A Foreign Function Interface for Haskell

John Peterson
Research Report YALEU/DCS/RR-971
Yale University
Department of Computer Science

New Haven, CT 06520




1 INTRODUCTION 1

1 Introduction

Recent work has shown how purely functional languages such as Haskell can be integrated with
imperative languages by using monads to encapsulate the state of the imperative computation. This

preserves the referential transparancy of the functional language and avoids placing conftHHHHHH T

This annotation, LispName, takes a single argument: a string containing the Lisp object to be used
as the add function. Since in Lisp, + is used for addition, the following interface would work:

interface Add where

add :: Integer -> Integer -> Integer
{-# add :: LispName("+") #-}



2 INTERFACE FILES 2

This indicates to the Haskell code generator that calls to the Haskell add function should be trans-
lated to calls to the Lisp +. The following program uses add:

module Main where
import Add

main = print (add 1 2)

A number of things happen behind the scenes for this example to work. First, there is an implicit
conversion of the datatype Int to its equivalent Lisp representation. Second, there is an implicit
conversion of the function calling protocols between the Lisp and Haskell worlds — Haskell’s call
protocol supports currying and laziness, while the Lisp protocol does not. When the interface is
compiled a wrapper function is generated which takes care of the call conversion. By default, the
system determines the arity of the function from its type signature and passes the correct number
of arguments to the Lisp function. Also by default, the Lisp function is assumed to be strict: all
parameters are evaluated before being passed to the Lisp code.

In this particular example, the default behavior makes everything work as it should. In more
complicated situations, you must provide some additional information explicitly; this is described in
detail in the next section.

This same example can also be done using a C implementation of add. The file add.c contains

int add(x,y)
int x,y;
{return (x+y);

};
The interface would be

interface Add where

add :: C_int -> C_int -> C_int
{-# add :: CName("add") #-}

The type C_int is a synonym for Integer used in interface files to select the exact numeric rep-
resentation used in the C code. All C numeric types are represented by Integer except float
and double, which have direct Haskell equivilants. Coercion between C and Haskell numerics is
automatic.

In most cases, you need to load the file (or files) containing the foreign functions being called.
This is accomplished by denoting .lisp, .scm, or .o files in the .hu file defining the compilation
unit. The .1isp extension is used for Common Lisp files; the .scm extension is used for the Scheme
dialect used in the Yale Haskell implementation. Either type of lisp file will be compiled when the
associated compilation unit 1s compiled. C files must be compiled separately; their compilation is
not managed by the Haskell system. Use cc —c¢ file.c to compile C files used by Haskell programs.

A file containing Lisp code can be loaded into any Common Lisp package. Lisp objects referenced
in annotations are, by default, in the MUMBLE-USER package. This package is used for the implemen-
tation of the compiler and code in this package is in a Scheme-like dialect of Lisp. Real Common



