
Standard ML of New Jersey

|

Release Notes

(Version 0.93)

February 15, 1993

Copyright c
 1989, 1990, 1991, 1992, 1993 by AT&T Bell Laboratories



License and Disclaimer

Copyright c
 1989, 1990, 1991, 1992, 1993 by AT&T Bell Laboratories

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for

any purpose and without fee is hereby granted, provided that the above copyright notice

appear in all copies and that both the copyright notice and this permission notice and

warranty disclaimer appear in supporting documentation, and that the name of AT&T

Bell Laboratories or any AT&T entity not be used in advertising or publicity pertaining

to distribution of the software without speci�c, written prior permission.

AT&T disclaims all warranties with regard to this software, including all

implied warranties of merchantability and �tness. In no event shall AT&T

be liable for any special, indirect or consequential damages or any damages

whatsoever resulting from loss of use, data or pro�ts, whether in an action of

contract, negligence or other tortious action, arising out of or in connection

with the use or performance of this software.

i



Standard ML of New Jersey
Version 0.93

Andrew Appel David MacQueen

Lal George John Reppy

1 Introduction

This document describes the latest release of the StandardML of New Jersey (SML/NJ) system.

We are eager to receive your bug reports, comments, and constructive criticism. Any error mes-

sage beginning with \Compiler bug" de�nitely indicates a bug in the compiler and should be re-

ported. Please use an appropriate variation on the bug reporting form in the �le doc/bugs/bug.form

and send comments and bug reports to macqueen@research.att.com.

1.1 Acknowledgements

William Aitken rewrote the pattern-match compiler.

Bruce F. Duba helped improve the pattern-match compiler, the CPS constant-folding phase,

the in-line expansion phase, the spill phase, and numerous other parts of the compiler. He also

helped to design the call with current continuation mechanism.

Adam T. Dingle implemented the Emacs mode for the debugger.

Doug Currie and Soren Christiansen ported the system to Macintosh.

Pierre Cregut wrote the �fth-generation module system (introducing higher-order functors)

and the sixth-generation module system.

Damien Doligez began the implementation of the fourth-generation module system.

Scott Draves did most of the HP Precision port.

Emden Gansner co-wrote the eXene window system (with John Reppy), worked on a separate

compilation system, and contributed to and helped organized the software library.

Georges Gonthier devised new algorithms for the fourth-generation module system.

Yngvi Guttesen wrote the code generator and runtime system for the Intel 386 under MS-

Windows.

Ivan Hajadi wrote the original Macintosh port.

Trevor Jim helped design the CPS representation, and implemented the match compiler and the

closure-conversion phase, the original library of 
oating-point functions, and the original assembly-

language implementation of external primitive functions.

Mark Leone rewrote Guttesen's i386 code generator and ported it to Unix for the PC.

Mark Lillibridge rewrote the type checker.

James S. Mattson implemented the �rst version of the lexical-analyzer generator used in

constructing the compiler.

Greg Morrisett did the �rst multiprocessor implementation of SML/NJ, and wrote a key part

1



of the fourth-generation module system.

James W. O'Toole implemented the NS32032 code generator.

Norman Ramsey implemented the �rst version of the MIPS code generator.

Gene Rollins developed the SourceGroup compilation system.

Nick Rothwell helped implement the separate compilation mechanism.

Zhong Shao implemented common-subexpression elimination, as well as the callee-save con-

vention that uses multiple-register continuations for faster procedure calls. He has also �xed many

bugs.

Konrad Slind helped design and implemented the quote-antiquote facility and the pretty-

printer.

David R. Tarditi improved the lexical-analyzer generator and implemented the parser generator

used to build parts of the front end; he helped in implementing the type-reconstruction algorithm

used by the debugger; he implemented the ML-to-C translator with Anurag Acharya and Peter

Lee, and wrote most of the fourth-generation module system.

Mads Tofte helped implement the separate compilation mechanism and helped develop higher

order modules.

Andrew P. Tolmach implemented the SML/NJ debugger. He also rewrote static environments

(symbol tables) in a more functional style.

Peter Weinberger implemented the �rst version of the copying garbage collector.

2



2 What's New in 0.93

Much has changed since version 0.75, though most old programs should still be compatible. This

is a very brief summary of important changes; for more details see the �le doc/bugs/NEWS in the

distribution.

New machines supported

SML/NJ now runs on the Intel 386 architecture (with Unix), the IBM PowerSystem (RS 6000), and

the Hewlett-Packard Precision Architecture. As before, it runs on the Sparc, MIPS (DECstation,

SGI, etc.), and Motorola 680x0 (Sun3, NeXT, Macintosh, etc.). See section 3.3.1 for more details.

SML/NJ 0.93 does not run under MS-DOS or Microsoft Windows, but we plan to port it to

Windows NT.

Separate compilation

The import keyword is gone. Separate compilation is now supported by the SourceGroup system,

which is located in tools/sourcegroup.

Higher-order functors

Functors can now take other functors as arguments, and return functors as results. For details, see

the User Guide (the �rst chapter of the SML/NJ Reference Manual).

Bug �xes

Many bugs have been �xed. Others have been introduced, and most of these have been �xed too. For

details, see doc/bugs/masterbugs for a complete history and doc/bugs/openbugs for a summary

of the bugs that remain to be �xed.

Base environment documentation

The SML/NJ reference manual contains descriptions of the structures and bindings built into the

sml executable (the SML/NJ base (pervasive) environment). A summary of the base environment

is listed in Table 1.

Documentation for the System structure, which provides the interface to the compiler and

operating system, is also available in the reference manual, and is summarized in Table 2.

Program Library

A library documented with manual pages is also provided. A summary of the library is listed in

Table 3 These modules are not pre-loaded into the sml executable, but must be loaded by use or

through SourceGroup.

3



Array updateable constant-time indexable sequences

Bits bitwise logical operations on integers

Bool Boolean type and operations upon it

ByteArray compact arrays of bytes

callcc, throw call with current continuation

General general-purpose predeclared identi�ers

Integer �xed-precision integers and operations upon them

IO Input/Output structure

List operations on lists

Quote/Antiquote object language embedding

Real 
oating-point numbers and operations thereupon

RealArray compact arrays of real numbers

Ref operations on references

String operations on character strings

Vector immutable, constant-time indexable sequences

Table 1: The SML/NJ base environment

Ast externalized abstract syntax trees used in the compiler

Symbol support for symbols used in ASTs

Env manipulation of environments as �rst class objects

Code utilities over code strings

Compile various phases of the compiler

PrettyPrint prettyprinting utilities

Print control of output produced by the compiler

Control various optimization and runtime 
ags

Tags tags used for runtime objects

Timer interface to operating system timer

Stats record of internal compiler statistics

Unsafe various unsafe primitives

Signals interface to UNIX signals

Directory interface to UNIX �les and directories

exn name function returning a string for an exeception

version string containing the version number

architecture name of the architecture

runtimeStamp stamp associated with the runtime system

interactive boolean that is true in an interactive session

system to execute a command shell

argv string list of arguments supplied to sml

environ string list containing the user UNIX environment

Table 2: The SML/NJ System structure

4



ArrayQSort in-place sorting of arrays

Array2 two-dimensional arrays.

ARRAY SORT signature for in-place sorting of arrays

BinaryDict binary tree dictionary functor

BinarySet binary tree set functor

CharSet sets of characters

CType character classi�cation and conversion functions

DICT signature for applicative dictionaries

DynamicArray dynamic array functor

Fifo applicative queue

Finalizer object �nalization functor

Format create formatted strings

HashString computing hash keys on strings

HashTable hash table functor

IntMap applicative integer map

IntSet applicative integer set

Iterate general purpose iteration

LibBase base de�nitions for the SML/NJ library.

ListFormat formatting and scanning of lists

ListMergeSort applicative list sorting using merge sort

ListUtil list utility functions

LIST SORT generic interface for list sorting modules.

Makestring convert primitive types to their string representation.

Name unique strings

ORD KEY signature for ordered keys

ORD SET signature for applicative sets on ordered types

Pathname support for pathname decomposition and search path lists.

PolyHashTable polymorphic hash tables

Queue imperative queue

Random simple random number generator

SplayDict splay tree dictionary functor

SplaySet splay tree set functor

SplayTree splay tree data structure

StringCvt convert strings into primitive values.

StringUtil string operations

TimeLimit limit the amount of time spent evaluating a function application.

UnixEnv manage name-value environments

UnixPath support for Unix search path lists.

Table 3: The SML/NJ Library

5



Debugger

The SML debugger can be used with this release. See /tool/debug/debug.ps for information.

Vectors

Patterns and expressions have been extended to include vector patterns and expres-

sions. #[pat1,..patn] represents a vector pattern assuming pat1,..patn are patterns, and

#[exp1,..expn] represents an vector expression assuming exp1,..expn are expressions.

Memory usage

The compiler is now fully \safe for space" in the sense described in Chapter 12 of Compiling with

Continuations. Thus, it is now possible, in principle, to predict memory usage patterns just by

reading the source code.

Internal changes

There have been many internal changes since release 0.75. Summaries of these may be found in

doc/bugs/NEWS and doc/bugs/LOGSUMMARY.

CML and eXene

The Concurrent ML system, allowing multithreaded concurrent programming in an extension of

Standard ML with synchronous communication channels, is available in a new release compatible

with SML/NJ version 0.93.

eXene, an elegant concurrent interface to the X Window System, is also available. The eXene

system is built on top of Concurrent ML.

CML and eXene are available for anonymous ftp on the same servers as SML/NJ. Fetch the �les

CML-0.9.8.tar.Z and eXene-0.4.tar.Z.

6



3 Installation

3.1 Getting this release

The primary means of distributing the compiler is via anonymous ftp from hosts princeton.edu and

research.att.com. For those who do not have internet access directly or indirectory, distribution

by tape is possible as a last resort. The connect info and distribution directory is given by the

following table:

Host Net Address Directory

princeton.edu 128.112.128.1 /pub/ml

research.att.com 192.20.225.2 /dist/ml

To obtain the compiler by internet ftp, connect to one of the two hosts, use the login id \anonymous"

with your email address as password, and go to the distribution directory. There you will �nd the

following �les:

README Summary of release information

93.release-notes.ps The postscript for this document

93.release-notes.txt This document in ascii form

93.src.tar.Z The src directory containing source code

93.doc.tar.Z The doc directory containing documentation

93.tools.tar.Z The tools directory containing various tools

smlnj-lib.0.1.tar.Z The Standard ML of New Jersey Library

93.contrib.tar.Z unsupported contributed software

93.mo.m68.tar.Z The MC680x0 object �les

93.mo.sparc.tar.Z The SPARC object �les

93.mo.mipsl.tar.Z MIPS little-endian object �les (for DEC machines)

93.mo.mipsb.tar.Z MIPS big-endian (for MIPS, SGI and Sony machines)

93.mo.hppa.tar.Z HP Precision Architecture object �les

93.mo.i386.tar.Z Intel i386 object �les

93.mo.rs6000.tar.Z IBM RiscSystem 6000 (PowerSystem) object �les

93.mac.tar.Z MacOS �les

CML-0.9.8.tar.Z Concurrent ML

eXene-0.4.tar.Z eXene - an interface to X11

You will need to transfer the �les 93.src.tar.Z and 93.mo.arch.tar.Z in order to build a version

for the architecture arch. You will probably also want to retrieve the documentation, tools and

library �les. Here is a sample ftp dialog:

7



% ftp princeton.edu

Name: anonymous

Password: login@machine

ftp> binary

ftp> cd pub/ml

ftp> get README

ftp> get 93.src.tar.Z

ftp> get 93.tools.tar.Z

ftp> get smlnj-lib.0.1.tar.Z

ftp> get 93.doc.tar.Z

ftp> get 93.mo.m68.tar.Z

ftp> get 93.mo.rs6000.tar.Z

ftp> close

ftp> quit

NOTE: ftp must be put into binary mode before transferring the �les.

After the �les are transferred they should be uncompressed and unbundled (you will probably

want to do this in a new directory). For example:

zcat 93.src.tar.Z | tar -xf -

unpacks the src directory tree, which occupies about 2.5 megabytes of disk space. The minimum

required src tree can be extracted using the following command:

zcat 93.src.tar.Z | tar -xf - src/boot src/runtime src/makeml

3.2 Structure of the release

Each �le 93.�le.tar.Z in the distribution produces a directory tree with the root directory named

�le. The mo.arch directories contain the precompiled ML object �les for building the system for the

architecture arch.

The src directory tree contains the source code of the compiler and run-time system, as well as

the makeml script, which is used for building the system (see Section 3.3).

The tools directory contains several software tools for SML, which are also written in SML. At

the moment, this consists of the following:

tools/info rudimentary tool for querying the sml environment.

tools/lexgen lexical analizer generator.

tools/mlyacc LALR(1) parser generator.

tools/mltwig code generator generator based on dynamic tree pattern matching.

tools/sourcegroup system for supporting incremental recompilation of SML programs.

tools/debug time travel based debugger.

tools/prof display pro�le data - similar to UNIX prof.

8



The smlnj-lib-0.1 directory contains the Standard ML of New Jersey Library; see

smlnj-lib-0.1/README, and also Table 3 of this document. The library contains source code for

several ML structures and functions that may be loaded into the system, and their documentation.

The doc directory contains various pieces of documentation in subdirectories:

doc/batch description of the batch compiler.

doc/bugs contains the form for reporting bugs and a history of bug reports and �xes.

doc/man contains some UNIX manual pages.

doc/manual contains the parts of the Standard ML of New Jersey Reference Manual.

doc/release-notes contains this document

doc/papers contains copies of several papers and technical reports relating to SML/NJ.

doc/examples contains a number of small example programs.

Documentation for the tools and libraries can be found in those directories.

3.3 Installing the system

The compiler can be con�gured to generate native code for the following processors: MIPS (little

and big endian), Motorola 68000, SPARC, HP Precision, IBM PowerSystem, Intel 386/486 (alas,

only with Unix). The runtime system can also be con�gured for a variety of Unix-like operating

systems including SunOS, 4.3BSD, MACH, ULTRIX, RISC/os, MORE, HPUX, AIX, and AUX.

3.3.1 Makeml

The �le src/makeml is a tool for building the system from source and ML-object (`.mo') �les. At the

very least, the arguments to makeml must specify the hardware architecture and operating system.

For example:

makeml -mips riscos

when executed in the src directory, would build the interactive compiler for a MIPS processor

running RISC/os. Makeml assumes that the mo �les are in a directory that is at the same level as

the src directory.

The compiler for the HP Precision Architecture is in beta-release, but is likely to be adequate

for classroom use.

Table 4 gives some useful computer/opsys combinations for arguments to makeml. More detailed

options can be found in the makeml manpage (also included in the appendix).

Note,

VAX: While the VAX code generator has been maintained internally, due to the lack of access to

a machine, we have been unable to build or test it. If anyone is interested in getting this to

run, we would be glad to provide assistance and answer questions. Note: If there is not much

interest in this, it is very likely that the VAX code generator will be dropped in future releases.

9



Processor Vendor Options Comments

Vax DEC -vax bsd (bsd includes Ultrix)

-vax mach

680x0 Sun -m68 sunos

-m68 mach

680x0 HP -m68 hpux

-m68 hpux8 HPUX 8.0 or newer

-m68 more

680x0 Apple -m68 aux AUX 3.0

see Section 3.3.2 MacOS 7.0

680x0 NeXT -next 2.0 NeXTStep 2.0

-next 3.0 NeXTStep 3.0

RS 6000 IBM -rs6000 aix AIX 3.2 or newer

MIPS DEC -decstation ultrix little-endian R3000

-decstation mach little-endian R3000

MIPS MIPS -mips riscos

-mips mach

MIPS SGI -sgi irix IRIX 4.x

-sgi irix3 old IRIX (3.x)

MIPS Sony -mips news

SPARC Sun -sun4 sunos

-sun4 mach

HPPA HP -hppa hpux8 beta release

386/486 Intel -i386 mach

-i386 bsd BSD386

386 Sequent -sequent dynix3

Table 4: Makeml machine and operating system options

MIPS R4000: There is a bug in the MIPS R4000 processor - namely a branch at the end of a page

causes the system to crash. At present we cannot guarantee against this condition, though the

next release should address this problem. Unfortunately, this condition occurs quite frequently.

HPPA: The Hewlett Packard HPPA port is in a beta release mode, but should be adequate for

classroom use. We would appreciate any help in �nding small examples that expose bugs in

this implementation. The default mode on this machine is -noshare. It is impossible to build

SML/NJ in share or -pervshare mode on this machine (see Section 3.3.3).

3.3.2 Machintosh OS

This section describes how to build SML/NJ on the Apple Machintosh.

You must be running MacOS System 7, use 32 bit addressing, and have at least 16Mbytes of

memory in your Mac to build SML/NJ. The Mac must also have an FPU and the processor must

be a M68020, M68030, or M68040.

You should have the SML/NJ distribution with:

10



� all the �les from 93.src.tar.Z installed in directory src: ;

� 93.mo.m68.tar.Z �les should be located in the directory src:mo:

There are some Mac speci�c �les in the src: and src:runtime: directories; all of the �les in

the src:runtime:mac: directory are Mac speci�c.

The Mac speci�c �les in src: are:

� src:SMLeNJ.p

� src:SMLeNJ.p.rsrc

Then to build SML/NJ for the Mac:

1. launch ThinkC (5.0.4 or later) with the SMLeNJ.p project. Choose Build Application from

the Project menu. Save the application in the src: directory with an appropriate name. Quit

ThinkC.

2. Verify that the application's preferred size is at least 12M bytes, and that at least 12M bytes

are free in the Mac. (You can �nd the application's preferred size using Get Info in the File

menu of the Finder. You can determine how much memory is available using About This

Macintosh. in the Apple menu.)

3. Launch the newly built application; you will be presented with a dialog box expecting a

command line, type: "-r 3 IntM68" and <return>. The mo �les will be loaded.

4. You may now save the SML image as a separate �le to be imported later, or you may save

it into the newly built application. To save it into the application, in this example named

SMLeNJ93, type:

if exportML("SMLeNJ93") then print(``Whoopee!\n'')

else print(``\n'');

To save the image into its own �le, use a di�erent �lename.

If you have already built a Mac image into a separate �le, step 3 above may be replaced by:

� Launch the newly built application; you will be presented with a dialog box expecting a

command line, type: "-i < filename >" and < return >. The image �le will be loaded.

Relaunching the newly built application will automatically load the image exported into the

application.

You may also force such an application to accept a command line by holding down the <option>

key while the application is being launched. At this point you may continue with step 3 above.

Developers: It is also possible to run with the ThinkC Debugger. In step 1 above, select Use

Debugger, and use Run instead of Build Application. You will be presented with a command line

dialog box. Proceed as above (step 3) or use the other command line options.

For further documentation on the machintosh see the directory mac.

11



3.3.3 Sharable Text Segment

By default, sml is built with a sharable, read-only text segment containing the runtime system

(compiled from C code) and the compiler (compiled from ML code). However, to allow exportFn to

create executable �les not containing the compiler, it is necessary to make a special version of sml

that contains the compiler in the data segment. This can be done with the makeml options

-noshare -o sml-noshare

where the -o option a�ects only the naming of the newly-built executable. In addition, using

-pervshare it is possible to build an SML executable with just the base environment loaded into

the text segment.

3.3.4 Managing Memory Use

ML provides automatic storage management through a garbage-collected heap. Since the heap is

used intensively, choice of heap size can have a signi�cant impact on performance. The compiler

determines an e�cient heap size automatically on startup, resizes the heap up or down as the amount

of live data changes, and complains if it runs out of memory (the interactive system can be booted

in approximately 8 megabytes).

The -m k option to makeml sets the target heap size (\softmax") to k kilobytes. The default is

12288k (12 Mbytes). On a 16-megabyte machine, -m 8192 might be appropriate; on a 32-megabyte

single-user workstation, -m 20000 might do. In general, set it to the amount of physical memory

you think should be available to the ML program.

The softmax is very loose; SML will tend to be generous with memory for programs until they

hit the softmax; after that it will be more parsimonious. The point is that the larger the heap size,

the smaller the garbage collection time overhead. But large-memory programs can still use much

more than the softmax (indeed, they may use as much as the operating system is willing to give

them).

The softmax can also be set dynamically at runtime by assigning to the variable Sys-

tem.Control.Runtime.softmax (which is counted in bytes, not kilobytes).

3.3.5 Batch Compiler

The SML/NJ batch compiler provides some (unsafe) cross compilation and bootstrapping capabil-

ities. The Batch Compiler manual, doc/batchcomp.ps, describes these; but they are not recom-

mended for casual users. Furthermore, this batch compiler will become obsolete immediately: it will

not be used in any version after 0.93.

3.3.6 Other options

Options also exist for building a batch compiler, a version of the compiler with the debugger loaded,

cross compilers, etc. The manpage for makeml should be consulted for further details of options that

are available.

12



If you have trouble installing the system, please send us a request for help, including the version

of the compiler (check the de�nition of the version variable in src/boot/perv.sml if in doubt),

hardware con�guration (machine type and memory size), operating system, and an input/output

script showing the problem. Use the �le doc/bugs/bug.form as a format for your message.

The following pages contain a man page for the makeml command.

13



MAKEML(TOOL) MAKEML(TOOL)MAKEML(TOOL) MAKEML(TOOL)

NAME

makeml | build the Standard ML of New Jersey system

SYNOPSIS

makeml options

DESCRIPTION

Makeml is a tool for building the Standard ML of New Jersey system (SML/NJ) from source

and ML-object (`.mo') �les. SML/NJruns on a number of machine architectures (MC680x0,

Mips, SPARC, RS/6000, HPPA, and i386/i486) and under a number of di�erent operating

systems (SunOS, 4.3bsd, Mach, IRIX, Ultrix, AIX, ...). There are also several di�erent

con�gurations of the system that can be built. Makeml provides a reasonable interface to

these various options.

OPTIONS

The following options are used to specify the machine and operating system con�guration.

These are the only ones necessary for the basic installation.

-sun3 (sunos j mach)

Build the system for the Sun 3.

-sun4 (sunos j mach)

Build the system for sparc machines, including the Sparcstation 10.

(-rs6000 j -rs6k) aix

Build the version for the IBM RS/6000 workstations. Note: this requires AIX

version 3.2.

-decstation (bsd j ultrix j mach)

Build the version for the DEC mips processor boxes. These are little-endian ma-

chines.

-mips (riscos j mach)

Build the version for the MipsCo machines (R3000, R6280). This is a big-endian

machine.

-sgi (irix j irix3)
Build the version for the Silicon Graphics machines; the irix3 option speci�es Irix

3.x, otherwise Irix 4.x is assumed. These are big-endian mips processors.

-hppa hpux8

Build the hppa version running under HPUX 8.0 (earlier versions of HPUX have not

been tested). By default makeml builds a noshare version (see -noshare option),

and the -pervshare option is ignored.

-m68 (aux j sunos j mach j hpux j hpux8 j more)

Build a version for a M680x0 family machine. The hpux8 option is for version 8.0

of the HPUX operating system; use hpux for earlier versions.

Last change: February 15, 1993 14



MAKEML(TOOL) MAKEML(TOOL)

-next(2 j 3)
Build the version for the NeXT machine (either NeXTstep 2.x or NeXTstep 3.x).

The NeXT machine uses a non-standard version of MACH as its operating system,

which isn't BSD compatible.

-i386 (mach j bsd j bsd386)
Build the system for i386/i486 machines. The bsd386 version has patches to �x

problems with signals in BSD/386.

-sequent dynix3

Build the system for the Sequent (i386).

-vax (bsd j mach)

Build the vax version. This version is \out of service" for version 0.93 of SML/NJ.

Use version 0.75 on the vax.

The following options are used to specify the kind of system to build.

-debug Build an image (with default name `smld') with the debugger loaded.

-i Make the `sml' image start out using the interpreter for faster compilation and

slower execution (for interactive system only; can switch back to native code once

in `sml' by `System.Control.interp := false').

-ionly Build an image (with default name `smli') that has only the interpreter. This

gives fast compilation and saves space by eliminating the code generator from the

executable, but results in slower execution.

-batch Build the batch compiler (with default name `smlc') instead of an interactive system.

-target machine

Build a batch cross compiler for machine. Valid machine names are: m68, sparc,

mipsl,mipsb, vax, and i386. Note that for the Mips architecture you must specify

the endianess. This option implies the -batch option.

-o imag

Use image as the name of the system image. The default image name is `sml' for

interactive systems, `smld' for the debugger version, `smli' for the interpreter only

system and `smlc' for the batch compiler.

-noshare

Do not link the `.mo' �les into an `a.out' format object �le and include it in the

runtime executable.

-pervshare

Link only a minimal set of `.mo' �les into the object. This is not applicable to the

HPPA.

-gcc Use the GNU C compiler to compile the run-time system. This will improve the

garbage collector performance on some machines (e.g., Sun3). Note: this only

works with GCC 1.xx.

Last change: February 15, 1993 15



MAKEML(TOOL) MAKEML(TOOL)

The following options may be used to tune garbage collection and paging performance.

-h heapsize

Set the initial heap size to heapsize kilo-bytes.

-m softlimit

Set the soft limit on the heap size to softlimit kilo-bytes.

-r ratio Set the ratio of the heap size to live data to ratio, which must be an integer value

no less than 3.

The following options are for building and testing new versions of the system; they

are not necessary for normal installation.

-run Build the run-time kernel (`runtime/run'), but don't build a system.

-noclean

Don't remove the existing `.o' �les in the runtime directory.

-norun

Don't re-compile the runtime kernel. This implies the -noclean option.

-mo path

Use path as the directory containing the `.mo' �les.

-runtime path

Use path] as the source directory for the runtime code.

-g Compile the runtime with the -g command line option.

-D def When compiling the runtime code add \-D def" as a command line option.

-debug0

Build a version with the debugger internals, but not the user-level code.

USAGE

For the standard con�guration, the only options required are the machine type and operating

system. For example

makeml -sun4 sunos

builds the SPARC version of the interactive system to run on SunOS systems. Another

example is

makeml -sun4 sunos -target mipsl

which builds a sparc to mipsl cross compiler.

ENVIRONMENT

Last change: February 15, 1993 16



MAKEML(TOOL) MAKEML(TOOL)

GCC

Speci�es the path of gcc. Set this if your path doesn't contain gcc and you are using the

`-gcc' option.

FILES

src/makeml the makeml shell script.

SEE ALSO

makeml(1), linkdata(1), sml(1)

Last change: February 15, 1993 17


