
Chapter 6 - Numerical, Boolean
This sections deals with the functions designed to work on atoms (integers), including integer, 
boolean and bitwise functions.

Numerical Operations

      One thing worth noting about the n-ary numerical functions is that they can be called with 
zero or one argument.
      If an n-ary function is called with one argument, it just returns that one argument.
If an n-ary function is called with zero arguments, it returns some sort of identity for that 
function. For example:

  add[6] -> 6;
  mul[] -> 1;

Basic Arithmetic

ReWrite supports the following operations, all of which work on integers. The usual precedence 
rules apply.

add[ints ]  or  int + int  -> int ;
mul[ints ]  or  int * int  -> int ;
neg[int ]  or  -int  -> int ;
sub[int ,int ]  or  int - int  -> int ;
div[int ,int ]  or  int / int  -> int ;
mod[int ,int ]  or  int % int  -> int ;
(all directly coded)

Example:
  2 + 127 % 109    ->    9

In addition, the following comparison operators are given for integers and characters (don't 
forget that eq, ne are also defined, but for general values rather than just integers).

Comparison

ge[int ,int ]  or  int >= int  -> bool ;
gt[int ,int ]  or  int > int  -> bool ;
le[int ,int ]  or  int <= int  -> bool ;
lt[int ,int ]  or  int < int  -> bool ;
(all directly coded)

ge[char ,char ]  or  char >= char  -> bool ;



gt[char ,char ]  or  char > char  -> bool ;
le[char ,char ]  or  char <= char  -> bool ;
lt[char ,char ]  or  char < char  -> bool ;
(not directly coded)

Example:
  2 + 127 % 109 > 8    ->    true

There are several other numerical functions supported:

Absolute value

abs[int ] -> int ;

  abs[x:int]::x>=0 -> x;
  abs[x:int] -> -x;

max, min

max[ints ] -> int ;

  max[] -> minint;
  max[x:int] -> x;
  max[x:int,y:int,.rest]::x>=y -> max[x,.rest];
  max[x:int,y:int,.rest] -> max[y,.rest];

min[ints ] -> int ;

  min[] -> maxint;
  min[x:int] -> x;
  min[x:int,y:int,.rest]::x<=y -> min[x,.rest];
  min[x:int,y:int,.rest] -> min[y,.rest];

Note that these require the arguments not to be in a list.
For example:
  max[1,2,6,3] -> 6;
  max[1,2,6,3] -> fails
If you want to find the largest number in the list lis, use max[.lis].

maxint, minint

These functions just provide easy access to these constants. Note that I consider minint to be 
-2,147,483,647, not -2,147,483,648.

maxint[] -> $7FFFFFFF;

  maxint[] -> $7FFFFFFF;



minint[] -> -$7FFFFFFF;

  minint[] -> -$7FFFFFFF;

random, Uniqnum, tickcount

random returns a pseudo-random integer in the range -32767 to 32767. See Inside Macintosh, 
Vol I, page 194.

random[] -> int ;
(directly coded)

Logical Operations

These are the usual logical operations.

and[bools ]  or  bool & bool  -> bool ;

  and[] -> true;
  and[false,.rest] -> false;
  and[x:bool,.rest] -> and[.rest];

or[bools ]  or  bool | bool  -> bool ;

  or[] -> false;
  or[false,.rest] -> or[.rest];
  or[x:bool,.rest] -> x;

not[bool ]  or  !bool  -> bool ;

  not[false] -> true;
  not[true] -> false;

Bit Operations

bitand, bitor, bitnot

These are just the typical bit operations, treating an integer as 32 bits

bitand[ints ] -> int ;
bitor[ints ] -> int ;
bitnot[int ] -> int ;
(directly coded)

For example:
  bitand[%1011,%01011101] -> 9;    (%1001)



hi, lo

Given x    an integer consists of 32 bits:
hi[x ] returns the most significant 16 bits (shifted right by 16 bits),
lo[x ] returns the least significant 16 bits.
This function is mostly used by the assembler.

hi[int ] -> int ;
lo[int ] -> int ;
(directly coded)

shift

shift[x ,y ] shifts the integer y left by x bits - effectively it returns y*2^x

shift[int ,int ] -> int ;
(directly coded)

Examples:
  shift[3,100] -> 800;
  shift[-3,800] -> 12;

bitff1, bitff0, bitcount

bitff1 and bitff0 are somewhat anomalous functions. They are only documented here 
because they are used later for the definition of sets.

If an integer (considered in binary) is indexed the following way:
  

hen bitff1 scans through from the most significant to the least and returns the index of the 
first 1 that it finds. bitff0 similarly looks for a 0.

bitff1[int ] -> int ;
(directly coded)

bitff0[int ] -> int ;

  bitff0[x:int] -> bitff1[bitnot[x]];

Examples:
  bitff1[100] -> 25;



  bitff0[100] -> 0;
  bitff1[0] -> 32;

To create a simple integer log base 2 function, we could do the following:

  log2[x:int] -> 31-bitff1[x];

bitcount returns the number of 1's in the binary representation of a number.

bitcount[int ] -> int ;
(directly coded)

For example:
  bitcount[%10101011] -> 5;

 


