
Secrets of the Yale Haskell Optimizer Revealed!

Sandra J. Loosemore

Department of Computer Science

Yale University

New Haven, CT 06520

July 7, 1993

1 Introduction

The expansions produced by the pattern-matcher and type-checker are often quite naive and inef-

�cient. Before generating the output code, we would like to perform various simpli�cations such

as:

� Removing unreferenced variable bindings.

� Dead code removal.

� Constant-folding dictionary lookup.

There are also a number of less obvious transformations that are bene�cial because they result

in fewer delay thunks or higher-order function calls. These include:

� Saturating curried function calls.

� Inlining functions that take functional arguments.

� Pipelining chains of list transformations.

The optimizer phase is performed after expansion of pattern-matching and before strictness

analysis. The optimizer works by performing a code walk over the FLIC representation of the

program, looking for various expression patterns, and replacing them with simpler expressions.

Since these simpli�cations can make it possible to do further optimizations, the optimizer makes

multiple passes over the FLIC structure.

1



2 Constraints and Non-Constraints

Since Haskell is a purely functional programming language, optimizations that involve code motion

or discarding code are much more straightforward than in languages where side-e�ects are an issue.

We don't need to consider order-of-evaluation issues, for example, or whether a variable may have

been assigned to between its initial binding and a subsequent reference.

There is one constraint that has to do with the implementation of subsequent passes of the

compiler: the optimizer must not produce code that contains shared structure. This means that

the optimizer is free to destructively modify the FLIC structure, but it must also be careful not to

introduce multiple references. Transformations such as inlining must be careful to make a complete

copy of the structure (using copy-flic-top).

The function optimize takes the FLIC expression to be processed as an argument and returns

the (possibly di�erent or modi�ed) expression as a result. Individual walker methods call optimize

recursively on their components and are responsible for storing the result back into those components.

3 Let Expressions and Inlining

By far the most common classes of transformations applied by the optimizer are those dealing with

inlining variable references and removing unused bindings from let expressions.

The pattern-matching phase introduces many variables that are bound to \simple" expressions

such as constants or references to other variables. When walking a let expression, the optimizer

identi�es and marks these variables, and then any references to the variables are inlined by replacing

the reference with a copy of its value expression. After all the references have been inlined, the

variable binding can be removed.

It is also quite common for a variable to be bound to a more complicated expression, but for

the binding to be referenced only once. Inlining these variables involves some tradeo�s; doing so

often eliminates the need for creation of a delay thunk or makes it possible to do other optimizations

at the point of reference, but if the single reference occurs within a nested function that is called

many times the computation may be repeated unnecessarily. We have found that the bene�ts of

inlining outweigh the disadvantages, so these variables are now inlined unconditionally. Note that

this optimization takes place over two iterations: one traversal must be done to count the references,

and a second to actually do the inlining of the references.

The Haskell programmer can also use annotations to force particular bindings to be inlined. This

is especially useful for functions that take functional arguments { for example, map or dropWhile.

Since these functions are usually called with a known value for the functional argument, inlining

allows \�rsti�cation" of the calls within the function body. (Many of the functions in our version of

the Haskell prelude have inline annotations for this reason.)

Inlining of function applications usually triggers a series of other optimizations to remove the

bindings of the lambda variables to the actual arguments.

2



Consider:

let f = \ x y -> x : y

in f a b

Inlining f and simplifying the let,

((\ x y -> x : y) a b)

The next step is to turn the lambda application into a let:

let x = a

y = b

in x : y

Then, a and b are inlined and the let simpli�ed:

a : b

4 Function Applications

The lambda-to-let conversion noted in the previous section is just one of the transformations that

the optimizer looks for in function applications.

The optimizer attempts to saturate all calls to functions of known arity. The purpose of this

optimization is to allow a �rst-class call to the fast entry point for the function to be generated,

instead of a call to its slow entry point that supports full currying. The saturation is performed by

wrapping a lambda expression around the call. For example, a call such as:

foldr f z

would be rewritten as:

\ l -> foldr f z l

Once the call is fully saturated, the optimizer looks for further transformations such as constant-

folding. One important special case is inlining calls to dictionary selector functions when the dic-

tionary arguments are constants; this permits a �rst-class call to the type-speci�c function to be

used instead of having to do the dictionary lookup at run-time. A number of standard prelude func-

tions also have special-case optimizations associated with them. For example, the various numeric

conversion functions have optimizers associated with them that do constant-folding at compile-time.

3



5 Lambda Expressions and Function De�nitions

The extra lambda variables that are introduced by making function calls saturated are propagated

upward through enclosing let and if expressions and eventually merged with any outer lambda

expression.

It is also possible for named local functions to have their arity reduced. This happens when the

optimizer notices that there are no higher-order calls to the function and that the same value for

the argument is passed at all calls (with appropriate magic to determine �xed points for recursive

functions).

Here is an example.

dropSpaces = \ l -> dropWhile isSpace l

The prelude function dropWhile is forced inline because of an annotation. Its expansion includes

a locally de�ned recursive function:

dropSpaces =

\ l ->

let dropWhile2535 =

\ ARG2536 ARG2537 ->

if is-constructor/Nil ARG2537 then pack/Nil

else

if ARG2536 (sel/:/0 ARG2537)

then dropWhile2535 ARG2536 (sel/:/1 ARG2537)

else ARG2537

in dropWhile2535 isSpace l

Next, the second argument (ARG2537) is recognized as having an invariant value isSpace. Re-

placing this lambda variable with a local binding is done in two steps. The �rst step involves adding

a new binding for the rewritten function, and rede�ning the old binding in terms of it:

dropSpaces =

\ l ->

let dropWhile2542 =

\ ARG2537 ->

let ARG2536 = isSpace

in if is-constructor/Nil ARG2537 then pack/Nil

else

if ARG2536 (sel/:/0 ARG2537)

then dropWhile2535 ARG2536 (sel/:/1 ARG2537)

else ARG2537

4



dropWhile2535 =

\ ARG2536 ARG2537 -> dropWhile2542 ARG2537

in dropWhile2535 isSpace l

In the second step, the original function binding is forced inline and the usual lambda-to-let

reductions applied. In this case, the binding of the invariant argument is also recognized as being

inlinable. Eventually, this yields:

dropSpaces =

\ l ->

let dropWhile2542 =

\ ARG2537 ->

if is-constructor/Nil ARG2537 then pack/Nil

else

if isSpace (sel/:/0 ARG2537)

then dropWhile2542 (sel/:/1 ARG2537)

else ARG2537

in dropWhile2542 l

6 Deforestation

We have implemented a form of deforestation optimization, as described in \A Short Cut to Defor-

estation" (Andrew Gill, John Launchbury, Simon L. Peyton Jones, FPCA 1993). The general idea

is to transform code sequences like

filter p (map f l)

into a single loop, bypassing construction of the intermediate list.

This is done by de�ning most of the standard prelude list functions, as well as list comprehensions,

in terms of two primitives: foldr for consuming lists, and build for constructing them. Currently,

functions that are candidates for deforestation optimizationsmust be forced inline via an annotation.

The compression of the loops and the creation of the intermediate list is then performed by this

transformation:

foldr k z (build g) => g k z

In some cases, inlining of list-building functions may leave a let construct wrapped around the

call to build in the function body. In order to permit recognition of the identity, the optimizer

hoists the let bindings to surround the entire foldr call.

5



Any remaining calls to foldr and build are inlined. However, in order to permit some additional

identities on foldr to be detected, build must be inlined �rst and a few more iterations of the

optimizer performed to allow the simpli�cations to propagate through the code. These additional

foldr identities include:

foldr (:) [] l => l

foldr k z [] => z

foldr k z x:xs => k x (foldr k z xs)

The �rst transformation is a basic list-copying identity. The latter two identities basically perform

loop unrolling on functions applied to list expressions.

Finally, there is one other related special case pattern detected by the optimizer before foldr is

inlined:

foldr (:) z l => primAppend l z

Because it is so frequently used, we have implemented primAppend as a hand-coded primitive that

is specially optimized to append eagerly when possible; in some cases, this can result in noticible

performance improvements.

The deforestation optimizations introduce one additional quirk into the optimizer. Speci�cally, in

order for the optimizer to be able to apply this technique by inlining previously compiled functions,

the inline expansions must be saved before any calls to build and foldr they contain are inlined.

7 Structured Constants

The optimizer recognizes that applications of data constructors to constant arguments can be made

into top-level constants instead of re-evaluated each time. It also detects common constant subex-

pressions, although in practice this does not have a signi�cant impact on code size.

In the case where a local variable is bound to a structured constant, the entire variable binding is

hoisted to top-level. For structured constants that appear in other contexts, a new variable binding

at top-level is created.

8 Pattern-Matching Simpli�cations

The optimizer performs a number of optimizations to simplify the pattern-matching code produced

by the CFN.

The output of the CFN is rather naive. Basically, for each Haskell case expression, it produces

a case-block construct with clauses (corresponding to each of the alternatives) that are executed

6



sequentially. A return-from is used to indicate a successful pattern-match and return from a

clause. The case-block and return-from constructs are fully general but in most cases the pattern

matching can be rewritten in terms of simpler if expressions.

Consider this example function:

foo x = case x of

[] -> 0

x1:[] -> x1

x1:xs -> x1 + (foo xs)

foo :: [Int] -> Int

The CFN produces this output:

foo =

\ x ->

case-block #:PMATCH2542

and is-constructor/Nil x

return-from #:PMATCH2542 0

and is-constructor/: x

let CONEXP2543 = sel/:/1 x

in and is-constructor/Nil CONEXP2543

let x1 = sel/:/0 x in return-from #:PMATCH2542 x1

and is-constructor/: x

let xs = sel/:/1 x

x1 = sel/:/0 x

in return-from #:PMATCH2542 i-Num-Int-+ x1 (foo xs)

return-from #:PMATCH2542

error

"Pattern match failed at line 2 in file interactive."

There are some simpli�cations that are immediately obvious:

� The is-constructor tests on x in the second and third clauses are unnecessary, since the only

other constructor for the list data type is already matched by the �rst clause.

� The automatically generated �nal error clause of the case-block is unreachable and should

be removed.

� Since this example doesn't include any clauses with guards that might fail and fall through to

the next clause, the conditional structure can be rewritten in terms of nested if expressions.

Performing these transformations (and also inlining the bindings of x1 and xs) results in:

7



foo =

\ x ->

if is-constructor/Nil x

then 0

else

if is-constructor/Nil sel/:/1 x

then sel/:/0 x

else primPlusInt (sel/:/0 x) (foo (sel/:/1 x))

Now let's examine the transformations on the control structure in more detail.

First, optimizations on the individual case-block clauses are performed. The CFN generally

produces a (possibly nested) and expression to perform the pattern-matching tests, interleaved with

let expressions to bind the pattern variables. There are a number of obvious identities that are

recognized in and expressions: simpli�cation of literal True and False subexpressions, nested and

expressions, and unary and expressions.

The optimizer also does some simpli�cations to remove repeated or unnecessary is-constructor

tests. If a previous case-block clause is already guaranteed to match against a particular construc-

tor (i.e., there are no guards or other subexpressions which must also match), then any further

is-constructor tests on that constructor will always return False. Likewise, if it can be deter-

mined that all other constructors for a particular data type must have already been matched by

previous clauses, it can be determmined that the remaining is-constructor test will return True.

Some care must be taken in dealing with clauses that are known to fail to match. For example, it

is incorrect to rewrite a clause such as and exp1 False exp3 as simply False, because exp1 must

still be evaluated to preserve the strictness semantics.

Finally, rewriting of the case-block as nested if expressions is triggered by recognizing a pattern

like:

case-block name

(and test1 .. testn (return-from name result1))

...

This is rewritten as:

if (and test1 .. testn)

then result1

else case-block name ...

and then the case-block in the else clause is rewritten recursively. If a clause consists of a single

return-from expression, any remaining clauses are discarded as dead code.

As usual, if the �rst clause is a let expression, the bindings are hoisted to surround the entire

case-block to permit these patterns to be recognized. Also, if a return-from appears as the body of

8



a let, it is hoisted outside of the let to enable the case-block templates to be recognized. (Usually,

most of the bindings of pattern variables and temporaries used for destructuring are optimized away

anyway.)

9 Miscellaneous

There are a whole bunch of other identities that the optimizer is occasionally able to apply. These

include:

� Folding an if expression with a constant test.

� Removing redundant if-constructor tests on boolean test expressions in an if.

� Folding sel when applied to a pack application.

� Folding is-constructor when applied to a pack application.

� Folding is-constructor when the corresponding data type has only the one constructor.

10 Taking Best Advantage of the Optimizer

A number of optimizations performed by the Yale Haskell system involve changes to the standard

prelude de�nitions, so that calls to them may be compiled more e�ciently. Users can also bene�t

by performing some of these same kinds of changes to their own code.

Users can gain the most bene�t from the foldr/build optimizations by writing their own code

in this style | particularly, using foldr to iterate over lists rather than writing speci�c recursive

functions. We have rewritten most of the prelude list functions in this style, and we suggest that

you look at the PreludeList source code for hints on some common idioms for handling additional

arguments, iterating over multiple lists in parallel, and the like. Also note that this optimization is

performed only within user-de�ned functions and not across call boundaries unless those functions

have explicit inline annotations.

We have added inline annotations to most other prelude functions that take a functional argument

as well. Normally, these functions are called with a known argument, and inlining enables the calls

to that function within the body to be changed from higher-order calls to more e�cient �rst-order

calls. Again, users might want to add inline annotations to their own code in order to take further

advantage of this optimization.

Another important use of inline annotations in the prelude is to allow dictionary lookup to be

compiled away. The array operations are a good example of this. Computation of array indexing

is an overloaded operation in Haskell, involving the index operation in class Ix. While any calls to

index with a known dictionary parameter can be optimized to a �rst-class call to the appropriate

9



method, if the call appears embedded in some other function | for example, the array indexing

function ! | this cannot be done, even if the types of the arguments of particular calls to this

enclosing function are known. To avoid the dictionary lookup, the function containing the call must

be forced inline with an annotation.

In some cases functions are too large to be inlined without causing excessive code bloat. It is

often possible to rewrite such functions so that the part containing the higher-order function call

or call to an overloaded operation is inlined, and the result passed to a helper function that is not

inlined.

11 Tuning and Performance

The total number of iterations performed by the optimizer, as well as the point at which to inline

foldr and build, has been determined by instrumenting the optimizer and experimenting with

compiling the standard prelude.

Generally, however, doing this level of optimization on ordinary user code is overkill, particularly

since it makes the compilation process noticibly slower. Because of this problem, we have made

some of the more time-consuming optimizations optional and disabled by default. Users can re-

enable these optimizations either globally by using the optimizers command or menu, or locally by

a switch within the unit �le for a particular compilation unit.

The optional optimizations are:

inline Controls whether to look for functions \simple" enough to be inlined, and whether de�nitions

previously marked as inlinable are actually inlined. If this is disabled, the optimizer is very

conservative about inlining.

constant Controls whether the optimizer looks for structured constants.

foldr Controls whether the optimizer attempts to perform the foldr/build deforestation. If dis-

abled, the optimizer performs fewer total iterations and inlines all calls to foldr and build

immediately.

10


