

™

 ... An Intelligent Programming Adventure

IntelliBot, IBot and ITI are trademarks of Intelligent Technologies, Incorporated within the
United States of America. Apple and Macintosh are registered trademarks of Apple
Computer, Inc. All other brand or product names are trademarks or registered trademarks of
their respective companies.

Acknowledgements:

The producers would like to thank the following people, without whose invaluable help this
production would not have been possible:

Julian Critchfield, Doug Earl, Mike Earl, Mark Hamilton, Col Jones, Matthew Leavitt,
Harry Mahoney, Bob Taylor.

Version 1.0, Copyright Intelligent Technologies, Incorporated, 1995. All Rights Reserved.
Printed in U.S.A. November, 1995

INTELLIGENT TECHNOLOGIES, INC.
P.O. BOX 2022
OREM, UTAH 84059-2022
U.S.A.

Table of Contents

Welcome to IntelliBots™ v
The IntelliBots Story v
Getting Started vi
How IntelliBots Works vii
IntelliBots Features viii
FAQ (Frequently Asked Questions) x
What’s Next ? xi

1 - About Computers and IBots 1-1
About Computers 1-1
About Computer Programming 1-3
About IBots 1-4
IBot Programs and Missions 1-6
Locales 1-6
Identifying Locale Objects 1-9
Summary 1-11

2 - Running IBot Programs 2-1
Setting Up a Mission 2-1
IBot Status Boxes 2-3
Running a Mission 2-4
View and Speed Options 2-4
Running Competitions 2-5
IBot Statistics 2-7
Summary 2-11
Missions 2-12

3 - Changing and Assembling Programs3-1
About Computer Languages 3-1
Looking at Source Code 3-2
Comments, Labels, and Instruction Lines 3-5
Changing Source Code 3-6
Assembling Source Code 3-9
Directives 3-12
Summary 3-13
Using Degrees 3-14
Missions 3-16

4 - Building a New Program 4-1
Program Design 4-1
Deciding the Objective 4-2
Dividing the Objective into Tasks 4-4
Improving the Tasks 4-4
Writing the Tasks as Source Code 4-5

Implementation (Trying the Solution) 4-6
Changing the Objective 4-7
Introduction to the Debugger 4-10
Summary 4-14
Missions 4-15

5 - Loops 5-1
Infinite Loops 5-1
Building an Infinite Loop 5-2
Conditional Loops 5-5
Building a Conditional Loop 5-6
Using Variable Data and Registers 5-7
Decrementing a Value 5-8
Conditional Jumps 5-9
Incrementing a Value 5-10
Summary 5-15
Missions 5-16

6 - Coprocessors and Ports 6-1
How Coprocessors Work 6-1
How Ports Work 6-2
IBot Scanning 6-3
Checking Object IDs 6-6
IBot Offense 6-8
Checking Offense Ports 6-10
Summary 6-13
Missions 6-14

7 - Computer Numbers and Bit Testing 7-1
Bits, Bytes, and Words 7-1
Binary Numbers 7-3
Scan Code Bits 7-5
Testing Bits 7-6
Status Register (SR) Bits 7-8
Testing and Modifying Bits 7-10
Hexadecimal Numbers 7-13
Summary 7-15
Missions 7-16

8 - Checking Conditions 8-1
Condition Flags 8-1
More About Conditional Jumps 8-2
Logical Comparisons 8-3
Tips for Using Conditional Jumps 8-4

IBot Defense 8-6
Setting Flags and Values in the Debugger 8-9
Summary 8-13
Missions 8-14

9 - Program Organization 9-1
About Modular Programs 9-1
Using High-Level Design 9-2
Control Routines 9-3
Subroutines 9-3
Program Flow 9-4
Call and Return Instructions 9-6
Summary 9-10
Missions 9-11

10 - Program Organization, Part 2 10-1
Program Header 10-1
Routine Header 10-3
More About Labels 10-4
Equate Pseudo-Operator 10-5
.Include Directive 10-7
The Program Stack 10-8
Using Parameters 10-12
Summary 10-13
Missions 10-14

11 - Interrupts 11-1
About Interrupts 11-1
The Advantage of Interrupts 11-2
The Interrupt Mask (IntMask) 11-3
Handling Scan and Attack Interrupts 11-3
Handling Other Interrupts 11-6
Interrupt Priorities 11-8
Simulating Interrupts in the Debugger 11-8
Summary 11-10
Missions 11-11

12 - Testing Programs 12-1
Testing Strategies 12-1
Common Programming Errors 12-3
Testing the Program’s Design 12-5
Testing a Routine 12-7
Using Test Messages 12-10
Using Breakpoints 12-12
Summary 12-14
Missions 12-16

13 - Sample Programs to Debug 13-1
Appendix A : IntelliBots Preferences A-1

Text Editor Preferences A-1
Mission Preferences A-2
Debugger Preferences A-4
Password A-5

Appendix B : IntelliBots Messages B-1
General Execution Messages B-1
Assembler/Compiler Messages B-2
CPU and Coprocessor Messages B-6
Other Messages B-8

Appendix C : ASCII Table C-1
Glossary 1

IntelliBots 1.0 ——————————————————————— ✧ Welcome to IntelliBots v

Welcome to IntelliBots™
IntelliBots is an intelligent adventure in computer programming. Here are
some important things you should know about IntelliBots:

• This is absolutely the most fun way to learn computer programming!
• IntelliBots is a complete programming environment, where you learn to

design, create, and test you own computer programs using authentic,
proven methods.

• IntelliBots helps you develop logic and problem-solving skills.
• IntelliBots is based on reasoning and logic, not on reflexes or hand-eye

coordination.
• You can use IntelliBots by yourself, with friends, or in the classroom.

IntelliBots can teach you the basic skills you need to program popular
types of computers, such as Macintosh and PC's.

Here are the topics in this section:

• The IntelliBots Story
• Getting Started
• How IntelliBots Works
• IntelliBots Features
• FAQ (Frequently Asked Questions)
• What’s Next?

The IntelliBots Story

Humans had begun their inevitable migration into space and on one of the
habitable planets that they colonized, they discovered technologies of an
alien race long since departed. The technologies included new power
sources, metal alloys, and other items yet to be understood. The most
curious items discovered were large self propelled machines that appeared
to have been designed to perform some form of automated labor. What
could be understood of these new technologies was adopted and used to
further the colonization effort on the planet.

vi Welcome to IntelliBots ✧ ——————————————————————— IntelliBots 1.0

After a period of time the planet was suddenly invaded. Who or what the
invaders were was unknown since the colonists only saw their machines of
war. The colonists quickly responded by mounting weapons on their own
machines. Because of their limited population, the humans had decided to
make the machines capable of operating on their own. This meant that
these “intelligent robots” or IntelliBots must be programmed to perform
their respective duties. The change in their roles also required a change in
the way the machines were programmed.

You are about to enter the training school for potential IntelliBot
“trainers” or programmers. You will learn how to program your IBotTM (as
they have come to be called by the students) to move, to observe and learn
about its surroundings, to defend itself, and to try to eliminate the alien
invaders.

Getting Started

Important: Before you begin reading this IntelliBots Manual, take a few
moments to review the ReadMe file on the installation diskette. It contains
important information about IntelliBots, such as package contents,
equipment needs, installation, and how to get help.

Here’s what you should read to learn to use IntelliBots:

• IntelliBots Manual (what you are reading now) explains how IBots move
and function, and how the IntelliBots software works. Then it teaches
you important computer programming concepts so you can carry out
many interesting and challenging programming tasks.

• On-line Help. Standard and custom help features are available for you
in IntelliBots.

• Programmer’s Quick Reference is the at-a-glance source of information for
IntelliBots features such as instructions, ports, coprocessors, constants,
and more.

IntelliBots 1.0 ——————————————————————— ✧ Welcome to IntelliBots vii

How IntelliBots Works

As you read the IntelliBots Manual, here are the steps you will follow to
write and run computer programs with IntelliBots. (If you're new to
programming, don't worry; the manual will help you understand how to do
these steps.)

1 You decide on a Mission (programming task) you want to accomplish.
2 In the Program Editor (like a word processor), you write a program

(computer commands) to carry out the Mission.
3 You assemble the program (turn your commands into computer-

readable instructions).
4 You set up the Mission by selecting the program you wrote and as

many as three other programs to compete against it.
5 You select a Locale (a color map with terrain and objects) for your

Mission. IntelliBots includes a variety of Locales, such as Desert,
Meadow, City, Field, etc.

6 You run the Mission. Then IntelliBots makes these things happen:

• Each program makes an IBot move, turn, or do other tasks on a
Locale on your computer screen.

• If you run several programs at a time, IntelliBots gives a small
amount of time to each IBot in turn. The computer instructions
run so quickly, it looks like all IBots are moving at the same time.

• The first IBot to accomplish the Mission wins, and statistics are
displayed.

To win, you write the most effective program for the Mission. You can
change your program and rerun the Mission as often as you want. You can
also switch Locales and customize the way IntelliBots works. As you will
see, IntelliBots is a fun, exciting, and visual way to learn computer
programming.

viii Welcome to IntelliBots ✧ ——————————————————————— IntelliBots 1.0

IntelliBots Features

Here's a quick overview of important IntelliBots features you’ll use. The
technical terms used below are described later in the IntelliBots manual.

———————————————————————————————–––– ✧ –
IntelliBots lets you see, on the computer screen, how your IBot follows the
instructions in the computer program you wrote. You can write your own
IBot programs to carry out Missions and compete with other IBots.

————————————————————————————————–– ✧ –
✔ ACTION CONTROL • You can change action speed, or pause or stop the action at any time.

• You can turn sound effects on or off.
• To see the final result statistics sooner, you can run a Mission without

showing the IBots or Locale. The IBot programs run faster this way.
• You can use or disable the IBot offense (laser and shell commands) as

you prefer.
————————————————————————————————–– ✧ –
✔ STATUS BOXES For each IBot program that runs, a status box displays on the Mission

console screen. Each status box shows how well the IBot is doing on its
Mission, displaying the IBot name and icon (picture), levels for the shields
and armor and power, and status messages.

————————————————————————————————–– ✧ –
✔ COMPETITION The Competition feature lets you run your program against other

IntelliBots programs to see which is the most effective. (The other
programs can be written by your friends, or you can use the ones included
on the IntelliBots program disks.) A Competition can be a Challenge,
Round Robin, or a Race. You can run your programs with any of the
provided Locales, and you can get detailed statistics for how well each IBot
program did.

————————————————————————————————–– ✧ –
✔ PROGRAM EDITOR The IntelliBots program editor is where you write your programming

source code. It’s like a simple word processor, where you type, edit, find,
and replace text. You can keep several editor windows open at a time.

✔ “SEEING” THE
PROGRAM RESULTS

IntelliBots 1.0 ——————————————————————— ✧ Welcome to IntelliBots ix

————————————————————————————————–– ✧ –
The IntelliBots assembler translates your programming source code into
code the IBot “understands.” This assembler’s instructions are like those
used by today’s Macintosh and PC computers. The assembler has many of
the features found in today’s top software development tools; it also
includes directives, system commands, coprocessor commands, ports, and
comprehensive error messages.

————————————————————————————————–– ✧ –
IntelliBots has a full-featured program Debugger that helps you:

• Display your program’s instructions and data.
• Step through program instructions one at a time or continuously.
• Set and clear program breakpoints and condition flags.
• Change values in registers, ports, and memory, and monitor port data.
• Simulate program interrupts.

————————————————————————————————–– ✧ –
IntelliBots simulates the use of coprocessors, ports, and interrupts, helping you
learn to program with these important parts of a computer in mind.
IntelliBots uses coprocessors and ports so IBots can turn, move, scan, and
so forth.

————————————————————————————————–– ✧ –
IntelliBots includes important file management features. New, Open, Close,
Save, and Save As to help you manage your program files. Build lets you
assemble your source code into a runable program. Generate Report lets you
display, and print statistics for one or more IBots. Get IBot Info shows
statistics for a selected IBot. Print helps you manage the printing of your
source code files.

————————————————————————————————–– ✧ –
The IntelliBots Manual is designed to be easy to read and technically
sound. Each lesson teaches you important concepts in computer
programming, such as registers, loops, tables, and more. And be prepared
to have a lot of fun while you’re learning!

✔ BUILT-IN
ASSEMBLER

✔ INTERACTIVE
DEBUGGER

✔ COPROCESSORS,
PORTS, AND
INTERRUPTS

✔ FILE
MANAGEMENT

✔ EASY-TO-READ
MANUAL

x Welcome to IntelliBots ✧ ——————————————————————— IntelliBots 1.0

FAQ (Frequently Asked Questions)

Here are some of the most frequently asked questions about IntelliBots,
along with our answers.

Q1 — How long does it take to learn how to program computers?
answer- Exactly five months and three weeks ... no; actually that depends

on you. Completing the chapters in this manual will give you a
well-rounded and fun education in programming. You can easily
make the transition to other commercial programming languages.

Q2 — Is IntelliBots a game?
answer- IntelliBots is a professional-style programming environment with

a game-like setting. When you run IntelliBots programs, you see
them interact; this makes it a lot more fun to try out what you’ve
learned. Still, you don’t need video-game skills, such as hand-to-
eye coordination, to succeed at IntelliBots.

Q3 — Do you have to know advanced math to learn programming?
answer- Actually, you can get started programming with just basic math –

addition, subtraction, etc. Later, you will learn about base 2 and
base 16 numbering systems. Logic and problem-solving skills are
important in any programming, while advanced math is usually
limited to specialized areas of programming.

Q4 — Can IntelliBots be used in schools?
answer- Yes, and quite well. The Teacher’s Guide includes curriculum

guidelines and suggestions for classroom use. IntelliBots can be
set up, administered, and run on a network for easy classroom
use. And students can compete in in-class, class-to-class, and
school-to-school easy-to-run tournaments.

Q5 — What skill levels does IntelliBots cover?
answer- IntelliBots covers many skill levels, whether you’re a brand-new

or experienced programmer. The manual contains many
interesting exercises to teach you the fundamentals of
programming and sharpen your skills.

IntelliBots 1.0 ——————————————————————— ✧ Welcome to IntelliBots xi

Q6 — What kinds of careers are there in the software industry?
answer- Skilled, high-tech jobs include computer programming (writing

programs for computers to run), software quality assurance
(testing programs and systems), technical writing, systems
analysis, management, and many others.

Q7 — What’s it like being a professional programmer?
answer- Computer programming is one of the most in-demand careers in

today’s technology-hungry society. Programmers create software
for a variety of uses, such as finance, global communications,
education, entertainment, etc. And it usually pays pretty well.

Q8 — What good is IntelliBots if I don’t want to be a programmer?
answer- IntelliBots can give you an understanding and appreciation of

programming, which helps you develop logic and problem-solving
skills that can help you in many areas of life.

What’s Next ?

Look for these new products from Intelligent Technologies:

• Course 2: Intermediate Programming Concepts
• Course 3: Advanced Programming Concepts
• Course 4: Computer Mathematics
• Introduction to the C Programming Language

**

An intelligent, fun, and exciting computer programming adventure awaits
you. To continue, turn to Chapter 1 - About Computers and IBots to learn
more about computers and programming.

Computers, IBots, & Programs

In this section, you will learn about how computers operate internally, how
IBots and IBot programs work, and how to change and assemble source
code in programs.

• Chapter 1 - About Computers and IBots explains how you can combine
IBot programs and Locales to create Missions.

• Chapter 2 - Running IBot Programs shows you how to select and run IBot
programs, and how to control the on-screen action.

• Chapter 3 - Changing IBot Programs introduces the program editor and
explains how to open, edit, and assemble source code files.

IntelliBots 1.0 ——————————–—————✧ Chapter 1 - About Computers and IBots 1-1

1 - About Computers and IBots
In this chapter you’ll learn basic concepts about computers and
programming. You’ll also learn how IBots are like computers, how they
move and function, and how they use programs to accomplish tasks. Here
are the main topics in this chapter:

• About Computers
• About Computer Programming
• About IBots
• IBot Programs and Missions
• Locales
• Identifying Locale Objects

About Computers

A computer is an electronic device that lets you store, retrieve and
manipulate information. Computers use hardware and software to
accomplish tasks.

————————————————————————————————–– ✧ –
Hardware refers to actual parts of the computer, such as the keyboard,
memory chips, monitor, disk drives, etc. Using IntelliBots helps you learn
about these types of computer hardware:

• CPU (Central Processing Unit), like the “brain” of the computer. It
sends commands to the other hardware pieces and controls the data
being used.

• Memory, an electronic data storage area somewhat like human memory.
• Registers, very fast memory locations typically found inside the CPU.
• Coprocessors, specialized processors that perform specific tasks. These

extra processors free up the main CPU so it can continue with other
tasks.

• Ports, special memory locations that communicate with hardware
devices.

COMPUTER
HARDWARE

1-2 Chapter 1 - About Computers and IBots ✧ ————————————— IntelliBots 1.0

The diagram below shows how these hardware items might be arranged in
a typical computer.

Figure 1-1: Computer hardware components

————————————————————————————————–– ✧ –
Software is one or more computer programs made up of an organized set of
instructions that tells the CPU what to do. Software is usually created by a
computer programmer and placed on a disk. The user of the software then
loads it into the computer. When software runs, it is copied into the
computer’s memory, where it gives the computer instructions to perform
certain tasks. Software contains the actual machine code (1’s and 0’s) that
the CPU needs to use.

Examples of software include operating systems, word processors,
spreadsheets, games, etc.

COMPUTER
SOFTWARE

IntelliBots 1.0 ——————————–—————✧ Chapter 1 - About Computers and IBots 1-3

About Computer Programming

This section gives a brief introduction to computer programming. If you’re
new to programming, or if you have never programmed in an assembly
language, you should read this section carefully.

 ————————————————————————————————–– ✧ –
Computer programming is the process of creating instructions for the
computer’s CPU to use. Here are the basic steps in creating a program:

1 Determine the objective you want to accomplish.
2 Design a plan to accomplish it, with simple English commands.
3 Convert the commands into programming language instructions and type

them in a program editor.
4 Using an assembler or compiler, change the programming language

instructions into actual machine code the computer can understand.
5 Run and test the program to make sure it solves the task correctly. (A

program always does exactly what you tell it to do, but that may not be
what you really wanted it to do.)

6 Once the program is in use, make and test changes to support the
program’s success.

These steps are important for any kind of computer programming,
including IntelliBots.

————————————————————————————————–– ✧ –
A programming language, such as assembly, C, or Pascal, contains the
symbols and rules for creating a computer program. (You can use English
to write a book; you can use assembly to write a program.) The rules and
symbols must be used correctly, or the program won’t work.

After you write your instructions in the programming language, you use
software called an assembler or compiler to convert them into machine code
the computer can actually run. (The assembly process is explained in more
detail in Chapter 3: Changing and Assembling Programs.)

WHAT IS
COMPUTER
PROGRAMMING?

WHAT IS A
PROGRAMMING
LANGUAGE?

1-4 Chapter 1 - About Computers and IBots ✧ ————————————— IntelliBots 1.0

About IBots

An IBot is an Intelligent roBot that looks and acts like a computerized
vehicle on your monitor. To use IntelliBots effectively, you should
understand how an IBot resembles an actual computer and how an IBot
vehicle moves and functions.

————————————————————————————————–– ✧ –
THE IBOT COMPUTER The IBot “thinks” in a way that is modeled after an actual computer. It

simulates the use of hardware, such as memory, registers, coprocessors, and
ports. Each IBot is guided by a computer program that you, or someone
else, creates.

————————————————————————————————–– ✧ –
THE IBOT VEHICLE The IBot vehicle has two parts: the chassis (the main body of the IBot) and

the turret (where the laser and cannon are located). On the monitor, you
see only a top view of each IBot in a Mission. The four IBot vehicles are
shown below.

IBot #1 IBot #2 IBot #3 IBot #4

Figure 1-2: IBot vehicles

The next diagram shows the IBot in a 3-D view to help you see the parts
and functions of the chassis and turret.

IntelliBots 1.0 ——————————–—————✧ Chapter 1 - About Computers and IBots 1-5

Figure 1-3: IBot chassis and turret, 3-D view

————————————————————————————————–– ✧ –
CHASSIS PARTS • Wheels/treads. The chassis uses wheels and treads to turn and move in

any direction, even backwards. When it moves diagonally, it travels at
the same speed as it does when going vertically or horizontally. (IBots
move only in two dimensions; they cannot fly.)

• Chassis scanner. IBots can detect low or high objects by scanning with
the chassis. Objects and scanning are described in Terrain and Scanning
for Objects later in this chapter.

• Shield. An IBot can boost shields, one for the front, back, left, and right
sides. A shield is decreased when it is hit by a laser or bomb, or when
the IBot runs into certain objects on that side.

• Armor. An IBot has four armor plates, one for the front, back, left, and
right sides. When the shield on a side of an IBot is gone, the armor on
that side is decreased each time that side is hit by a laser or bomb, or
when the IBot runs into certain objects on that side.

• Power supply. An IBot begins with a full supply of power. When the
armor on a side of an IBot is gone, the overall power supply is
decreased each time that side is hit by a laser or bomb, or when the
IBot runs into certain objects on that side. The power supply is also
drained any time the IBot runs into a power object (see Damage from
Terrain Objects below), and gradually as the IBot uses program
instructions.

————————————————————————————————–– ✧ –
TURRET PARTS • Turret scanner. IBots can detect high (tall) objects by scanning with the

turret. Objects and scanning are described in Terrain and Scanning for
Objects later in this chapter.

1-6 Chapter 1 - About Computers and IBots ✧ ————————————— IntelliBots 1.0

• Laser. With the laser, the IBot can hit only high objects. At longer
distances, the laser causes less damage unless you increase its power.

• Cannon. The cannon can hit high or low objects. Each shell radiates
damage out from the point where it explodes.

The turret can turn in any direction, regardless of where the chassis is
facing. IBots can hit or miss targets, and can move to avoid being hit. If an
IBot is damaged so much that its power supply is gone, its program stops
running.

Note: In Preferences, you can disable offense (laser/cannon) for all IBots.

IBot Programs and Missions

IntelliBots helps you create and test IBot programs, using the Editor, the
Assembler, and the Debugger. You then run these programs to fulfill IBot
Missions, which are tasks that IBots are designed to carry out. The Mission
runs on a Locale, which may have several kinds of objects, including goals.
Locales and goals are explained below.

In a Mission, each IBot tries to defeat other IBots, reach a goal, or
complete a certain programming task. At the end of a Mission, the winning
IBot is indicated, and statistics are displayed to show how well each IBot
did in the Mission.

Locales

A Locale is the color map background you select for an IBot Mission.
Although certain Missions work best with certain Locales, IntelliBots lets
you run any IBot program with any Locale.

Each Locale is subdivided into a certain number of units (grid squares) that
determine the size of the Locale and where objects are placed. The units
don’t actually appear on the Locale unless you use the Show Grid feature
in the Mission Setup dialog.

IntelliBots 1.0 ——————————–—————✧ Chapter 1 - About Computers and IBots 1-7

Below is a picture of the Desert2 Locale with several types of terrain
identified.

Figure 1-4: Desert2 Locale

————————————————————————————————–– ✧ –
 TERRAIN Each Locale has different types of terrain. These are natural or artificial

objects shown on the Locale, such as trees, rocks, water, and buildings.
Terrain can be low, such as short grass or low walls, or high, such as trees or
cliffs. For more details on terrain objects, see Checking Object Types in
chapter 6: Coprocessors and Ports. You can also find complete damage
descriptions in Terrain Damage and Changes in the Programmer’s Quick
Reference.

power natural
obstruction

medium
natural
obstruction

barrier

empty

1-8 Chapter 1 - About Computers and IBots ✧ ————————————— IntelliBots 1.0

————————————————————————————————–– ✧ –
When an IBot runs into certain kinds of terrain, it receives light, medium,
heavy, or power damage. For example, an IBot that runs into a light object,
such as a small tree, will be lightly damaged, and an IBot that sits in a
swamp will continually have its power drained. IBots can also damage
certain terrain objects by running into them or hitting them with laser fire
or shells.

For more details on how IBots and terrain are damaged, see Identifying
Locale Objects in Chapter 2 - Running IBot Missions.

————————————————————————————————–– ✧ –
As explained before, an IBot can scan for objects with its chassis scanner or
turret scanner. The chassis scanner finds both low and high objects; the
turret scanner finds only high objects. The chassis scanner is a short-range
scan. An IBot can also scan for other IBots on the Locale (IBots are defined
as high objects).

With a turret scanner short-range scans (from 1 to about 15 Locale units)
will identify objects accurately, but long-range scans (more than about 15
Locale units) sometimes won’t give any useable information. Also, you can
make an IBot temporarily invisible to turret scans by using “cloak” mode
(as explained in Chapter 7 - Computer Numbers and Bit Testing).

————————————————————————————————–– ✧ –
GOALS Each Locale has zero, one, or more goals. If a Locale has a goal, it is not in

effect for a Mission until you enable the goal. To enable it, you click
Enable Objects in the Setup dialog box. You’ll learn more about the Setup
dialog feature in Chapter 2 - Running an IBot Program.

If the goal(s) is enabled, the first IBot that fires on it or runs into it wins
the Mission. If yours is the only IBot in the Mission, and the Locale has no
goal, you do not win the Mission; instead, the Mission continues until
your IBot runs out of power, or until you stop the action.

————————————————————————————————–– ✧ –
You can put one, two, three, or four IBots on any Locale. You can tell
IntelliBots to use fixed placement or random placement of IBots. In fixed
placement, the first IBot starts at location 1 on the Locale, the second
starts at location 2, etc., and those locations are always the same for every
Mission on that Locale. In random placement, the starting locations are
chosen randomly, so the IBots will start each Mission on the Locale in
locations that are more unpredictable. You will learn about setting IBot
placement in Chapter 2: Running an IBot Program.

DAMAGE FROM
TERRAIN

SCANNING FOR
OBJECTS

IBOT PLACEMENT
ON LOCALES

IntelliBots 1.0 ——————————–—————✧ Chapter 1 - About Computers and IBots 1-9

Whether fixed or random placement is used, each IBot is placed so it has a
fair chance to find a goal or avoid damaging objects.

Identifying Locale Objects

An IBot identifies Locale objects by scanning them, but you can identify
those objects yourself by using your system’s pop-up Help, whether the
Mission is paused or running. To identify Locale objects,

1 Choose pop-up Help from the Help menu.

2 Move the pointer over a Locale object.

Pop-up help appears over the object, describing the following information:

• The object’s type
• Whether the object is high or low
• What kind of damage the object causes to an IBot that runs into it
• What the object converts to when hit by an IBot, laser, or shell.

————————————————————————————————–– ✧ –
TERRAIN TYPES Each terrain type in a Locale is described below.

Low Terrain Type Description (Examples)
Empty Level terrain (dirt or grass)
Low cover Ground-level cover (short vegetation or shrubs)
Light natural (Small trees or rocks)
Light artificial (Low walls or small objects)
Power trap, natural (Sand, mud, swamp)
Power artificial (Extensive rubble, debris)

High Terrain Type Description (Examples)
High cover (Tall plants, reeds, etc.)
Medium natural (Forest or boulders)
Medium artificial (Walls or small buildings)
Heavy natural (Thick forest or large boulders)
Heavy artificial (High walls or larger buildings)
Barrier Can’t be traveled over (impassable wall, cliff, etc.)

1-10 Chapter 1 - About Computers and IBots ✧ ————————————— IntelliBots 1.0

Summary

 ————————————————————————————————–– ✧ –
CONCEPTS These concepts were discussed in chapter 1: About Computers and IBots:

A) A computer uses hardware and software to carry out tasks.
B) Programming is the process of creating instructions for the computer.
C) Examples of programming languages are assembly, C, and Pascal.
D) IntelliBots programs are written to control IBots in Missions.
E) Locales are used as backgrounds for IBot Missions.
F) A Locale may contain a variety of obstacles and objects.
G) An IBot wins a Mission by reaching a goal or by defeating other IBots.
H) A goal is only in effect when it has been enabled in the Mission Setup.
I) IBots move in almost any direction on the Locale.
J) IBots can fire lasers or shells at other IBots, at goals, or at objects.
K) Chassis scans find high or low objects; turret scans find only high

objects.
 ————————————————————————————————–– ✧ –
TERMS TO KNOW After reading this chapter, you should be able to briefly define the terms

below. If you need help, reread the chapter or see Glossary in this manual.

1) hardware; 2) CPU; 3) memory; 4) software; 5) machine code;
6) computer programming; 7) programming language; 8) assembler;
9) IBot; 10) chassis; 11) turret 12) scanning; 13) shield;
14) armor; 15) power supply; 16) laser; 17) cannon; 18) Mission;
19) Locale; 20) goal; 21) Locale units; 22) grid

IntelliBots 1.0 ———————————————— ✧ Chapter 2 - Running IBot Programs 2-1

2 - Running IBot Programs
In this chapter you’ll learn how to run IBot programs in a mission. You’ll
see how IBots move and interact with Locale objects in a Mission. Here are
the main topics in this chapter:

• Setting Up a Mission
• IBot Status Boxes
• Running a Mission
• View and Speed Options
• Running Competitions
• IBot Statistics

Setting Up a Mission

Before you run an IBot Mission, you need to select both a Locale and
IBots, and do a few other setup tasks. Follow the steps below to learn how
to set up and run a single Mission.

1 Choose Setup from the Mission menu or from the main IntelliBots
dialog.

Important: Many of the steps in this IntelliBots Manual refer to using
the menus, but you can select any of the same features from the main
IntelliBots dialog as an alternate method.

The Mission Setup dialog box appears, with the Mission Type set to
Single Run (the default).

2 Click the Select Locale button.

The Locale list appears. Make sure the Locales folder appears in the
pop-up menu.

3 For now, select the Desert1 Locale from the list.

2-2 Chapter 2 - Running IBot Programs ✧ ———————————————— IntelliBots 1.0

4 Click the Done button by the Select Locale list.

The Locale you selected now appears as the Selected Locale.

5 Click the Select IBots button.

The Select IBots list appears. The IBots folder should appear in the
pop-up menu at the top of the dialog box. If it doesn’t, you need to
locate it.
(If you need help navigating your computer’s filing system, see your
operating system software manual.)

6 For now, select from the top list each of the following IBots one at a
time and click the Add button: SEEKER.BOT, SEEKER1.BOT, SEEKER2.BOT,
and WANDERER.BOT. Be sure to select them in the order shown.

These IBots will appear in the lower list after they are selected. To
remove an IBot from the lower list, select it and click the Remove
button.

7 Click the Done button to complete the IBot selection.

The IBot names you selected now appear in the Selected IBots list.

————————————————————————————————–– ✧ –
SETUP OPTIONS The Mission setup options appear below the Selected Locale. The

descriptions below tell you what happens when you check these options.

• Enable Objects Activates any special objects, such as goals, that
may be on the Locale.

• Random Placement The selected IBots are placed at random starting
locations on the Locale.

• Show Grid A grid of squares appears over the Locale, showing
the Locale units.

• Start Paused The IBots and Locale are loaded, but the Mission
stays paused until you continue it. You can select
an IBot to watch or debug before the action begins.

• Test Only The Mission runs without keeping statistics.
• Reset Statistics The previous statistics for each IBot are cleared

before the Mission begins.

IntelliBots 1.0 ———————————————— ✧ Chapter 2 - Running IBot Programs 2-3

8 Make sure the Start Paused button is checked an then click the Run
button. (Clicking the Done button will exit the Setup dialog without
starting the Mission.)

After a few seconds, the Locale window and IBot status boxes display. The
IBots do not move yet, because the Mission is in a paused state.

IBot Status Boxes

To the right of the Locale window, each IBot has its own Status Box that
displays information showing how well the IBot is doing in the Mission.
Here is a sample Status Box, with descriptions of each part:

Figure 2-1: IBot Status Box

• IBot name Name of the IBot program.
• IBot icon A picture that represents the IBot on the Locale.
• Shield/Armor levels Bar graphs that show the current levels of shields

and armor (front, right, left, and back). Each level
starts as green (good condition), then changes to
orange to indicate a warning level (getting low),
and changes to red to indicate a danger level (low).
Shield levels don’t appear unless the IBot program
boosts them.

• Power level Bar graph showing the IBot’s current power level.
• Status Message box Area that displays any IntelliBots messages, such as

errors or helpful information.

IBot Name

Status Message box
Power Level

Shield/Armor levels

2-4 Chapter 2 - Running IBot Programs ✧ ———————————————— IntelliBots 1.0

Running a Mission

When you run the Mission in step 9 below, you will see these things:

• IBots moving around on the Locale.
• Laser fire, which appears quickly as a long streak. The flash shows

where the laser fire strikes.
• IBots launching shells that strike other IBots or objects, leaving craters

(rubble).
• The Shield/Armor levels decreasing as each IBot takes damage from

other IBots or Locale objects.
• The power levels gradually decreasing for each IBot.
• When a shell or laser hit causes an IBot’s power level to reach zero, the

IBot program terminates, and the IBot explodes, leaving a crater. (If
the IBot’s own commands cause it to run out of power, its icon
remains on the Locale, but its program stops.)

• Remember that you can pause the action at any time by choosing
Pause from the Mission menu.

With the above points in mind,

9 Choose Continue from the Mission menu to start the action. Let the
Mission continue for about thirty seconds, then pause the action.

View and Speed Options

Before or after a Mission starts, you can change the view or speed of the
action.

————————————————————————————————–– ✧ –
The following view options are available from the Views submenu under
the Mission menu:

• Auto When a Mission starts, IntelliBots uses the Auto view
mode to automatically select the view size.

• 200%, 100%, 75%, 50%, or 25%

IntelliBots 1.0 ———————————————— ✧ Chapter 2 - Running IBot Programs 2-5

200% magnifies the actual Locale size by twice; 100% is
the actual Locale size; 75%, 50%, and 25% reduce the
view to 75%, 50%, or 25% of the actual Locale size.

• Display Off The Locale goes blank so the Mission can run at its fastest
pace, and the IBot Status Boxes reflect the fast action.

Important: Once you choose Display Off, the View and Speed
submenus are disabled until the Mission ends.

Here are some ways to change the view of the Locale:

10 Choose 200% from the Views submenu of the Mission menu.

More detail now appears in the Locale, but the edges of the Desert1
Locale are now off the display.

11 Try these other views: 100%, 75%, 50%, and 25%.

12 Choose Continue from the Mission menu and run the Mission to its
end.

————————————————————————————————–– ✧ –
If the current Locale doesn’t fit entirely on the screen, the mouse pointer
will appear as a hand instead of a crosshair. You can then click on the
Locale and drag it to see other parts. The Locale scrolls to let you see other
parts that previously weren’t displayed.

————————————————————————————————–– ✧ –
You can also change the action speed of a Mission by choosing Fast,
Medium, or Slow in the Speed submenu of the Mission menu. These
options affect how soon the Mission ends, but don’t affect the current
view.

Running Competitions

To get a better idea of how well an IBot competes, you can set the Mission
Type to 3 Runs or 5 Runs from the Setup dialog. Better still, you can use
one of the Competition modes that let IBots compete one-on-one in
multiple Missions. The three Competition modes are Challenge, Round

DRAGGING THE
LOCALE

CHANGING THE
SPEED

2-6 Chapter 2 - Running IBot Programs ✧ ———————————————— IntelliBots 1.0

Robin, and Race. Because a competition might take quite a while to finish,
IntelliBots uses the Display Off view mode to speed up the action.

————————————————————————————————–– ✧ –
CHALLENGE In a Challenge, one IBot competes against one or more challengers. When

you set up a Challenge, the first IBot you select is the primary IBot and the
remaining IBots are its challengers. The primary IBot competes against each
challenger, one at a time.

Each challenger is ranked by how well it performs against the first IBot.
This is a good way to compare different IBots, because they are all tested
against the same IBot.

————————————————————————————————–– ✧ –
RACE In a Race, each IBot competes alone against the clock. The IBots are

ranked as to how long they took to accomplish a task, such as reaching a
goal on a Locale.

————————————————————————————————–– ✧ –
ROUND ROBIN In a Round Robin, each IBot competes with every other selected IBot, one-

on-one. For example, if IBots A, B, C, D, and E are selected, there would
be 10 Missions with these match-ups:

1) A and B; 2) A and C; 3) A and D; 4) A and E; 5) B and C;
6) B and D; 7) B and E; 8) C and D; 9) C and E; 10) D and E.

At the end, the IBots are ranked by how well they did in all the Missions
of the Round Robin.

To run a Round Robin,

1 Choose Setup from the Mission menu.

2 Set Mission Type to Round Robin.

3 Select the IBots and Locale to use, as explained in Setting Up a Mission
at the beginning of this chapter.

For now, use the Seeker1, Seeker2, and Wanderer IBots and the Desert1
Locale.

4 Choose Continue from the Mission menu to continue the action.

IntelliBots 1.0 ———————————————— ✧ Chapter 2 - Running IBot Programs 2-7

Because the Display Off option is used for a Round Robin, the Locale goes
blank, but the Status Boxes show the continuing IBot statuses.

5 Let the Round Robin continue until its Missions end. The Mission
Results dialog will then display the statistics for the Round Robin.

IBot Statistics

You can get statistics about how well IBots did in a Mission in any of these
ways: the Results dialog, Get IBot Info, and Print Report.

————————————————————————————————–– ✧ –
RESULTS DIALOG When a Mission ends, the Mission Results dialog shows the rank of each

IBot for the Mission and the last message displayed for each IBot. The last
message tells how the IBot ended the Mission. A sample Mission Results
dialog is shown below.

Figure 2-2: IBot Statistics

————————————————————————————————–– ✧ –
GET IBOT INFO To get more detailed statistics for an IBot,

1 Choose Get IBot Info from the File menu.

2 Select the assembled (.BOT) file for the IBot you want to examine.

A dialog appears showing the statistics kept for each IBot and the
scores which form the final rank.

2-8 Chapter 2 - Running IBot Programs ✧ ———————————————— IntelliBots 1.0

You can set the statistics to their initial (zero) values by clicking on the
Reset button at the bottom of the dialog. Once this has been done, the
original statistics cannot be recovered. Statistics are also reset when you
build the IBot program or when the IBot participates in a Competition. In
all other cases statistics are accumulated (built-on).

Below is a sample Get IBot Info dialog with explanations for each item. In
each case, a higher score means better performance.

Figure 2-3: IBot Information

Statistic Type Description
Rank Combination of Victory Score, Performance

Score, Defense Score, and Offense Score
Victory Statistics

Victory score Success rate
Number of missions Total number of missions (parts of a

Competition) run by this IBot
Missions won Total number of victories for this IBot
Missions survived Total number of missions where IBot was not

destroyed
Total opponents Number of opponents this IBot competed

against
Performance Statistics

Performance score How well the IBot performed its designated
task.

Avg. instrs/mission Average number of CPU instructions run by
IBot per mission

IntelliBots 1.0 ———————————————— ✧ Chapter 2 - Running IBot Programs 2-9

Avg. win time Average time needed for each of this IBot’s
victories, in timer units

Defense Statistics
Defense score How well IBot avoided damage
Avg. enemy dmg/mission

Average units of damage caused by all
opponents to this IBot, per mission.

Avg. self dmg/mission Average units of damage this IBot caused itself,
per Mission

Offense Statistics
Offense score How well IBot detected and damaged

opponents
Avg. damage/mission Average units of damage this IBot caused to all

opponents, per mission
Laser/Cannon Statistics

Avg. shots/mission Average number of times laser/cannon fired per
Mission

Avg. hits/mission Average times laser/cannon hit opponent, per
Mission

Avg. dmg/hit Average units of damage this IBot caused to
opponents per laser/shell hit

————————————————————————————————–– ✧ –
PRINT REPORT For Competitions only, you can get brief printed statistics from the Print

Report feature. Here’s how to use the Print Report feature:

1 After running a Competition, choose Print Report from the File menu.

2 Select the report you want to print. The report title contains the date
and time you generated the report.

3 Select any printing options you want from the Print dialog that
appears. Check that your printer is on and set up correctly, then click
OK to print the report.

Print Report displays the event type, date of event, total time of event, the
Locale, and the ranking of IBot programs in the event. Here’s a sample
report:

Event Type: Challenge Competition
Date of Event: 5/31/1995 6:19 PM
Elapsed Time for Event: 2 Minutes
Locale Used for Event: Arena

2-10 Chapter 2 - Running IBot Programs ✧ ———————————————— IntelliBots 1.0

1. Sitting Duck 92
2. Seeker 41
3. Blocker 9
4. Move Slow 0

————————————————————————————————–– ✧ –
To stop a Mission with no winner, choose Terminate from the Mission
menu, then click the Terminate button.

Important: When you stop a Mission, all statistics for the Mission are
discarded.

STOPPING THE
ACTION

IntelliBots 1.0 ———————————————— ✧ Chapter 2 - Running IBot Programs 2-11

Summary

————————————————————————————————–– ✧ –
CONCEPTS These concepts were discussed in chapter 2: Running IBot Programs:

A) The Setup feature selects IBots and Locales for a Mission.
B) Run (from the Mission menu or Setup dialog) runs a Mission using the

IBots and Locale you selected.
C) View options are Auto, 200%, 100%, 50%, 25%, and Display Off.
D) Speed options for Missions are Fast, Medium, and Slow.
E) If a Locale is too large to fit in the Locale window, you can drag it to

display any part of the Locale.
F) IBot status boxes show the armor/shield levels, power levels, and status

messages during a Mission.
G) At the end of the Mission, the Mission Results dialog shows each IBot

icon, the IBot names and current ranks, and the last messages
displayed for each IBot.

H) Get IBot Info shows detailed statistics for IBots in Missions.
I) The Challenge feature matches an IBot against one or more

challengers, one-on-one.
J) In a Race, each IBot competes alone against the clock.
K) In a Round Robin, each IBot competes against every other IBot, one-

on-one.
————————————————————————————————–– ✧ –
TERMS TO KNOW After reading this chapter, you should be able to briefly define the terms

below. If you need help, reread the chapter or see Glossary in this manual.

1) Mission Setup; 2) Random Placement; 3) IBot Status Box; 4) object;
5) Speed options; 6) View options; 7) Display Off; 8) Challenge;
9) Competition; 10) Round Robin; 11) Race; 12) Results Dialog;
13) Get IBot Info; 14) Print Report

2-12 Chapter 2 - Running IBot Programs ✧ ———————————————— IntelliBots 1.0

Missions

————————————————————————————————–– ✧ –
MISSION 2.1 Run two Missions on the two Locales listed below using any IBots. You

can keep the action paused. Then identify and write down the objects on
each map that cause heavy damage or power damage to IBots.

• Locale 1: Arena
• Locale 2: Desert2

————————————————————————————————–– ✧ –
MISSION 2.2 Run a Challenge with five IBots on the Desert1 Locale. Decide which IBot

is the best and why.

IntelliBots 1.0 ———————————–✧ Chapter 3 - Changing & Assembling Programs 3-1

3 - Changing and Assembling Programs
In this chapter you’ll learn how to change and assemble IBot programs.
Here are the main topics in this chapter:

• About Computer Languages
• Looking at Source Code
• Comments, Labels, and Instruction Lines
• Changing Source Code
• Assembling Source Code
• Directives

About Computer Languages

There are three types of computer languages used today: machine languages,
assembly languages, and high-level languages. Assembly and high-level
languages are written with source code instructions that appear more or less
like English-language statements. The source code instructions are then
translated by an assembler or compiler into machine language that the
computer can run.

————————————————————————————————–– ✧ –
MACHINE LANGUAGE Machine language is the basic set of instructions interpreted by a

computer. It’s usually very difficult to look at actual machine language
code and understand it, so other programming languages such as assembly
and high-level languages were developed, to represent machine language in
a more understandable way.

————————————————————————————————–– ✧ –
ASSEMBLY LANGUAGE Assembly language was created to help programmers write easier

instructions that could be converted to machine language. Learning
assembly language is a good way to understand the basics of how a
computer works internally. This can also prepare you to learn high-level
languages, such as C and Pascal.

Each kind of assembly language is directly related to the machine language
of a specific type of computer. For example, assembly for the Macintosh is

3-2 Chapter 3 - Changing & Assembling Programs ✧ ——————————— IntelliBots 1.0

somewhat different from assembly for the PC. So, assembly programs are
not generally “portable” between computer types.

————————————————————————————————–– ✧ –
High-level languages were created to help simplify the task of using
computer languages. While this can make programming more convenient,
it doesn’t help you understand the internal workings of the computer as
well as assembly language does.

Usually, each high-level language instruction translates into several
machine-language instructions. Because high-level languages are not
directly related to a computer’s machine language, high-level programs can
run more easily on many different types of computers, so these programs
are more portable between computer types.

————————————————————————————————–– ✧ –
IntelliBots uses an assembly language that contains instructions from
several of today’s popular assembly languages. Learning IntelliBots
assembly helps you master the assembly languages of today’s computers.

————————————————————————————————–– ✧ –
ASSEMBLERS An assembler is a program that translates assembly code into machine

language. The assembler checks the source code to make sure it’s written
correctly. It displays warnings or error messages for problems or errors it
finds in the source code. If it does not find any source code errors, the
assembler assembles, or converts, the source code into machine code.

————————————————————————————————–– ✧ –
COMPILERS A compiler is a program that translates high-level language instructions

into machine code. The compiler examines the source code and makes sure
it’s written correctly. It also produces warnings or error messages for
problems or errors it finds in the source code and compiles (converts) the
source code into machine code.

Looking at Source Code

A source code file contains the English-like instructions that are used to
create a computer program. To open a source code file,

1 Choose Open from the File menu.

HIGH-LEVEL
LANGUAGES

INTELLIBOTS
PROGRAMMING
LANGUAGE

IntelliBots 1.0 ———————————–✧ Chapter 3 - Changing & Assembling Programs 3-3

A list of source code files appears. The names of these source code files
all end in “.ASM” for convenience.

2 For now, select the GOAL.ASM file.

The Edit Window appears, displaying the source code for the GOAL.ASM
program:

Find_Goal

COPR #ChassisMove,#3 ;move IBot 3 units

COPR #ChassisTurn,#90 ;turn IBot chassis 90 degrees - turn right

COPR #ChassisMove,#3 ;move IBot 3 units

COPR #ChassisTurn,#270 ;turn IBot chassis 270 degrees - turn left

COPR #ChassisMove,#15 ;move IBot 15 units

COPR #ChassisTurn,#90 ;turn IBot chassis 90 degrees - turn right

COPR #ChassisMove,#4 ;move IBot 4 units

HALT ;stop the IBot program

The elements of these source code lines are explained in Comments, Labels,
and Instruction Lines below. (For information on degrees and directions for
turning, see Using Degrees after the Summary section of this chapter.)

When assembled, this simple program moves an IBot four times and turns
it three times. If this program runs alone on the Arena Locale, the next-to-
last line of the program (COPR #ChassisMove,#4 ;move IBot 4 units) takes
the IBot to the goal on the Locale, winning the Mission. The path taken by
the IBot to the goal is shown in the diagram below.

3-4 Chapter 3 - Changing & Assembling Programs ✧ ——————————— IntelliBots 1.0

Figure 3-1: Path to goal on Arena Locale

————————————————————————————————–– ✧ –
PROGRAM EDITOR The Program Editor lets you type instructions to create and change

programs. It works like a basic word processor, with standard editing and
filing features such as these:

• Open, close, and save files
• Positioning controls, such as: up, down, left, right, Home, End, Go To,

beginning and end of line
• Text search and replace
• Cut, copy and paste
• Font and size selection
• Auto-indent and tabbing
• Automatic highlighting for program comments
• Line numbering

The default font is mono-spaced, meaning that all its characters are evenly
spaced. This makes it easier to align numbers and letters vertically. You
can also use a proportional font (uneven character spacing) but this makes
character alignment more difficult.

IntelliBots 1.0 ———————————–✧ Chapter 3 - Changing & Assembling Programs 3-5

Comments, Labels, and Instruction Lines

The basic elements of source code are comments, labels and instruction lines.
————————————————————————————————–– ✧ –
COMMENTS The GOAL.ASM program contains instruction comments to give more details

about the program’s instructions. In the Edit Window, these comments
appear in red on a color monitor. Good, clear comments are very
important to you the programmer and anyone else reading your program.

————————————————————————————————–– ✧ –
LABELS This program also contains a label (Find_Goal). A label acts as a reference

marker in the source code, like a bookmark. It also describes the purpose of
the instruction lines that follow it. When a label is created, it must be typed
at the left margin. If you indent the label, an error occurs when you try to
assemble the program.

If you create a label in a program, but you never use it in the program, the
assembler will display a warning message. When you assemble the GOAL.ASM
program, you will see the warning. For now, you don’t need to worry about
this message. You will learn more about labels and their use in Chapter 5:
Loops.

————————————————————————————————–– ✧ –
INSTRUCTION LINES The GOAL.ASM program has several instruction lines, such as the one below:

COPR #ChassisMove,#3 ;move IBot 3 units

The basic form of an instruction line is:

opcode <operand1>,<operand2> ;comment

Each instruction line has these elements:

• One or more Tabs at the left margin.
• An opcode (such as COPR), that tells the computer the name of the

instruction to execute, or carry out.
• At least one Tab after the opcode.
• From zero to two operands (depending on the opcode, and separated by

commas) that tell the computer how to execute the instruction. In the
instruction above, #ChassisMove and #3 are the operands.

3-6 Chapter 3 - Changing & Assembling Programs ✧ ——————————— IntelliBots 1.0

Important: If an operand begins with a pound sign (#), it is called a
constant. If you leave out the pound sign for a constant, program or
syntax errors will result.

• An instruction comment that tells you what the instruction line does.
Each comment must begin with a semicolon so the assembler won’t
mistake the comment for another instruction. If a comment is longer
than one line, the text on the next line must also begin with a
semicolon.

Comments are very helpful for explaining what the source code does.
However, when a file is assembled the comments stay in the source
code; they aren’t included in the resulting machine code.

Changing Source Code

You can change IBot source code instructions to make a program work
differently. However, your changes must follow the IntelliBots rules for
syntax, or grammar for source code, so the instructions will be assembled
correctly. Syntax rules also apply to just about any other kind of
programming language.

————————————————————————————————–– ✧ –
PRACTICE EXERCISE Suppose you want to make the IBot move around the outer edge of the

Arena Locale to the goal, as in the example below.

IntelliBots 1.0 ———————————–✧ Chapter 3 - Changing & Assembling Programs 3-7

Figure 3-2: New path to goal on Arena Locale

To do this, you need to change the third and sixth instructions:

1 Change the third instruction (COPR #ChassisMove,#3 ;move IBot 3
units) so it looks like this:

COPR #ChassisMove,#10 ;move IBot 10 units

All you need to do is change each 3 to a 10, and make sure the first 10
ends up as #10 (with the pound sign). If you need help with basic text
editing, see your manual for system software or word processing.

2 Change the sixth instruction (COPR #ChassisTurn,#90 ;turn IBot 90
degrees - turn right) so it looks like this:

COPR #ChassisTurn,#270 ;turn IBot 270 degrees - turn left

The program now looks like this:

3-8 Chapter 3 - Changing & Assembling Programs ✧ ——————————— IntelliBots 1.0

Find_Goal

COPR #ChassisMove,#3 ;move IBot 3 units

COPR #ChassisTurn,#90 ;turn IBot chassis 90 degrees - turn right

COPR #ChassisMove,#10 ;move IBot 10 units

COPR #ChassisTurn,#270 ;turn IBot chassis 270 degrees - turn left

COPR #ChassisMove,#15 ;move IBot 15 units

COPR #ChassisTurn,#270 ;turn IBot chassis 270 degrees - turn left

COPR #ChassisMove,#4 ;move IBot 4 units

HALT ;stop the IBot program

————————————————————————————————–– ✧ –
USING COMMENTS Accurate and clear comments are absolutely vital to good programs. They

help you plan out and clarify your instructions, and they help other
programmers understand how your program works. Below are guidelines
for using comments.

• Indent your comments consistently, so they line up vertically.
• Be brief.
• Describe what the instruction is doing (and why it is doing it, if

necessary). A comment should not be just a copy of its instruction.

Important: When you change a line of source code, you usually need to
change the comment that goes with it.

————————————————————————————————–– ✧ –
SAVING CHANGES You have now edited the program, using comments to document the

changes in the source code. To save your changes to the program,

1 Choose Save As from the File menu.

2 Type CH03GOAL.ASM as the new filename.

3 Select the IBots folder from the pop-up list to save the IBot in the
correct location.

4 Click Save to save the new file.

Important: After a file has been saved once, you can use Save (not Save As)
from the File menu to quickly save additional changes to the file.

IntelliBots 1.0 ———————————–✧ Chapter 3 - Changing & Assembling Programs 3-9

————————————————————————————————–– ✧ –
Instead of deleting an instruction line you don’t want to keep, you can
“comment it out”, or add a semicolon at the beginning of the line. That
turns the entire instruction into a comment so it won’t be used when the
program is assembled and runs.

For example, to stop the IBot before it reaches the goal in the CH03GOAL.ASM
program, you could comment out the next-to-last line so it looks like this:

; COPR #ChassisMove,#4 ;move IBot 4 units

and assemble and run the program. To restore the instruction, you simply
remove the semicolon and assemble the program.

————————————————————————————————–– ✧ –
You can use the options in the Search menu to find and change specified
text in your program, whether or not that text is currently on the screen.
Searches are done to the end of the program; no wrapping occurs. Type the
text you want to find in the upper box. You can replace the found text in
the program with “replace” text you enter in the second box.

Assembling Source Code

Once your source code is complete, you need to assemble the file to
translate it into machine code. To assemble the CH03GOAL.ASM file,

1 Choose Build “CH03GOAL.ASM” from the File menu.

or

If you have closed the CH03GOAL.ASM program, choose Build from the
File menu, then select CH03GOAL.ASM and click OK.

The following things now happen:

A) The IntelliBots assembler checks your source code for proper syntax.
B) If the syntax is correct, the source code is translated into machine

code. This machine code is saved in a new file with an extension

“COMMENTING OUT”
INSTRUCTION LINES

SEARCH
AND
REPLACE

3-10 Chapter 3 - Changing & Assembling Programs ✧ ——————————— IntelliBots 1.0

(ending) of “.BOT”. The message “Assembly Completed Successfully”
appears.

C) If the syntax has one or more errors, the message “Assembly
Terminated. Errors Prevented Successful Assembly” appears with one
or more error messages, and the source code is not translated.

One or more warning messages may also appear. Warning messages do not
prevent the assembly from completing, but they indicate that the program
might have a problem when it runs.

Important: IntelliBots must be able to find the IBSYSTEM.INC file to assemble
most files correctly. Do not move or delete this file.

2 Check the messages that appear in the assembly window.

If one or more assembly errors occurred, you need to follow the steps in
Correcting Source Code Errors later in this chapter.

Important: Renaming a .BOT file does not change the machine code inside
it. The .BOT file is only changed by reassembling its source code program.
Also, you can’t edit an assembled (.BOT) file; you can only edit its source
code (.ASM) file.

————————————————————————————————–– ✧ –
To run your changed version of the program,

1 Choose Setup from the Mission menu.

2 Click the Choose Locale button and select the Arena Locale from the
Locales folder.

3 Click the Choose IBots button and select the CH03GOAL.BOT program
from the IBots folder.

If other filenames appear in the Selected IBots list, remove them now.

4 Check the Enable Objects and Start Paused boxes.

5 Click Run.

RUNNING THE
EDITED PROGRAM

IntelliBots 1.0 ———————————–✧ Chapter 3 - Changing & Assembling Programs 3-11

6 After the Locale appears, choose Continue from the Mission menu to
continue the action.

The IBot will move down the Locale, turn, and move to the goal.

————————————————————————————————–– ✧ –
The most common typing errors and their assembly error messages are
listed below.

Assembly Error Message Typing Error
Unknown opcode. Not using a Tab to start an instruction, or

misspelling one of the COPR opcodes.
Symbol(s) not defined. Misspelling an instruction operand.
Syntax error. Forgetting the semicolon at the start of a

comment, or using periods instead of
commas.

Leaving out a necessary pound sign does not cause an assembly error, but
usually causes problems when your program runs.

If you need to correct errors in your source code, follow the steps below;
otherwise, go on to Directives below.

1 In the Assembly Status window, carefully note which lines in your
source code are incorrect and why; then close the Assembly Status
window.

If you did not close the source code file, the cursor returns to the Edit
window. Otherwise, open the file as described earlier.

2 Compare your source code to the example shown in Changing the Source
Code earlier in this lesson.

3 Correct the source code line(s) in error.

4 Choose Build “CH03GOAL.ASM” from the File menu.

CORRECTING
SOURCE CODE
ERRORS

3-12 Chapter 3 - Changing & Assembling Programs ✧ ——————————— IntelliBots 1.0

Directives

A directive is a special instruction that tells the assembler to do a certain
task during the assembly of the source code. Most directives are used only
as instructions for the assembler, so they don’t show up in the assembly
output. Two of the IntelliBots directives are described below; others are
described in later chapters.

————————————————————————————————–– ✧ –
.NAME <IBOTNAME> .NAME lets you select an internal name for your IBot program. This

name displays in the status box during a Mission and in the title bar of
some IntelliBots dialog boxes. It does not replace the program’s
filename.

The IBotName must be enclosed in quotes, but you can’t include quotes
inside the name itself. It can be any length, but only about 16 characters
will be displayed in the IBot status box (depending on the font you use).

Suppose the filename of your program is FindGoal, but you want to
display Dr. Tracker while IntelliBots is running. Use this .NAME directive:

.NAME "Dr. Tracker"

————————————————————————————————–– ✧ –
.SUPPRESS .SUPPRESS lets you stop the display of assembly warning messages. This can

make assembly error messages easier to spot in the assembly window.

IntelliBots 1.0 ———————————–✧ Chapter 3 - Changing & Assembling Programs 3-13

Summary

————————————————————————————————–– ✧ –
CONCEPTS These concepts were discussed in chapter 3: Changing and Assembling

Programs:

A) The basic kinds of programming languages are machine, assembly, and
high-level languages.

B) The Edit Window is a basic text processor for displaying and editing
source code.

C) The Open command retrieves a source code file into an edit window.
D) A label marks a location in the code for reference. Labels usually

describe instructions that follow; they must begin at the left margin.
E) An instruction line contains an opcode, from zero to two operands,

and a comment. Instruction lines must begin with at least one Tab.
F) Comments are notes that explain the source code instructions. They

must always begin with a semicolon.
G) The Build command assembles the source code file in the active Edit

Window or from a chosen file.
H) The assembler checks your source code for correct syntax. The

assembler either displays error messages, or translates the file into
machine language and saves it in an assembled (executable) file.

I) You can correct errors in your program by editing the source code file
and reassembling it.

J) Assembled source code files can be run as IBot programs in a Mission
or Competition.

————————————————————————————————–– ✧ –
TERMS TO KNOW After reading this chapter, you should be able to briefly define the terms

below. If you need help, reread the chapter or see Glossary in this manual.

1) machine language; 2) assembly language; 3) high-level language;
4) source code; 5) Program Editor; 6) comment; 7) label;
8) instruction line; 9) opcode; 10) operand; 11) syntax;
12) warning message; 13) assembly error; 14) directive

3-14 Chapter 3 - Changing & Assembling Programs ✧ ——————————— IntelliBots 1.0

Using Degrees
IntelliBots uses the concept of compass degrees and relative degrees for turning
the IBot chassis or turret. Using degrees, you can turn an IBot or its turret
in any direction.

————————————————————————————————–– ✧ –
THE BASICS The circumference (outer edge) of a circle is divided into 360 parts, called

degrees. Using compass degrees, moving clockwise on the circle, every 90
degrees represents a new basic compass direction. Zero degrees is north
(straight up on a Locale); 90 degrees is east (right on a Locale); 180
degrees is south (down on a Locale); and 270 degrees is west (left on a
Locale). A basic diagram of degrees on a circle is shown below.

270 degrees
(west, or left on
screen)

0 degrees
(north, or up on screen)

90 degrees
(east, or right on
screen)

180 degrees
(south, or down on screen)

Figure 3-3 - Compass Degrees in a Circle

Using relative degrees and moving clockwise on the circle, every 90 degrees
represents a new basic relative direction. Zero degrees is forward; 90
degrees is right; 180 degrees is backward; and 270 degrees is left.

————————————————————————————————–– ✧ –
Instead of turning 270 degrees (three-quarters of a full turn) to face left of
the current position, it’s faster to simply turn 90 degrees to the left. This is
done by using “negative degrees.” For example, COPR #ChassisTurn,#-90
turns the IBot minus 90 degrees (90 degrees to the left, or
counterclockwise). You always turn to the left using negative degree values.

NEGATIVE
DEGREES AND
360+ DEGREES

IntelliBots 1.0 ———————————–✧ Chapter 3 - Changing & Assembling Programs 3-15

You can also turn an IBot or turret more than 360 degrees, which spins
more than once around in a circle. For example, COPR #ChassisTurn,#720
turns the IBot twice around the circle (360 x 2 = 720), while COPR
#ChassisTurn,#540 turns the IBot one and a half times (360 + 180).

3-16 Chapter 3 - Changing & Assembling Programs ✧ ——————————— IntelliBots 1.0

Missions

In each Mission below, you will change the CH03GOAL.ASM program and
reassemble the program to make the IBot move differently on the Arena
Locale.

The source code for the CH03GOAL.ASM program is shown below.

Find_Goal

COPR #ChassisMove,#3 ;move IBot 3 units

COPR #ChassisTurn,#90 ;turn IBot chassis 90 degrees - turn right

COPR #ChassisMove,#10 ;move IBot 10 units

COPR #ChassisTurn,#270 ;turn IBot chassis 270 degrees - turn left

COPR #ChassisMove,#15 ;move IBot 15 units

COPR #ChassisTurn,#270 ;turn IBot chassis 270 degrees - turn left

COPR #ChassisMove,#4 ;move IBot 4 units

HALT ;stop the IBot program

————————————————————————————————–– ✧ –
MISSION 3.1 Change one of the COPR #ChassisTurn,#270 instructions to look like this:

COPR #ChassisTurn,#990 ;spin the IBot

This makes the IBot spin around two times at the lower part of the Locale
(990 degrees equals two 360-degree turns plus a 270-degree turn). Change
the comments for the line above, save the program as CH03M1.ASM assemble
the program, and run the Mission.

————————————————————————————————–– ✧ –
MISSION 3.2 Move the IBot along the bottom of the Locale, then up to the goal. Do not

spin the IBot, as in Mission 1; instead, turn the IBot to the left when it
reaches the lower right corner. Hint: To turn the IBot left, put a minus sign
after the pound sign and before the 90 (such as #-90) to indicate negative
90 degrees, or 90 degrees to the left. Assemble the program and run the
Mission again, saving the IBot as CH03M2.ASM.

————————————————————————————————–– ✧ –
MISSION 3.3 Using the comments in the program below, fill in the missing instructions.

Then assemble the program and run it on the Arena Locale.

IntelliBots 1.0 ———————————–✧ Chapter 3 - Changing & Assembling Programs 3-17

? ;move IBot 3 units
? ;turn IBot chassis 270 degrees
? ;move IBot 8 units
? ;turn IBot 90 degrees
? ;move IBot 15 units
? ;turn IBot 90 degrees
? ;move IBot 14 units
? ;turn IBot 270 degrees
? ;move IBot 1 unit
HALT ;stop the IBot program

Creating Programs

In this section you’ll learn how to design and create programs that
accomplish tasks, and how to understand data that is processed by the
computer.

• Chapter 4 - Building a New Program explains the basic steps of how to
design and create a new program.

• Chapter 5 - Loops shows how to write programs that repeat tasks, either
conditionally or unconditionally.

• Chapter 6 - Coprocessors and Ports helps you understand and use
IntelliBots coprocessors and ports in your program.

IntelliBots 1.0 ————————————————–✧ Chapter 4 - Building New Programs 4-1

4 - Building a New Program

In this chapter you’ll learn how to create new IBot programs of your own.
Here are the main topics in this chapter:

• Program Design
• Deciding the Objective
• Dividing the Problem into Tasks
• Improving the Tasks
• Writing the Tasks as Source Code
• Implementation (Trying the Solution)
• Changing the Objective
• Introduction to the Debugger

Program Design

When you design a program, you decide the program’s objective (what the
program should do) and then divide that objective into tasks. Actually,
design is important in almost anything you create. For example, building a
model is much easier if you have a good blueprint or design to work from.
The better and more clear your design is, the more successful your creation
is likely to be.

Inexperienced programmers often mistakenly think it’s faster and easier to
finish a program by skipping the design part and typing the source code
right away. But that only makes the coding time last much longer, because
they end up rewriting the source code over and over to fix problems. So it’s
actually quicker and easier to do a good program design first; then the
coding usually goes faster, and a better program is created.

————————————————————————————————–– ✧ –
DESIGN STEPS You should follow these basic steps in program design before you start

typing the actual instructions for your program:

Step 1: Decide the objective for the program.
Step 2: Divide the objective into tasks.

4-2 Chapter 4 - Building New Programs ✧ —––—————————————— IntelliBots 1.0

Step 3: Improve the tasks, making them more clear and precise.
————————————————————————————————–– ✧ –

Once you have completed these steps, you can implement your design (put
it into action):

Step 4: Write each task as source code.
Step 5: Assemble the source code and run the program.
Step 6: Check to see that the program accomplishes the objective correctly.

————————————————————————————————–– ✧ –
The earlier you catch errors, they less trouble they cost you. For example,
an error in step 1 means your objective is incorrect. If you have gone all
the way to step 6 before you realize the problem, you may end up
rewriting the whole program. Eliminate as many errors as possible in the
design phase so they won’t be carried into the implementation phase.

Deciding the Objective

Step 1: Decide the objective for your program.

The program objective is the overall goal you want the program to
accomplish. You can usually write the objective in one or two sentences.
The objective should tell you what must be done and should tell you any
important restrictions; but it should not tell you exactly how to solve the
problem.

————————————————————————————————–– ✧ –
RESTRICTIONS The objective below is a good one, except that it has no restrictions, and that

opens up too many questions.

Objective 1 (weak, because of no restrictions):
Move the IBot to make it shoot the goal on the Locale.

With no restrictions, this objective raises questions like these:

• Which Locale is being used?
• Where and how far away is the goal?
• Can the IBot move anywhere, using plenty of time?
• Where is the IBot at the start of the Mission?

IMPLEMENTATION
STEPS

THE COST
OF ERRORS

IntelliBots 1.0 ————————————————–✧ Chapter 4 - Building New Programs 4-3

Here is the same objective with restrictions added:

Objective 1 (revised):
Move the IBot to make it shoot the goal on the Locale.

Restrictions:
• Use the Arena Locale.
• Move only vertically or horizontally, using the shortest path to the

goal.
• Go below the south barrier.
• The goal is 18 units to the right and 8 units below the IBot’s starting

position.
• When you are next to the goal, shoot it with the laser.
• Your IBot is the only one in the Mission, and it starts in the west

chamber of the Arena Locale, facing east.

Note: On the computer screen, north is up, south is down, west is left, and
east is right.

Below is a diagram of how the IBot needs to move to reach the goal.

Figure 4-1: Path to goal on Arena Locale

4-4 Chapter 4 - Building New Programs ✧ —––—————————————— IntelliBots 1.0

Dividing the Objective into Tasks

Step 2: Divide the objective into tasks.

Looking at the previous diagram, you can divide the new Objective 1 into
these basic tasks:

Task A: Move the IBot out of the chamber.
Task B: Move the IBot down below the south barrier.
Task C: Move the IBot east, next to the goal.
Task D: Shoot the goal with the laser.

Still, these basic tasks need to be improved. They don’t handle the proper
turning of the IBot for each movement; they don’t tell how far to move;
and there’s no step for turning the turret to fire the laser at the correct
angle.

Improving the Tasks

Step 3: Improve the tasks, making them more clear and precise

Task A: Move the IBot 1 unit to the right.
Task A1: Turn the IBot to the right (facing south).
Task B: Move the IBot 8 units.
Task B1: Turn the IBot right (facing east).
Task C: Move the IBot 17 units.
Task D1: Turn the turret to the left (pointing north).
Task D2: Fire the laser.

The tasks now move and turn the IBot properly. The next step is to
translate these tasks into the actual source code for your program.

IntelliBots 1.0 ————————————————–✧ Chapter 4 - Building New Programs 4-5

Writing the Tasks as Source Code

Step 4: Write the tasks as source code

A good way to translate your tasks into source code is to type each task as
a program comment, then fill in each instruction line with the proper
instruction.

1 Choose New from the File menu.

An untitled Edit Window appears.

2 Press Tab, then type the first task as the comment for your first
instruction, as shown below.

;move IBot right (1 unit)

3 Like in step 2, type the comments for each of the other tasks:

;turn IBot 90 degrees to face south
;move IBot (8 units)
;turn IBot left (-90 degrees)
;move IBot (17 units)
;turn turret towards goal
;shoot goal with laser

4 After the first tab on the first line, type the instruction that moves the
IBot 1 unit. Be sure to include a tab after COPR and another tab
before the comment. The finished instruction line looks like this:

COPR #ChassisMove,#1 ;move IBot right (1 unit)

This kind of instruction is like the ones explained in Chapter 3 -
Changing and Assembling Programs. You can be somewhat flexible in
how you word the comments, as long as you accurately describe
the instructions.

5 Repeat step 4 for each task, adding an instruction line for each
comment. Be sure to include the commas (,), pound signs (#), and

4-6 Chapter 4 - Building New Programs ✧ —––—————————————— IntelliBots 1.0

semicolons (;) in the right locations. (Spelling mistakes inside
comments won’t cause assembly errors.)

The finished program now looks like this:

COPR #ChassisMove,#1 ;move IBot right (1 unit)
COPR #ChassisTurn,#90 ;turn IBot 90 degrees to face south
COPR #ChassisMove,#8 ;move IBot (8 units)
COPR #ChassisTurn,#-90 ;turn IBot left (-90 degrees)
COPR #ChassisMove,#17 ;move IBot (17 units)
COPR #TurretTurn,#-90 ;turn turret towards goal
COPR #OffenseLaser,#20 ;shoot goal with laser
HALT ;stop the IBot program

In small programs like this one, the number of tasks will usually match the
number of source code instructions. In larger programs, you will need to
divide some of the improved tasks into multiple instructions.

Implementation (Trying the Solution)

Step 5: Assemble the source code and run the program.

1 Save the file as CH04GOAL.ASM in the IBots folder.

2 Assemble the file by choosing Build “CH04GOAL.ASM” from the File
menu.

If the file does not assemble correctly, you need to correct all typing
errors and assemble the file again (see Correcting Source Code Errors in
Chapter 3 - Changing and Assembling Programs).

————————————————————————————————–– ✧ –
This Mission depends on the IBot moving a precise number of units, so
you may want to show the Locale grid. The grid displays gray framework
lines over the Locale; each square that appears corresponds to one Locale
unit.

3 Choose Setup from the Mission menu.

4 Check the Show Grid box.

SHOWING THE
LOCALE GRID

IntelliBots 1.0 ————————————————–✧ Chapter 4 - Building New Programs 4-7

————————————————————————————————–– ✧ –
Now you need to set up the Mission and run it.

With the Setup Dialog open,

5 Select the Arena Locale and the CH04GOAL.BOT program.

6 Click Enable Goal, then click Run.

7 Select Continue from the Mission Menu.
————————————————————————————————–– ✧ –

Step 6: Check the results.

The IBot should move to the goal and win the Mission. If the IBot does
not reach the goal, correct any mistakes in your source code; then repeat
steps 1 and 2 and 6 through 9 above. You will learn more about checking
program results in Chapter 12: Testing Programs.

You have now designed and created a new program, and you have tried it
out by running a Mission.

Changing the Objective

When you change a program’s objective or restrictions, you usually need
to redesign and rewrite the tasks. Objective 2 below is a little different
from the Objective 1 you used. The changes are noted in italics.

Objective 2:
Move the IBot to make it reach the goal on the Locale.

Restrictions:
• Use the Arena Locale.
• Move only vertically or horizontally.
• Go just below the west barrier.
• The goal is 18 units to the right and 8 units below the IBot’s starting

position.
• Run into the goal.
• Your IBot is the only one in the Mission, and it starts in the west

chamber of the Arena Locale, facing east.

RUNNING THE
MISSION

CHECKING THE
RESULTS

4-8 Chapter 4 - Building New Programs ✧ —––—————————————— IntelliBots 1.0

Here are the improved tasks for Objective 2:

Task A: Move the IBot 1 unit to the right.
Task A1: Turn the IBot to the right (facing south).
Task B: Move the IBot 2 units.
Task B1: Turn the IBot left (facing east).
Task C: Move the IBot 17 units.
Task D1: Turn the IBot to the right (facing south).
Task D2: Move the IBot 5 units.

————————————————————————————————–– ✧ –
Now you need to write these tasks as source code and implement the
program.

1 Choose New from the File menu.

2 Write the tasks for Objective 2 as source code instructions.

If you need help or would like to check your instructions for accuracy,
see Source Code for Objective 2 below.

3 Save the file as CH04GOL2.ASM.

4 Assemble the source code without errors.

5 Choose Setup from the Mission menu.

6 Select the Arena Locale and the CH04GOL2.BOT IBot.

7 Continue the Mission action.

The IBot should reach the goal. If it doesn’t, correct any mistakes in your
source code and repeat steps 3 through 7 above.

————————————————————————————————–– ✧ –
Here are the source code instructions for step 2 above:

COPR #ChassisMove,#1 ;move IBot right (1 unit)
COPR #ChassisTurn,#90 ;turn IBot to face down (90 degrees)
COPR #ChassisMove,#2 ;move IBot (2 units)
COPR #ChassisTurn,#-90 ;turn IBot left (-90 degrees)

CHANGING THE
PROGRAM

SOURCE CODE
FOR OBJECTIVE 2

IntelliBots 1.0 ————————————————–✧ Chapter 4 - Building New Programs 4-9

COPR #ChassisMove,#17 ;move IBot (17 units)
COPR #ChassisTurn,#90 ;turn IBot right (90 degrees)
COPR #ChassisMove,#5 ;move IBot (5 units)
HALT ;stop the IBot program

————————————————————————————————–– ✧ –
When you choose a new objective for a program, you need to design new
tasks and write new program instructions. Here is a new objective to try:

Objective 3:
Move the IBot in a pattern so it traces a large square pattern.

Restrictions:
• Use the Field Locale.
• There are 36 units to each side of the square.
• The IBot turns to the right each time it completes a side.

Here are the tasks for Objective 3:

Task A: Turn the IBot -45 degrees (minus 45 degrees, facing east).
Task A1: Move the IBot 36 units.
Task B: Turn the IBot 90 degrees.
Task B1: Move the IBot 36 units.
Task C: Turn the IBot 90 degrees.
Task C1: Move the IBot 36 units.
Task D: Turn the IBot 90 degrees.
Task D1: Move the IBot 36 units.
Task E: Halt the IBot.

1 Open a new file and write these tasks as source code.

2 Save the file as CH04SQR.ASM.

3 Assemble the program without errors and run a Mission with it as the
only IBot on the Field Locale.

4 When the IBot finishes tracing the square, terminate the Mission
(choose Terminate from the Mission menu).

If the program doesn’t work as expected, correct any mistakes in your
source code, reassemble it, and run the Mission again.

EXERCISE 1:
USING A NEW
OBJECTIVE

4-10 Chapter 4 - Building New Programs ✧ —––—————————————— IntelliBots 1.0

Introduction to the Debugger

————————————————————————————————–– ✧ –
The IntelliBots Debugger is a full-featured debugging tool for testing
programs. (Debug means to find and fix bugs, or problems in your program
source code.) Instead of pausing and continuing the Mission action to
figure out a problem in your program, you can get help with the Debugger.

The IntelliBots Debugger helps you step through your program one
instruction at a time, so you can find problems in your source code. This
can be very helpful as you write larger or more complicated programs. You
will learn more about the Debugger in later chapters.

————————————————————————————————–– ✧ –
To display the Debugger,

1 With the action paused, run a Mission using the program you want to
debug. For now, use the CH04SQR.BOT program and the Field Locale.

Important: If you run two or more programs in a Mission, you must
click the IBot’s icon (in the status box) for the program you want to
debug. If you run just one program, the IBot icon is already
highlighted.

2 Choose Debug from the Mission menu to display the Debugger
window.

ABOUT THE
DEBUGGER

DISPLAYING
THE DEBUGGER

IntelliBots 1.0 ————————————————–✧ Chapter 4 - Building New Programs 4-11

Figure 4-2: Debugger window

3 To see more of the Locale, you can drag the Debugger window to
another part of the screen.

The following parts of the Debugger are discussed in this chapter:

• Disassembly window
• Step button
• Close button
• RS (ReStart) command on the Debugger command line

————————————————————————————————–– ✧ –
Disassembly means displaying machine code instructions in their original
source code format, like the opposite of assembling. The right side of the
Disassembly window displays the current instruction, as well as the next
several program instructions. All instructions are displayed without
comments. The left side of the window shows the address (location in
computer memory) of each instruction.

For example, the first instruction in the disassembly window is
COPR #ChassisMove,#-45. The address for this instruction is labeled as
__START.

DISASSEMBLY
WINDOW

4-12 Chapter 4 - Building New Programs ✧ —––—————————————— IntelliBots 1.0

————————————————————————————————–– ✧ –
STEP BUTTON When you click the Step button, you run the current instruction in the

disassembly window. (If that instruction causes some kind of IBot action,
you will see the action happen in the Locale window.) The next instruction
then displays at the top of the disassembly window. Each time a new
instruction is executed, the disassembly window scrolls. You can’t scroll
backwards or re-run any instruction.

1 Click the Step button once (on the right of the Debugger window).

The IBot turns -45 degrees, and the disassembly window scrolls to the
next instruction: COPR #ChassisMove,#36.

2 Click the Step button again.

The IBot moves 36 units to the right. (When other programs are in the
Mission, they will also execute their instructions in turn, but you will
only see instructions for the program you are debugging.)

————————————————————————————————–– ✧ –
CLOSE BUTTON To close the Debugger window,

1 Click the Close button on the right of the Debugger window.

The Mission continues as before. If the Mission was in a paused state,
it remains paused but shows any effects of instructions you have run in
the Debugger.

————————————————————————————————–– ✧ –
RS COMMAND The RS (ReStart) command closes the Debugger window and restarts the

current Mission. The RS command is especially useful when you have
stepped too far in the program, and you need to restart the Mission.

1 Choose Debug from the Mission menu to display the Debugger
window.

2 Type RS on the Command line (at the bottom of the Debugger
window) and press Return.

IntelliBots 1.0 ————————————————–✧ Chapter 4 - Building New Programs 4-13

————————————————————————————————–– ✧ –
.LOCK <FILENAME> The .LOCK assembler directive lets you lock (encrypt) your assembled file so

its source code can’t be seen in the Debugger. If you give an assembled file
to someone else to run in a Mission, you may want to lock the file so your
opponent can’t use the Debugger to see the program contents. The locked
file will run normally in IntelliBots. To unlock the program, remove the
.LOCK directive from the source code and reassemble the file.

4-14 Chapter 4 - Building New Programs ✧ —––—————————————— IntelliBots 1.0

Summary

————————————————————————————————–– ✧ –
CONCEPTS These concepts were discussed in chapter 4: Building New Programs:

A) Program design is the process of deciding the objective for your
program and then dividing the objective into the correct tasks.

B) To design a program, you follow these steps:
1) Write the objective.
2) Divide the objective into tasks.
3) Improve the tasks, making them more precise and clear.

C) To implement a program, you follow these steps:
4) Write the tasks as source code.
5) Try out the solution.

D) When an objective changes, the tasks should be changed.
E) The check box Show Grid in Mission Setup displays a grid over the

Locale.
F) The Debugger is a software tool that lets you see a program’s

instructions being executed.
G) The Debugger is only active when a Mission window is displayed and a

IBot icon is selected.
H) The disassembly window displays the program instructions; it does not

display comments.
I) The Step command executes your program instructions one at a time.
J) The RS command (ReStart) closes the Debugger and restarts the

current Mission.
K) The .LOCK directive prevents an assembled program from being seen in

the Debugger.
————————————————————————————————–– ✧ –
TERMS TO KNOW After reading this chapter, you should be able to briefly define the terms

below. If you need help, reread the chapter or see Glossary in this manual.

1) program design; 2) task; 3) implementation; 4) objective;
5) restriction; 6) Debugger; 7) disassembly; 8) Step; 9) Close;
10) RS (ReStart) 11) .LOCK

IntelliBots 1.0 ————————————————–✧ Chapter 4 - Building New Programs 4-15

Missions

The Missions below use the Field Locale. Design and implement the
program for each exercise below. Test each program by running a Mission
with your IBot on the Field Locale.

Important: There are many variations you can try on the Missions and
exercises in this chapter and later chapters. Once you master them the
regular way, design your own new objectives to try some variations.

————————————————————————————————–– ✧ –
MISSION 4.1 Move the IBot in a pattern so it traces a triangle. Each side is 40 units, and

the IBot turns 120 degrees each time. Save the file as CH04M1.ASM in the
Missions folder.

————————————————————————————————–– ✧ –
MISSION 4.2 Move the IBot in a pattern so it traces a octagon. The IBot starts at the

upper right corner of the octagon. Each side is 14 units; each angle is 45
degrees. Save the file as CH04M2.ASM in the Missions folder.

————————————————————————————————–– ✧ –
MISSION 4.3 Move the IBot in a pattern so it traces five lines to form a star. The IBot

starts at the upper left tip of the star. Each line is 30 units in length; each
angle the IBot must turn is 144 degrees. Save the file as CH04M3.ASM.

(start)

IntelliBots 1.0 ———————————————————————✧ Chapter 5 - Loops 5-1

5 - Loops

In this chapter you’ll learn how to write programs that repeat tasks, either
conditionally or unconditionally. Here are the main topics in this chapter:

• Infinite Loops
• Building an Infinite Loop
• Conditional Loops
• Building a Conditional Loop
• Using Variable Data and Registers
• Decrementing a Value
• Conditional Jumps
• Incrementing a Value

A loop is a repeating set of program instructions. An infinite loop repeats
forever unless something outside the program interrupts it (such as turning
off the computer). A conditional loop repeats until a certain condition is
reached. A computer can easily repeat a set of instructions thousands or
millions of times, but it’s very difficult for us to write that many separate
instructions. A loop lets the computer do the work of repetition, while we
simply tell it what to repeat and when. Infinite loops and conditional loops
are explained in this chapter.

Infinite Loops

An infinite loop lets you repeat a set of instructions indefinitely, until you
terminate the program (such as by choosing Terminate from the Mission
menu). A familiar business-world example of an infinite loop is an
electronic “banner” sign that shows a moving message and repeats it when
the message goes off the sign at the edge.

Sometimes a programmer will accidentally create an infinite loop where
none was supposed to exist. When this happens, the program is said to be
“stuck in a loop.” It’s important to create infinite loops correctly when
they’re wanted, and avoid them when they’re not wanted.

5-2 Chapter 5 - Loops ✧ —–————————————————————— IntelliBots 1.0

Building an Infinite Loop

To see how an infinite loop works, you can change the square-tracing
pattern you wrote in Chapter 4 into a loop program. That way, the IBot
will keep tracing the same square shape until you stop the Mission. Here
are the original tasks for that program:

Task A: Turn the IBot -45 degrees (to point east)
Task A1: Move the IBot 36 units.
Task B: Turn the IBot 90 degrees.
Task B1: Move the IBot 36 units.
Task C: Turn the IBot 90 degrees.
Task C1: Move the IBot 36 units.
 Task D: Turn the IBot 90 degrees.
Task D1: Move the IBot 36 units.

To repeat this set of instructions over and over, add a task at the end
telling the program to go back to Task A.

Task E: Go to Task A.

This go to task creates an infinite loop, because the program keeps
repeating tasks A through E.

————————————————————————————————–– ✧ –
When you change a regular program into a loop, you might run into a few
problems. To avoid problems with loops,

• Watch for any tasks that should not be repeated, and put them before
or after the loop.

In the square-tracing program, Task A should only be done once, so the
IBot points south. If Task A gets repeated, the square will be tilted left
45 degrees each time it is traced.

To fix this, Task E should be:

Task E: Go back to Task A1.

AVOIDING LOOP
ERRORS

IntelliBots 1.0 ———————————————————————✧ Chapter 5 - Loops 5-3

Now Task A is before the loop, and Task A1 is the first task of the loop.

• Make sure there are no missing or extra tasks when the last “action”
task of the loop moves to the first task of the loop.

 The last IBot movement task is Task D1: Move the IBot 36 units.
When the loop goes back to A1, then Task A1 says to move 36 units,
also. At that point, the IBot moves 72 units without turning, which
ruins the square shape.

To fix this, add task D2:

Task D2: Turn the IBot 90 degrees.

• If you want the loop to run faster (and exact dimensions aren’t
important), make any long task into a shorter one.

For example, the IBot could move just 10 units instead of 36 units
each time.

————————————————————————————————–– ✧ –
FIXING THIS LOOP Using the three suggestions above, the tasks now look like this:

Task A: Turn the IBot -45 degrees (to point east)
Start of Loop

Task A1: Move the IBot 10 units.
Task B: Turn the IBot 90 degrees.
Task B1: Move the IBot 10 units.
Task C: Turn the IBot 90 degrees.
Task C1: Move the IBot 10 units.
 Task D: Turn the IBot 90 degrees.
Task D1: Move the IBot 10 units.
Task D2: Turn the IBot 90 degrees.
Task E: Go back to Task A1.

However, you can write this loop with fewer instructions. Notice that there
are really only two different instructions inside the loop: move 10 units, and
turn 90 degrees. To save yourself some typing, you could write the loop
like this:

Start of Loop --------
Task A1: Move the IBot 10 units.

5-4 Chapter 5 - Loops ✧ —–————————————————————— IntelliBots 1.0

Task B: Turn the IBot 90 degrees.
Task E: Go back to Task A1.

Now the IBot traces the complete square after the loop runs four times, but
only three printed instructions are used in this loop instead of nine for the
original loop.

The next step is to translate these tasks into source code. You need to put
a label in the source code to indicate the start of the loop, and task E needs
a special jump instruction to go back to the start of the loop.

————————————————————————————————–– ✧ –
LABEL AND JUMP A label is a title you create to show where the program jumps. Label names

begin with a letter and can contain letters, numbers, or underscores (_),
but not spaces. So instead of “Start of Loop”, we can use “Start_of_Loop”
(replacing the spaces with underscores).

The JUMP (Jump) instruction makes the program go back to the label you
use. So, Task E can be translated to this:

JUMP Start_of_Loop

The source code translation for the tasks looks like this:

COPR #ChassisTurn,#-45 ;turn -45 degrees (pointing east)
Start_of_Loop

COPR #ChassisMove,#10 ;move IBot 10 squares
COPR #ChassisTurn,#90 ;turn 90 degrees
JUMP Start_of_Loop ;go back to start of loop

To try this new program,

1 Open a new file.

2 Type the program instructions above.

Be sure to type Start_of_Loop at the left margin, but begin all other
instructions with a Tab.

3 Save the program as CH05SQR.ASM in the IBots folder and assemble the
program without errors.

4 Run a Mission on the Field Locale with the CH5SQR.ASM IBot.

IntelliBots 1.0 ———————————————————————✧ Chapter 5 - Loops 5-5

5 After the IBot completes the square several times, stop the action.
————————————————————————————————–– ✧ –
JUMPING AHEAD You can also use the JUMP instruction to jump ahead in the program

(although jumping ahead does not usually cause a loop to happen).
Suppose you want to trace either a square, a triangle, or a diamond. Instead
of writing three separate programs, you can write one program and include
a jump instruction at the right place to skip ahead to the right part of the
program. That way, you don’t have to keep deleting or adding instructions
every time you want to change the program.

In the example below, the program skips over the square-tracing routine to
do the triangle-tracing and square-tracing routines. (The dots (...) mean
that you would write more tasks at those points.)

Start
Jump to Trace_Triangle

Trace_Square
...

Trace_Triangle
...

Trace_Diamond
...

Conditional Loops

A conditional loop repeats a set of instructions only until a certain
condition exists. A familiar example of a conditional loop is an ATM cash
machine at the bank. The ATM’s computer program keeps displaying a
“welcome” screen until you press a button; then it displays a different
screen of instructions, based on the choice you made. The ATM program
uses conditional loops to guide you through its screens, until you finish
with your transaction. These conditional loops are actually contained
within an infinite loop, because when the transaction is done, you start all
over with the first screen.

If a conditional loop runs but never finds the condition it’s looking for, the
loop will become infinite. Plan your conditional loops carefully so they
don’t turn into infinite loops by mistake.

5-6 Chapter 5 - Loops ✧ —–————————————————————— IntelliBots 1.0

Building a Conditional Loop

The CH05SQR.ASM program you wrote always moves the IBot 10 units.
What if you wanted to move the IBot 10 units, then 9, then 8, etc., down
to zero? Instead of a square, the IBot would trace a shrinking square spiral:

Figure 5-1: Shrinking square spiral for conditional loop

Objective: Trace a shrinking square spiral, starting at 10 units and
decreasing by one on each side, until the size is zero.
Here are the tasks in planning this conditional loop:

Task A: Turn the IBot 45 degrees to the left.
Task B: Set the starting length (number of units) of the square side

as 10.
Task C: Begin the conditional loop with a label, such as

Start_Loop.
Task D: Move the IBot the number of units in the current length.
Task E: Turn the IBot.
Task F: Subtract one from the current length.
Task G: If the length is more than zero, repeat the loop; else exit

the loop.

Tasks A and B are put before the loop. If they were put in the loop, two
problems would happen each time the loop repeated: the IBot would keep
turning an extra 45 degrees; and the size would keep getting reset to 10
each time the loop repeated, so the size would never reach zero.

IntelliBots 1.0 ———————————————————————✧ Chapter 5 - Loops 5-7

Tasks C, D, and E are like the ones used in the infinite loop discussed
earlier. Tasks F and G are new; their concepts are discussed below, after
tasks A and B.

Using Variable Data and Registers

Task A: Turn the IBot 45 degrees to the left.
Task B: Set the starting size (number of units) of the square side as 10.

————————————————————————————————–– ✧ –
VARIABLE DATA The length of the side starts as 10 units, but it will gradually decrease until

it becomes zero. This length is called variable data, because it constantly
changes. So, the variable data starts as 10, then drops by one each time the
loop repeats (to 9, to 8, etc.). Your program needs to set the value of the
variable data and store the value where it can be easily accessed. You can
set and store values in a register.

————————————————————————————————–– ✧ –
REGISTERS The computer’s CPU provides useful storage locations called registers.

Registers are named R0 (register zero), R1 (register 1), and so on, up to
R6. You can think of a register as a scratch pad for writing and holding
data. A register can only hold one value at a time, but you can change that
value as often as you want.

————————————————————————————————–– ✧ –
MOVE To get a value into a register, you can use the MOVE instruction. MOVE copies

a value into a register or other memory location. (A register contains an
unpredictable value until you move a known value into it.) In the example
below, the MOVE instruction moves 10 into register 1 (R1):

MOVE #10,R1 ;set starting length of square side

The square loop example uses R1, but any register from R0 to R6 could be
used.

————————————————————————————————–– ✧ –
USING A REGISTER Now that there’s a value in R1, other instructions can access that value.

For example, instead of using COPR #ChassisMove,#10, you could use
COPR #ChassisMove,R1. Then the IBot would move the same number of
units as whatever value is currently stored in R1.

So far, the conditional loop looks like this:

5-8 Chapter 5 - Loops ✧ —–————————————————————— IntelliBots 1.0

COPR #ChassisTurn,#-45 ;turn IBot to face east (TASK A)
MOVE #10,R1 ;set starting size of side (TASK B)

Start_Loop ;(TASK C)
COPR #ChassisMove,R1 ;move IBot “R1” units (TASK D)
COPR #ChassisTurn,#90 ;turn 90 degrees (TASK E)

(F Subtract one from the current length.)
(G If the length is greater than zero, repeat the loop; else exit the loop.)

Decrementing a Value

Task F: Subtract one from the current length.
————————————————————————————————–– ✧ –
DEC Now that the length is in R1, you can decrease the length by decreasing

(decrementing) the value in R1. To do this, you can use the DEC instruction
to decrease R1 by one:

DEC R1 ;decrease R1 by one

Now the conditional loop looks like this:

COPR #ChassisTurn,#-45 ;turn IBot to face east (TASK A)
MOVE #10,R1 ;set starting size of side (TASK B)

Start_Loop ;(TASK C)
COPR #ChassisMove,R1 ;move IBot “R1” units (TASK D)
COPR #ChassisTurn,#90 ;turn 90 degrees (TASK E)
DEC R1 ;decrease R1 by one (TASK F)

(G If the length is greater than zero, repeat the loop; else exit the loop.)
————————————————————————————————–– ✧ –
SUB SUB (Subtract) decreases a value by the amount you choose. Instead of

using DEC, you could use SUB, like this:

SUB #1,R1 ;subtract one from R1

If you only need to subtract one, the DEC instruction will actually run faster
than SUB. For subtracting more than one at a time, SUB is the better choice.
If you subtract 2 or more in the square loop, the square will shrink faster.

IntelliBots 1.0 ———————————————————————✧ Chapter 5 - Loops 5-9

Conditional Jumps

Task G: If the length is more than zero, repeat the loop; otherwise, exit the loop.
————————————————————————————————–– ✧ –
JG A conditional jump instruction (such as JG) causes a jump only when a

certain condition occurs. For example, the CMP instruction shown sets the
“zero” condition flag if the result of the instruction is zero (R1 = 0). (You
will learn more about condition flags in Chapter 8: Checking Conditions.) If
R1 is greater than zero, the JG (Jump on Greater than Zero) conditional
jump instruction will repeat the loop.

CMP #0,R1 ;compare zero to R1
JG Start_Loop ;if R1 > zero, go back to Start_Loop

As long as R1 is greater than zero, the JG will keep sending the program
back to Start_Loop. But when R1 gets to zero (or below), JG no longer
jumps to Start_Loop; instead, the program continues with the next
instruction after JG. This instruction could be HALT, to stop the program.

CMP #0,R1 ;compare zero to R1
JG Start_Loop ;if R1 > zero, go back to Start_Loop
HALT ;stop the IBot program

Here’s the finished loop:

COPR #ChassisTurn,#-45 ;turn IBot to face east
MOVE #10,R1 ;set starting length of square side

Start_Loop
COPR #ChassisMove,R1 ;move IBot the number of units in R1
COPR #ChassisTurn,#90 ;turn 90 degrees (facing right)
DEC R1 ;decrease R1 by one
CMP #0,R1 ;compare zero to R1
JG Start_Loop ;if R1 > zero, go back to Start_Loop
HALT ;stop the IBot program

————————————————————————————————–– ✧ –
To try this decrementing loop,

1 Open a new file.

EXERCISE 1:
TRYING THE
DECREMENTING
LOOP

5-10 Chapter 5 - Loops ✧ —–————————————————————— IntelliBots 1.0

2 Carefully type the instruction lines shown above for the conditional
loop.

3 Save the program as CH05DEC.ASM and assemble it without errors.

4 Run a Mission on the Field Locale with the CH05DEC.ASM IBot.

The IBot will trace a shrinking square spiral.

Incrementing a Value

An incrementing conditional loop uses an increasing value each time the
loop repeats. For example, you can change the shrinking square loop into
an expanding square loop by using incrementing instructions. So if the
IBot starts at the center of the Locale, it could move in an expanding
square spiral shape until the side length reaches 11 squares:

Figure 5-2: Expanding square spiral for incrementing loop

Here are the tasks for this incrementing loop:

Task A: Set the initial side length to a small value, such as 2.
Set the initial angle to point east.

Task B: Move the IBot as much as the current side length.
Task C: Turn the IBot to its right.
Task D: Use the INC (Increment) instruction to add one to the

length.
Task E: Compare the length to a maximum limit, such as 12.
Task F: If the length is less than 12, repeat the loop.

IntelliBots 1.0 ———————————————————————✧ Chapter 5 - Loops 5-11

Here’s the source code for the incrementing loop:

COPR #ChassisTurn,#-45 ;turn left 45 degrees (pointing east)
MOVE #2,R1 ;move starting length into R1

Loop
COPR #ChassisMove,R1 ;move the IBot the length of a side
COPR #ChassisTurn,#90 ;turn 90 degrees
INC R1 ;add one to current value of R1
CMP #12,R1 ;compare 12 to R1
JL Loop ;if R1 < 0, repeat loop
HALT ;result is 0, halt IBot

Notice that there are two new instructions in this program: INC and JL
along with CMP which was used in the last example. These instructions are
described below.

————————————————————————————————–– ✧ –
INC AND ADD The INC (Increment) instruction increases a value by one, like the reverse

of the DEC instruction. You can also use the ADD instruction to increase a
value by the amount you choose, like the opposite of the SUB instruction.
For adding just one, INC is a faster instruction.

————————————————————————————————–– ✧ –
CMP (COMPARE) You can use the CMP (Compare) instruction to check the value of a register,

such as R1 (where the length of the square side is being stored).

CMP #12,R1 ;compare 12 to the value in R1

CMP compares the two operands (12 and R1) by subtracting the first
operand (12) from the second (R1). If the result is zero, the values are
equal (R1 = 12). If the result is positive, then R1 is greater than 0; if the
result is negative, then R1 is less than 12.

Remember: CMP expects the first operand to be a value (like 12) and the
second operand to be a register (like R1).

————————————————————————————————–– ✧ –
JL You can use the JL (Jump on Result Less Than) instruction to jump only if

the CMP instruction results in a negative value. For example, if R1 is 11,
then 11 minus 12 is negative, so the JL instruction would be executed to
jump back to the Loop label. If R1 is 12, the CMP result is zero, so JL would
be skipped, and HALT would be executed.

5-12 Chapter 5 - Loops ✧ —–————————————————————— IntelliBots 1.0

————————————————————————————————–– ✧ –
To try out the incrementing loop, type the source code for the
incrementing loop in a new file named CH05INC.ASM. Assemble the program
and run a Mission on the Field Locale. When the IBot completes the
expanding square loop, choose Terminate from the Mission menu. If you
need help with any of these steps, see the steps in Exercise 1: Trying the
Decrementing Loop for some ideas.

————————————————————————————————–– ✧ –
The Registers window in the Debugger shows the current values of the
seven general purpose registers, which are R0 through R6. When a
program begins, R0 through R6 contain random values; then they are
updated as the registers change.

To try out the Registers window,

1 With the action paused, run the CH05INC program on the Field Locale.

2 Choose Debug from the Mission menu.

The Registers window is at the upper-right corner of the Debugger
window. It currently has a random value in it.

3 Click the Step button twice, causing the MOVE #2,R1 instruction to run.

The next instruction is COPR #ChassisMove,R1. Now the R1 value
displays as 2 in the window, as shown in Figure 5-3 below.

EXERCISE 2:
TRYING THE
INCREMENTING
LOOP

VIEWING
REGISTERS IN
THE DEBUGGER

IntelliBots 1.0 ———————————————————————✧ Chapter 5 - Loops 5-13

Figure 5-3: Registers window after MOVE #2,R1 instruction executes.

4 Click the Step button three times, causing the INC R1 instruction to
run.

The next instruction is CMP #12,R1. Now the R1 value displays as 3
because it was incremented by 1, as shown in Figure 5-4 below.

Figure 5-4: Registers window after INC R1 instruction executes.

5 Choose Terminate from the Mission.

5-14 Chapter 5 - Loops ✧ —–————————————————————— IntelliBots 1.0

————————————————————————————————–– ✧ –
The JE instruction jumps if the result is equal to zero. It’s possible to use
this instruction in conditional loops, but a serious problem may occur. If
the decrementing or incrementing value ever goes past the value checked
by the JE, the loop will continue on infinitely, which is not what you want.

In this example, the loop works because it’s always incrementing by one.

MOVE #0,R1 ;move 0 into R1
Loop

INC R1 ;add one to current value of R1
CMP #10,R1 ;compare 10 to R1 (R1 minus 10)
JE ExitLoop ;if result equals 10, exit the loop
JUMP Loop ;repeat the loop

ExitLoop

But the next example turns into an infinite loop, because the value will
eventually increment from 8 to 10, passing the limit that JE checks for.

MOVE #0,R1 ;move 0 into R1
Loop

ADD #2,R1 ;add two to current value of R1
CMP #9,R1 ;compare 9 to R1 (R1 minus 9)
JE ExitLoop ;if result equals 10, exit the loop

;this causes an infinite loop
JUMP Loop ;repeat the loop

ExitLoop

Therefore, it’s better to use JG and JL for conditional loops. Here’s the
above example done correctly with a JG instruction:

MOVE #0,R1 ;move 0 into R1
Loop

ADD #2,R1 ;add two to current value of R1
CMP #9,R1 ;compare 9 to R1 (R1 minus 9)
JG Loop ;if result is more than 9, exit loop

JE AND
CONDITIONAL
LOOPS

IntelliBots 1.0 ———————————————————————✧ Chapter 5 - Loops 5-15

Summary

————————————————————————————————–– ✧ –
CONCEPTS These concepts were discussed in chapter 5: Loops:

A) An infinite loop repeats the same instructions indefinitely, until you
terminate the program.

B) A label is a location in the program used by a jump instruction.
C) JUMP makes the program jump to the specified label.
D) A conditional loop repeats only as long as a certain condition is met.
E) A decrementing loop uses a smaller value each time the loop repeats.
F) An incrementing loop uses a larger value each time the loop repeats.
G) A register is a location in the CPU where the program stores a value.
H) MOVE copies a value (like an initial value for a loop) into a register.
I) SUB and DEC decrease the current value in the register.
J) ADD and INC increase the current value in the register.
K) CMP compares a given value to the current value in the register.
L) A conditional jump (such as JG or JL) checks the result of a CMP and

jumps if the result meets a certain condition.
M) When the condition for a conditional jump is not met, the program

continues on to the instruction directly after the conditional jump.
N) The Registers window in the Debugger displays the current value of

data items such as the general purpose registers (R0 through R6).
————————————————————————————————–– ✧ –
TERMS TO KNOW After reading this chapter, you should be able to briefly define the terms

below. If you need help, reread the chapter or see Glossary in this manual.

1) loop; 2) infinite loop; 3) conditional loop; 4) jump; 5) variable data
6) initialize; 7) compare; 8) move; 9) decrement;
10) increment

5-16 Chapter 5 - Loops ✧ —–————————————————————— IntelliBots 1.0

Missions

————————————————————————————————–– ✧ –
MISSION 5.1 Convert the triangle-tracing program you wrote in chapter 4 (CH04M1.ASM)

into an infinite loop program. Save the new program as CH05M1.ASM.
Assemble it and run it on the Field Locale. Then use the Debugger to step
through the program. Watch the Registers window data as it changes.

————————————————————————————————–– ✧ –
MISSION 5.2 Create a new program that moves an IBot back and forth on a horizontal

line. Save the program as CH05M2.ASM and run it on the Field Locale. Here
are the basic tasks:

1 Turn the IBot to face east.
2 Make the IBot move a certain distance you choose (such as 20 units).
3 Turn the IBot 180 degrees.
4 Loop back to task 2.

————————————————————————————————–– ✧ –
MISSION 5.3 Change the program you wrote for Mission 5.2 so it moves the IBot one

unit less each time (such as 10 to the right, 9 to the left, 8 to the right,
etc.). Save the program as CH05M3.ASM and assemble it and run it on the
Field Locale. Here are the basic tasks:

1 Turn the IBot to face east.
1a Put the initial distance to move (such as 10 units) into a register.
2 Make the IBot move a certain distance you choose.
3 Turn the IBot 180 degrees.
4 Add the rest of the steps you need for the program. If you need help,

see the CH05DEC.ASM program for ideas.
————————————————————————————————–– ✧ –
MISSION 5.4 Change the Mission 5.3 program you wrote so that when it reaches zero

distance, the IBot begins moving back and forth again, in increasing
lengths. Save the program as CH05M4.ASM and run it on the Field Locale.
Here are the basic tasks:

1 Turn the IBot to face east.
1a Put the initial distance to move (such as 20 units) into a register.
2 Make the IBot move a certain distance you choose.
3 Turn the IBot 180 degrees.

IntelliBots 1.0 ———————————————————————✧ Chapter 5 - Loops 5-17

3a Decrement the distance to move.
4 Loop back to step 2 if the distance to move is greater than zero.
5 Otherwise, increment the distance to move.
6 Add the rest of the steps you need for the program. If you need help,

see the CH05DEC.ASM and CH05INC.ASM programs for ideas.

IntelliBots 1.0 —————————————————✧ Chapter 6 - Coprocessors and Ports 6-1

6 - Coprocessors and Ports

In this chapter you’ll learn how programs use IntelliBots coprocessors and
how programs can read and use information from IntelliBots ports. Here
are the main topics in this chapter:

• How Coprocessors Work
• How Ports Work
• Scanning
• Checking Object IDs
• IBot Offense
• Checking Offense Ports

How Coprocessors Work

————————————————————————————————–– ✧ –
A coprocessor is a specialized type of CPU, in addition to the main CPU,
that performs specific tasks. Many computers today are equipped with
coprocessors that help share the computer’s data processing load. For
example, math coprocessors do intensive calculations, while graphics
coprocessors handle tasks for drawing and displaying graphics.

Each coprocessor does its assigned tasks while the main CPU is working on
its own tasks. This is called multiprocessing mode, because multiple tasks are
carried out at the same time. In IntelliBots, multiprocessor mode can be
turned on or off. By default, IntelliBots uses single-processor mode: when a
coprocessor instruction executes, the main processor waits until the
coprocessor has finished its task. More information on multiprocessing will
be available in Course 2: Intermediate Concepts.

————————————————————————————————–– ✧ –
The IntelliBots program uses simulated coprocessors to turn and move the
IBot. You have already used some of these instructions, such as:

COPR #ChassisMove,#10 ;move IBot 10 squares
COPR #ChassisTurn,#90 ;turn IBot chassis 90 degrees

COMPUTER
COPROCESSORS

INTELLIBOTS
COPROCESSORS

6-2 Chapter 6 - Coprocessors and Ports ✧ —–——————————————— IntelliBots 1.0

COPR #TurretTurn,#45 ;turn turret 45 degrees

COPR stands for COPRocessor. Below are other types of IntelliBots
coprocessor commands that are described in this chapter. For a complete
list of IBot coprocessor commands, see the Programmer’s Quick Reference.

Name Description
ChassisScan Chassis scan (low-level)
TurretScan Turret scan (high-level)
OffenseCannon Fire cannon
OffenseLaser Fire laser

How Ports Work

————————————————————————————————–– ✧ –
COMPUTER PORTS A port is a special memory location that communicates with hardware

devices. Two types of ports often found in today’s computers are serial
ports and parallel ports. A serial port, such as a modem port, sends and
receives data “serially”, or one bit at a time in a data stream. A parallel
port, such as a printer port, sends and receives data in a parallel fashion, or
multiple bits at a time in a wider data stream.

————————————————————————————————–– ✧ –
INTELLIBOTS PORTS IBots can find out information about their environment by reading data

stored in IntelliBots ports. Here are the IntelliBots ports you’ll learn about
in this chapter:

Port Name Description
ScanDistance Distance (in Locale units) to the last object scanned.
ScanObject ID (identification) of the last object scanned.
Shells Number of cannon shells available to the IBot. Each

IBot begins a Mission with at least 10 shells and as
many as 10 shells per opponent.

LaserTemp Current temperature (in heat units) of the IBot’s laser.
A value of -1 indicates the laser will no longer work
because it has melted or has been disabled.

CannonTemp Current temperature (in heat units) of the IBot’s
cannon. A value of _-1 indicates the cannon will no
longer work because it has melted.

IntelliBots 1.0 —————————————————✧ Chapter 6 - Coprocessors and Ports 6-3

You can also write data to certain ports as explained in later chapters. For
a complete list of IntelliBots ports and the read/write status for each see
the Programmer’s Quick Reference.

IBot Scanning

Each IBot can scan across the Locale, identifying objects such as IBots,
goals, and terrain. There are two ways an IBot can scan: with its chassis or
with its turret.

————————————————————————————————–– ✧ –
CHASSIS SCANNING A chassis scan looks for objects in a path that’s as wide as the IBot. The

chassis scan can detect low or high objects, but only at short distances.
Scanning can help the IBot avoid running into damaging objects, as well as
find other IBots or goals. The chassis scan detects the first object it
encounters.

Chassis scanning uses the #ChassisScan coprocessor command:

COPR #ChassisScan,<angle>

The <angle> is the number of degrees to the right of the current chassis
direction that the scan should occur. If <angle> is zero, the chassis scans
straight ahead, in the direction the chassis is currently facing. If <angle> is
negative, the IBot scans to the left. (You don’t have to turn the IBot
chassis to point in the direction you want to scan.)

The diagrams below show how chassis scanning works. In Figure 6-1, the
IBot scans straight ahead and finds the PowerNatural object; in Figure 6-B,
it scans 45 degrees to the right and finds HighCover; and in Figure 6-C, it
scans 45 degrees to the left and finds LowCover. Note: In actual Missions,
scans are invisible.

6-4 Chapter 6 - Coprocessors and Ports ✧ —–——————————————— IntelliBots 1.0

IBot

Power
Natural

Low
Cover

High
Cover

IBot

Power
Natural

Low
Cover

High
Cover

IBot

Power
Natural

Low
Cover

High
Cover

Figure 6-1: Figure 6-2: Figure 6-3:
Chassis scan, ahead Chassis scan to the right Chassis scan to the left

(COPR #ChassisScan,#0) (COPR #ChassisScan,#45)(COPR #ChassisScan,#-45)

A chassis scan can also use an angle from a register:

MOVE #90,R2 ;set scan angle to 90
COPR #ChassisScan,R2 ;scan at angle contained in R2

————————————————————————————————–– ✧ –
SCANOBJECT PORT When the scan finds an object, the object’s ID is stored in the ScanObject

port. To retrieve the ID of scanned object from the ScanObject port, use
the GETP command, as shown below.

GETP #ScanObject,R0 ;get scanned object’s ID, put in R0

In this example, R0 is the register that receives the port data; you can use
any register from R0 to R6. Once the port data is in a register, you can
compare the data to a known object.

————————————————————————————————–– ✧ –
SCANDISTANCE PORT When the scan finds an object, the distance to the object is stored in the

ScanDistance port. To retrieve the distance to the scanned object from the
ScanDistance port, you also use the GETP command, as shown below.

GETP #ScanDistance,R1 ;get distance to scanned obj. into R1

In this example, R1 receives the port data; you can use any register from
R0 to R6. However, do not use the same register you used for the
ScanObject port. If you do, the ScanDistance data will replace the
ScanObject data, because a register can hold only one value at a time.

IntelliBots 1.0 —————————————————✧ Chapter 6 - Coprocessors and Ports 6-5

The example below shows how the IBot scans 45 degrees to the right of
the current chassis direction and gets the scanned object ID and distance.

COPR #ChassisScan,#45 ;scan 45 degrees right of chassis dir.
GETP #ScanObject,R0 ;get scanned object ID, put it in R0
GETP #ScanDistance,R1 ;get scanned object distance, put in R1

————————————————————————————————–– ✧ –
TURRET SCANNING Turret scanning scans in the direction the IBot turret is pointing. It detects

only high objects, such as IBots, high goals, or high terrain. Turret
scanning uses the TurretScan command. The second operand is always zero.

COPR #TurretScan,#0 ;scan with turret

The turret scanning beam is one unit wide. Like the chassis scan, the turret
scan stores the scanned object’s ID in the ScanObject port, and the
distance to the scanned object in the ScanDistance port. The scan finds the
part of the object that is closest and returns that distance. The turret scan
has a greater range than the chassis scan but loses accuracy at long
distances.

Remember that the turret scan finds only high objects. In the diagram
below, the turret scan looks past the PowerNatural terrain (because it’s a
low terrain) and finds the enemy IBot.

IBot

Power
Natural

Low
Cover

High
Cover

Figure 6-4: Turret scan
(COPR #TurretScan,#0)

To get information about the object scanned by the turret, use the same
GETP commands as for the chassis scan. In the example below, the IBot
does a turret scan and retrieves the scanned object ID and distance.

6-6 Chapter 6 - Coprocessors and Ports ✧ —–——————————————— IntelliBots 1.0

COPR #TurretScan,#0 ;do turret scan
GETP #ScanObject,R0 ;get scanned object ID, put it in R0
GETP #ScanDistance,R1 ;get scanned object distance, put in R1

————————————————————————————————–– ✧ –
TURNING THE TURRET You can turn the IBot turret by using the TurretTurn or TurretTurnTo

coprocessor commands. In the example below, the COPR #TurretTurn,#5
command turns the turret 5 degrees to the right of its current direction.
(To turn the turret left, use a negative value.)

COPR #TurretTurn,#5 ;turn turret 5 degrees to right

The TurretTurnTo command turns the turret to an absolute compass
direction. In the example below, the COPR #TurretTurnTo,#180 command
turns the turret until it reaches 180 degrees (south), no matter where the
turret was pointing before. (If the turret was already at 180 degrees, it
doesn’t turn.) This command will automatically determine and turn the
turret in the most efficient direction.

COPR #TurretTurnTo,#180 ;turn turret to 180-deg compass pt.

Checking Object IDs

Once the GETP command stores the scanned object ID in a register, your
IBot needs to know how to identify that object ID. Object IDs are
described in the chart below.

Damage to IBot shows what damage the IBot receives when it collides with
the object. The types of damage are: light, medium, heavy, light power,
medium power, and heavy power.

Hit By/Changes To shows what the object converts to when it is hit by an
IBot, a laser, or a shell.

IntelliBots 1.0 —————————————————✧ Chapter 6 - Coprocessors and Ports 6-7

OBJECT ID LO/HI DAMAGE TO IBOT HIT BY >> CHANGES TO ...
#Empty low none IBot or laser >> no change; shell >> light obstruction
#Barrier high heavy power + heavy No change. Locale borders are defined as barriers.
#LowCover low none IBot >> Empty; laser >> no change; shell >> light obstruction
#HighCover high none IBot >> Empty; laser >> low cover; shell >> light obstruction
#LightNatural low light IBot >> no change; laser >> no change; shell >> light obstruction
#LightObstr low light No change. A shell explodes into rubble, which is a light obstruction.
#MediumNatural high medium IBot or laser >> light natural; shell >> light obstr.
#MediumObstr high medium Any >> light obstruction
#HeavyNatural high heavy IBot or laser >> light natural; shell >> light obstr.
#HeavyObstr high heavy any >> light obstruction
#PowerNatural low light power No change
#PowerObstr low med. power + heavy Any >> light obstruction
#IBot1 high med. power + heavy No change. IBot1 through IBot4 match the order of IBots in Select

IBots list (first IBot in list is IBot1, next IBot in list is IBot2, etc.).
#IBot2 “ “ “
#IBot3 “ “ “
#IBot4 “ “ “
#LowGoal low none Any >> no change, but Mission terminates
#HighGoal high none Any >> no change, but Mission terminates

In the example below, CMP compares the scanned object in R0 to a Barrier.

GETP #ScanObject,R0 ;get scanned object ID, put it in R0
CMP #Barrier,R0 ;is object a Barrier?

————————————————————————————————–– ✧ –
SCANNING REVIEW You should be able to answer these questions about scanning:

• What type of scanning detects high objects?
• What type of scanning detects low objects?
• What type of scanning covers longer distances?
• What ports contain scan information, and how are they used?
• What kind of damage results when two IBots collide?

————————————————————————————————–– ✧ –
TAKING ACTION After you compare the scanned object to an object ID, you can jump to

another part of your program to take action. In the example below, the
IBot scans for a Barrier. When it finds one, it moves next to it (one unit
away from it) but does not run into it. (Moving next to a Barrier can
protect the IBot from enemy scans on that side.)

6-8 Chapter 6 - Coprocessors and Ports ✧ —–——————————————— IntelliBots 1.0

MOVE #0,R2 ;start chassis scan angle at zero
Scan

COPR #ChassisScan,R2 ;do chassis scan (zero degrees)
GETP #ScanObject,R0 ;get scanned object ID, put in R0
GETP #ScanDistance,R1 ;get dist. to scanned obj., put in R1
CMP #Barrier,R0 ;is it a barrier?
JE MoveNextTo ; -yes, go move next to it
ADD #5,R2 ; -no, add 5 degrees to scan angle
JUMP Scan ; and go scan again

MoveNextTo
COPR #ChassisTurnTo,R2 ;turn chassis in direction of scan
DEC R1 ;decrease R1 (1 less than scan dist)
COPR #ChassisMove,R1 ;move new R1 distance (by barrier)

————————————————————————————————–– ✧ –
Objects are sorted by their ID, so you can check for a group of objects at
once. To do this, you can use the JG or JL instructions.

The following example looks for any IBot. First it skips all objects less than
IBot1, then it skips objects greater than.

Scan
COPR #ChassisScan,R2 ;do chassis scan (zero degrees)
GETP #ScanObject,R0 ;get scanned object ID, put in R0
GETP #ScanDistance,R1 ;get dist. to scanned obj., put in R1
CMP #IBot1,R0 ;is it < IBot1?
JL Scan ; -yes (it’s less), so go scan
CMP #IBotLast,R0 ;is it > IBotLast?
JG Scan ; -yes (it’s more), go scan again

Attach ;go attack it
...

In Chapter 7: Computer Numbers and Bit Testing you will learn how to use
computer bits to check for multiple conditions more quickly.

IBot Offense

Each IBot has two kinds of offense; a laser and a cannon. They are always
fired in the direction of the turret. An IBot’s laser and cannon are only as
accurate as the programming instructions you give. (These can be disabled
for all IBots, in Preferences.)

CHECKING
MULTIPLE
OBJECT IDS

IntelliBots 1.0 —————————————————✧ Chapter 6 - Coprocessors and Ports 6-9

————————————————————————————————–– ✧ –
LASER With the laser, the IBot can hit only high objects. At longer distances, the

laser causes less damage unless you increase its power. You can set the
laser power from zero (no damage) to 50, or LaserMaxPower, (maximum
damage). Each time the laser is fired it heats up, so it may melt if fired too
often or at high power without letting it cool. Below is an example of the
command to fire the laser.

COPR #OffenseLaser,#LaserMaxPower ;fire at max. strength

————————————————————————————————–– ✧ –
CANNON The cannon can hit high or low objects. Each shell radiates damage out

from the point where it explodes. An IBot begins a Mission with 10
cannon shells per opponent, with a minimum of 10 shells. Each time the
cannon is fired it heats up, so it may melt if fired too often without letting
it cool. Below is an example of the command to fire the cannon.

COPR #OffenseCannon,R1 ;launch shell dist. (R1) to target

A shell travels only the distance you specify, then explodes at that point
(unless that point is off the Locale).

————————————————————————————————–– ✧ –
The exercise below scans for enemy IBots. If an IBot is found, the program
jumps to an attack routine.

1 Open a new file.

2 Carefully type in the source code below, including the comments.

Scan
COPR #TurretScan,#0 ;do turret scan
GETP #ScanDistance,R1 ;get dist. to scanned obj., put in R1
GETP #ScanObject,R0 ;get scanned object ID, put in R0
CMP #IBot1,R0 ;is it an IBot?
JL TurnTurret ; -no, so turn the turret 5 degrees
CMP #IBotLast,R0 ;is it an IBot?
JG TurnTurret ; -no, so turn the turret 5 degrees

Attack
COPR #OffenseCannon,R1 ;launch shell dist. (R1) to target
COPR #OffenseLaser,#LaserMaxPower ;fire at maximum strength

EXERCISE 1:
ATTACKING IBOTS

6-10 Chapter 6 - Coprocessors and Ports ✧ —–——————————————— IntelliBots 1.0

COPR #TurretTurn,#720 ;spin turret twice, let cannon cool1

JUMP Scan ;go scan again
TurnTurret

COPR #TurretTurn,#5 ;turn turret 5 degrees
JUMP Scan ;go scan again

3 Read all the comments so you know what the program does. For
example, does this program attack terrain objects? Why or why not?
And if an enemy IBot moved, would your IBot be able to scan it again?

4 Save the file as CH06PORT.ASM.

5 Assemble the file without errors, then run a Mission on the Test
Locale. Select CH06PORT.BOT and MOVSLOW1.BOT, in that order.

The MOVSLOW1.BOT IBot moves slowly across the Locale. It self-destructs
after your IBot attacks it several times.

Checking Offense Ports

————————————————————————————————–– ✧ –
Each time an IBot fires its laser or cannon, the laser or cannon
temperature increases, then gradually decreases (cools off). Firing the laser
or cannon too often without letting it cool causes a meltdown. A melted
laser can keep firing, but produces no laser beam. A melted cannon can
keep firing, but the shells travel zero distance, so they explode on the IBot
firing them.

The laser meltdown point is 75, or LaserMeltTemp, heat units. Each firing
increases the laser temperature by 1 to LaserMaxPower heat units (the value
in the #OffenseLaser command). For example, if you fire the laser at 50
heat units, the laser temperature also increases by 50 heat units. The laser
temperature is stored in the LaserTemp port, so you can check it with the
GETP instruction:

1 Later in this chapter, you will learn how to check the laser and cannon heat without having
to spin the turret.

LASER AND
CANNON
TEMPERATURES

IntelliBots 1.0 —————————————————✧ Chapter 6 - Coprocessors and Ports 6-11

GETP #LaserTemp,R0 ;get laser temp, put in R0

The cannon meltdown point is 125, or CannonMeltTemp, heat units. Each
time the cannon is fired, its heat increases by 110, or CannonInc, units. The
current cannon temperature is stored in the CannonTemp port, so you can
check it with the GETP instruction:

GETP #CannonTemp,R1 ;get cannon temp, put in R1

————————————————————————————————–– ✧ –
To avoid meltdown, your program can check the heat of the cannon or
laser. If the cannon is too hot, the laser can be checked while the cannon
cools. If the laser is also too hot, the IBot can go scan again while it waits.
Now you can change the CH06PORT.ASM program to check for laser and
cannon heat.

1 Add this line before the Scan label:

COPR #ChassisMove,#55 ;get closer to center of the Locale

2 Change the Attack code segment in the CH06PORT.ASM program to look
like this:

Attack
GETP #CannonTemp,R2 ;get current cannon heat, put in R2
CMP #CannonMeltTemp-CannonInc-1,R2

;is it too hot for another shot?
JG Laser ; -yes, try laser instead
COPR #OffenseCannon,R1 ;launch shell dist. (R1) to target
JUMP Scan ;go back and scan

Notice that the cannon temperature is checked before the cannon is
fired so that meltdown is avoided.

3 After the Attack routine, add the Laser routine:

Laser
GETP #LaserTemp,R2 ;get current laser heat, put in R2
MOVE #LaserMeltTemp-1,R1 ;get the maximum safe temperature
SUB R2,R1 ;subtract the current temperature
CMP #LaserMaxPower,R1 ;is laser power less than maximum?
JL Laser ; -if less, wait
COPR #OffenseLaser,R1 ;fire laser with R1 units of power
JUMP Scan ;go back and scan

AVOIDING
MELTDOWN

6-12 Chapter 6 - Coprocessors and Ports ✧ —–——————————————— IntelliBots 1.0

Notice that #LaserMeltTemp-1 (one less than the melting temperature) is
used as the maximum safe temperature. You can subtract or add a value
from or to any constant by attaching a minus or plus value after it. You
can even add or subtract constants from each other such as
#CannonMeltTemp-CannonInc-1.

4 Save the file as CH06PRT1.ASM and assemble the file without errors.

5 Select the CH06PRT1.BOT and MOVSLOW1.BOT IBots, in that order, and run
a Mission on the Test Locale.

————————————————————————————————–– ✧ –
SHELL SUPPLY Each IBot begins a Mission with 10 cannon shells per opponent, but at

least 10 shells. Your program can use GETP to check the Shells port for the
number of shells the IBot has left.

GETP #Shells,R0 ;get number of shells left, put in R0

If your IBot tries to launch a shell when none remain, the #OffenseCannon
instruction still executes, but no shell is launched.

In the example below, the program jumps to a Laser routine if there are no
shells left.

Attack
GETP #Shells,R4 ;get number of shells left, put in R4
CMP #0,R4 ;any shells left?
JE Laser ;no, try laser instead
GETP #CannonTemp,R2 ;get current cannon heat, put in R2
CMP #CannonMeltTemp-CannonInc-1,R2

;is cannon heat greater than is safe?
JG Laser ; -it’s too hot, try laser instead
COPR #OffenseCannon,R1 ;launch shell, R1 distance to target
JUMP Scan ;go back and scan

IntelliBots 1.0 —————————————————✧ Chapter 6 - Coprocessors and Ports 6-13

Summary

————————————————————————————————–– ✧ –
CONCEPTS The following concepts were discussed in this chapter:

A) IntelliBots uses simulated coprocessors and ports to do command
processing and setting and gathering of information.

B) Chassis scanning looks for objects at a given angle, using the COPR
#ChassisScan command. The scan finds the first low or high object
scanned.

C) Turret scanning looks for objects directly ahead of the turret, using the
COPR #TurretScan command. The scan finds the first high object
scanned.

D) The GETP instruction copies the data from the ScanObject or
ScanDistance port into a register.

E) Each object can be identified by its unique scan identification.
F) JG and JL can be used to check a range of values after a CMP instruction.
G) The LaserTemp port contains the current laser temperature.
H) The CannonTemp port contains the current cannon temperature.
I) The Shells port contains the number of shells the IBot has remaining.

————————————————————————————————–– ✧ –
TERMS TO KNOW After reading this chapter, you should be able to briefly define the terms

below. If you need help, reread the chapter or see Glossary in this manual.

1) coprocessor; 2) port; 3) chassis scanning; 4) turret scanning;
5) scan distances; 6) object IDs; 7) ScanDistance port;
8) ScanObject port; 9) Shells port; 10) LaserTemp port;
11) CannonTemp port

6-14 Chapter 6 - Coprocessors and Ports ✧ —–——————————————— IntelliBots 1.0

Missions
————————————————————————————————–– ✧ –
MISSION 6.1 Change the CH06PRT1.ASM program so it only uses the laser to fire at the

three MOVSLOW IBots. Save the program as CH06M1.ASM. Create and jump to a
Laser routine similar to the Attack routine. Instead of deleting the
instruction lines in Attack, turn them into comments by starting each of
the lines with a semicolon. Run a Mission on the Test Locale; try to
destroy the MOVSLOW IBots as soon as possible without melting the laser.

————————————————————————————————–– ✧ –
MISSION 6.2 Change the CH06M1.ASM program so it fires all its shells and then uses the

laser. Save the program as CH06M2.ASM. Select the MOVSLOW4, MOVSLOW5, and
MOVSLOW6 IBots. Destroy these three IBots on the Test Locale as soon as
possible, without melting the cannon or laser. (These MOVSLOW IBots do not
self-destruct.)

————————————————————————————————–– ✧ –
MISSION 6.3 Change the CH06M2.ASM program to fire the shells and laser more efficiently.

Save the program as CH06M3.ASM. Use the Test Locale and select your IBot,
then the MOVSLOW4 IBot. After waiting for the cannon or laser to cool, scan
for the MOVSLOW4 IBot again to see whether it has moved. If it has, find the
IBot again and fire at it.

————————————————————————————————–– ✧ –
MISSION 6.4 Write a new program based on these tasks:

1) Scan around the Locale for a high goal.
1A) If a high goal is found, move to it.
2) If no high goal is found, move the IBot a few squares. You may

want to check for Barriers, such as Locale borders, before moving.
You may need to turn the IBot chassis before moving it.

3) Repeat tasks 1 through 2A in a loop.

You can borrow (copy and paste) elements from your CH06PRT1.ASM
program and any of the MOVSLOW programs. Use the Test Locale; be sure to
enable its goal. Run a Mission with only your IBot and find and move to
the goal as quickly as possible. For more practice, you can try your IBot on
any Locale with an enabled goal.

	Table of Contents
	Welcome to IntelliBots™
	The IntelliBots Story
	Getting Started
	How IntelliBots Works
	IntelliBots Features
	FAQ (Frequently Asked Questions)
	What’s Next ?

	Computers, IBots, & Programs
	1 - About Computers and IBots
	About Computers
	About Computer Programming
	About IBots
	IBot Programs and Missions
	Locales
	Identifying Locale Objects
	Summary

	2 - Running IBot Programs
	Setting Up a Mission
	IBot Status Boxes
	Running a Mission
	View and Speed Options
	Running Competitions
	IBot Statistics
	Summary
	Missions

	3 - Changing and Assembling Programs
	About Computer Languages
	Looking at Source Code
	Comments, Labels, and Instruction Lines
	Changing Source Code
	Assembling Source Code
	Directives
	Summary
	Using Degrees
	Missions

	Creating Programs
	4 - Building a New Program
	Program Design
	Deciding the Objective
	Dividing the Objective into Tasks
	Improving the Tasks
	Writing the Tasks as Source Code
	Implementation (Trying the Solution)
	Changing the Objective
	Introduction to the Debugger
	Summary
	Missions

	5 - Loops
	Infinite Loops
	Building an Infinite Loop
	Conditional Loops
	Building a Conditional Loop
	Using Variable Data and Registers
	Decrementing a Value
	Conditional Jumps
	Incrementing a Value
	Summary
	Missions

	6 - Coprocessors and Ports
	How Coprocessors Work
	How Ports Work
	IBot Scanning
	Checking Object IDs
	IBot Offense
	Checking Offense Ports
	Summary
	Missions

	Conditions, Numbers, and Bits
	7 - Computer Numbers and Bit Testing
	Bits, Bytes, Words and Long Words
	Binary Numbers
	Scan Code Bits
	Testing Bits
	Status Register (SR) Bits
	Testing and Modifying Bits
	Hexadecimal Numbers
	Summary
	Missions

	8 - Checking Conditions
	Condition Flags
	More About Conditional Jumps
	Logical Comparisons
	Tips for Using Conditional Jumps
	IBot Defense
	Setting Flags and Values in the Debugger
	Summary
	Missions

	Organizing and Testing Programs
	9 - Program Organization
	About Modular Programs
	Using High-Level Design
	Control Routines
	Subroutines
	Program Flow
	Call and Return Instructions
	Summary
	Missions

	10 - Program Organization, Part 2
	Program Header
	Routine Header
	More About Labels
	Equate Pseudo-Operator
	.Include Directive
	The Program Stack
	Using Parameters
	Summary
	Missions

	11 - Interrupts
	About Interrupts
	The Advantage of Interrupts
	The Interrupt Mask (IntMask)
	Handling Scan and Attack Interrupts
	Handling Other Interrupts
	Interrupt Priorities
	Simulating Interrupts in the Debugger
	Summary
	Missions

	12 - Testing Programs
	Testing Strategies
	Common Programming Errors
	Testing the Program’s Design
	Testing a Routine
	Using Test Messages
	Using Breakpoints
	Summary
	Missions

	13 - Sample Programs to Debug

	Appendices
	Appendix A : IntelliBots Preferences
	Text Editor Preferences
	Mission Preferences
	Debugger Preferences
	Password

	Appendix B : IntelliBots Messages
	General Execution Messages
	Assembler/Compiler Messages
	CPU and Coprocessor Messages
	Other Messages

	Appendix C : ASCII Table
	Glossary

