
Standard ML of New Jersey

|

User's Guide

(Version 0.93)

February 15, 1993

Copyright c
 1993 by AT&T Bell Laboratories



Contents

1 Introduction GUIDE-1

1.1 Reporting Bugs and Errors : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : GUIDE-1

1.2 Keeping in Touch : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : GUIDE-1

1.3 Documentation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : GUIDE-1

2 How to Use the System GUIDE-2

3 SML/NJ Language Notes GUIDE-4

3.1 Hexadecimal integer literals : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : GUIDE-4

3.2 Vector expressions and patterns : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : GUIDE-4

3.3 First-class continuations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : GUIDE-4

3.4 References and weak polymorphism : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : GUIDE-4

3.5 Higher-order Modules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : GUIDE-6

3.6 Discrepancies between SML/NJ and the De�nition : : : : : : : : : : : : : : : : : : : : : : : : GUIDE-9

4 SML/NJ Compiler Notes GUIDE-10

Standard ML of New Jersey

License and Disclaimer

Copyright c
 1989,1990,1991,1993 by AT&T Bell Laboratories
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear in
all copies and that both the copyright notice and this permission notice and warranty disclaimer
appear in supporting documentation, and that the name of AT&T Bell Laboratories or any
AT&T entity not be used in advertising or publicity pertaining to distribution of the software
without speci�c, written prior permission.

AT&T disclaims all warranties with regard to this software, including all implied

warranties of merchantability and �tness. In no event shall AT&T be liable for

any special, indirect or consequential damages or any damages whatsoever resulting

from loss of use, data or pro�ts, whether in an action of contract, negligence or other

tortious action, arising out of or in connection with the use or performance of this

software.

GUIDE-ii



1 Introduction

This document provides some general information about the Standard ML of Jersey (SML/NJ) system and
how to use it. This is not a tutorial on the Standard ML language, however. To learn how to program in
Standard ML you should read one of the available books or tutorials on the subject, such as Paulson's ML

for the Working Programmer (Cambridge, 1991).

1.1 Reporting Bugs and Errors

We are eager to receive reports of bugs in the compiler and related tools and libraries or errors in the
documentation. Any error message beginning with \Compiler bug" de�nitely indicates a bug in the compiler
and should be reported. But don't be shy about reporting any problems that may conceivably be bugs.
Please use the bug report form in the �le doc/bugs/bug.form and send comments and bug reports to
sml-bugs@research.att.com.

Comments and suggestions regarding the new SML/NJ Library are also welcome and should be sent to
John Reppy at jhr@research.att.com.

1.2 Keeping in Touch

There is a mailing list for news and discussion of Standard ML (and other dialects of ML). The address
of the mailing list is sml-list@cs.cmu.edu, but administrative requests, such as requests to join the list,
should be sent to sml-request@cs.cmu.edu. The mailing list is currently moderated by Greg Morrisett.

If things go as planned, the sml mailing list will soon be supplemented by a new netnews group,
comp.lang.sml.

Announcements of new versions of Standard ML of New Jersey are distributed via the sml mailing list
and several existing netnews groups, such as comp.lang.misc and comp.lang.functional.

1.3 Documentation

The Standard ML of New Jersey system is described by the following documents, which are found in the
doc directory of the distribution.

� Release Notes. This describes what is in the Standard ML of New Jersey distribution, what hardware
and software is required to use the compiler, and how to install the software.

� Standard ML of New Jersey Reference Manual. This manual contains several sections which
are found in separate �les.

GUIDE is the document you are now reading. It contains basic information on using the system,
discusses language issues pertinent to Standard ML of New Jersey, and describes some special
features of the compiler. (doc/manual/GUIDE.ps)

BASE describes the contents of the basic environment (the modules, types, values, etc. that are
bound in the default environment). (doc/manual/BASE.ps)

SYS documents the components of the System structure, which provides facilities for interacting with
the compiler internals and with the host operating system. (doc/manual/SYS.ps)

LIB is the Standard ML of New Jersey Library Manual. This describes a set of modules providing
commonly useful abstractions and facilities such as sorting, hashing, regular expressions, and
formatted I/O. With any public release of SML, doc/manual/LIB.ps will be essentially identical
to smlnj-lib-0.1/lib-manual.ps. However, we expect releases of the library to be more frequent

GUIDE-1



than the compiler, and the most recent version of the library manual should be obtained from
lib-manual.ps, which is also stand-alone.

TOOL ML software tools, such as SourceGroup, mlyacc, etc. (doc/manual/TOOL.ps)

In addition, each of the tools SourceGroup, mlyacc, lexgen, and mltwig come with their own manuals or
documentation �les. These documentation �les are located in the appropriate subdirectories of the tools
directory. If you are installing SML/NJ on your system you may want to provide a local guide that tells
where to �nd the commands, documentation, tools, and libraries on your system.

2 How to Use the System

This section explains some of the basic elements of using the Standard ML of New Jersey compiler as an
interactive system into which you enter declarations and expressions or load code from source �les. This is
the most accessible mode of using the compiler, but in the near future there will be other modes available that
are more appropriate for building \stand-alone" ML applications with a minimum of extraneous baggage.
We assume below that you are using the compiler under Unix. The behavior will be somewhat di�erent
under other operating systems such as the Macintosh OS.

Running Standard ML. Type \sml" from the Unix shell. This puts you into the interactive system.
The top level prompt is \-", and the secondary prompt (printed when input is incomplete) is \=". If you get
the secondary prompt when you don't expect it, typing \;return" will often complete your input, or typing
your interrupt character (e.g. control-C) will cancel your input and return to the ML top level.

If \sml" doesn't work, ask where sml has been installed on your machine and use the appropriate path
name or rede�ne your PATH environment variable.

Interactive input. Input to the top level interpreter (i.e. declarations and expressions) must be termi-
nated by a semicolon (and carriage return) before the system will evaluate it. The system then prints out a
response indicating the e�ect of the evaluation. Expressions are treated as implicit declarations of a standard
variable it. For example,

- 3; user input after prompt

val it = 3 : int system response

This means that the value of the last top level expression evaluated can be referred to using the variable
\it."

Interrupting compilation or execution. Typing the interrupt character (control-C, or DELETE, de-
pending on your \stty" parameters) should interrupt the compiler and return you to top level. This is no
longer accomplished by raising the Interrupt exception, and hence interrupts cannot be trapped by an
exception handler.

On the MIPS Risc/OS operating system, you may need to type a carriage return after the control-C.

Exiting the interactive system. Typing control-D (EOF) at top level will cause an exit to
the shell (or the parent process from which sml was run). One can also terminate by calling
System.Unsafe.CInterface.exit().

Loading ML source text from a �le. The function use: string -> unit interprets its argument as
a Unix �le name relative to sml's current directory and loads the text from that �le as though it had been

GUIDE-2



typed in. This should normally be executed at top level, but the loaded �les can also contain calls of use
to recursively load other �les. It is a bad idea to call use within an expression or declaration, because the
e�ects are not well-de�ned.

For industrial-strength multi-module software systems, the SourceGroup system may be more appropriate
than use (see tools/sourcegroup).

Saving an image of the system. Use the function exportML: string -> bool to save an image
of the current sml system (including the environment that you have built) in a �le. See Section EX-
PORTML(BASE) [Section EXPORTML of Chapter BASE], for details. The saved image �le is an executable
binary, and can be run by typing the �le name as a command to the shell.

Library functions, Base environment. Many functions are available in the standard initial environ-
ment; these are described in Chapter BASE. The rest of the library is provided (at present) as source that
can be loaded; see Chapter LIB.

The built-in library functions, the set of separately loadable structures and functors, and the programming
interface to the Unix operating system are described in Chapter LIB.

Error messages. The compiler attempts to recover from syntactic errors so that it can also produce
semantic (type-checking) errors during the same compilation. Syntactic error recovery is more accurate for
source �les loaded by use or SourceGroup than it is in the interactive system|this is because lookahead is
not possible when text is entered one line at a time.

When compiling �les, the error messages include line numbers and character positions within the line.
For example:

- if true

= then 5 true

= else 6;

std_in:7.6-7.11 Error: operator is not a function

operator: int

in expression:

5 true

-

Here the location information std_in:7.6-7.11 indicates that the erroneous expression \5 true" occupies
characters 6 through 11 of the 7th line of input from std_in. For simple syntactic errors this position
information is usually accurate or perhaps o� by just one line. For some classes of errors the line numbers
may not be very useful, because they delineate a potentially large declaration containing the error. If the
error occurs in a �le being loaded by use, the line numbers will refer to lines in the �le being loaded.

There are a number of di�erent forms of type error message, and it may require some practice before you
become adept at interpreting them. The most common form indicates a mismatch between the type of a
function (or operator) and its argument (or operand). A representation of the o�ending expression is usually
included, but this is an image of the internal abstract syntax for the expression and may di�er signi�cantly
from the original source code. For instance, an expression \if e1 then e2 else e3" is represented internally
as a case expression over a boolean value: \case e1 of true => e2 | false => e3."

Printing. The structure System.Print contains several useful 
ags and functions with which you can
control or redirect compiler error, diagnostic, and result messages. See PRINT(SYS). You can also control
the depth of printing of large structured values.

GUIDE-3



Useful system 
ags. There are a number of useful system 
ags and variables, which are found in the
structure System.Control and its substructures. These are documented in Section CONTROL(SYS). They
can be used, for instance, to rede�ne the primary and secondary prompt strings, to control the printing of
garbage collection messages, or to �ne tune memory management.

Interacting with the operating system. The structure System and several of its substructures contain
functions for such tasks as executing Unix commands from within sml and changing the current directory.
These are documented in Chapter SYS.

Emacs support. The directory contrib/emacs contains packages supporting editing ML source code and
interacting with sml under gnu emacs.

3 SML/NJ Language Notes

This section covers some (essentially) upward compatible extensions of Standard ML provided by SML/NJ,
and lists other discrepancies between SML/NJ and the De�nition of Standard ML. Use of the extensions
will of course cause problems when porting your ML code to another implementation of Standard ML.

3.1 Hexadecimal integer literals

Integer constants can be expressed in hexadecimal notation. Such constants start with the digit zero followed
by \x" followed a sequence of digits and the characters \a-f", \A-F". Examples are 0x0, 0xa3, ~0x2ff.

3.2 Vector expressions and patterns

Vectors are homogeneous, immutable arrays (see Section VECTOR(BASE)). The vector expression
#[exp

0
; exp

1
; : : : ; exp

n�1
] (where n � 0) creates a vector of length n whose elements are the values of the

corresponding subexpressions. As with other aggregate expressions, the element expressions are evaluated
from left to right. Vectors may be pattern-matched by vector patterns of the form #[pat

0
; pat

1
; : : : ; pat

n�1
].

Such a pattern will only match a vector value of the same length.

Vector expressions and vector patterns are more compact and e�cient than lists, and are comparable in
cost to records.

3.3 First-class continuations

A set of primitives has been added to ML to give access to continuations:

type 'a cont

val callcc : ('1a cont -> '1a) -> '1a

val throw : 'a cont -> 'a -> 'b

The continuation of an expression is an abstraction of what the system will do with the value of the expression.

The use of callcc is described in Section CALLCC(BASE).

3.4 References and weak polymorphism

The type checker uses weak type variables to support secure use of references and arrays and other objects
like hash tables implemented in terms of references and arrays. The following is a very brief explanation

GUIDE-4



of how they work, but you should try some experiments to become familiar with the behavior of weak
polymorphism.

It is well known that mutable objects like references can be the source of type failures not detected by
static type checking, if the reference primitives are treated as ordinary polymorphic values. A standard
example is

let val x = ref(fn x => x)

in x := (fn x => x+1)

!x true

end

The basic principle we use to avoid such errors is that the contents of an actual reference must have monomor-
phic type. Therefore, declarations such as:

val x = ref []

are illegal and will cause an error message. A function, like ref, that directly or indirectly creates references
can have a polymorphic type, but of a special kind. Thus the type of the ref constructor itself is

val ref : '1a -> '1a ref

where the type variable '1a is a \weak type variable of degree 1." Basically, this type indicates that when
the function ref is applied, its instantiation must be given a ground type. But the notion of ground type
must be interpreted relative to the context, e.g. bound type variables can be viewed as type constants within
the scope of their binding. For example:

fun f (x : '1a) = ref [x]

is ok, even though the type of the embedded ref expression is '1a list ref, because '1a is a bound type
variable in this context. The type of the function f is '1a -> '1a list ref.

The degree of weakness (or perhaps strength is a better term) of a type variable re
ects the number of
lambda abstractions that have to be cancelled by application before the reference object is actually created
and that type variable must be monomorphically instantiated. Ordinary type variables can be considered
to have strength in�nity. Each application weakens the operand type another step, and when the strength
of a type variable becomes 0 it must be eliminated by instantiation to a ground type; weak type variables of
degree zero are not allowed in a top-level type. Conversely, each surrounding lambda abstraction strengthens
type variables.

For example,

- val g = (fn x => (fn y => (ref x, ref(x,y))));

val g = fn : '2a -> '2b -> ('2a ref * ('2a *'2b) ref)

- val h = g(nil);

val h = fn : '1a -> ('1b list ref * ('1b list * '1a) ref)

- h true;

std_in:4.1-4.6 Error: nongeneric weak type variable

it : '0Z list ref * ('0Z list * bool) ref

but

- (h true) : int list ref * (int list * bool) ref;

val it = (ref [],ref ([],true)) : int list ref * (int list * bool) ref

The type constraint is necessary to instantiate the weak type variable '1c when h is applied.

If a component of a structure has a weak polymorphic type, then the corresponding signature speci�cation
should have at least as weak a type. That is, the strength of type variables in the signature should be no
greater than that in the corresponding structure component.

GUIDE-5



Compatibility. The De�nition of Standard ML describes a less powerful system for typechecking refer-
ences. The De�nition's \underscore" type variables '_a, '_b, etc. are equivalent to variables of strength
1, that is, '1a, '1b. For compatibility, SML/NJ accepts programs using the underscore notation; and,
if System.Control.weakUnderscore is set to true, also prints weak type variables using the underscore
notation.

Weak variables and exceptions. If the declared argument type of an exception constructor contains a
type variable, then that type variable is bound in the appropriate surrounding context according to the usual
rules. Furthermore, the type variable must be a weak variable of the same degree as it would have were it
associated with a ref argument at that point (i.e. its weakness must agree with the abstraction degree at the
point of the exception declaration.) This is because the creation of an exception constructor is conceptually
similar to the creation of a reference value in that both can be used to transmit values between two textually
unrelated points in the program.

It is best if the type variable occurring in the exception declaration had already been introduced by
appearance in a type constraint on a lambda binding, as in the following example.

fun f(l: '1a list, p: '1a -> bool) =

let exception E of '1a list

fun search(x::r) = if p x then raise E r else search r

| search [] = []

in search r handle E l => l

end

As an exercise, show how this rule prevents the usual type insecurity example associated with \polymorphic"
references:

let val (r,h) =

let exception E of 'a

in ((fn x => raise x), (fn f => f() handle E y => y))

end

3.5 Higher-order Modules

The module system of Standard ML has supported �rst-order parametric modules in the form of func-
tors. But there are occasions when one like to parameterize over functors as well as structures,
which requires a truly higher-order module system (see, for instance, the powerset functor example in
doc/examples/powerset.sml. SML/NJ now provides an experimental higher-order extension of the module
system.

Parameterization over functors can be provided in a straightforward way by allowing functors to be com-
ponents of structures. Syntactically this can be accomplished merely by allowing functor declarations inside
of structure bodies, and by providing syntax for functor speci�cations in signatures. Functor speci�cations
were already part of the module syntax of the De�nition of Standard ML (Figure 8, p. 14), so we have
implemented that syntax and added it to the spec class (Figure 7, p. 13). In addition, it is convenient to
have a way of declaring functor signatures and some syntactic sugar for curried functor de�nitions and partial
application of curried functors, so these have also been provided. This extension is an \upward-compatible"
enrichment of the language that should break no existing programs.

Functors as structure components. In the extended language, a signature can contain a functor spec-
i�cation:

GUIDE-6



signature SIG =

sig

type t

val a : t

functor F(X: sig type s

val b: s

end) : sig val x : t * X.s end

end

To match such a signature, a structure is allowed to contain a functor declaration:

structure S : SIG =

struct

type t = int

val a = 3

functor F(X: sig type s val b: s end) =

struct val x = (a,X.b) end

end

This makes it possible higher-order functors by including a functor as a component of a parameter structure
or of a result structure. The case of a functor parameter is illustrated by the following example.

signature MONOID =

sig

type t

val plus: t*t -> t

val e: t

end;

(* functor signature declaration *)

funsig PROD (structure M: MONOID

structure N: MONOID) = MONOID

functor Square(structure X: MONOID

functor Prod: PROD): MONOID =

Prod(structure M = X

structure N = X);

Note that this example involves the de�nition of a functor signature PROD. Currently functor signature
declarations take one of the following forms:

funsig funid (strid: sigexp) = sigexp

funsig funid (specs) = sigexp

This syntax is viewed as provisional and subject to change. Possible alternative notations (for the �rst form)
are:

funsig funid = (strid: sigexp) sigexp

funsig funid = (strid: sigexp) => sigexp

A common use of functors returning functors in their result is to approximate a curried functor with multiple
parameters. Here is how one might de�ne a curried monoid product functor:

GUIDE-7



functor CurriedProd (M: MONOID) =

struct

functor Prod1 (N: MONOID) : MONOID =

struct

type t = M.t * N.t

val e = (M.e, N.e)

fun plus((m1,n1),(m2,n2))=(M.plus(m1,m2),N.plus(n1,n2))

end;

end

This works, but the partial application of this functor is rather awkward because it requires the explicit
creation of an intermediate structure:

structure IntMonoid =

struct

type t = int

val e = 0

val plus = (op +): int*int -> int

end;

structure Temp = CurriedProd(IntMonoid);

functor ProdInt = Temp.Prod1;

To simplify the use of this sort of functor, some derived forms provide syntactic sugar for curried functor
de�nition and partial application. Thus the above example can be written:

functor CurriedProd (M: MONOID) (N: MONOID) : MONOID =

struct

type t = M.t * N.t

val e = (M.e, N.e)

fun plus((m1,n1),(m2,n2))=(M.plus(m1,m2),N.plus(n1,n2))

end;

functor ProdInt = CurriedProd(IntMonoid);

The syntax for curried forms of functor signature and functor declarations and for the corresponding
partial applications can be summarized as follows:

funsig funsigid (par1) : : : (parn) = sigexp

functor funid (par1) : : : (parn) = strexp

functor funid1 = funid2 (arg1) : : : (argn)

structure strid = funid (arg1) : : : (argn)

where

par ::= id~:~ sigexp~|~ specs

arg ::= strexp | dec.

In the case of a partial application de�ning a functor, it is assumed that the funid2 on the right hand side
takes more than n arguments, while in the case of the structure declaration funid should take exactly n

arguments. As a degenerate case where n = 0 we have identity functor declarations:

functor funid1 = funid2

There is also a "let" form of functor expression:

fctexp ::= let dec in fctexp end

GUIDE-8



which can only be used in functor de�nitions of the form:

functor funid = let dec in fctexp end.

The curried functor declaration

functor F (par1) : : : (parn) = strexp

is a derived form that is translated into the following declaration

functor F (par1) =

struct

functor %fct% (par2) : : : (parn) = strexp

end

and the declarations

structure S = F (arg1) : : : (argn)

functor G = F (arg1) : : : (argn)

are derived forms expanding into (respectively):

local

structure %hidden% = F (arg1)

in

structure S = %hidden%.%fct% (arg2) : : : (argn)

end

and

local

structure %hidden% = F (arg1) : : : (argn)

in

functor G = %hidden%.%fct%

end

Currently there is no checking that a complete set of arguments is supplied when a curried functor is applied
to de�ne a structure, as illustrated by the following example:

functor Foo (X: sig type s end) (Y: sig type t end) =

struct type u = X.s * Y.t end

structure A = struct type s = int end

structure S = Foo (A) (* Foo A yields a (useless) structure *)

functor G = Foo (A) (* Foo A yields a functor *)

Of course, the structure S de�ned in this way is useless, since we cannot use the pseudo-identi�er %fct% to
select its functor component. Arity checking to prevent this sort of error will be added in a future release.

3.6 Discrepancies between SML/NJ and the De�nition

The basic environment of SML of New Jersey is a large superset of the initial basis described in Appendices
C and D of the De�nition of Standard ML (Milner/Tofte/Harper) and di�ers from it in various ways:

� The arithmetic over
ow exceptions:

GUIDE-9



{ Sum, Prod, Diff, Neg, Exp, Floor are all equivalent to Overflow.

{ Div and Mod are equivalent to Div and distinct from Overflow.

� The operator \@" (list append) is right-associative.

� Strings carried by the Io exception are more informative.

The language implemented by SML/NJ also di�ers from that described in the De�nition. Here is a
partial list of the discrepancies:

� Di�erent right-associative operators of the same precedence associate to the right.

� "local" and "open" speci�cations in signatures have a more limited semantics than in the de�nition. A
speci�cation \open A" in a signature merely allows abbreviated names for components of the structure
A in later speci�cations (e.g. t for A.t). It does not introduce any speci�cations into the signature.
The local speci�cation form is only partially implemented for compatibility, and a warning message is
issued when it is used. Signatures using these constructs in the following style will behave as expected:

signature S =

sig

specs

local

open A B : : :

in

specs

end

end

� The equality symbol \=" can be re-bound (though usually with a warning message). It is not a good
idea to do so.

� The declaration construct \val ... and rec ..." is not permitted; the rec must immediately follow
the val.

� Multiple speci�cations of a name (in the same name space) are not allowed in signatures, except that
certain \compatible" respeci�cations of a type constructor are allowed to make include speci�cations
more useful.

4 SML/NJ Compiler Notes

Program optimization Each compilation unit is compiled separately. None of the optimizations take
place across compilation-unit boundaries. Example:

fun f(x) = (x,x);

fun g 0 = nil | g i = f i :: g(i-1);

These are two compilation units if typed at top level, or if loaded from a �le because at the �rst semicolon,
the function f is compiled, and then at the next semicolon, g is compiled. The function g will run signi�cantly
faster if any of the following is used instead:

GUIDE-10



fun f(x) = (x,x)

fun g 0 = nil | g i = f i :: g(i-1);

local

fun f(x) = (x,x);

in

fun g 0 = nil | g i = f i :: g(i-1)

end;

structure S =

struct

fun f(x) = (x,x);

fun g 0 = nil | g i = f i :: g(i-1);

end;

In either of these last two, of course, the semicolons are optional.

Moral of the story: use small compilation units while typing to the interactive system and seeing how
things work. Use larger compilation units when compiling large programs. We recommend the use of the
module system, or of let and local declarations, to bind things together in a well-structured way.

The use of signature constraints to minimize the number of things exported from structures will reduce
memory usage, may improve optimization, and is just clean style.

For the speed fanatic: The initial environment (i.e., the List, Array, Ref, etc. structures) is normally
in a separate module from the user program. If you would like a copy of this stu� in your program so that
calls to the pervasive functions will have less overhead, textually insert src/boot/fastlib.sml near the
beginning of your own structure. This only helps, of course, if fastlib.sml is put into the same compilation
unit as the functions calling it, using the module system as described above.

In some cases, you can improve performance by combining several compilation units into one. For
example, after you have developed your program as a set of top-level structures, nest the whole thing in one
huge structure, e.g.,

structure Whole =

struct

your program

end

You can even put signatures and functors at top level inside such a structure, although this is not \Standard"
ML.

This technique will increase compilation time and compilation memory usage substantially, and it is

not guaranteed to improve execution time.

GUIDE-11



GUIDE-12


