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Abstract

The Standard ML of New Jersey compiler has been

under development for �ve years now. We have

developed a robust and complete environment for

Standard ML that supports the implementation of

large software systems and generates e�cient code.

The compiler has also served as a laboratory for de-

veloping novel implementation techniques for a so-

phisticated type and module system, continuation

based code generation, e�cient pattern matching,

and concurrent programming features.

1 Introduction

Standard ML of New Jersey is a compiler and

programming environment for the Standard ML

language[26] that has been continuously developed

since early 1986. Our initial goal was to produce

a working ML front end and interpreter for pro-

gramming language research, but the scope of the

project has expanded considerably. We believe that

Standard ML may be the best general-purpose pro-

gramming language yet developed; to demonstrate

this, we must provide high-quality, robust, and e�-

cient tools for software engineering.

Along the way we have learned many useful

things about the design and implementation of

\modern" programming languages. There were

some unexpected interactions between the mod-

ule system, type system, code generator, debugger,

garbage collector, runtime data format, and hard-

ware; and some things were much easier than ex-

pected. We wrote an early description of the com-

piler in the spring of 1987[7], but almost every com-

ponent of the compiler has since been redesigned

and reimplemented at least once, so it is worthwhile

to provide an updated overview of the system and

our implementation experience.

Our compiler is structured in a rather conven-

tional way: the input stream is broken into tokens

by a lexical analyzer, parsed according to a context-

free grammar, semantically analyzed into an an-

notated abstract syntax tree, type-checked, and
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translated into a lower-level intermediate language.

This is the \front end" of the compiler. Then

the intermediate language|Continuation-Passing

Style|is \optimized," closures are introduced to

implement lexical scoping, registers are allocated,

target-machine instructions are generated, and (on

RISC machines) instructions are scheduled to avoid

pipeline delays; these together constitute the \back

end."

2 Parsing

Early in the development of the compiler we used

a hand-written lexical analyzer and a recursive-

descent parser. In both of these components the

code for semantic analysis was intermixed with

the parsing code. This made error recovery dif-

�cult, and it was di�cult to understand the syn-

tax or semantics individually. We now have ex-

cellent tools[8, 32] for the automatic generation of

lexical analyzers and error-correcting parsers. Syn-

tactic error recovery is handled automatically by

the parser generator, and semantic actions are only

evaluated on correct (or corrected) parses. This has

greatly improved both the quality of the error mes-

sages and the robustness of the compiler on incor-

rect inputs. We remark that it would have been

helpful if the de�nition of Standard ML[26] had in-

cluded an LR(1) grammar for the language.

There are two places in the ML grammar that

appear not to be context free. One is the treat-

ment of data constructors: according to the def-

inition, constructor names are in a di�erent lexi-

cal class than variable names, even though the dis-

tinction depends on the semantic analysis of pre-

vious datatype de�nitions. However, by putting

constructors and variables into the same class of

lexical tokens, and the same name space, parsing

can be done correctly and the di�erence resolved in

semantic analysis.

The other context-dependent aspect of syntax is

the parsing of infix identi�ers. ML allows the pro-

grammer to specify any identi�er as in�x, with an

operator precedence ranging from 0 to 9. Our solu-

tion to this problem is to completely ignore operator

precedence in writing our LALR(1) grammar; the
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expression a+b�c is parsed into the list [a;+; b; �; c]

and the semantic analysis routines include a simple

operator precedence parser (35 lines of ML).

Each production of our grammar is annotated by

a semantic action, roughly in the style made pop-

ular by YACC[16]. Our semantic actions are writ-

ten like a denotational semantics or attribute gram-

mar, where each fragment is a function that takes

inherited attributes as parameters and returns syn-

thesized attributes as results. Within the actions

there are occasional side-e�ects; e.g. when the type-

checker performs uni�cation by the modi�cation of

ref-cells.

A complete parse yields a function p parameter-

ized by a static environment e (of identi�ers de�ned

in previous compilation units, etc.). No side-e�ects

occur until p is applied to e, at which point e is

distributed by further function calls to many levels

of the parse tree. In essence, before p is applied to

e it is a tree of closures (one pointing to the other)

that is isomorphic to the concrete parse tree of the

program. Yet we have not had to introduce a myr-

iad of data constructors to describe concrete parse

trees!

Delaying the semantic actions is useful to the

error-correcting parser. If an error in the parse oc-

curs, the parser might want to correct it at a point

10 tokens previous; this means discarding the last

few semantic actions. Since the actions have had no

side-e�ects, it is easy to discard them. Then, when

a complete correct parse is constructed, its seman-

tic value can be applied to the environment e and

all the side-e�ects will go o� in the right order.

Finally, the treatment of mutually-recursive de�-

nitions is easier with delayed semantic actions; the

newly-de�ned identi�ers can be entered into the

environment before the right-hand-sides are pro-

cessed.

There is one disadvantage to this arrangement.

It turns out that the closure representation of the

concrete parse tree is much larger than the anno-

tated parse tree that results from performing the

semantic actions. Thus, if we had used a more con-

ventional style in which the actions are performed

as the input is parsed, the compiler would use less

memory.

Our parser-generator provides, for each nonter-

minal in the input, the line number (and position

within the line) of the beginning and end of the pro-

gram fragment corresponding to that nonterminal.

These are used to add accurate locality information

to error messages. Furthermore, these line num-

bers are sprinkled into the annotated abstract syn-

tax tree so that the type checker, match compiler,

and debugger can also give good diagnostics.

3 Semantic analysis

A static environment maps each variable of the pro-

gram to a binding containing its type and its runtime

access information. The type is used for compile-

time type checking, and is not used at runtime. The

access information is (typically) the name of a low-

level �-calculus variable that will be manipulated by

the code generator. Static environments also map

other kinds of identi�ers|data constructors, type

constructors, structure names, etc.|to other kinds

of bindings.

Our initial implementation treated environments

imperatively: the operations on environments were

to add a new binding to the global environment;

to \mark" (save) the state of the environment; to

revert back to a previous mark; and, for imple-

mentation of the module system, to encapsulate

into a special table everything added since a par-

ticular mark. We did this even though we knew

better|denotational semantics or attribute gram-

mars would have us treat environments as pure val-

ues, to be combined to yield larger environments|

because we thought that imperative environments

would be faster.

We have recently changed to a pure functional

style of environments, in which the operations are

to create an environment with a single binding, and

to layer one environment on top of another nonde-

structively, yielding a new environment. The im-

plementation of this abstract data type has side

e�ects, as su�ciently large environment-values are

represented as hash tables, etc. We made this

change to accommodate the new debugger, which

must allow the user to be in several environments

simultaneously; and to allow the implementation of

\make" programs, which need explicit control over

the static environments of the programs being com-

piled. Though we were willing to su�er a perfor-

mance degradation in exchange for this 
exibility,

we found \pure" environments to be just as fast as

imperative ones.

This illustrates a more general principle that we

have noticed in ML program development. Many

parts of the compiler that we initially implemented

in an imperative style have been rewritten piece-

meal in a cleaner functional style. This is one

of the advantages of ML: programs (and program-

mers) can migrate gradually to \functional" pro-

gramming.

Type checking

The main type-checking algorithm has changed rel-

atively little since our earlier description[7]. The

representations of types, type constructors, and
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type variables have been cleaned up in various ways,

but the basic algorithm for type checking is still

based on a straightforward uni�cation algorithm.

The most complex part of the type-checking al-

gorithm deals with weak polymorphism, a restricted

form of polymorphism required to handle mutable

values (references and arrays), exception transmis-

sion, and communication (in extensions like Con-

current ML[28]). Standard ML of New Jersey im-

plements a generalization of the imperative type

variables described in the De�nition[26, 34]. In our

scheme, imperative type variables are replaced by

weak type variables that have an associated degree

of weakness: a nonnegative integer. A type vari-

able must be weak if it is involved in the type of

an expression denoting a reference, and its degree

of weakness roughly measures the number of func-

tion applications that must take place before the

reference value is actually created. A weakness de-

gree of zero is disallowed at top level, which insures

that top-level reference values (i.e. those existing

within values in the top level environment) have

monomorphic types. The type-checking algorithm

uses an abstract type occ to keep track of the \ap-

plicative context" of expression occurrences, which

is approximately the balance of function abstrac-

tions over function applications surrounding the ex-

pression, and the occ value at a variable occurrence

determines the weakness degree of generic type vari-

ables introduced by that occurrence. The occ value

at a let binding is also used to determine which type

variables can be generalized.

The weak typing scheme is fairly subtle and has

been prone to bugs, so it is important that it be for-

malized and proven sound (as the Tofte scheme has

been [Tofte-thesis]). There are several people cur-

rently working on formalizing the treatment used in

the compiler[17, 38].

The weak polymorphismscheme currently used in

Standard ML of New Jersey is not regarded as the �-

nal word on polymorphismand references. It shares

with the imperative type variable scheme the fault

that weak polymorphism propagates more widely

than necessary. Even purely internal and tempo-

rary uses of references in a function de�nition will

often \poison" the function, giving it a weak type.

An example is the de�nition

fun f x = !(ref x)

in which f has the type 1�! 1�, but ought to have

the strong polymorphic type � ! �. This inessen-

tial weak polymorphism is particularly annoying

when it interferes with the matching of a signature

speci�cation merely because of the use of an imper-

ative style within a function's de�nition. Such im-

plementation choices should be invisible in the type.

Research continues on this problem[17, 22, 38], but

there is no satisfactory solution yet.

The interface between the type checker and the

parser is quite simple in most respects. There is

only one entry point to the type checker, a function

that is called to type-check each value declaration at

top level and within a structure. However, the inter-

face between type checking and the parser is com-

plicated by the problem of determining the scope or

binding point of explicit type variables that appear

in a program. The rather subtle scoping rules for

these type variables[26, Section 4.6][25, Section 4.4]

force the parser to pass sets of type variables both

upward and downward (as both synthesized and in-

herited attributes of phrases). Once determined,

the set of explicit type variables to be bound at a

de�nition is stored in the abstract syntax represen-

tation of the de�nition to make it available to the

typechecker.

4 Modules

The implementation of modules in SML of NJ has

evolved through three di�erent designs. The main

innovation of the second version factored signatures

into a symbol table shared among all instances,

and a small instantiation environment for each

instance[23]. Experience with this version revealed

problems that led to the third implementation de-

veloped in collaboration with Georges Gonthier and

Damien Doligez.

Representations

At the heart of the module system are the internal

representations of signatures, structures, and func-

tors. Based on these representations, the following

principal procedures must be implemented:

1. signature creation|static evaluation of signa-

ture expressions;

2. structure creation|static evaluation of struc-

ture expressions;

3. signature matching between a signature and a

structure, creating an instance of the signature,

and a view of the structure;

4. de�nition of functors|abstraction of the func-

tor body expression with respect to the formal

parameter;

5. functor application|instantiation of the for-

mal parameter by matching against the ac-

tual parameter, followed by instantiation of the

functor body.
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It is clear that instantiation of structure tem-

plates (i.e. signatures and functor bodies) is a criti-

cal process in the module system. It is also a process

prone to consume excessive space and time if imple-

mented naively. Our implementation has achieved

reasonable e�ciency by separating the volatile part

of a template, that which changes with each in-

stance, from the stable part that is common to all

instances and whose representation may therefore

be shared by all instances. The volatile compo-

nents are stored in an instantiation environment

and they are referred to indirectly in the bindings

in the shared symbol table (or static environment)

using indices or paths into the instantiation envi-

ronment. The instantiation environment is repre-

sented as a pair of arrays, one for type constructor

components, the other for substructures.

The static representation of a structure is essen-

tially an environment (i.e., symbol table) contain-

ing bindings of types, variables, etc., and an iden-

tifying stamp[26, 33, 23]. In the second implemen-

tation a signature was represented as a \dummy"

instance that di�ers from an ordinary structure

in that its volatile components contain dummy or

bound stamps and it carries some additional infor-

mation specifying sharing constraints. The volatile

components with their bound stamps are replaced,

or instantiated, during signature matching by cor-

responding components from the structure being

matched. Similarly, a functor body is represented

as a structure with dummystamps that are replaced

by newly generated stamps when the functor is ap-

plied.

The problem with representing signatures (and

functor bodies) as dummy structures with bound

stamps is the need to do alpha-conversion at var-

ious points to avoid confusing bound stamps. To

minimize this problem the previous implementation

insures that the sets of bound stamps for each signa-

ture and functor body are disjoint. But there is still

a problem with signatures and functors that are sep-

arately compiled and then imported into a new con-

text; here alpha-conversion of bound stamps is re-

quired to maintain the disjointness property. Man-

aging bound stamps was a source of complexity and

bugs in the module system.

The usual way of avoiding the complications of

bound variables is to replace them with an index-

ing scheme, as is done with deBruijn indices in the

lambda calculus[13]. Since in the symbol table part

we already used indices into instantiation arrays

to refer to volatile components, we can avoid the

bound stamps by using this relativized symbol ta-

ble alone to represent signatures.

To drop the instantiation environment part of the

signature representation, leaving only the symbol

table part, we need to revise the details of how envi-

ronments are represented. Formerly a substructure

speci�cation would be represented in the symbol ta-

ble by a binding like

A 7! INDstr i

indicating that A is the ith substructure, and the

rest of the speci�cation of A (in the form of a dummy

structure) would be found in the ith slot of the in-

stantiation environment. Since we are dropping the

dummy instantiation environment we must have all

the information specifying A in the binding. Thus

the new implementation uses

A 7! FORMALstrbfpos = i; spec = sig
A
g

as the binding of A. This makes the substructure

signature speci�cation available immediately in the

symbol table without having to access it indirectly

through an instantiation environment.

Another improvement in the representation of

signatures (and their instantiations) has to do with

the scope of instantiation environments. In the old

implementation each substructure had its own in-

stantiation environment. But one substructure may

contain relative references to a component of an-

other substructure, as in the following example

signature S1 =

sig

structure A : sig type t end

structure B : sig val x : A.t end

end

Here the type of B.x refers to the �rst type com-

ponent t of A. This would be represented from the

standpoint of B as a relative path [parent, �rst sub-

structure, �rst type constructor]. To accommodate

these cross-structure references when each struc-

ture has a local instantiation environment, the �rst

structure slot in the instantiation environment con-

tains a pointer to the parent signature or structure.

De�ning and maintaining these parent pointers was

another source of complexity, since it made the rep-

resentation highly cyclical.

The new representation avoids this problem by

having a single instantiation environment shared by

the top level signature and all its embedded signa-

tures. An embedded signature is one that is writ-

ten \in-line" like the signatures of A and B in the

example above. In the above example, the new rep-

resentation of A.t within B is [�rst type constructor]

since A.t will occupy the �rst type constructor slot

in the shared instantiation environment.

A nonembedded signature is one that is de�ned

at top level and referred to by name. The signa-

ture S0 in the following example is a nonembedded

signature.
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signature S0 = sig type t end

signature S1 =

sig

structure A : S0

structure B : sig val x : A.t end

end

In this case the type A.t of x uses the indi-

rect reference [�rst substructure, �rst type construc-

tor] meaning the �rst type constructor in the local

instantiation environment of A, which is the �rst

structure component in the instantiation environ-

ment of S1. S1 and B share a common instantiation

environment because B is embedded in S1. But S0,

the signature of A, is nonembedded because it was

de�ned externally to S1. It therefore can contain

no references to other components of S1 and so it

is given its own private instantiation environment

having the con�guration appropriate to S0.

Signature Matching

The goal of the representation of signatures is to

make it easy to instantiate them via signature

matching. A signature is a template for struc-

tures, and a structure can be obtained from the sig-

nature by adding an appropriate instantiation en-

vironment (and recursively instantiating any sub-

structures with nonembedded signature speci�ca-

tions).

The signature matching process involves the fol-

lowing steps: (1) Create an empty instantiation en-

vironment of a size speci�ed in the signature repre-

sentation. (2) For each component of the signature,

in the order they were speci�ed, check that there is a

corresponding component in the structure and that

this component satis�es the speci�cation. When

this check succeeds it may result in an instance of a

volatile component (e.g. a type constructor) that is

entered into the new instantiation environment. (3)

Finally, having created the instantiation structure,

any sharing constraints in the signature are veri�ed

by \inspection."

Functors

The key idea is to process a functor de�nition to

isolate volatile components of the result (those de-

riving from the parameter and those arising from

generative declarations in the body) in an instanti-

ation environment. Then the body's symbol table is

relativized to this instantiation environment by re-

placing direct references by indirect paths. As in the

case of signature matching, this minimizes the e�ort

required to create an instance of the body when the

functor is applied, because the symbol table infor-

mation is inherited unchanged by the instance.

De�ning a functor is done in three steps: (1) The

formal parameter signature is instantiated to create

a dummy parameter structure. (2) This dummy

structure is bound to the formal parameter name

in the current environment and the resulting envi-

ronment is used to parse and type-check the func-

tor body expression. If a result signature is spec-

i�ed the functor body is matched against it. (3)

The resulting body structure is scanned for volatile

components, identi�ed by having stamps belonging

to the dummy parameter or generated within the

body, and references to these volatile components

are replaced by indirect positional references into

an instantiation environment.

The instantiation of the parameter signature

must produce a structure that is free modulo the

sharing constraints contained in the signature. In

other words, it must satisfy the explicit sharing

constraints in the signature and all implicit shar-

ing constraints implied by them, but there must

by no extraneous sharing. The algorithm used for

this instantiation process is mainly due to George

Gonthier and is vaguely related to linear uni�cation

algorithms. This instantiation process is also used

to create structures declared as abstractions using

the abstraction declaration of Standard ML of New

Jersey (a nonstandard extension of the language).

Given this processing of the functor de�nition,

functor application is now a fairly straightforward

process. The actual parameter is matched with the

formal parameter signature yielding an instantia-

tion environment relative to the parameter signa-

ture. This is combined with a new instantiation

environment generated for the functor body using

freshly generated stamps in new volatile compo-

nents.

5 Translation to �-language

During the semantic analysis phase, all static pro-

gram errors are detected; the result is an abstract

parse tree annotated with type information. This

is then translated into a strict lambda calculus aug-

mented with data constructors, numeric and string

constants, n-tuples, mutually-recursive functions;

and various primitive operators for arithmetic, ma-

nipulation of refs, numeric comparisons, etc. The

translation into �-language is the phase of our com-

piler that has changed least over the years.

Though the � language has data constructors, it

does not have pattern-matches. Instead, there is a

very simple case statement that determines which

constructor has been applied at top level in a given

value. The pattern-matches of ML must be trans-

lated into discriminations on individual construc-
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tors. This is done as described in our previous

paper[7], though Bruce Duba has revised the de-

tails of the algorithm.

The dynamic semantics of structures and functors

are represented using the same lambda-language op-

erators as for the records and functions of the core

language. This means that the code generator and

runtime system don't need to know anything about

the module system, which is a great convenience.

Also in this phase we handle equality tests. ML

allows any hereditarily nonabstract, nonfunctional

values of the same type to be tested for equality;

even if the values have polymorphic types. In most

cases, however, the types can be determined at com-

pile time. For equality on atomic types (like in-

teger and real), we substitute an e�cient, type-

speci�c primitive operator for the generic equal-

ity function. When constructed datatypes are

tested for equality, we automatically construct a

set of mutually-recursive functions for the speci�c

instance of the datatype; these are compiled into

the code for the user's program. Only when the

type is truly polymorphic|not known at compile

time|is the general polymorphic equality function

invoked. This function interprets the tags of ob-

jects at runtime to recursively compare bit-patterns

without knowing the full types of the objects it is

testing for equality.

Standard ML's polymorphic equality seriously

complicates the compiler. In the front end, there are

special \equality type variables" to indicate poly-

morphic types that are required to admit equality,

and signatures have an eqtype keyword to denote

exported types that admit equality. The eqtype

property must be propagated among all types and

structures that share in a functor de�nition. We es-

timate that about 7% of the code in the front end

of the compiler is there to implement polymorphic

equality.

The e�ect on the back end and runtime system is

just as pernicious. Because ML is a statically-typed

language, it should not be necessary to have type

tags and descriptors on every runtime object (as

Lisp does). The only reasons to have these tags are

for the garbage collector (so it can understand how

to traverse pointers and records) and for the poly-

morphic equality function. But it's possible to give

the garbage collector a map of the type system[1],

so that it can �gure out the types of runtime objects

without tags and descriptors. Yet the polymorphic

equality function also uses these tags, so even with

a sophisticated garbage collector they can't be done

away with. (One alternative is to pass an equality-

test function along with every value of an equality

type, but this is also quite costly[36].)

Finally, the treatment of equality types in Stan-

dard ML is irregular and incomplete[15]. The

De�nition categorizes type constructors as either

\equality" or \nonequality" type constructors; but

a more re�ned classi�cation would more accurately

specify the e�ects of the ref operator. Some types

that structurally support equality are classi�ed as

nonequality types by the De�nition.

6 Conversion to CPS

The �-language is converted into continuation-

passing style (CPS) before optimization and code

generation. CPS is used because it has clean seman-

tic properties (like �-calculus), but it also matches

the execution model of a von Neumann register ma-

chine: variables of the CPS correspond closely to

registers on the machine, which leads to very e�-

cient code generaton[18].

In the �-language (with side-e�ecting operators)

we must specify a call-by-value (strict) order of eval-

uation to really pin down the meaning of the pro-

gram; this means that we can't simply do arbitrary

�-reductions (etc.) to partially evaluate and opti-

mize the program. In the conversion to CPS, all

order-of-evaluation information is encoded in the

chaining of function calls, and it doesn't matter

whether we consider the CPS to be strict or non-

strict. Thus, �-reductions and other optimizations

become much easier to specify and implement.

The CPS notation[30] and our representation of

it[5] are described elsewhere, as is a detailed descrip-

tion of optimization techniques and runtime repre-

sentations for CPS[4]. We will just summarize the

important points here.

In continuation-passing style, each function can

have several arguments (in contrast to ML, in which

functions formally have only one parameter). Each

of the actual parameters to a function must be

atomic|a constant or a variable. The operands

of an arithmetic operator must also be atomic; the

result of the operation is bound to a newly-de�ned

variable. There is no provision for binding the re-

sult of a function call to a variable; \functions never

return."

To use CPS for compiling a programming

language|in which functions are usually allowed

to return results, and expressions can have nontriv-

ial sub-expressions|it is necessary to use continu-

ations. Instead of saying that a function call f(x)

returns a value a, we can make a function k(a) that

expresses what \the rest of the program" would do

with the result a, and then call fcps(x; k). Then

fcps, instead of returning, will call k with its result

a.

After CPS-conversion, a source-language func-
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tion call looks just like a source-language function

return|they both look like calls in the CPS. This

means it is easy to �-reduce the call without reduc-

ing the return, or vice versa; this kind of 
exibility

is very useful in reasoning about (and optimizing)

tail-recursion, etc.

In a strict �-calculus, �-reduction is problemat-

ical. If the actual parameters to a function have

side e�ects, or do not terminate, then they can-

not be safely substituted for the formal parameters

throughout the body of the function. Any actual

parameter expression could contain a call to an un-

known (at compile time) function, and in this case

it is impossible to tell whether it does have a side

e�ect. But in CPS, the actual parameters to a func-

tion are always atomic expressions, which have no

side e�ects and always terminate; so it's safe and

easy to perform �-reduction and other kinds of sub-

stitutions.

In our optimizer, we take great advantage of a

unique property of ML: records, n-tuples, construc-

tors, etc., are immutable. That is, except for ref

cells and arrays (which are identi�able at compile

time through the type system), once a record is cre-

ated it cannot be modi�ed. This means that a fetch

from a record will always yield the same result, even

if the compiler arranges for it to be performed ear-

lier or later than speci�ed in the program. This al-

lows much greater freedom in the partial evaluation

of fetches (e.g. from pattern-matches), in constant-

folding, in instruction scheduling, and common

subexpression elimination than most compilers are

permitted. (One would think that in a pure func-

tional language like Haskell this immutable record

property would be similarly useful, but such lan-

guages are usually lazy so that fetches from a lazy

cell will yield di�erent results the �rst and second

times.)

A similar property of ML is that immutable

records are not distinguishable by address. That

is, if two records contain the same values, they are

\the same;" the expressions

[(x,y), (x,y)]

let val a = (x,y) in [a,a] end

are indistinguishable in any context. This is not

the case in most programming languages, where the

di�erent pairs (x,y) in the �rst list would have dif-

ferent addresses and could be distinguished by a

pointer-equality test.

This means that the compiler is free to perform

common sub-expression elimination on record ex-

pressions (i.e. convert the �rst expression above to

the second); the garbage collector is free to make

several copies of a record (possibly useful for concur-

rent collection), or to merge several copies into one

(a kind of \delayed hash-consing"); a distributed

implementation is free to keep separate copies of

a record on di�erent machines, etc. We have not

really exploited most of these opportunities yet,

however.

7 Closure conversion

The conversion of �-calculus to CPS makes the con-

trol 
ow of the program much more explicit, which

is useful when performing optimizations. The next

phase of our compiler, closure conversion, makes

explicit the access to nonlocal variables (using lex-

ical scope). In ML (and Scheme, Smalltalk, and

other languages), function de�nitions may be nested

inside each other; and an inner function can have

free variables that are bound in an outer function.

Therefore, the representation of a function-value (at

runtime)must include some way to access the values

of these free variables. The closure data structure

allows a function to be represented by a pointer to

a record containing

1. The address of the machine-code entry-point

for the body of the function.

2. The values of free variables of the function.

The code pointer (item 1) must be kept in a stan-

dardized location in all closures; for when a function

f is passed as an argument to another function g,

then g must be able to extract the address of f in

order to jump to f . But it's not necessary to keep

the free variables (item 2) in any standard order;

instead, g will simply pass f 's closure-pointer as an

extra argument to f , which will know how to ex-

tract its own free variables.

This mechanism is quite old[19] and reasonably

e�cient. However, the introduction of closures is

usually performed as part of machine-code genera-

tion; we have made it a separate phase that rewrites

the CPS representation of the program to include

closure records. Thus, the output of the closure-

conversion phase is a CPS expression in which it is

guaranteed that no function has free variables; this

expression has explicit record-creation operators to

build closures, and explicit fetch operators to ex-

tract code-pointers and free variables from them.

Since closure-introduction is not bundled to-

gether with other aspects of code generation, it is

easier to introduce sophisticated closure techniques

without breaking the rest of the compiler. In gen-

eral, we have found that structuring our compiler

with so many phases|each with a clean and well-

de�ned interface|has proven very successful in al-

lowing work to proceed independently on di�erent

parts of the compiler.
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Initially, we considered variations on two di�er-

ent closure representations, which we call 
at and

linked. A 
at closure for a function f is a record

containing the code-pointer for f and the values of

each of f 's free variables. A linked closure for f con-

tains the code pointer, the value of each free vari-

able bound by the enclosing function, and a pointer

to the enclosing function's closure. Variables free in

the enclosing function can be found by traversing

the linked list of closures starting from f ; this is

just like the method of access links used in imple-

menting static scope in Pascal.

It would seem that linked closures are cheaper

to build (because a single pointer to the enclos-

ing scope can be used instead of all the free vari-

ables from that scope) but costlier to access (get-

ting a free variable requires traversing a linked list).

In fact, we investigated many di�erent represen-

tational tricks on the spectrum between 
at and

linked closures[6], including tricks where we use the

same closure record for several di�erent functions

with several di�erent code-pointers[5, 4].

In a \traditional" compiler, these tricks make a

signi�cant di�erence. But in the CPS representa-

tion, it appears that the pattern of functions and

variable access narrows the e�ective di�erence be-

tween these techniques, so that closure representa-

tion is not usually too important.

There are two aspects of closures that are impor-

tant, however. We have recently shown that us-

ing linked or merged closures can cause a compiled

program to use much more memory[4]. For exam-

ple, a program compiled with 
at closures might

use O(N ) memory (i.e. simultaneous live data) on

an input of size N , and the same program compiled

with linked closures might use O(N2). Though this

may happen rarely, we believe it is unacceptable

(especially since the programmer will have no way

to understand what is going on). We are therefore

re-examining our closure representations to ensure

\safety" of memory usage; this essentially means

sticking to 
at closures.

We have also introduced the notion of \callee-

save registers."[9, 4] Normally, when an \unknown"

function (e.g. one from another compilation unit)

is called in a compiler using CPS, all the registers

(variables) that will be needed \after the call" are

free variables of the continuation. As such, they

are stored into the continuation closure, and fetched

back after the continuation is invoked. In a conven-

tional compiler, the caller of a function might sim-

ilarly save registers into the stack frame, and fetch

them back after the call.

But some conventional compilers also have

\callee-save" registers. It is the responsibility of

each function to leave these registers undisturbed;

if they are needed during execution of the function,

they must be saved and restored by the callee.

We can represent callee-save variables in the orig-

inal CPS language, without changing the code-

generation interface. We will represent a contin-

uation not as one argument but as N + 1 argu-

ments k0; k1; k2; : : : ; kN . Then, when the continua-

tion k0 is invoked with \return-value" a, the vari-

ables k1; : : : ; kN will also be passed as arguments to

the continuation.

Since our code generator keeps all CPS vari-

ables in registers|including function parameters|

the variables k1; : : : ; kN are, in e�ect, callee-save

registers. We have found that N = 3 is su�cient

to obtain a signi�cant (7%) improvement in perfor-

mance.

8 Final code generation

The operators of the CPS notation|especially af-

ter closure-conversion|are similar to the instruc-

tions of a simple register/memory von Neumann

machine. The recent trend towards RISC machines

with large register sets makes CPS-based code gen-

eration very attractive. It is a relatively simple mat-

ter to translate the closure-converted CPS into sim-

ple abstract-machine instructions; these are then

translated into native machine code for the MIPS,

Sparc, VAX, or MC68020. The latter two machines

are not RISC machines, and to do a really good

job in code generation for them we would have to

add a �nal peephole-optimization or instruction-

selection phase. On the RISC machines, we have

a �nal instruction-scheduling phase to minimize de-

lays from run-time pipeline interlocks.

One interesting aspect of the �nal abstract-

machine code generation is the register allocation.

After closure-conversion and before code generation

we have a spill phase that rewrites the CPS expres-

sion to limit the number of free variables of any

subexpression to less than the number of registers

on the target machine[5, 4]. It turns out that very

few functions require any such rewriting, especially

on modern machines with 32 registers; �ve spills in

40,000 lines of code is typical.

Because the free variables of any expression are

guaranteed to �t in registers, register allocation is

a very simple matter: when each variable is bound,

only K other variables are live (i.e. free in the con-

tinuation of the operation that binds the variable),

where K < N , the number of registers. Thus, any

of the remaining N �K registers can be chosen to

hold the new value.

The only place that a register-register move is

ever required is at a procedure call, when the ac-
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tual parameters must be shu�ed into the locations

required for the formal parameters. For those func-

tions whose call sites are all evident to the compiler

(i.e. those functions that are not passed as param-

eters or stored into data structures), we can choose

the register-bindings for formal parameters to elim-

inate anymoves in at least one of the calls[18]. By

clever choices of which register to use for the bind-

ings described in the last paragraph, we can almost

eliminate any remaining register-register moves that

might be required for the other procedure calls.

9 The runtime system

The absence of function returns means that a run-

time stack is not formally required to execute pro-

grams. Although most CPS-based compilers in-

troduce a runtime stack anyway[30, 18], we do

not. Instead, we keep all closures (i.e. activa-

tion records) on the garbage-collected heap. This

not only simpli�es some aspects of our runtime

system, but makes the use of �rst-class continua-

tions (call-with-current-continuation) very ef-

�cient.

Because all closures are put on the heap, how-

ever, SML/NJ allocates garbage-collected storage

at a furious rate: one 32-bit word of storage for

every �ve instructions executed, approximately[4].

This means that the most important requirement

for the runtime system is that it support fast stor-

age allocation and fast garbage collection.

To make heap allocations cheap, we use a gen-

erational copying garbage collector[2] and we keep

the format of our runtime data simple[3]. Copying

collection is attractive because the collector touches

only the live data, and not the garbage; we can ar-

range that almost all of a particular region of mem-

ory is garbage, then just a few operations can re-

claim a very large amount of storage. Another ad-

vantage of copying collection is that the free area

(in which to allocate new records) is a contiguous

block of memory; it is easier to grab the �rst few

words of this block than it would be to manage a

\free list" of di�erent-sized records.

Indeed, we keep pointers to the beginning and

end of the free area in registers for fast access. Al-

location and initialization of an n-word record re-

quires n store instructions at di�erent o�sets from

the free-space register, followed by the addition of a

constant (the size of the new record) to the reg-

ister. We perform allocations in-line (without a

procedure call), and we use just one test for free

storage exhaustion to cover all the allocations in a

procedure (remember that in CPS, procedures don't

have internal loops). Furthermore, we can perform

this test in one single-cycle instruction by clever

use of the over
ow interrupt to initiate garbage

collection[4].

Overall, garbage-collection overhead in Standard

ML of New Jersey (with memory size equal to 5

times the amount of live data) is usually between 5

and 20%; this means that for each word of memory

allocated, the amortized cost of collecting it is about

1/4 to 1 instruction. Thus, copying a data structure

(reading it and writing a new copy) takes only two

or three times as long as traversing it (examining all

the �elds). This encourages a more side-e�ect-free,

functional style of programming.

In addition to the garbage collector, the runtime

system provides an interface to operating system

calls[3]. Higher-level services like bu�ered I/O are

provided by a \standard library" written in Stan-

dard ML. There are also many C-language func-

tions in the runtime system callable from ML; but

we have not yet provided an easy interface for users

to link their own foreign-language functions to be

called from ML. Since the overhead for calling a C

function is rather high, we have implemented half a

dozen frequently-used functions (e.g. allocation of

an array or a string) in assembly language.

There is also an ML interface to operating system

signals[27] that uses the call/cc mechanism to bun-

dle up the current state of execution into a \contin-

uation;" to be resumed immediately, later (perhaps

from another signal handler), never, or more than

once.

A snapshot of the executing ML system may be

written to a �le; executing that �le will resume ex-

ecution just at the point where the snapshot was

taken. It is also possible to remove the compiler

from this snapshot, to build more compact stand-

alone applications.

Our reliance on operating system signals for

garbage collection, our direct connection to system

calls, our snapshot-building utility, and other useful

features of the runtime system have turned out to

be quite operating-system dependent. This makes

it hard to port the runtime system from one ma-

chine (and operating system) to another. Perhaps

as di�erent versions of Unix become more standard-

ized (e.g. with System V/R4) these problems will

largely disappear.

10 Performance

We had several goals for Standard ML of New Jer-

sey:

� A complete and robust implementation of

Standard ML.
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Poly/ML 1.91 SML/NJ 0.69

Compile Run Compile Run

Time Time Time Time

Life 10 128 13 27

Lex 41 95 66 20

Yacc abort | 531 10

Knuth-B 19 116 30 25

Simple 44 461 124 60

VLIW abort | 839 45

Figure 1: Comparison of Poly/ML and SML/NJ

This table shows compile time and run

time in seconds of elapsed time for each

benchmark on a SparcStation 2 with 64

megabytes of memory. SML/NJ was run

with the optimization settings normally

used for compiling the compiler itself,

and with all the input in one �le to

enable cross-module optimization (which

makes things about 9% faster). Note that

the callee-save representation is not yet

implemented for the Sparc and might

save an additional 7% runtime. On two

of the benchmarks (as shown), the

Poly/ML compiler aborted after several

minutes; we believe this is caused by

complicated pattern-matches tripping

over an exponential-time algorithm in the

Poly/ML front end.

� A compiler written in Standard ML itself, to

serve as a test of ML for programming-in-the-

large.

� A reasonably e�cient compiler with no \bot-

tlenecks."

� Very fast compiled code, competitive with

\conventional" programming languages.

� A testbed for new ideas.

We believe we have achieved these goals. While our

compiler has a few minor bugs (as does any large

software system), they don't substantially detract

from the usability of the system. We have found

that ML is an excellent language for writing real

programs. Our compiler's front end is quite care-

fully designed to be fast, but the back end needs

(and is receiving) further work to make it compile

faster. The quality of our compiled code is ex-

tremely good, as �gures 1 and 2 show.

We tested Poly/ML[24] and SML/NJ on six real

programs[4], whose average size was about 2000

nonblank noncomment lines of source. Figure 1

shows the results on a SparcStation 2 (the only

Sun 3/280 DEC 5000/200

16 Mbytes 16 Mbytes

Run G.C. Run G.C.

CAML V2-6.1 14.5 14.8 6.2 6.2

CAML Light 0.2 28.3 6.5

SML/NJ 0.65 9.6 0.3 1.7 0.1

SML/NJ 0.65 x 8.5 0.3 1.4 0.1

LeLisp 15.23 4.1 1.4

SunOS 3.5, cc -O 4.35

gcc 1.37.1, gcc -O 4.22

Ultrix 4.0, cc -O2 0.90

Figure 2: Comparison of several di�erent compilers

Xavier Leroy translated Gerard Huet's

Knuth-Bendix program into several

di�erent languages, and ran them on two

di�erent machines[21]. This table shows

non-gc run time and gc time in seconds

for each version of the program. Since

the program uses higher-order functions,

Leroy had to do manual lambda-lifting to

write the program in Lisp and C, and in

some places had to use explicit closures

(structures containing function-pointers).

CAML is a di�erent version of the ML

language (i.e. not Standard ML)

developed at INRIA[11]; CAML V2-6.1 is

a native-code compiler that shares the

LeLisp runtime system, and CAML

Light[20] is a compiler with a byte-code

interpreter written in C. SML/NJ x

refers to Standard ML of New Jersey with

all modules placed in \super-module" to

allow cross-module optimization.

modern platform on which they both run). In-

deed, Poly/ML compiles about 43% faster (when

it doesn't blow up); but SML/NJ programs run

�ve times faster than Poly/ML programs, on the

average (geometric mean). SML/NJ reportedly

uses about 1.5 times as much heap space for

execution[10]; and on a 68020-based platform (like

a Sun-3), SML/NJ may not do relatively as well

(since we don't generate really good code for that

machine). So on obsolete machines with tiny mem-

ories, Poly/ML may do almost as well as SML/NJ.

Figure 2 compares implementations of several

programming languages on a Knuth-Bendix bench-

mark. Standard ML of New Jersey does quite well,

especially on the RISC machine (the DECstation

5000 has a MIPS processor).
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11 Continuations

One of the more signi�cant language innovations

in Standard ML of New Jersey is typed �rst-class

continuations[14]. It turned out to be possible to

add a major new capability to the language merely

by introducing a new primitive type constructor and

two new primitive functions. The signature for �rst-

class continuations is:

type 'a cont

val callcc : ('a cont -> 'a) -> 'a

val throw : 'a cont -> 'a -> 'b

The type int cont is the type of a continua-

tion that is expecting an integer value. The

callcc function is similar to call-with-current-

continuation or call/cc in Scheme | it is the

primitive that captures continuation values. The

function throw coerces a continuation into a func-

tion that can be applied to invoke the continuation.

Since the invocation of a continuation does not re-

turn like a normal function call, the return type of

throw k is a generic type variable that will unify

with any type.

The runtime implementation of �rst-class contin-

uations was also quite easy and very e�cient, be-

cause of the use of continuation passing style in the

code generation, and the representation of continu-

ations as objects in the heap. Bundling up the cur-

rent continuation into a closure is just like what is

done on the call to an escaping function, and throw-

ing a value to a continuation is like a function call.

So continuations are as cheap as ordinary function

calls.

Continuations are not necessarily a good tool for

routine programming since they lend themselves

to tricky and contorted control constructs. How-

ever, continuations have an important \behind the

scenes" role to play in implementing useful tools

and abstractions. They are used in the implemen-

tation of the interactive ML system to construct a

barrier between user computation and the ML sys-

tem. This makes it possible to export an executable

image of a user function without including the ML

compiler. Another application of continuations is

Andrew Tolmach's replay debugger[35], where they

are used to save control states. This is the basis of

the time travel capabilities of the debugger.

It is well known that continuations are useful for

implementing coroutines and for simulating paral-

lel threads of control[37]. Using continuations in

conjunction with the signal handling mechanisms

implemented by John Reppy[27] (themselves ex-

pressed in terms of continuations), one can build

light-weight process libraries with preemptive pro-

cess scheduling entirely within Standard ML of New

Jersey. Two major concurrency systems have been

implemented at this point: Concurrent ML by John

Reppy[28] is based on CCS/CSP-style primitives

(synchronous communication on typed channels)

but introduces the novel idea of �rst-class events.

ML Threads is a system designed by Eric Cooper

and Greg Morrisett[12] that provides mutual exclu-

sion primitives for synchronization. A version of

ML Threads runs on shared-memory multiproces-

sors, where threads can be scheduled to run in par-

allel on separate physical processors. Both Concur-

rent ML and ML Threads are implemented as ordi-

nary ML modules, requiring no enhancements of the

language itself|except that ML Threads required

modi�cation of the runtime system to support mul-

tiprocessing.

12 Related projects

A number of very useful enhancements of the Stan-

dard ML of New Jersey system are being carried

out by other groups or individuals. One such

project is the SML-to-C translator done by David

Tarditi, Anurag Acharya, and Peter Lee at Carnegie

Mellon[31]. This provides a very portable basis for

running ML programs on a variety of hardware for

which we do not yet have native code generators,

with very respectable performance.

Mads Tofte and Nick Rothwell implemented the

�rst version of separate compilation for Standard

ML of New Jersey. Recently Gene Rollins at

Carnegie Mellon has developed a more sophisticated

and e�cient system called SourceGroups for man-

aging separate compilation. SourceGroups builds

on the primitive mechanisms provided by Tofte and

Rothwell but gains e�ciency by doing a global anal-

ysis of dependencies among a set of modules and

minimizing redundancy when loading or recompil-

ing the modules.

John Reppy and Emden Gansner have developed

a library for interacting with the X window system.

This system is based on Concurrent ML and pro-

vides a much higher-level of abstraction for writing

graphical interfaces than the conventional conven-

tional C-based libraries.

13 Future Plans

The development of Standard ML of New Jer-

sey and its environment is proceeding at an ac-

celerating pace. John Reppy is implementing a

new multi-generation, multi-arena garbage collector

that should signi�cantly improve space e�ciency.

Work is in progress to improve code generation and

signi�cantly speed up the back end. Exploratory
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work is being done on new features like type dy-

namic, extensible datatypes, and higher-order func-

tors.
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