype datalist = DATANIL | DATACONS of (string * string * datalist)

type func

datatype funclist = FUNC of (func * string * funclist)

type object

structure A : sig

val array : int * 'a -> 'a array

val callc : 'b (* func*) * 'a -> 'c

val create_b : int -> string

val create_s : int -> string

val floor : real -> int

val logb : real -> int

val scalb : real * int -> real

val syscall : int * string list * int -> int

end

exception Div

exception Float of string

exception Interrupt

exception Overflow

exception SystemCall of string

exception UnboundTable

val array0 : 'a array

val bytearray0 : string

val collected : int ref

val collectedfrom : int ref

val current : string ref

val datalist : datalist

val external : funclist

val gcmessages : int ref

val gcprof : string ref

val majorcollections : int ref

val minorcollections : int ref

val opsys : int (* 1 = vax bsd ultrix, 4.2, 4.3

2 = sunos 3.0, 4.0

3 = vax v9 (bell labs) *)

val pstruct : object ref

val ratio : int ref

end

Figure 10: The ASSEMBLY signature
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constants, etc.) are just data structures that can be described machine-
independently in C. A is arranged as an ML record at the label runvec in
the �le VAX.prim.s, M68.prim.s, etc. The machine-independent part is in
cstruct.c.

The exceptions in this structure are just those that can be raised from
C or assembly language. Exceptions as elaborated by the compiler look like
references to strings, and in cstruct.c are implemented as initialized structures
to mimic this with all the appropriate descriptors.

The values array0 and bytearray0 are just the array and byte-array of
length 0; this is necessary because objects of length 0 are not permitted in the
garbage-collectible region.

The references collected, collectedfrom, majorcollections, and
minorcollections are updated by the garbage collector with performance in-
formation. The ratio variable can be set from ML to tell the garbage collector
what ratio to maintain between heap size and amount of live data.

The variable current is used in execution pro�ling[5]; it is a pointer to an
array of length 2 of ML integers. When pro�ling is enabled, a timer interrupt
will periodically cause current[1] to be incremented.

The pstruct is a pointer to the Initial (pervasive) structure. The ML
loader (boot/loader.sml) needs this because other modules may reference the
structure Initial.

The datalist is used for linkage to sharable compiled ML code. In vanilla
Unix, such code must be link-loaded into the text segment of the sml executable
�le, and the datalist provides the ML loader a way to get to it. Each element
of the data list contains two strings (the name of the module, and the executable
code), along with a link to the next element.

The funclist is similarly used for linkage to functions implemented in C.
These functions could be described in the Assembly signature but this requires
recompilation whenever a new function is added. The funclist is terminated by
a function whose name is "xxxx". All functions in the list must have a name
of exactly 4 characters. All C-functions must take exactly one argument in ML
format and return a result in ML format. The functions implemented in C at
this writing are:

� �on tells how many characters may be read from an open �le-descriptor
without blocking.

� fork does a Unix process fork.

� prof is obsolete.

� syst executes a shell command as a sub-process.

� time gets execution-time information from the operating system and the
garbage collector.

� argv gets the command-line arguments of the executing program (as a
list of strings).
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� envi gets the Unix environment string (as a list of strings).

� blas does a structured write (as described section 17).

� salb does a structured read.

These functions should be careful not to allocate memory using malloc.

All of these functions are called from the ML \thread" (see section 7). Some

C functions may require the (temporary) suspension of the ML thread, e.g. to

do a garbage collection for a structured write. By setting the global variable

cause to a nonzero value and then returning, a function may cause control to

be grabbed immediately thereafter in the thread controller.

14 Access to operating system services

A typical operating system provides many services, each with one or more opera-

tions (\system calls"). A very early version of Standard ML of New Jersey made

little use of these services, so it su�ced to write an assembly-language interface to

each desired system call, and then call the assembly-language functions from ML

programs. As the ML environment grew more sophisticated, it needed more oper-

ating system services, so the number of assembly-language interface functions grew.

This eventually became intolerable.

Now there is just one assembly-language interface function, syscall, that takes

a list of arguments and a system-call number. This function pushes the arguments

onto the stack and makes the system call. The ML standard library hides the

syscall function behind a variety of typechecked functions. Implementing these

functions in ML rather than assembly language is better for two reasons: ML is

safer and easier to program in, and (more important) the ML code doesn't need to

be rewritten for each target architecture.

All Unix system calls return integer values. These are converted into ML
integers (by shifting and incrementing) and returned as the result of syscall.

Many system calls take parameters by reference that they stu� results into.
These results are (of course) not appropriately tagged for ML. A byte-array (of
the appropriate length) is used as the actual parameter for such an argument,
and then the results can be extracted from the byte-array after the system call.

Integer arguments to system calls are shifted right by syscall to convert
them into their (untagged) representation.

String and byte-array arguments are left alone, yielding their natural repre-

sentation. However, strings in C (and Unix) are terminated by a null character,

whereas strings in ML have a length pre�x. The pre�x is ignored by the ker-

nel, since it occurs at o�set -4 (bytes). To achieve null termination of strings,
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you may take the actual ML argument and concatenate the string "\000\000"

of two zero characters (two characters are required because of the unboxed

representation of single-character strings, and the possibility that the actual

argument is an empty string).

15 Constructor representations

Those unfamiliar with ML might wish to skip this section.

Some of the constructors in an ML datatype may not carry values. For example,

in the type

datatype 'a option = NONE | SOME of 'a

the SOME constructor carries value of type 'a and the NONE constructor carries no

value. Constructors that carry no value are represented not as two-element records,

but as (unboxed) small integers. In this case, NONE is represented by the integer 0

(with a low-order 1 tag bit), and SOME(x) is represented by a two-element record

containing the value x and a small integer representing the SOME constructor. The

ML program can distinguish which constructor has been used by testing for \boxity:"

NONE is an unboxed value, SOME(x) is a boxed value, and the low-order bit will

distinguish them.

Finally, in the case that there is only one value-carrying constructor, and the

value carried always has a boxed representation, the extra indirection record can be

eliminated. Thus, for the list datatype

datatype 'a list = NIL | CONS of ('a * 'a list)

the constructor NIL can be represented as the unboxed integer 0, the constructor

CONS(a,b) can be represented as a two-element record containing a and b. Again,

the low-order \boxity" bit distinguishes the constructors. If there had been several

value-carrying constructors, then the boxity bit alone could not distinguish them,

and an indirection record (containing the carried value and a small integer denoting

the constructor) would be required.

It is tempting to play more elaborate tricks with the representation of construc-

tors. For example, the option datatype described above might not seem to need

an extra indirection; surely the boxity bit should be enough to distinguish between

NONE and SOME(x)? The problem is that the value x might itself be either boxed or

unboxed; the indirection guarantees that SOME(x) will indeed be boxed.

Similarly, it is tempting to use a clever representation for the datatype
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type t = a * b

datatype atom = NUMBER of int | RECORD of t

Here, the values carried by the NUMBER constructor are always unboxed, and the

values carried by the RECORD constructor are always boxed; the boxity can serve

to distinguish them.

The problem with these schemes is caused by the abstraction provided by ML

functors: a functor might take the atom datatype as a parameter with some of its

structure hidden:

functor F(sig type t

datatype atom = NUMBER of int | RECORD of t

end)

and here it is not at all clear that t is always boxed. (Unfortunately, this problem

applies to the \clever" representation of the list datatype as well, but we have cho-

sen to ignore it there|we can detect the (rare) problems with partially-abstracted

lists as functor parameters and give error messages, but we didn't want to use an

extra indirection in the representation of lists.) The problem of functor/datatype

interaction could be considered a defect in the language design.

Note that the constructor tag is element 1 of the record and the value

is element 0. There's no particular reason for this; it's probably a bad idea.

For exception constructors, the constructor tag is not a small integer, it is a

string ref. A ref cell is used instead of just a string so that (generative)

exceptions may be compared for equality in pattern-matching exception con-

structors.

16 Suspending a process

Having designed a simple layout of runtime objects, we can now implement easily a

variety of runtime services.

A convenient feature of a programming environment is the ability to save the

current state of the computation in a �le, so that by executing that �le on a later

date the computation can be resumed. In an interactive system, one might wish

to compile and load some programs, and then \save the world" so that in the next

session these programs don't have to be re-loaded. This feature could also be useful

for program checkpoints.

It's not too hard to suspend a process in this way. It's even possible to make

the resulting �le an ordinary executable �le. An executable �le contains a header,
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a text segment, and a data segment. The (read-only) text segment of the saved �le

will be identical to the text segment of the currently executing process, so a single

write system call will serve to write it to the �le. The data segment of the �le will

consist of the original data segment of the process plus any newly allocated heap

memory; again, one or two writes will put it neatly into the �le. (It is useful to

do a garbage collection immediately before saving, to minimize the size of the �le.)

Finally, the header can be synthesized appropriately.

An early version of Standard ML of New Jersey used a runtime stack, and we had

no end of trouble getting the stack saved correctly. A Unix executable �le doesn't

have a stack segment, so the stack had to be copied into the heap before saving.

And after restoring and copying back to the stack segment, we found that we had

creamed the (new process's) command-line arguments, etc. When we eliminated

the runtime stack, these annoyances ceased.

The resulting executable �le has a ZMAGIC magic number on Berkeley

Unix, and NMAGIC on SunOs 4.0. This is because ZMAGIC implies dynamic

loading of shared libraries on SunOs 4.0, which complicates the address map.

Creating executable �les is annoyingly di�cult in operating systems like SunOs

and Mach, whose notion of a process address map is not as simple as in Berkeley

Unix.

17 Structured writes and reads

It's often necessary to take a data structure (with many records, pointers, strings,

etc.) and write it to a �le in binary form so it can be read back in quickly. It's always

possible to do this in an ad hoc way for each di�erent kind of data structure that has

to be written, but it's sometimes di�cult to get the pointer-sharing relations right.

Since the runtime data format has enough information for the garbage-collector to

traverse the structure, then a writer/reader must be able to traverse it as well.

In fact, we can view the saving of such a structure as just a garbage collec-

tion. The argument to the structured-write function is just a root pointer, and

structured-writemust traverse all the data accessible from this root. In doing so,

it must copy the data to a �le, being careful to make only one copy of each record.

We can, in fact, just invoke the gc procedure, giving as the roots argument

just a singleton vector|the pointer that was handed to structured-write. Then,

the resulting tospace will be exactly the desired contents of the �le, which can be

written out in a single operation.

At this point, however, memory is in a bit of a mess; some objects have been

forwarded and others have not. One solution is just to �nish the garbage collec-
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tion: each of the \normal" roots of the data is forwarded, and then (again) all the

remaining unforwarded pointers in tospace are forwarded. Then memory is again

consistent, and execution may continue.

This is unattractive because the time required to do a structured write is now

proportional to the amount of all live data, not proportional to the amount written.

So a di�erent solution is better: keep a separate list of repair information about

the fromspace objects that were overwritten with forwarding pointers. Whenever

a fromspace object is forwarded, two words of information must be kept about it:

the location of the object itself, and the previous value of its �rst word (that was

overwritten). Then, repair is easy; the list of repair information can be traversed,

and each fromspace object is restored to its original state. The descriptor can be

recovered by copying the descriptor of the tospace copy (accessed via the forwarding

pointer), and the �rst word (which had been overwritten by the forwarding pointer)

can then be recovered from the repair information. Saving the repair information

is fast, and performing the repairs is also fast. The time to do a structured write is

now proportional (with a small constant of proportionality!) to the amount written.

There's one last problem. Where do we keep the repair information, and what

if it grows too large? The repair information can be kept at the far end of tospace.

Then, as long as the amount written is fairly small, we'll never run into it. And

if we do run into it, that means that the amount written must be at least half the

size of tospace (where tospace is always at least the size of the total accessible data).

What we can do in this case is just to toss away the repair information, and go

ahead with a garbage collection!

In a multi-generation system (as in SML-NJ's runtime system), we do a

(cheap) minor collection before the structured write; the collection referred to

in the paragraphs above is a major collection.

18 Bu�ered input/output

Some operating systems (like Unix) don't provide bu�ered input and output as a

primitive, and even in operating systems that do, the overhead of one system call

per character may be too high. What the runtime system can do is provide this

service for user programs.

The Unix/C standard library[17] demonstrates that the runtime system need not

provide this service; instead, library routines can implement bu�ered I/O. We have

taken the same approach in our system; the bu�ered I/O functions are implemented

in ML as library functions, and the runtime system is completely ignorant of bu�ered

I/O.
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19 Execution pro�ling

In large software systems it can become di�cult to tell where the ine�ciencies are.

Execution pro�lers can help with this process. A typical pro�ler might provided

information about the amount of time spent in each procedure and the number of

times it was called.

Standard ML of New Jersey has an execution pro�ler[5], which will only brie
y

be described here. Call counts are handled completely independently of the runtime

system; the compiler inserts program variables that are incremented on entry to

procedures, and the pro�ler examines these variables to generate call-count infor-

mation.

Execution-time estimates are more di�cult. The Unix prof system call starts

a timer interrupt in the operating system that periodically samples the program's

program counter. An a�ne function is applied to the PC and the corresponding

element of a \histogram" array is incremented. Then the histogram can be compared

against the object �le to see how many interrupts occurred in each procedure, which

gives a good estimate of actual time spend in each procedure.

With a garbage collector that moves procedures around in memory, this method

becomes unwieldy. Instead, the runtime system has a variable current that points

at a sample-count cell for the currently executing procedure. Whenever (pro�led)

code begins executing a procedure (or returns from a call), it assigns the address of

the new procedure's sample-count variable into current (the compiler inserts code

to do this). The timer interrupt, instead of examining the PC, just increments the

cell pointed to by current.

This very simple mechanism does not greatly complicate the runtime system,

but provides pro�ling information with a relatively low overhead.

20 Debugging

We are currently developing a high-level debugger based on the same principles as

our pro�ler|namely, minimal interaction with the runtime system. The work is

still in its early stages, but we believe that it is possible to make a debugger this

way, and that the runtime system won't have to grow much in size to support it. A

detailed description of our plans is beyond the scope of this paper.
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21 Handling of interrupts and exceptions

The ML language has an exception-handling mechanism with dynamically-nested

handlers. Some exceptions are raised by the program itself, some are related to

synchronous hardware exceptions (like 
oating point errors), and some are gener-

ated asynchronously (like the Interrupt exception raised when the user presses the

interrupt key).

The ML program has a \current-exception-handler" register that just contains

a pointer to a continuation (i.e. a closure). Raising an exception just corresponds

to invoking this continuation with the exception-object as an argument. Dynamic

nesting of handlers is handled completely by the compiler: it generates code that

saves the previous handler (in the new handler's closure) and restores it upon exit

from the scope of the new handler.

This makes it particularly easy for the programming language's exception mech-

anism to be attached to the hardware's notion of fault or interrupt. When a fault or

interrupt occurs, the operating system calls a special (assembly-language) function

in the runtime system. This function then determines what caused the fault, clears

it if necessary, then does not return to the operating system but just invokes the

current-exception-handler continuation on the appropriate exception object.

22 Fancier garbage collectors and object boundaries

Our current system uses a good, simple generational garbage collector[3]. Genera-

tion garbage collection[19][25] is based on the observations that newer records tend

to become garbage more quickly, so that the collector should concentrate its e�ort

on the newer records; and that newer records tend to point to older records, but not

vice versa, so that the older records need not be searched for roots into the newer

area.

Sometimes, however, older records are modi�ed (by a rplaca operation in Lisp or

an assignment operation in ML) to point to newer ones. Generational garbage collec-

tors require the maintenance of a list of all modi�ed records. To ensure portability,

we use a very simple scheme to maintain this list: the compiler inserts instructions

after each update operation to put the address of the updated cell on a special list

for the garbage collector to use.

A clever trick is to use the virtual memory system in maintaining this list. It is

only updates to records in older generations that must be remembered; we can just

make all the memory occupied by older generations read-only, and an update will

cause a page fault. The fault-handler can then put the page on a list of updated

34



pages, and mark the page as writeable. During garbage collection, the entire page

can be searched for roots into the newer region.

A di�erent virtual-memory trick can be used to achieve concurrent garbage

collection[6]. By making the pages of the tospace inaccessible until they have been

scanned and forwarded, we can allow the ML program to continue executing even

while the garbage collector is running. An access to an unscanned page of tospace

causes a page fault, and the fault handler scans that page and makes it accessible.

Then the latency is bounded by the product of the page size and the record size

(in practice, to just a few milliseconds). This is very desirable in a real-time or

interactive system.

Both of these algorithms require that pages be scanned (and forwarded) out of

order. When objects cross page boundaries, it is di�cult to know where the �rst

object on a page begins, so that its descriptor may be found. There are solutions to

this problem that involve keeping track of objects that cross page boundaries[6], but

the SML-NJ runtime system has a runtime data format that allows a very simple

solution.

Suppose we need to scan a particular page (to forward all its pointers). When

we start at the beginning of the page, we don't know whether we are in the middle

of a record or of a string; and we don't know where the descriptor for the object

is. But if we knew that the page contained only records, then we wouldn't need

to �nd the descriptor; the important thing about records is that their boundaries

can be ignored. If a page consists of the last part of one record, followed by several

complete records, followed by the �rst part of the last record, the pointers in all

of those records can be scanned and forwarded without regard to the boundaries.

Since the descriptors are unboxed (they look like integers), they won't be touched;

and all the other �elds are tagged pointers or integers which will be forwarded (or

not) appropriately. (See �gure 22 for an illustration.)

And if we knew that the page contained only strings, then it wouldn't need to

be scanned at all, since strings contain no pointers.

Thus, a simple arrangement that's useful when pages need to be scanned in

arbitrary order is to segregate pointer-containing objects (records and arrays) from

non-pointer-containing objects (strings and byte-arrays). This isn't necessary for

the newly-allocated objects; the compiler can continue to maintain just one register

that points at the beginning of the free space. But the copying garbage collector

(the functions gc and forward) must copy records and strings into di�erent parts of

memory. This greatly simpli�es the implementation of page-based garbage collection

algorithms.
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+------+--object boundary

| desc |

+------+

| o------------>

-----+------+-----page boundary

| 5 |

+------+--object boundary

| desc |

+------+

| o------------>

+------+

| o------------>

+------+--object boundary

| desc |

+------+

| 7 |

+------+

| o------------>

-----+------+-----page boundary

| 6 |

+------+

| o------------>

+------+--object boundary

Figure 11: Object boundaries may be ignored by the forwarding algorithm
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23 Size of the SML-NJ runtime system

Our runtime system is implemented in 1548 lines of C and 232 lines of assembly

language (the assembly language must be duplicated for each target architecture).

This is small indeed, considering the functionality of our Standard ML system. We

have made it small by moving as much as possible out of the runtime system, and

by having a simple format for ML data.

This 1780 lines of code can be divided approximately as follows:

291 lines of C to initialize and link the Standard ML library and loader, which

then loads the rest of the system. (run.c)

299 lines to implement the copying garbage collector with repairs. (gc.c)

55 lines of C to implement the simulated process-switching required for garbage-

collector access to ML registers. (callgc.c)

400 lines for the management of generational garbage collection, and for deciding

when to ask the operating system for more memory. (callgc.c)

304 lines to implement C-language functions and data structures used as primitives

by the ML program. (cstruct.c)

117 lines of C to implement the suspending of process states into Unix executable

�les. (export.c)

72 lines of utility functions for C functions that manipulate ML objects. (objects.c)

38 lines of assembly language to handle simulated process switching. (*.prim.s)

195 lines of assembly language to implement primitive functions callable by ML

programs. (*.prim.s)

For comparison, the Icon runtime system[15] (excluding its interpreter) is 18,000

lines of C; the T3[18] runtime system is 1,900(?) lines of C and assembly lan-

guage; the FranzLisp runtime system (including interpreter) is 19,500 lines of C; the

Poly/ML runtime system is ??? lines of ???.

24 Conclusion

It's easy to implement a hi-tech runtime system if you do it cleanly.
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