

EXPORTML(BASE) EXPORTML(BASE)

NAME

exportML, exportFn | create executable ML �les

SYNOPSIS

signature IO
structure IO : IO
Opened in the initial environment of SML/NJ.

SIGNATURE

. . .

val exportML : string -> bool

val exportFn : string * (string list * string list -> unit)

-> unit

DESCRIPTION

exportML s

export the current executing image into �le s. Return false. When s is executed, exportML
returns true and execution continues exactly where it left o�, except that all �les have been
closed (and std_in, std_out, std_err have been re-opened in the new process). Access
to command-line arguments and Unix environment variables when running the saved image
may be accomplished by System.argv and System.environ.

exportFn (s; f)
Create an executable �le s that contains the function f and as little else as possible. When
s is executed, then f(argv ; environ) is executed, where argv is a list of operating-system-
provided arguments (starting with the name of the executable itself), and environ is the
operating-system-provided environment (a list of strings).

The compiler is not accessible in the exported �le; thus, use (and related functions) will fail
if called by f . This makes the exported �le several megabytes smaller, provided that exportFn

is run from within a \noshare" version of sml. In many installations this will be named
sml-noshare; see the installation guide (release-notes) or contact your system administrator
if you don't have an sml-noshare. An alternative is to export from a \pervshare" version
of sml that only incorporates the code for the base (aka pervasive) environment in the text
segment.

EXAMPLE

if exportML("saved")

then print "this is the saved image\n"

else print "this is the original process\n"

BASE-10 Last change: January 29, 1993

GENERAL(BASE) GENERAL(BASE)

NAME

General | general-purpose predeclared identi�ers

SYNOPSIS

signature GENERAL
structure General : GENERAL
Opened in the initial environment of SML/NJ.

SIGNATURE

exception Bind

exception Match

exception Interrupt (* never raised; see text *)

exception Fail of string

infix 3 o

val o : ('b -> 'c) * ('a -> 'b) -> ('a -> 'c)

infix before

val before : ('a * 'b) -> 'a

type 'a cont

val callcc : ('1a cont -> '1a) -> '1a

val throw : 'a cont -> 'a -> 'b

datatype 'a frag = QUOTE of string | ANTIQUOTE of 'a

type exn

type unit

infix 4 = <>

val = : ''a * ''a -> bool

val <> : ''a * ''a -> bool

DESCRIPTION

The General structure provides general purpose standard identi�ers. The in�x directives are in the
base environment but not the structure General or the signature GENERAL.

Bind

raised for nonexhaustive val bindings whose pattern fails to match

Match

raised for nonexhaustive case, fn, and fun matches that fail to match their argument.
(Exception handlers|that is, matches after the keyword handle|simply re-raise their ar-
gument if the match fails.)

Interrupt

never raised; it is provided for compatibility with The De�nition of Standard ML. Pressing
control-C raises a signal, not an exception, in SML/NJ; see section SIGNAL(SYS).

Fail

The top-level loop recognizes this exception and prints the message string.

o

the in�x function-composition operator.

before

This in�x operator evaluates both of its arguments and returns the �rst one; useful in
sequencing side e�ects. (\after" might have been a better name.)

Last change: January 29, 1993 BASE-11

GENERAL(BASE) GENERAL(BASE)

� cont

the type of continuations accepting �. See section callcc(BASE).

callcc

call with current continuation; see section callcc(BASE).

throw

throw to a continuation; see section callcc(BASE).

frag

a datatype used for the quote/antiquote mechanism. See section Quote(BASE).

exn

the type of all exception values.

unit

a type containing exactly one value, which is denoted ().

=

the polymorphic equality function.

<>

the polymorphic inequality function.

Many of these functions are described in The De�nition of Standard ML or in any textbook on
Standard ML.

SEE ALSO

Quote(BASE), callcc(BASE)

BASE-12 Last change: January 29, 1993

INTEGER(BASE) INTEGER(BASE)

NAME

Integer | �xed-precision integers and operations upon them

SYNOPSIS

signature INTEGER
structure Integer : INTEGER
Opened in the initial environment of SML/NJ.

SIGNATURE

in�x 7 * div mod quot rem

in�x 6 + -

in�x 4 > < >= <=

exception Sum and Diff and Prod and Neg and Quot and Abs

exception Div and Mod

exception Overflow

type int

val ~ : int -> int

val * : int * int -> int

val div : int * int -> int

val mod : int * int -> int

val quot : int * int -> int

val rem : int * int -> int

val + : int * int -> int

val - : int * int -> int

val > : int * int -> bool

val >= : int * int -> bool

val < : int * int -> bool

val <= : int * int -> bool

val min : int * int -> int

val max : int * int -> int

val abs : int -> int

val print : int -> unit

val makestring : int -> string

DESCRIPTION

The Integer structure provides �xed precision integers. In current implementations these are 31-bit
integers, ranging from �230 to 230 � 1.

int

the integer type.

Over
ow

raised by various arithmetic operators (+, -, *, div, ~, etc.) if the result is too large to be
representable.

Div

raised upon division by zero.

Mod

raised upon mod by zero. This exception is simply a renaming of the Div exception.

Sum, Di�, Prod, Neg, Quot, Abs

synonyms for Over
ow, for semi-compatibility with The De�nition of Standard ML.

~ i

the negation of i.

Last change: January 29, 1993 BASE-13

INTEGER(BASE) INTEGER(BASE)

i * j

the product of i and j.

i + j

the sum of i and j.

i - j

the di�erence of i and j.

i div j

the quotient of i and j, rounded toward negative in�nity.

i quot j

the quotient of i and j, rounded toward zero.

i mod j

a quantity k, such that 0 � k < j or j < k � 0, and j(i div j) + k = i.

i rem j

a quantity k, such that 0 � k < jjj and j(i quot j) + k = i.

i > j

i greater than j.

i >= j

i greater than or equal to j.

i < j

i less than j.

i <= j

i less than or equal to j.

min (i,j)

the minimum of i and j.

max (i,j)

the maximum of i and j.

abs i

the absolute value of i.

print i

print the decimal representation of i on the standard output. Overloaded; see INTRO(BASE).

makestring i

the ASCII decimal representation of i. Overloaded; see INTRO(BASE).

CAVEATS

The signature INTEGER should not be used to constrain the Integer structure because this will
prevent some operations from being coded inline (this is a bug).

BASE-14 Last change: January 29, 1993

IO(BASE) IO(BASE)

NAME

IO | Input/Output structure

SYNOPSIS

signature IO
structure IO : IO
Opened in the initial environment of SML/NJ.

SIGNATURE

type instream

type outstream

exception Io of string

val std_in : instream

val std_out : outstream

val std_err : outstream

val open_in : string -> instream

val open_out : string -> outstream

val open_append : string -> outstream

val open_string : string -> instream

val close_in : instream -> unit

val close_out : outstream -> unit

val output : outstream * string -> unit

val outputc : outstream -> string -> unit

val input : instream * int -> string

val inputc : instream -> int -> string

val input_line : instream -> string

val lookahead : instream -> string

val end_of_stream : instream -> bool

val can_input : instream -> int

val flush_out : outstream -> unit

val is_term_in : instream -> bool

val is_term_out : outstream -> bool

val set_term_in : instream * bool -> unit

val set_term_out : outstream * bool -> unit

val execute : string * string list -> instream * outstream

val execute_in_env : string * string list * string list

-> instream * outstream

val exportML : string -> bool

val exportFn : string * (string list * string list -> unit) -> unit

DESCRIPTION

The IO structure provides bu�ered input and output streams, and operations upon them.

instream

the type of input streams

outstream

the type of output streams

Io s

the Io exception with message s. s is a string with format \command "�lename": syscall

failed, message" where command is the ML IO function that failed, �lename is the name
under which the instream or outstream was opened, syscall is the low-level system call that
failed, and message is the operating system's explanation of the problem.

std in

the standard input stream

Last change: January 29, 1993 BASE-15

IO(BASE) IO(BASE)

std out

the standard output stream

std err

the standard error (output) stream

open in s

opens the �le named s for reading and returns an instream.

open out s

opens the �le named s for writing and returns an outstream.

open append s

opens the �le named s for appending (writing at the end) and returns an outstream.

open string s

make an instream whose contents are the string s.

close in f

close the instream f .

close out f

close the outstream f ,
ushing the output bu�er.

output (f; s)
write characters s to outstream f . The characters may not immediately appear to the
operating system because of internal bu�ering. Writing a newline character to an interactive
outstream
ushes the bu�er, however.

outputc f s

equivalent to output(f; s).

input (f; n)
read n characters from an input stream f . If fewer than n characters remain before end of
�le, return them. Otherwise block until either n characters are available or end of �le has
been reached. Raises Io if f has been closed.

inputc f n

Not equivalent to input(f; n)! If end of �le has been reached, return the empty string.
Otherwise block until at least one character is available. Then return a string with at least
one, and no more than n characters read from the stream; not necessarily all the available

characters. Note: inputc is both more e�cient, and has more useful semantics, than
input. Raises Io if f has been closed.

input line f

return all characters up through and including either the �rst newline or the end of stream,
whichever comes �rst. It blocks until either a newline or the end of stream is reached.

lookahead f

yield the next character from f without removing it from the readable input; or the empty
string if at end of �le. Blocks if no character available but not at end of �le.

end of stream f

true if at end of stream f .

can input f

the number of characters available to input from f without blocking.

BASE-16 Last change: January 29, 1993

IO(BASE) IO(BASE)

ush out f

ensure that all characters that have been output to f appear to the operating system.

is term in f

true i� f is an interactive stream, usually. This makes no di�erence to the bu�ered I/O
system, but is provided as a service to clients.

is term out f

true i� f is an interactive stream, usually. Interactive streams are
ushed at each newline.

set term in f

make f appear to be an interactive stream.

set term out f

make f appear to be an interactive stream.

execute (c; l)
return the pair (f; g); execute a Unix command c with arguments l its output piped to
instream f and its input piped from outstream g. The argument list l should not include
the command name.

execute in env (c; l; e)
like execute but with an environment argument e.

exportML s

see section exportML(BASE).

exportFn (s; f)
see section exportML(BASE).

use s

Compile and execute the ML declarations and expressions in the �le named s. For best
results, use use or use_stream only at top level, or at top level within a used �le.

use stream f

Compile and execute the ML declarations and expressions in the already-opened instream
f .

CAVEATS

The argument of the Io exception should be structured. But this would lose compatibility with the
De�nition.

SEE ALSO

SysIO(SYS), Format(LIB), ListFormat(LIB), Makestring(LIB), StringCvt(LIB)

Last change: January 29, 1993 BASE-17

LIST(BASE) LIST(BASE)

NAME

List | operations on lists

SYNOPSIS

signature LIST
structure List : LIST
Opened in the initial environment of SML/NJ.

SIGNATURE

infixr 5 :: @

datatype 'a list = :: of ('a * 'a list) | nil

exception Hd

exception Tl

exception Nth

exception NthTail

val hd : 'a list -> 'a

val tl : 'a list -> 'a list

val null : 'a list -> bool

val length : 'a list -> int

val @ : 'a list * 'a list -> 'a list

val rev : 'a list -> 'a list

val map : ('a -> 'b) -> 'a list -> 'b list

val fold : (('a * 'b) -> 'b) -> 'a list -> 'b -> 'b

val revfold : (('a * 'b) -> 'b) -> 'a list -> 'b -> 'b

val app : ('a -> 'b) -> 'a list -> unit

val revapp : ('a -> 'b) -> 'a list -> unit

val nth : 'a list * int -> 'a

val nthtail : 'a list * int -> 'a list

val exists : ('a -> bool) -> 'a list -> bool

DESCRIPTION

The List structure provides the list datatype and operations upon it.

a :: b

The list with head a and tail b.

nil

the empty list.

[a1; : : : ; an] an n-element list expression or list pattern, for n � 0.

Hd

raised by hd(nil).

Tl

raised by tl(nil).

Nth

raised by nth(l; k), where k � length(l).

NthTail

raised by nth(l; k), where k > length(l).

hd l

the head (�rst element) of l.

BASE-18 Last change: January 29, 1993

LIST(BASE) LIST(BASE)

tl l

the tail (all elements after the �rst) of l.

null l

true if l = nil.

length l

number of elements in l.

a @ b

the concatenation of lists a and b. Pronounced \append." Copies list a.

rev l

the reverse of list l.

map f l

the list of results obtained by applying f to each element of l.

fold f l z

Fold a binary operator f over list l, with \identity" z, associating from right to left. In
APL, this is called \reduce:" f(l0; f(l1; : : :f(ljlj�1 ; z) : : :)).

revfold f l z

Like fold, but associates from left to right; note that the list elements are used as left-hand
arguments to f , not right-hand: f(: : : f(f(l0 ; z); l1); : : : ; ljlj�1).

app f l

Apply f to each element of l, from beginning to end, discarding the results:
(f(l0); f(l1); : : : f(ljlj�1); ()).

revapp f l

Apply f to each element of l, from end to beginning, discarding the results:
(f(ljlj�1); f(ln�2); : : : f(l0); ()).

nth(l,n)

the nth element of l, counting from 0.

nthtail(l,n)

the result of dropping the �rst n elements of l: nthtail(l; 0) = l.

exists p l

true i� p(li) is true for some element li of l.

CAVEATS

These functions are ill-chosen, and their arguments are badly arranged in some cases.

SEE ALSO

ListFormat(LIB), ListMergeSort(LIB), ListUtil(LIB)

Last change: January 29, 1993 BASE-19

QUOTE(BASE) QUOTE(BASE)

NAME

Quote/Antiquote | object language embedding

SYNOPSIS

signature GENERAL
structure General : GENERAL
Opened in the initial environment of SML/NJ.

System.Control.quotation := true;

SIGNATURE

. . .

datatype 'a frag = QUOTE of string | ANTIQUOTE of 'a

DESCRIPTION

Standard ML is often used to implement another language L, e.g., the syntax of the HOL logic in
hol90 or the syntax of CCS for the Concurrency Workbench. Typically, one de�nes the abstract
syntax of L by a datatype declaration. Then useful functions over the datatype can be de�ned
(such as �nding the free variables of a formula when L is a logic). Soon afterwards, one concludes
that concrete syntax is easier for humans to read than abstract syntax, and so writes a parser and
prettyprinter for L.

In the situation just outlined, Standard ML is called the metalanguage, and L is called the object

language, or OL.1 The purpose of a quotation/antiquotation mechanism is to allow one to embed
expressions in the object language's concrete syntax inside of ML programs, and to mix the object
language expressions with ML expressions.

Quotation and Antiquotation The quote/antiquote mechanism is enabled by setting

System.Control.quotation : bool ref

to true. Then the backquote character ceases to be legal in symbolic identi�ers, and takes on a
special meaning.

A quotation is a special form of literal expression that represents the concrete syntax of an OL
phrase. The backquote character (`) is used to delimit quotations.

For a running example, suppose our OL is a simple propositional logic with propositions represented
as values of abstract type prop. We might wish to write propositional expressions such as A/\B/\C.

The most common approximation to quotation is strings. This is not pleasant at times, especially
when dealing with backslashes and newlines. Still, strings are bearable. Strings are not adequate,
however, for the following idea.

The ML-OL relationship invites a notion of antiquotation: the temporary abandonment of parsing
so that an ML value can be spliced into the middle of a quotation. Operations like this have cropped
up under various names in various places: antiquote is due to Milner; Quine had a version called
quasi-quotation in his 1940 book; Carnap used a notation much like it. It also closely resembles the
Lisp backquote facility.

Using backquote, we write

1Edinburgh/INRIA/Cambridge ML, the precursor to Standard ML, was originally a programming metalanguage for a

particular object language, the LCF logic.

BASE-20 Last change: January 29, 1993

QUOTE(BASE) QUOTE(BASE)

- val f = `A /\ B \/ C`;

val f : 'a frag = [QUOTE "A /\\ B /\\ C"] : 'a frag list

More commonly, we invoke an OL parser to parse, enforce precedence, etc. By naming the parser
something concise, such as %, we can use the syntax

- val % = my_proposition_parser;

val % : prop frag -> prop

- val p = %`A /\ B \/ C`;

val p = -: prop

An antiquote is written as a caret (^) followed by either an SML identi�er or a parenthesized SML
expression. Antiquotation can be used to conveniently express contexts, which are often used as a
descriptive tool for syntax. A context could be de�ned as a function taking a prop and directly
placing it at a location in a quotation.

- fun foo a = %`^a ==> A`;

val foo : prop -> prop

In this case, foo p would denote the same proposition as

%`(A /\ B \/ C) ==> A`

Antiquotations can have nested quotations (which may contain antiquotes of their own, etc.):

- let val K x y = x

val I x = x

in

%`A /\ ^(K (%`B`) (I (%`C`)))

\/ C`

end;

gives the same prop as that denoted by p. We note in passing that the power of the OL parser
is completely up to its author: for example, in the framework o�ered here, one could write an OL
\parser" for Scheme that parses program plus arguments, evaluates the program on the arguments,
and �nally prints the returned value.

Implementation of OL parsers A concrete syntax quotation is mapped by the SML compiler
into a frag list. Intuitively, a frag is a contiguous part of a quotation: `A /\ B` maps to
[QUOTE "A /\\ B"] while `^x /\ ^y` maps to

[QUOTE "",ANTIQUOTE x, QUOTE "/\\", ANTIQUOTE y, QUOTE ""]

In this approach, the value of a quotation has type ol frag list where ol is the type of object
language expressions; the type of the OL parser is ol frag list -> ol.

The OL parser (in our example, %) must handle these lists and insert the antiquoted ML values in
the right places.

Last change: January 29, 1993 BASE-21

QUOTE(BASE) QUOTE(BASE)

CAVEATS

Uses whatever QUOTE and ANTIQUOTE constructors happen to be in scope. This bug may be �xed
some day.

Often one wants to parse strati�ed languages, such as �rst order logic, or typed lambda calculus,
which requires a trick. Also, there is a bit of trickery when one wants to deal with ML-Yacc and
ML-Lex, especially when functorizing the parser.

SEE ALSO

PrettyPrint(SYS)

BASE-22 Last change: January 29, 1993

REAL(BASE) REAL(BASE)

NAME

Real |
oating-point numbers and operations thereupon

SYNOPSIS

signature REAL
structure Real : REAL
Opened in the initial environment of SML/NJ.

SIGNATURE

infix 7 * /

infix 6 + -

infix 4 > < >= <=

type real

exception Overflow and Sum and Diff and Prod and Floor and Exp

exception Sqrt and Ln

exception Div

val ~ : real -> real

val + : (real * real) -> real

val - : (real * real) -> real

val * : (real * real) -> real

val / : (real * real) -> real

val > : (real * real) -> bool

val < : (real * real) -> bool

val >= : (real * real) -> bool

val <= : (real * real) -> bool

val abs : real -> real

val real : int -> real

val floor : real -> int

val truncate : real -> int

val ceiling : real -> int

val sqrt : real -> real

val sin : real -> real

val cos : real -> real

val arctan : real -> real

val exp : real -> real

val ln : real -> real

val print : real -> unit

val makestring : real -> string

DESCRIPTION

The Real structure provides IEEE (on most machines) double-precision
oating point numbers.

real

the
oating-point type.

Over
ow

raised when the result of an operation has too large an exponent to be representable. Iden-
tical to the Integer.Over
ow exception.

Sum, Di�, Prod, Floor, Exp

synonyms for Over
ow, for (almost) compatibility with The De�nition of Standard ML.

Sqrt

raised by the sqrt function.

Ln

raised by the ln function.

Last change: January 29, 1993 BASE-23

REAL(BASE) REAL(BASE)

~ x

the negation of x.

x + y

the sum of x and y.

x - y

the di�erence of x and y.

x * y

the product of x and y.

x / y

the quotient of x and y.

x > y

x greater than y.

x >= y

x greater than or equal to y.

x < y

x less than y.

x <= y

x less than or equal to y.

abs x

the absolute value of x.

real i

the conversion of i into
oating point.

oor x

the highest integer not greater than x.

ceiling x

the lowest integer not less than x.

truncate x

x rounded towards zero.

sqrt x

the square root of x; raises Sqrt if x < 0.

ln x

the natural logarithm of x; raises Ln if x � 0.

print x

print a decimal representation of x on the standard output. In future versions we intend
to ensure that the printed representation is su�cient to exactly recover the value of x, but
this not true of version 0.93.

makestring x

an ASCII decimal representation of x.

BASE-24 Last change: January 29, 1993

REAL(BASE) REAL(BASE)

CAVEATS

The signature REAL should not be used to constrain the Real structure because this will prevent
some operations from being coded inline (this is a bug).

Last change: January 29, 1993 BASE-25

REALARRAY(BASE) REALARRAY(BASE)

NAME

RealArray | compact arrays of real numbers

SYNOPSIS

structure RealArray

SIGNATURE

eqtype realarray

exception RealSubscript

exception Size

val length: realarray -> int

val array: int * real -> realarray

val sub: realarray * int -> real

val update: realarray * int * real -> unit

DESCRIPTION

RealArrays are just like Arrays of Real, except that they are represented more compactly. In current
implementations of the compiler, access to a realarray is not faster than access to a real array;
in other words, space is saved but not time. In future implementations time may also be saved.

SEE ALSO

Array(BASE), Real(BASE)

BASE-26 Last change: January 29, 1993

REF(BASE) REF(BASE)

NAME

Ref | operations on references

SYNOPSIS

signature REF
structure Ref : REF
Opened in the initial environment of SML/NJ.

SIGNATURE

infix 3 :=

(* special datatype 'a ref = ref of 'a *)

con ref : '1a -> '1a ref

val ! : 'a ref -> 'a

val := : 'a ref * 'a -> unit

val inc : int ref -> unit

val dec : int ref -> unit

DESCRIPTION

The Ref structure provides reference cells and operations upon them. Warning: the data constructor
ref is \special." Matching this structure to a signature will yield a ref constructor that does not
create updateable reference cells. Thus the signature REF does not contain the datatype ref.

� ref

the type of references to values of type �.

ref x

a reference cell initialized to contain the value x. Note that the ref constructor has a weak
polymorphic type when used in expressions.

! r

the contents of reference r.

r := y

update r to contain y.

inc r

increment the integer-ref r.

dec r

decrement the integer-ref r.

SEE ALSO

Discussion of weak polymorphism in the GUIDE chapter.

Last change: January 29, 1993 BASE-27

STRING(BASE) STRING(BASE)

NAME

String | operations on character strings

SYNOPSIS

signature STRING
structure String : STRING
Opened in the initial environment of SML/NJ.

SIGNATURE

type string

exception Substring

val size : string -> int

val length : string -> int

val substring : string * int * int -> string

val explode : string -> string list

val implode : string list -> string

val <= : string * string -> bool

val < : string * string -> bool

val >= : string * string -> bool

val > : string * string -> bool

val ^ : string * string -> string

exception Chr

val chr : int -> string

exception Ord

val ord : string -> int

val ordof : string * int -> int

val print : string -> unit

DESCRIPTION

The String structure contains the character string type and operations upon it.

string

the character string type. Each string is a sequence of zero or more characters; each character
has a code ranging from 0 to 255.

size s

the number of characters in s.

length s

same as size(s).

Substring

raised by substring

substring(s,i,n)

yields an n-character substring of string s starting after the �rst i characters. substring(s; 0; 1)
is the �rst character in s; substring(s; 0; size s) = s. Raises Substring if n < 0, i < 0, or
i + n > size(s).

explode s

a list of single-character strings which, when concatenated, would yield s.

implode l

the concatenation of all the elements of l. The elements of l need not be single-character
strings.

BASE-28 Last change: January 29, 1993

STRING(BASE) STRING(BASE)

s <= t

Lexicographic less-than-or-equal.

s < t

Lexicographic less-than.

s >= t

Lexicographic greater-or-equal.

s < t

Lexicographic greater-than.

s ^ t

The concatenation of s and t. Note that implode is more e�cient for the concatenation of
more than two strings.

Chr

raised by chr.

chr i

A single-character string containing the character whose code is i. Raises Chr if i < 0 or
i > 255.

Ord

raised by ord and ordof.

ord s

The code of the �rst character in s. Raises Ord if s is the empty string.

ordof (s; i)
The code of the ith character of s, counting from 0. ordof(s; 0) is equivalent to ord(s).
Raises Ord if i < 0 or i � size(s).

print s

write s to the standard output.

CAVEATS

The signature STRING should not be used to constrain the String structure because this will prevent
some operations from being coded inline (this is a bug).

SEE ALSO

CharSet(LIB), Ctype(LIB), Format(LIB), HashString(LIB), Makestring(LIB),
Name(LIB), StringCvt(LIB), StringUtil(LIB)

Last change: January 29, 1993 BASE-29

VECTOR(BASE) VECTOR(BASE)

NAME

Vector | immutable, constant-time indexable sequences

SYNOPSIS

signature VECTOR
structure Vector : VECTOR

#[exp1; exp2; : : : ; expn]
#[pat1; pat2; : : : ; patn]

SIGNATURE

eqtype 'a vector

exception Size

exception Subscript

val vector: 'a list -> 'a vector

val tabulate: int * (int -> 'a) -> 'a vector

val sub: 'a vector * int -> 'a

val length: 'a vector -> int

DESCRIPTION

The Vector structure provides one-dimensional immutable indexable arrays.

vector l

a zero-based, indexable vector whose elements are those of l, with the same length and in
the same order.

tabulate (n; f)
a vector whose ith element is f(i). Raises Size if n < 0 or n � 225.

sub (v; i)
the ith element of v. Raises Subscript if i < 0 or i � length(v). If sub is declared infix, it
is conventional to use precedence 9.

length v

the number of elements in v.

Vectors a and b are equal if and only if length(a) = length(b) and ai = bi for 0 � i � length(a).

In Standard ML of New Jersey, the expression #[exp0; exp1; : : : ; expn�1] where n � 0 creates a
vector of length n whose elements are the values of the corresponding subexpressions. Vectors may
be pattern-matched by vector-patterns of the form #[pat0; pat1; : : : ; patn�1].

Vector expressions and vector patterns are more compact and e�cient than lists, and are comparable
in cost to records.

SEE ALSO

Array(BASE)

CAVEATS

The signature VECTOR should not be used to constrain the Vector structure because this will
prevent some operations from being coded inline (this is a bug).

BASE-30 Last change: January 29, 1993

