

Version 1.0

lan R. Searle & Phillip Musumeci

TheRL.3ex aB program is ©copyright 1993, 94 lan R. Searle.
This document is ©copyright 1993, 94 lan R. Searle & Phillip Musumeci.

Contents

List of Figures

0 Primer priming

0.1 RL.3ex aB is freely available

RL.3ex aB stands for Our-Lab, sinceit isintended to be a freely available program that anyone can use, and contribute to. To protect this freedom, copying of the program is protected by the GNU General
Public License.

The main ftp siteisevans. ee. adf a. 0z. au. Thedirectory pub/ RLaB contains the sources and binary versions for some machines. On the North American continent ¢si . j pl . nasa. gov actsasan
archive sitefor RL.3ex aB , look in pub/ mat | ab/ RLaB.

0.2 Acknowledgments
The availability of kfreel software, such as GNU Emacs, GNU gcc, gdb, gnuplot, Plplot, and the Netlib archives has made this project possible. The RL.3ex aB author thanks both the authors and sponsors of
the GNU, LAPACK, RANLIB, FFTPACK, and Piplot projects.

Many individuals have contributed to RL.3ex aB in various ways. A list of contributors can be found in the source distribution file ACKNOWLEDGVENT. A special thanks to Phillip Musumeci and Matthew
Wette who have provided FTP sites so that RL.3ex aB isavailableto all.

0.3 Document reproduction and errors

The RL.3ex aB Primer isfreely available. Permission is granted to reproduce the document in any way providing that it is distributed for free, except for any reasonable charges for printing, distribution, staff
time, etc. Direct commercial exploitation is not permitted. Extracts may be made from this document providing an acknowledgment of the original LATEX source is maintained.

We welcome reports of errors and suggestions for improvement in this document and also in RL.3ex aB . Please mail theseto r | ab- | i st @ski no. com Unfortunately (for you), free software does not
earn quite enough to pay abribe for each error-free error report received but do feel free to email them.

0.4 Requirements

RL.3ex aB iswritten in C. The maths libraries used are written in Fortran but the use of a publicly available FortranC converter reduces compiler requirements to C (the conversion tool f2c is written in C).
The library used for data display, PLPLOT, is publicly available in C source code form for awide variety of platforms. This makes the whole RL.3ex aB package a good candidate for porting onto platforms
with C, especially GNU C.

0.5 How to Read This Primer

This primer has intentionally been kept short, so you should be able to read all of it without too much effort. Probably the best way to read this primer is to do so sitting at a computer, trying the examples as
you encounter them.

1 Introduction

RL.3ex aB brings the power of stable matrix maths tools plus a stable data plotting facility together in a form that is freely available and ready to be compiled and used on a variety of common computer
systems. RL.3ex aB allows you to experiment with complex matrix maths in an interactive environment. Because you enter commands at a high (mathematical) level, you can concentrate on figuring out your
solution and hopefully avoid becoming bogged down in low level implementation details. By minimising the effort required to implement algorithms, it is hoped that you will be more willing to discard old
programs when confronted by better algorithms that warrant use.

RL.3exTaidse: languages do ook very similar but we will try to point out afew useful similarities! which will be familiar to users of C and also the Wirth-inspired languages such as Pascal and
Modula An RL.3ex aB program is afile containing a sequence of commands or instructions that you could also enter from your terminalnthese instructions might perform a calculation and assign
the result to avariable, or call afunction which returns a result which you display on your terminal, and so on. Functions can be either built-in or user-defined. In fact, the only form of ksubprograml
inRL.3ex aB isthefunction and, just likein C, afunction returns asingle item as its answer. Data storage declared in the main routine of your program is stored on aglobal symbol table, and is
available to all of your subprogram functions. By default, data used within functionsislocal to the function. Such local function storage exists only for the duration of the function call, in away
similar to variables declared locally within Pascal procedures. Comments can be appended to any line in your program by using a special symbol at the start of the commentnthisis similar to Fortran
and C++, and avoids the possible pitfall of krun awayl comments which might be familiar to Pascal users. Overall, the language syntax is perhaps closest to C but if you have ever programmed in C or
Pascal, you will soon be at ease with RL.3ex aB .

RL.3ex aB features strongly typed objects but with the emphasis on usefulness, not on pedantics. In RL.3ex aB we talk about the class of an object and the available classes include numeric, string, function,
and list. The first class of object, numeric, encompasses numeric scalars, vectors, and matrices, and should be familiar to the matrix maths user. The remaining classes borrow concepts, and implementation
details from other languages such as C.

It isworth noting that a function can be thought of as just another objectnthis means that when you come to write your own functions that use input parameters, you will enjoy the flexibility of being able to
pass in other functions as well as data as input to your function. Another feature of functions as implemented in RL.3ex aB is that they can cal themselvesnanyone who has written a program to calculate
factorials will appreciate the elegance that recursion can bring to some programming solutions.

Having whetted your appetite, this primer aims to get you started with RL.3ex aB as both an interactive tool and as a programming language. The ideal approach is for you to read (or re-read) this document
with an RL.3ex aB session staring up at you. After showing you how to run RL.3ex aB and get on-line help, we describe data types before moving back to a khands onl description of basic operations.
Program structure is then described and you will see how to write your own functions. As RL.3ex aB comes with quite afew handy functions already built-in, we give examples of their use including the plot
function at which point we hope you will be able to start using RL.3ex aB to develop your own programs.

2 Starting to use RL.3ex aB

2.1 Howto runit

A properly installed RL.3ex aB can be started on your terminal by entering

$ rlab

where typewriter-style dark text is meant to represent the text you would see sitting in front of a display terminal. The first character on the input line is always the prompt, in this case a Bourne-shell prompt.
The text following is what the user enters. Text echoed by a program is not preceded by any prompt.

RL.3ex aB will start with a message similar to:

Wl come to RLaB. New users type "help | NTRO

RLaB version 1.0 Copyright (C 1992, 93, 94 lan Searle

RLaB comes with ABSOLUTELY NO WARRANTY; for details type “hel p WARRANTY'
This is free software, and you are wel cone to redistribute it under
certain conditions; type “help CONDI TIONS' for details

>

The > symbol on the last line next to the cursor is the RL.3ex aB command prompt. At this point, users should take the advice offered and be usefully distracted from this primer by actually reading the
information available fromhel p | NTRO - do not worry if you cannot follow it yet. After you have read each screenful, press SPACE (i.e. the space bar) to see further screens of information.

At thispoint it isonly fair to tell you how to stop it. To stop aRL.3ex aB session you can typequi t at the RL.3ex aB prompt. On Unix systemsan EOF or ~d (control-d) will also stop RL.3ex aB .

2.2 Help

To get ataste of the functions for which help isavailable, enter

> hel p

The first group of topics lists functions and special help topics that are built into RL.3ex aB . The special topics have names in upper case and are of a general nature. Lawyers recommend that you now read
the help on topics CONDI TI ONS and WARRANTY by entering

> hel p CONDI TI ONS

> hel p WARRANTY

The subsequent topics refer to commands that have been written in RL.3ex aB script files, which we refer to as kR-filesl. These R-files are stored in directories, which the hel p command searches. The help
filesin the ?/rlib directory come as a standard part of RL.3ex aB , and the remainder refer to local R-files that have been setup for you by whoever installed your RL.3ex aB .
In general, the functions listed in the first group are the most efficient as they are compiled into the core of RL.3ex aB . In contrast, RL.3ex aB js R-files have the extra overhead of reading and interpretation
before they are executed. This lower efficiency associated with R-file interpretation is traded for the benefit of being able to write your own featuresinto RL.3ex aB . If an R-file feature is really
Dyiseful cili nkimige spidetiabitieplarefBt a3t a® rpreggam since you have the source code

2.3 Simple calculations

RL.3ex aB is designed for mathematical calculations so letjs do some. The four basic arithmetic operators have symbols +, -, *, / representing addition, subtraction, multiplication, and division
respectively. Now enter some one line expressions as shown here:

> 2%4
8
> 1/2
0.5
> 1+11
12
> 1-11
-10
> 1*2/3+4-5
-0.333
> 1/0
inf
> 0/ (1/0)
0
> 0/0
NaN

The ex'bt’ainhuyl i : i HOIShiE luhen tx aRtt taptaystem, as well as the interests of the person installing RL.3ex aB . such as
when* (i nf) isaresult or an input to further calculation; and also knot- anumberl (NaN) RL.3ex aB can use complex numbers as well as real numbers so now try

> 1/1i
0 - 1i

> 11+ 1/1j
0 - 2i

> 1/1i * 1/1j
-1

> 1/1i/1j
-1

whereweseethati orj can represent the complex number . No four function calculator is complete without a memory so now we look at how to store resultsin avariable.

2.4 Variable assignment and display
In RL.3ex aB , variables can have names of any length containing most printable characters including . You will observe that we have to exclude specia characterssuchas+, -, *, / andthe SPACE
character. The actual assignment operator symbol is k=I and an assignment statement looks like

vari abl e_nane = expression_to_eval uate

and an exampleis

> radi us=2
radius =
2

> circunference=2 * pi * radius
circunference =
12.6

where avariabler adi us is created and initialised with the real value 2, and then avariable ci r cunf er ence is created and filled with the result of evaluating the right hand side of the equation. To see
the value of either of these variables, just enter their name and RL.3ex aB will print their value. For adescription of variable names, please read the help on VARI ABLES.

As you have probably noticed by now, the result of each expression is automatically printed to the screen. This feature can be controlled by using the i; j character. Terminating an expression with ai; j will
suppress printing of the result. Likewise, terminating an expression with the i?] is an explicit way to force printing.

2.5 User Interface: command recall & editing

Command line recall and editing is very useful for correcting command errors or to alow your commands to evolve. RL.3ex aB provides a command recall and edit facility modeled on (and sometimes
actually using) the GNU readline facility. If you are familiar with GNU emacs or the GNU bash shell, then try entering C- p to scroll back through previous commands (C- p means hold down the cont r ol
key and press p). If thisis successful, test the standard character and word editing commands to modlfy previous entries - if it works, skip to section 2.
Howevanstrehem @ e qammmkaﬁﬁli P4 FVH2BaA. dm amanckagtes then you might still be able to take advantage of command line recall and editing. Try typing the
* key to seeif any previous RL.3ex aB commands are displayed - if they are, then confirm that * also displays more recent commands and then try horizontal cursor movement with the and try
some editing with the delete key. Typing C- d ought to delete the character beneath the cursor. When a new command has been created from an old, enter it in the usual way by pressing RETURN. If
this has worked for you, skip the remainder of this section (and count yourself lucky that we werenjt describing a graphica user interface in one paragraph).

If your keyboard is missing the arrow keys but C- p did cause previous commands to pop up on the RL.3ex aB command line, you will find that arethesameas CGb C-p Cn Cf - think of b for
backwards, p for previous, n for next, and f for forward.

Irrespective of what keystrokes you use for editing, the C-y keystroke will restore text previously deleted. If you were unable to scroll back through any previous commands (that you had just entered), then
your RL.3ex aB may have been built without command line editing - thisis unlucky. As command line editing is such a useful feature, you should consider getting a better version of RL.3ex aB if possible.

3 ObjectsnBasic Data Structures

In the most general form, an object in RL.3ex aB can be data or a function. It is even possible to construct an object that contains both data and functions - a fact that no doubt excites the hormones in the
modern day object oriented programmer. We are going to discuss basic data types before looking at how data can be kgrouped! together for some useful purpose. We will also work through some simple
examples that manipulate data but first, what does RL.3ex aB regard as data?

3.1 Data Types

There are three fundamental types of data that you manipulate in RL.3ex aB : the string; the real number; and the complex number. As we have seen in section ?, it is straight-forward to manipulate numerical
quanlmes Characters are available in the form of strings which can contain O or more characters. In line with a phllosophy to kkeep it simplel, RL.3ex aB whichis primarily concerned with
Adyphdbato/speniidiey ¢erharnbata Fogbatenarattierg, enclose the charactersinside quoteslike" t hi s™ eg.

> "Hello world"
Hello world

Just as anumber was previously stored in avariable, the same can be done with a string of characters. To place a string into a variable, you could enter a statement such as

> hw = "Hello world"
Hello world

and the value of variable hw may be printed out by entering

> hw
Hello world

The observant reader might be wondering what has happened to the boolean data type? In RL.3ex aB , true and false are represented by the integers 1 and 0. Just as the data type char can be handled as arather
small string (length=1), so the data type boolean (or logical) can be handled by small numbers (value=0,1). We have now met the 3 fundamental types of data processed in RL.3ex aB and it is now possible to
understand a little more about how data structures and functions are organised within RL.3ex aB .

3.2 Object Hierarchy

Scan your eyes down over Figure ? which shows the hierarchical structure of objectsin RL.3ex aB - we shall now describe this figure from the bottom up (ignoring lists until alittle |ater). Not all objects are
created in the same way and what you can do with or to them depends on their class. Items of class function contain program instructions which is one form of data or information. Items of class numeric, and
string contain data that RL.3ex @B instructions can manipulate.

Figure 1: RL.3ex aB objects
A numeric class item can store areal or complex number. An item of class string contains a null-terminated string of character(s). When we want to access or create an array of items, we use an array syntax
that is the same for both string and numeric classes.

Itis often helpful to a programmer to group together unlike data into a single object - this is the purpose of the class list. We are not going to describe it in great detail here except to point out that it serves a
similar roleto arecord in Pascal or astructure in C, but with a somewhat more flexible access mechanism. Note that lists can contain any of the aforementioned objects, even another list.

One thing that you can always do with any item is ask RL.3ex aB what its class is. For example, RL.3ex aB has a built-in command to calculate the sin of an angular quantity - asking RL.3ex aB about it
gives the following response

> class(sin)
function

From the size of the list of topics that help is available on, you probably redlise that there are many built-in functionsin RL.3ex aB - expect gratuitous use of these functions as further examples are given.
Remember that you can find out about any function by typing hel p function-name. We are particularly interested in exploring the use of RL.3ex aB as a computation tool so now we describe further
numeric operations.

3.3 Numerics

The RL.3ex aB numeric class includes objects of type real and complex. The numeric object also encompasses objects of scalar, vector, or matrix dimension. If you want to, you can think of all numeric
objects as matrices. Thus, avector issimply a 1-by-N matrix, and a scalar is a 1-by-1 matrix. Since the numeric object is most commonly used, it will get the most coverage.

3.3.1 Matrix Creation

The simplest way to create amatrix isto typeit in at the command line:

>m=1[1, 2 3; 4 5 6, 7, 8 9]
m=

123

456

789

In this context thei[]j signal RL.3ex aB that a matrix should be created. The inputs (or arguments) for matrix creation are whatever isinside thei[] j. The rows of the matrix are delimited with i; j and the
elements of each row are delimited withi, j.

Users can use most any expression when creating matrix elements. Other matrices, function evaluations, and arithmetic operations are allowed when creating matrix elements. In the next example, we will
create adirection cosine matrix using the built-in trigonometric functions within thei[] j.

> a = 45%(2*pi)/ 360

0.785
> A= cos(a), sin(a); -sin(a), cos(a)]

0.707 0.707
-0.707 0.707

Matrices can also be read from disk-files. The functionsr ead, r eadb and r eadm can read matrix values from afile. Ther ead function uses a special ASCI| text file format, and is capable of reading not
only matrices, but strings, and lists as well. Since the file can contain many data objects, and their variable names, r ead isused like:

>read ("file.dat");

Thevariablesareread fromfi | e. dat and installed in the global-symbol-table.
Ther eadb function worksliker ead, except it reads binary files for greater efficiency. The binary files created withwr i t eb are portable across computers that use | EEE floating point format.

Ther eadm function reads atext file that contains white-space separated columns of numbers. r eadm is most often used to read in data created by other programs. Sincer eadm is only capable of reading
in one matrix per file, and no variable name information is available, r eadm isused like:

>a =read ("a.dat");

3.3.2 Vector Creation

Although there is no distinct vector typein RL.3ex aB , you can pretend that there is. If your algorithm, or program does not need two dimensional arrays, then you can use matrices as singly dimensioned
arrays.

When using vectors, or single dimension arrays, row matrices are created. The simplest way to create a vector iswith thei: j operator(s), that isist ar t : end: i ncj. The leftmost operand, st ar t , specifies
the starting value, the second operand, end, specifies the last value. The default increment, or spacing, is 1. A third optional operand, i nc, can be used to specify any increment.

3.3.3 Matrix Attributes

Matrix attributes, such as number of rows, number of columns, total number of elements, are accessible in several ways. All attributes are accessible through function calls, for example:

> a = rand(3,5);

> show (a)
nane: a
class: num
type: real

nr: 3

nc: 5

> size (a)
35

> class (a)

num

> type (a)

real

Matrix attributes are also accessible via a shorthand notation:
> a.nr

> a.nc

5
> a.n

15
> a.class
num
> a.type
real

Note that these matrix attributes are kread-onlyl. In other words: assignment to a. nr is pointless. In fact it will destroy the contents of a and create a list with element named nr . If you wish to change a
matrix attribute, you must do so by changing the datain a. For example: if you want to makea complex:

> a = a + zeros (size (a))*1li;
> show(a)
nane: a
class: num
type: conpl ex
nr: 3
nc: 5

If you want to change the number of rows, or columns of a:

> a = reshape (a, 1, 15);
> show(a)
name: a
class: num
type: conpl ex
nr: 1
nc: 15

3.3.4 Element Referencing

Any expression that evaluates to a matrix can have its elements referenced. The simplest case occurs when a matrix has been created and assigned to a variable. One can reference single elements, or one can
reference full or partial rows and/or columns of amatrix. Element referencing is performed viathei[] j operators, using thei; j to delimit row and column specifications, and thei, j to delimit individual row
or column specifications.

To reference asingle element:

>a=1[1,2,3;, 4,5,6; 7,8,9];
>a[2; 3]
6

To reference an entire row, or column:

>al 2;]
456
>al[; 3]
3
6
9

To reference a sub-matrix:
>al[23; 1,2]

45
78

As stated previously, any expression that evaluates to amatrix can have its elements referenced. A very common example is getting the row or column dimension of a matrix:

> size (a)[1]
3

In the previous example the function si ze returns a two-element matrix, from which we extract the 1st element (the value of the row dimension). Note that we referenced the return value (a matrix) as if it
were avector. Referencing matrices in kvector-fashionl is allowed with al matrices. When vector-indexing is used, the matrix elements are referenced in column order. As with matrix indexing, a combination
of vector elements can be referenced:

