
1

“See Movie Run”

aka

Making Your Application
QuickTime™ Literate

by Joe Zobkiw

Internet: zobkiw@world.std.com
America Online: AFL Zobkiw

2

Introduction

This paper discusses QuickTime and how you can easily implement some of its features in your
application. QuickTime allows you numerous options and quite a bit of flexibility and
extendibility. Anything you think you might want to do to still pictures or motion video you can
accomplish via QuickTime. To make your application QuickTime literate you must support two
or more of the following QuickTime features:

• Playback of movies (with the standard controller).
• Still image compression.
• Saving of data as QuickTime movie.
• Standard preview dialog box.
• Cut, copy, and paste of movie data.

This paper focuses on the playback of movies using the standard movie controller and the
standard preview dialog box. This is what most application developers will want to implement
first. These features allow you to import a movie file and play it. The file can contain video,
audio, or both. An example THINK C project using the THINK Class Library is included to
demonstrate this.

If you are not familiar with QuickTime or the Movie ToolBox you should obtain the QuickTime
Developers Kit from the Apple Programmers and Developers Association (APDA). This paper
assumes the reader has knowledge of the Macintosh ToolBox and basic knowledge of
QuickTime, the Movie ToolBox, and the standard movie controller.

Quick Overview

As mentioned above, QuickTime is not just movies, it is a group of three ToolBox Managers that
work together to give your applications access to movie playing (via the Movie ToolBox), image
compression (via the Image Compression Manager) and other components such as the standard
movie controller (via the Component Manager). QuickTime allows you to implement your own
compressors and other components for custom applications. Once implemented, other developers
can also use your components.

This paper focuses on use of the Movie ToolBox and Component Manager to play movies via the
standard movie controller. This is all that many applications will need to be able to do. Editing of
movies can be left to other applications like Adobe Premiere and DiVa’s VideoShop -- two
excellent movie creation products.

Quick Implementation

When your application uses QuickTime there are a few routines you must call before you can
call any of the QuickTime specific routines. When your application starts up you must use
Gestalt to determine if QuickTime is available on the current configuration. The following
routine returns true if QuickTime is installed and false otherwise. If QuickTime is available,

3
version also contains the version of QuickTime. This routine is contained in the file QuickTime
Utilities.c and is explained below.

Boolean QuickTimeIsInstalled(long *version)

Once you have determined that QuickTime is available you must call EnterMovies to alert
QuickTime that your application will be taking advantage of its features. When EnterMovies is
called, QuickTime allocates special data structures for your application that it uses while it is
running. You can now use the Movie ToolBox to play, edit, and

4
otherwise manipulate movies. When your application quits, you should call ExitMovies so
QuickTime can deallocate its private storage for your application.

See Movie Run

The THINK Class Library implementation for this paper is relatively straightforward. The main
QuickTime class is the CMovie class. This class implements a movie object that handles
displaying and playing of a QuickTime movie. CMovie is a subclass of CPane so it is easy to
utilize as a drawing environment. The CMovie class automatically adds the standard movie
controller to the movie it is currently using. The standard movie controller gives you a simple
way to start, stop, and “walk the frames” of a movie.

CMovie pane with standard movie controller

CMovie uses only a few QuickTime calls to perform its magic. It centers around a few Movie
ToolBox calls for loading the movie resources into RAM such as OpenMovieFile and
NewMovieFromFile. A few utility-type routines such as GetMovieBox and
GoToBeginningOfMovie are used to prepare the movie for playback. Lastly, we use
GetMoviesError to check for errors from any of our Movie ToolBox calls that do not return an
error code as a function result.

To create the standard movie controller and attach it to the movie we use the Component
Manager call NewMovieController. This handles the majority of the dirty work of creating the
controller and attaching it the movie. There are other ways to accomplish this but this is by far
the easiest since it sizes the controller, etc.

The standard movie controller needs to be passed ToolBox events received from WaitNextEvent
in order for it to update itself, handle user actions, etc. We use the Component Manager routine
IsMCPlayerEvent to pass the events to the controller. Functionality like this does not come
naturally to a subclass of CPane in the THINK Class Library so a bit of trickery is involved

5
which is explained in more detail below.

Lastly, we need to make sure that a playing movie has enough time to update itself. For this we
summon the MoviesTask function call during our CPane’s Dawdle method.

6
This routine gives the Movie ToolBox time to play the movie and update it on the screen, even in
the background!

Using CMovie

To use a CMovie object within your application, you first have to make sure you create and
initialize the gEBCollaborator and the new CEBSwitchboard objects.

Your application class should also create the gEBCollaborator object within its initialization
method and dispose of it in its Exit method.

void CQTApp::IQTApp(void)
{

OSErr err = noErr;

CApplication::IApplication(kExtraMasters, kRainyDayFund,
kCriticalBalance, kToolboxBalance);

if (QuickTimeIsInstalled(&gQuickTimeVersion) == true) {

FailOSErr(EnterMovies());
} else {

gQuickTimeVersion = 0;
FailOSErr(gestaltUndefSelectorErr);

}

gEBCollaborator = new(CEBCollaborator);
gEBCollaborator->IEBCollaborator();

}

Your application class should override the MakeSwitchboard method and replace it with the
following method to create a CEBSwitchboard switchboard:

void CQTApp::MakeSwitchboard(void)
{

itsSwitchboard = new(CEBSwitchboard);
((CEBSwitchboard*)itsSwitchboard)->IEBSwitchboard();

}

Once these few things are taken care of we can begin to create and use CMovie objects. CMovies
initialization method looks exactly like that of CPane except for one small change. The last
parameter to be passed to CMovie is a pointer to an FSSpec record that is either nil or contains a
valid movie file description.

void CMovie::IMovie(
CView *anEnclosure,
CBureaucrat *aSupervisor,
short aWidth,

7
short aHeight,
short aHEncl,
short aVEncl,

8
SizingOption aHSizing,
SizingOption aVSizing,
FSSpec *movieSpec)

CMovie will use this movieSpec to either open and prepare the movie for playback or if it is nil
will paint itself gray.

The only other routine you will really need to worry about using (unless you are a real hacker) is
the ImportMovie method. You pass ImportMovie a pointer to an FSSpec record that contains a
valid movie file description. ImportMovie will replace the current movie with the one described
in the spec parameter. If spec is nil it is ignored.

void CMovie::ImportMovie(FSSpec *spec)

To experiment with the CMovie class, you may want to simply edit the See Movie Run
application. Even if you don’t want to edit the existing source code, looking it over will
undoubtedly shed some light on the way this class works and how it can be expanded. It is a very
simple implementation and does not take advantage of advanced data hiding and other features
of object oriented programming. These things could be implemented quite easily if you need
them.

Controller Trickery

Because the standard movie controller needs access to events and because it is part of a CMovie
(which normally doesn’t receive every event) we needed some sort of mechanism to pass
ToolBox events to the controller.

At application launch we allocate a global “event broadcasting” Collaborator (CEBCollaborator
class) instance known as gEBCollaborator. This collaborator is responsible for broadcasting
events returned from WaitNextEvent to any of its dependents via its unique BroadcastEvent
method.

When a CMovie object is created, one of the first things it does is to register itself with the
gEBCollaborator as an entity that needs access to ToolBox events. It does this by sending
gEBCollaborator a DependUpon message.

We also subclass CSwitchboard (by creating a CEBSwitchboard class) and override its
DispatchEvent and DoIdle messages. When our gEBSwitchboard receives an event for
processing, it first sends the event within a BroadcastEvent message to the gEBCollaborator.

void CEBSwitchboard::DispatchEvent(EventRecord *macEvent)
{

gEBCollaborator->BroadcastEvent(macEvent);
inherited::DispatchEvent(macEvent);

9
}

void CEBSwitchboard::DoIdle(EventRecord *macEvent)
{

gEBCollaborator->BroadcastEvent(macEvent);
inherited::DoIdle(macEvent);

}

gEBCollaborator continues by sending a BroadcastChange message to its superclass that
ultimately calls the movie object, one of its dependents, by sending it a ProviderChanged
message.

void CEBCollaborator::BroadcastEvent(EventRecord *macEvent)
{

this->BroadcastChange(kEventRecordReason, (Ptr)macEvent);
}

The movie object can then parse the ProviderChanged message and extract the event from it to
pass to its controller via the QuickTime MCIsPlayerEvent function. If the controller

10
handles the event, CMovie changes it to a nullEvent so it is effectively ignored elsewhere,
otherwise, it passes through unscathed to the next object in line.

This scheme can be used in any situation that requires objects to receive events before the
application gets a chance to process them and works out very well. Special thanks to Chris
Wysocki for assisting in thinking this one through!

QuickTime Utilities.c

The file QuickTime Utilities.c contains a few useful routines when dealing with the CMovie
class and QuickTime movies in general.

Boolean GetMovieFileFSSpec(FSSpec *aFileSpec)

Shows the standard movie preview dialog box and returns true and a valid
FSSpec for the movie file chosen if the user pressed Open. If the user canceled
aFileSpec is undefined and GetMovieFileFSSpec returns false. This routine is
called when the user selects Open… or Import Movie… from the File menu.

Boolean QuickTimeIsInstalled(long *version)

Returns the current version of QuickTime in version and true if QuickTime is
installed. If QuickTime is not installed, version will be zero and
QuickTimeIsInstalled returns false.

What Else Is Possible?

See Movie Run simply plays movies. The application does not perform any editing of the movie
data, resizing of the movie pane, dragging of the movie pane, etc. You might also choose to draw
the CMovie pane into an offscreen GWorld or PixMap and blit it to the screen all at once using
CopyBits to avoid flicker during update events. You could even add odd-shaped “regioned”
movies. The possibilities are endless!

These features are not too difficult to add and may be implemented in the future. In the
meantime, if anyone changes the source, please send me a copy.

In Conclusion

The best way to learn about QuickTime is to dive in! I will be the first to admit that the online
documentation on the QuickTime CD is very difficult to read on any Macintosh with less than a
full page display. I suggest printing as much of the documentation as you can. As I’ve learned
from this excursion into QuickTime you can get by at first if you only print the introduction,
Movie ToolBox, and the standard controller section of the Component Manager. You may also

11
want to skip the Matrix discussion in the Movie ToolBox sections unless you are into
masochistic routines.

With a little work (See Movie Run was implemented and debugged in about 20 man-hours --
including reading about QuickTime!) you can implement QuickTime capabilities into your
application and make it “cool.” QuickTime is paving the road to the future, why not follow it?

#include <StdDisclaimer.h>

Trademarks are registered to their respective holders.

Special thanks to Neil Ticktin and everyone at MacTutor Magazine, MacWorld Magazine for
having the Expo in Boston, America Online and Software Tool & Die for providing electronic
access to my friends and co-workers, Reneé Lockett for supporting my programming late into
the night when she was trying to sleep, Chris Wysocki for the event broadcasting idea, Brian
Gaines for the great suggestions and for setting me straight on a few QuickTime and TCL
gotchas, and everyone who proofread and/or gave suggestions to make this paper and source
code what it is today. Also, a special thanks to Ralph Bellofatto who gave me my first break and
then convinced me that I had the talent to succeed as a Macintosh software engineer.

