
Christian Franz

3D GrafSys
Version 2.0

for programmers

© 1993 by Christian Franz

Copyright Notice:

You may use this software, the Source and its documentation free of charge
for any non-commercial use. This includes using it for writing public-domain
or other freeware programs. If you use any part of this software in your non-
commercial programs you must include the lines

"uses Christian Franz 3D GrafSys 2.0
©1992, 93 by Christian Franz"

in both the program's documentation and 'About...' dialog.

If you like the GrafSys or its documentation, I'm asking you to also write me a
postcard.

Permission is granted to freely distribute this package and its accompanying
documentation as long as neither is modified in any way nor any fees are
charged other than the usual downloading fees on commercial bulletin boards.

If you include the GrafSys into a PD/Shareware Bundle (e.g. CD-ROM) you
must send me a complimentary copy of any such bundle that contains the
GrafSys.

For commercial use of this software (for shareware programs and any other
purpose), its source or its documentation you must contact me and have my
written consent. Usually all I want in return is a free registered copy of your
finished work.

GrafSys is not not in the Public Domain. I, Christian Franz, retain all rights to
both source and documentation.

My address is

Christian Franz
Sonneggstrasse 61
CH-8006 Zurich

Switzerland

email cfranz@home.malg.imp.com
tel. +1-261 26 96 (+ = your code for

Switzerland)

Danksagungen

Ich möchte allen danken, die mich bei meiner Diplomarbeit unterstützt haben.

Besonders bedanken möchte ich mich bei Adrian Brüngger, meinem Assistenten,
und Michele De Lorenzi für ihre Hinweise und Anregungen, sowie Anita Fischer
für ihre Unterstützung bei der englischen Sprache.

What is 3D GrafSys?
GrafSys is a hierarchical object-oriented class library for THINK Pascal. It is
designed to facilitate easy 3D graphics and animations in your programs. GrafSys
supports full 3D control of graphical objects and electronic eye. Graphical objects
can be independently rotated (around arbitrary axes), translated and scaled.
Objects can inherit transformations (rotation, scaling and translation) from other
objects. GrafSys supports dynamic (i.e. on-the-fly) and multiple inheritance of
transformations and an unlimited number of so-called operators (matrices) per
object.

The GrafSys provides objects for 3D points, lines and whole objects that can
contain up to 8000 lines in full RGB color and more than 250'000 points. GrafSys
also supports ultra-fast polygon filling using the triangulation approach. With it
you can easily implement hidden-surface removal.

Designed for fast and simple to program animations, GrafSys supports an
AutoErase feature where the object automatically erases its previous image
before redrawing itself. For flicker-free animations GrafSys also provides easy to
use Off-Screen bit map handling.

GrafSys is a combination of procedures and a powerful, extensible class library
that can be easily curtailed to your specific needs. For example the general-
purpose 3D object 'TSObject3D' understands over fifty messages for such diverse
things as building a point/line database, rotating and drawing itself.

About this documentation:
This documentation describes how to use the software package 'GrafSys'. It is
divided into four major parts. Part one 'General Discussion of 3D' describes the
general principles of 3D visualization and how they apply in GrafSys. Part two
'How to use 3D GrafSys' describes how to use the GrafSys in your programs. Part
three 'Implementation of GrafSys' provides an in-depth view on how certain
aspects of the GrafSys were implemented and can easily be skipped. Part four
'GrafSys and GeoBench' describes the interface GrafSys provides for the
GeoBench.

A Note To The Reader
GrafSys 2.0 is the much-improved descendant to GrafSys 1.x which has been
available for some time. Many users of GrafSys requested the source code as to
be possible to curtail it to their specific needs. For reasons that will become soon
appearant, I had to decline their requests.

GrafSys 2.0 is a fully object-oriented 3D graphics library. The transition from 1.x
to 2.0 was more than a simple translation. It was in effect my Diploma Thesis and
as such required four months of full-time design and coding. Some aspects of the
GrafSys might appear strange to you (e.g. the 200K point requirement or the
whole part four of the documentation). Please keep in mind that the GrafSys was
curtailed to meet specific needs (the XYZ GeoBench of the Institut für
Theoretische Informatik at the Swiss Federal Institute of Technology Zürich
(ETHZ)) and therefore some aspects of this work might not be what you expected
from the 1.x version.

This documentation is a much more comprehensive manual than the one that
came with the 1.x version, which many people commented positive on. It was fun
to write but took quite some time, so please be sure to have a look at it. I hope
you like it.

The GrafSys represents one of my greatest achievements so far (it was accepted
as a diploma thesis and recieved top ranks). Since I would like you to share the
fruits of my work, I will now release the GrafSys 2.0, this time along with the
source code. The only source that I am not willing to release so far are the
assembler versions of the ultra-fast triangle-drawing routine (the compiled code
is included). However, since I have dedicated a whole chapter in part three to this
topic and included the Pascal code for it, I think many of you will be able to code
their own variants of it.
The reason for not publishing the source code is very simple: I'm using it for a
current project that will hopefully enhance my financial position. If I'm done with
it, I will also include the assembler sources.

Please be sure to read the Copyright Notice carefully as to avoid sad
misunderstandings.

Have fun,
Christian Franz.

Part I

General Discussion of 3D

Overview
This part of the GrafSys documentation explains the concept of 3D visualization
using a two-dimensional medium (such as your computer's screen). Then we will
proceed to the fundamental entities and the operations on these. Finally we will
discuss the electronic eye that is used to view a scene and define how objects are
drawn.
Visualization
Basically, 3D visualization is a fancy name for something very common. If you
take a photograph of a building and somebody tells you that the camera
performed a three-to-two-dimensional viewing transformation he will probably
earn nothing more than a funny look. But this viewing transformation is the heart
of the package. It is really not very complicated once you grasp the fundamentals.
What the camera did to produce a picture is very simple (at least as long we put
the chemistry involving the film aside). It reproduces a flat (two-dimensional)
representation of a three-dimensional object.

fig I.1 : Projection of an object

As you can see in fig I.1 the light passes along the edges until it reaches the film.
This is called projection of an object. The light rays are called projection beams.
There are different techniques for projecting an object: parallel projection and
perspective projection. In parallel projection the projection beams are parallel. In
the resulting image formerly parallel lines (in the 3D object) remain parallel and
relative dimensions are preserved. The depth information is lost. Therefore the
resulting image does not look realistic. This technique is often used for blueprints
etc.

In perspective projection all projection beams converge in the so-called Center of
Projection. This is where all the projection beams originate. Somewhere we
interpose a Projection Plane, in our analogy the film. In the projection parallel
lines only remain parallel if they are parallel to the viewing plane. Relative
dimensions of the object are lost since lines close to the projection center appear
longer than those further away. The center of projection is often called the eye-
point or simply the eye. Perspective projection has a singularity that is easily
explained. The closer you get to the eye-point the larger the projection gets. If
your object extends into the eye itself its size becomes infinite. To avoid this
situation the GrafSys will not draw anything between the eye and the projection
plane (see 'clipping').

fig I.2a: parallel projection (left) and perspective projection (right)

For further description of the different eye and projection settings, please refer to
the chapter 'Eye'.

Adaptation to the computer screen visualization is fairly straightforward. In
computer space we use the screen as the projection plane. To facilitate things we
let the projection plane coincide with the XY-Plane (i.e. the Z=0 plane). This way
we can very easily draw the object using both techniques. Imagine we have a
point with the coordinates [x,y,z] that we want to project onto the screen. To
parallel-project the point to screen coordinates, we use the simple formula

h := xc + x (xc is center horizontally of screen)
v := yx + y (yc is center vertically of screen)

In parallel projection we ignore the z-coordinate and only use the x and y
coordinates as offsets from the screen center.
In perspective projection we use the z-coordinate to modify the x any y values.
The further away from the projection plane, the closer x and y

should be to xc and yc, respectively. This is of course very simple to accomplish
by dividing the x and y values by the distance from the eye. Let d = distance of
Eye from projection plane. Thus,

and when projecting we just use above values as with parallel projection:

h := xc + xp
v := yc + yp

The beauty of this lies in the usage of the d parameter. If we agree not to draw
anything that falls behind the projection plane (i.e. the z component is negative),
the z/d parameter can never approach -1 where xp and yp will become singular.

fig I.2b: The eye is always assumed behind the projection plane which can be
regarded as the screen. No objects behind the projection plane

are drawn

Again, please refer to the section about clipping for further discussion of this
problem. For further discussion on how the GrafSys implements projection,
please refer to Part III 'Implementation of GrafSys'.

Fundamental Entities
All of the above is nice and interesting but until now we have no way of defining
what to transform. In GrafSys all objects are defined via points and lines in
Cartesian coordinates. Since it is an object-oriented library you can easily change
this to any other way you like. Keep in mind, however, that the basic
transformation algorithm will always work with Cartesian coordinates so you will
have to provide you own conversion algorithms. The following discussion
assumes that you will be using the supplied TSObject3D object (described below)
or it's descendants with it's methods.

Points And Lines
Almost all 3D Graphics with this package should be done with so-called 3D
Objects (these should not be confused with the OOP term 'object' which is simply
a data structure). Although the package supports separate conversion and drawing
of 3D Points and 3D Lines as well it is optimized to handle 3D Objects. These
objects are usually a collection of points and lines that logically belong together.
If you group all this data into one single object, drawing and transforming
becomes a simple task and requires no additional headache (or sore fingers while
programming) from you. The collection of points and lines in a 3D object is
sometimes referred to as the 'object's database'.

Points
Points are defined in Cartesian coordinates, i.e. each point has three
coordinates that indicate how far away the point from the origin is. The
origin is assumed at [0,0,0]. Routines are provide to add to, delete from and
change Points in the database. With objects you access points with reference
numbers, i.e. the third, fourth or tenth point in the database. For help on how
to define these points please refer to 'How to design a 3D object' in part II of
this documentation.

Lines
Lines always connect two points. You specify the starting point and the
ending point of the line. Routines for adding, deleting and changing lines in
the database are provided. Lines are accessed through reference numbers
very much like points are.
3D Objects are drawn by walking through the database drawing all lines
incrementally (points that are not connected by lines are not drawn). Note
that the sequence in which you specify the lines can affect the performance
of the GrafSys. This is because the GrafSys is smart enough not to
recalculate the starting point of a line if the previous line ends at the same
point, cutting the overhead of moving the pen to a new location (in techno-
speak the MoveTo Toolbox routine will not be called). Imagine we had to
define a cube. The eight corners must be connected with twelve lines.

fig I.3: optimal sequence of lines (left) and worst sequence (right)

As you can see in fig I.3 the same object may be defined in many different
ways. The definition on the left requires 4 MoveTo (at lines 1, 10, 11 and
12) and 12 LineTo calls while the definition on the right requires 12
MoveTo and 12 LineTo calls.

Polygons (Triangles)
The normal version of GrafSys does not support true polygons. However,
GrafSys provides you with a special ultra-fast triangle fill procedure that you can
use to implement hidden-line and hidden-surface removal. The easiest way is to
subclass the TSObject3D (see below) to add these features. There is a demo
program that demonstrates this in conjunction with Back-Face Removal.

Coordinate Systems
When defining many objects (e.g. chairs in a room) it would be quite tedious to
go and measure the coordinates of each chair relative to a common origin and
then enter those points into the database. Instead it is much easier to define an
object in its own world where we can place the origin wherever we want to (this
is especially important if we want to rotate the object as you will see later on).
Using a technique called translation we will then move the object to its location
(in this case the location in the room). To do this we use different coordinate
systems: Model Coordinates and World Coordinates (there are more coordinate
systems involved but these two are the only ones you must know about)

Model Coordinates
When you design an object, you usually instinctively place an origin (i.e. the
point with the coordinates of [0,0,0]) somewhere and define all other points
relative to this object origin. The origin of the cube pictured below is in its
center as can easily be seen. Each object has its own origin. Therefore the
coordinates of the points that model the object reside in the so-called Model
Coordinate System (MCS).

fig I.4: Object origin (left) and coordinate system (right)

World Coordinates
When you design an object, you specify all points in the object's coordinate
system. Then, when viewing it, you place the object somewhere in the
world. You do this by specifying which point in the world would correspond
to your objects origin. This coordinate system is called World Coordinate
System (WCS).

fig I.5: Difference between World Origin and Object Origin

In the figure, the origin of the object was placed at the world coordinates
[3,7,4]. If the object had a point with the coordinates [0,0,3] in Model
Coordinates, the same point would have (after moving to [3,7,4]) the
coordinates [3,7,7] in world coordinates. Usually this would mean you had
to recalculate all your points. If you are using the 3D Objects this is done
automatically.

Fundamental Operations
But why should you be confused with all these different coordinate systems?
What is their use? Not only is it much easier to define an object in a local
coordinate system. But the real advantage is apparent when you want to move,
rotate or scale a single object without having to change everything else in the
world. These actions (moving, rotation and scaling) are called transformations.
The mathematics to this is quite simple and described in part III of the
documentation. You do not need any understanding of the underlying math to use
the GrafSys efficiently. If you change the state of an object somehow (by adding,
deleting or changing lines or use any of below described operations on it) it
remembers this and recalculates itself when necessary.

Translation
Moving the (local) origin of an object means that you move all other points of the
object as well along with the origin for the same displacement. This is called
translation. For example, if you drive your car one mile down the road, you
'translate' it one mile. GrafSys supports two different kinds of translations:
relative and absolute. With relative translation you specify a vector (that is a
direction and a distance) and the object will be translated from its current position
in the direction and for the length of the vector.

fig I.6: Relative translation

Note however, that when specifying the translation vector you do not calculate
the point from where (before) to where (after) but just define the displacement
(i.e. displace five units in direction of x, six in y and one in z).

In absolute translation you again specify a vector. Now however, instead of
displacing the object you place it at an absolute location specified by the vector.
The result is a translation of the object from the worlds origin for the given
vector.

fig I.7: Absolute translation using the same vector as in relative translation

Note that the displacement vector is always specified in the currently active
coordinate systems. This is important to remember only when using the order-
dependent transformations (see below). When translating an object that has
previously been rotated, translation usually takes place in the rotated coordinate
system. If you do not use order-dependent transformations (i.e. no FF operator,
described below) translation is always performed in the model coordinate system.

Rotation
The most dramatic advantage of model coordinate systems is obvious when we
rotate a single object in a scene (a scene is a collection of objects that are visible
on the same screen). While translation of objects could easily be done through
simply adding the vector of displacement to all points in question, rotation is not
that simple. When you rotate something, the first question is not as you might
expect 'how many degrees' but 'around what?' Rotation is always done around an
axis (called the rotation axis) which is nothing more than a vector in space
defined by two points.

The GrafSys supports four different forms of rotation: around the object's x, y and
z axis and around an arbitrary axis. If you rotate around one of the main axes you
do not have to specify the axis explicitly (because it is obvious).

Note that rotating an object is not as simple as it sounds and you might get
different results from what you have expected. If you rotate an object 45 degrees
first around the Z-Axis and then around the Y-Axis it does not mean that the Y-
Axis of the second rotation is tilted by 45 degrees. Rather, the object is taken out
of the coordinate system, rotated by 45 degrees and the result of this operation is
placed back into the coordinate system and then taken out again to be rotated
around the Y-axis.

fig I.8a: result of two sequential rotations

Some people might have expected the following result:

fig I.8b: Incorrect (but expected) result of two sequential rotations

But since this is dependent on which rotation you execute first, this would make
it almost impossible to program anything with it, because you always have to
know which operation was executed when.
To achieve above results you have to use the following technique:

fig I.8c: Achieving expected result through arbitrary rotation

As you can see, the ability to rotate around any axis gives you additional
flexibility.

Rotation around an arbitrary axis is a bit more complicated since you have to
specify two points P1, P2 around which to rotate. In this case you have to be
careful to specify the two points in the correct sequence since the axis is always
oriented looking from P1 to P2.

fig I.8c: Rotation around an arbitrary axis

If you interchange these points, the rotation is done in the inverse direction. Care
must be taken when using arbitrary rotation since it consists of a mixture of
translation and rotation. They cannot easily be undone and are applied only after
the default-operator rotation and translations are done. Therefore, you should not
use any of the default rotation or scaling if you use the arbitrary rotation
commands except if you know exactly what you are doing. See 'Order Of
Transformation', below.

Again, GrafSys provides routines for both relative and absolute rotation. Rotation
around the main axes is done through the same routine while arbitrary rotations
have their own.

Object rotation is given in radians (not degrees!).

Note: to convert between radians and degrees, use the following:

const
degree = 0.01745329; (* π / 180 *)

and multiply all your angles (given in degrees) with the constant. This will
convert it to radians e.g.

alpha := 90 * degree;

Scaling
Another thing GrafSys lets you do is scaling an object. That is enlarging or
reducing the object along any of its axes.

fig I.9: Normal cube (left) and scaled along one axis (right)

This scaling can only be done along the main axes (i.e. X, Y and Z). Note that
different scaling factors along the axes can destroy the orthogonality of the
coordinate system.

Order Dependencies
Usually, rotating an object is harder than it seems at first. More often than not, the
results are not what you expect. This is because normally the rotations are done
sequentially and not simultaneously. In that aspect this package is not different.
First, the object is rotated around the X-, then Y- and finally around the Z-Axis. If
you keep this in mind, you should not be surprised too often.
Still the problem of oder dependencies remains along with another one:
Translating an object and then rotating the translated object yields a totally
different result from rotating first and then translating the rotated object as the
following example illustrates:

fig I.10: Order dependencies

Some graphics packages tackle this problem by defining the order once and for
all (e.g. SubLogic's A23D1 3D Graphics Package), others let you define operators
and leave the sequence for you to figure out (PHIGS, GKS). I have taken a
combined approach. When displaying an object, GrafSys first rotates and then
translates the object using the default built-in operators (also called 'default
standard' and 'default arbitrary' operators, respectively). The normal translate,
rotate and scale procedures (messages for the OOP folks) work on these default
operators. Since this is not always flexible enough, GrafSys provides each object
with an unlimited number of additional operators (actually just matrices) that can
be linked to the object. It is up to the programmer what she/he does with it. For
convenience the operator objects understand the translate, rotate and scale
messages. This at first somewhat cumbersome approach has one distinct
advantage that even PHIGS or GKS do not provide: using this and the provided
inheritance mechanism you can build object hierarchies on-the-fly (i.e.
dynamically) while your program is running and even change them. Also this
approach allows multiple inheritance (if you ever should find a need for that).

Free Transformation
As described above, the GrafSys supports both default (i.e. fixed-order)
transformation and so-called free-order transformation (also called 'FF
transformation'). The usage is simple. You tell your object to allocate a new
transformation operator (a matrix) and define all your operations on it. For
example, if you needed first translation and then rotation you would first allocate
a new operator, translate, then allocate another operator and then rotate. The
object automatically keeps track of all allocated operators:

fig I.11: Free-order transformation operators

The operators are evaluated in the sequence they have been placed in the chain.
Procedures exist to pre- and post-concatenate the operators. The above-mentioned
inheritance works with these free-order operators. For more information on
inheritance please refer to part II, chapter 'Inheritance'.

Order Of Transformation
Since it is important to know what operation is executed in what order, here is the
sequence of transformation:
• first, the build-in rotations around x, y, and z are executed (in that order) using

the 'default standard operator'
• then the object is translated and scaled using the default standard

translate/scaling operator
• then the arbitrary axis-rotations are applied
• then in the order the programmer specified the free-order operators are

executed (if allocated)

Eye
Everything discussed so far would enable you to view scenes in 3D on your
screen. If you want to see an object, simply move it until it appears on your
screen. This happens when it's above the XY plane and close enough to the
worlds origin. If you cannot see the object, move it around until you do. This is
completely operable and suffices in most cases. However, this is like moving the
mountain instead of going to it. It would be much simpler (from the programmer's
point of view) if we moved the eye until we see the objects (in relativity terms
this is of course the same since the underlying math will do the same if you
specify an eye location, only automatically). If you open a new screen (or
window) for 3D graphics, it defaults to switching the eye off. If you switch it on,
you may specify a location from where you look at your objects.

Eye Coordinates
The eye is a bit more complicated to describe and you should first try to work
without it. If everything works fine without it, turn it on to gain even more
control over your scene.
If the eye is turned off, you are always viewing from below the XY plane straight
up the Z-axis, the eye is located at the world's origin:

fig I.12 : The eye default direction

If you turn the eye on, you must specify a point in world coordinates from where
you wish to look into the world. This is the eye location. Think of it as the place
where you put the camera. Anything in front of it will be displayed normally.
Objects behind the eye will be displayed either mirrored (if clipping is off) or not
at all (if clipping is on).

There are two different sets of parameters that specify the eye (i.e. the point from
which you look at the world). If you look at an object, the way it is displayed on
the screen depends on several aspects:

• from which direction you look at it
• how far away you are from the object
• what projection type you are using
• what kind of electronic lens you have selected

If you regard the eye as a camera and the screen as the film the picture is
projected on, things might become a bit easier to understand. First, the camera
has to be placed somewhere in the world. You do this by specifying a location in
the normal way (as a point) with [x,y,z] as its coordinates.

fig I.13 : Eye in action

After defining the point where the camera is set up, you specify how much the
camera deviates from the Z-axis towards the Y-axis. This angle is called Phi. If
you specify a phi angle of zero, the camera would be facing straight up the Z-
axis, an angle of 90 degrees (remember to convert to radians before calling the
routine) aligns the camera with the Y-axis, thus being parallel to the XY-plane:

fig I.14: Definition of phi

Next, with Theta, you tell the package how far you would like to turn the camera
around the Z-Axis:

fig I.15: Definition of theta

A third angle, called Pitch defines, how far you would like to turn the camera
around its viewing direction. An angle of zero means no pitch (i.e. parallel to the
'horizon')

fig I.16: Definition of pitch

The last parameter affects your graphics only if you are using perspective
projection. It is called Viewing Angle and simulates the electronic lens. If you use
small angles, your eye shows only a very small part of the world but enlarges it
many-fold. This would be a 'Zoom Lens'. Large angles show a much bigger
portion of the world, but these will be smaller and you have to get closer to
enlarge them (just like in real life). Note that the viewing angle ranges from 0 to
180 degrees.

fig I.17a: Definition of viewing angle.

A viewing angle of zero tells the package that you want to switch to parallel
projection (see below). The viewing angle defines how far

behind the projection plane the eye resides. A large viewing angle (close to 90
degrees) places the eye close to the projection plane (wide angle lens) and a small
angle places the eye far away (zoom lens). To calculate the actual distance the eye
must know the size of the projection plane. Therefore the eye in GrafSys is tied to
the window where you want to view the object.

fig I.17b: d parameter and viewing angle

If you re-size the window you should make sure to tell the GrafSys to recalculate
the internal eye parameters. Otherwise you might get surprising results.

Eye Transformations
The eye can be moved around just like any other object. However, since a great
deal of calculation is involved with moving the eye, you must keep track of the
eye's position. There is only one central procedure to set the eye parameters.
Therefore, if you update the eye it is not necessary to tell your objects that they
have to recalculate themselves since they detect this situation automatically.

Viewing Options
Projection

The package supports two ways of projecting the objects: parallel and
perspective. In perspective projection, things that are further away are
smaller than those closer to the eye. In parallel projection, all lines on the
screen remain the same length regardless how far away they are from the
eye.

In perspective projection, all lines tend to shrink towards a certain point that
is far, far away, the so-called Vanishing Point. Parallel lines usually do not
stay parallel. In parallel projection, parallel lines stay parallel.

fig I.18a: perspective projection (left) and parallel projection (right)

In the above example you can very easily see that perspective projection is
the way you are used to in normal pictures while parallel projection you
probably know from floor plans or construction blueprints. To turn on
perspective projection, pass a viewing angle that is not equal to zero. To turn
on parallel projection, pass a viewing angle of zero.

fig I.18b: two perspective projections of the same object

Sometimes it might be useful to have a fixed camera location. In this case
you can turn off the eye transformations. The eye will be fixed at location
(0,0,0) and look straight down the Z-axis. Now instead of moving the
camera, you have to move all your objects, but if you only have one object,
this might be useful, since turning off the eye transformation makes
recalculating the object a bit faster.

Clipping
An additional parameter clipping can be set. Clipping is tech-speak for
eliminating those lines of a graphic, that 'fall off' the screen. To be more
precise, it is eliminating those parts of a line, that fall off. Usually, there are
three ways of clipping:

• None,
• eliminating those lines that fall off part-wise, and
• clipping them to the point where they penetrate the viewing plane.

It is very important to clip those lines that fall behind the eye or very close to
it, since they behave very erratically there (try looking at your finger at
about 0.2 inches from your eye and you will understand). Clipping is usually
only useful in perspective projection.

fig I.19: Clipped cube. Left with clipping to projection plane, right with
eliminating offending lines

In above example, the (perspective projection of the) closest corner of the
cube has been clipped because it came too close to the eye location. GrafSys
supports all three clipping methods, called none (no clipping at all),
arithmetic (as in the left picture, above) and fast (right picture, above)

Drawing An Object
Objects in GrafSys are fairly smart. Sending them a Draw message causes them
to draw themselves using all current rotations and eye settings. If a situation
arises where the object must recalculate something either because its state or the
eye changed the object detects this and does it automatically. The object can even
erase its previous image if you want it to.
Before the object can successfully be drawn, there are quite some transformations
going on behind the scene inside GrafSys. For a full comprehension of what is
going on, read on. However, the following is only for the technically inclined and
can easily be skipped since it is not essential for using the library.

The Eye Revisited
When describing the eye, we were actually talking about the projection plane. In
reality the eye is just a tiny point and if we projected everything into the eye, we
would end up with just a single black pixel and nothing else.

Instead, if we specify the location (and orientation) of the projection plane, we
also define the location of the eye. The eye of course sits somewhere directly
behind the projection plane and looks straight onto it. The projection plane has a
variable size and usually is a rectangle inside one of your windows. The package
draws onto the projection plane (i.e. inside this rectangle).

fig I.20: Eye Distance and projection plane

When we define the viewing angle, the package uses this angle in conjunction
with the current projection plane size to calculate how far the eye would sit
behind the projection plane (the Eye Distance). This way, if we re-size the
projection plane (i.e. on a smaller monitor) the eye distance is recalculated and
the scene scaled to fit into the new projection plane. In other words, no matter
how big or small our screen (or projection plane), the same scene fits on it if you
use the same view angle. Note that this is only true for perspective projections.

Since the difference between eye and projection plane is only of technical
interest, we will use the word eye where we should have used projection plane
(especially since 'eye' has only three letters).

Point Transformation Revisited
As I have pointed out, a lot happens to a point from the moment it is defined to
the one it is drawn. As a matter of fact, this is probably the reason why you are
using this package.
Anyway, to give you a better understanding on what goes on behind the screen,
read on (you may skip the next paragraphs if you are easily bored).

If we define an object, we define all the points in a coordinate system that is
special to this and only this object. As mentioned before this is called the Model
Coordinate System (MCS). Now, if we transform the object (rotate, translate or
scale it), the object's points are changed to other positions. However, since all
points within the object remain in the same position relative to each other, we say
that the MCS gets transformed.
The new locations of the various points are transformed according to our
translation, rotation and scaling settings into a new coordinate system called the
World Coordinate System (WCS).
After they are transformed, the points are projected onto the screen. These (now
two-dimensional) points reside in the Screen Coordinate System (SCS).

fig I.21: The different coordinate systems and they relation

The graphic package supports all different coordinate systems. With special
routines we can access the MCS, WCS and SCS representation of a specific
point.

Although it seems that the WCS is the final coordinate system before the points
appear on the screen, this is not always the case. If you are using the Eye, the
points are transformed yet another time into the Eye Coordinate System (ECS).
This is very important to remember.

fig I.22: Points are always projected onto the XY-plane

The package always uses the XY plane as the projection plane and rotates the
WCS according to the eye settings. This means that instead of moving the screen
that you project on in the world, we rather move the world around the screen.
If you are not using the eye, ECS and WCS are the same. Everything is plotted
looking up the Z-axis. If we are using the eye, the points from the WCS are
transformed again according to the eye settings.
However, whenever you request transformations into WCS, you will
automatically receive ECS if you are using the eye.

Hidden-Line and Hidden-Surface Animation
GrafSys does not provide you with full-blown hidden-line or hidden-surface
removal. Since there are so many different methods readily available, it rather
provides you with the necessary tools to do so and leaves it up to the programmer
to implement her/his method of choice.
GrafSys provides you with routines to test if a surface can be seen from the
current eye settings (Back-Face Removal), routines to draw triangles very fast
and routines for using off-screen pixel maps. Combined, these can be used to
implement simple, efficient and hidden-surface animations.

Part II

How to use 3D GrafSys

Overview
Part II of this documentation tackles the more technical aspects of the GrafSys.
This part is strictly for programmers that intend to use the GrafSys.

First we will see a short run-down on how to efficiently design a 3D Object on
paper before entering it into the data base. Then we will discuss the procedures
and objects the GrafSys provides you with. Starting with the global procedures
that handle 3D GrafPorts and windows on the Macintosh operating system we
will then continue on to a short introduction into Off-Screen Pixel Maps. After
that follows the description of the class hierarchy of the different objects in
GrafSys and the messages they understand, focusing mainly on the central object
TSObject3D and how to use the state inheritance feature the GrafSys supports.

Finally you will find a full documentation on all the messages the objects in
GrafSys support and a description of the few global procedures. This part
concludes with some advanced topics and caveats plus a short example on how to
extend the GrafSys.
How To Design A 3D Object
Since designing an object involves bringing it down on paper first, many people
experience some difficulties at first. This often comes from the fact that paper is a
two-dimensional medium while our objects are three dimensional.

fig II.1 Cube in parallel projection, left rotated, right with rotation of zero

When drawing a 3D object on paper, points that were unique in space become
ambiguous on paper. Especially in parallel projections, as can be seen in above
figure. If you look at the cube on the right side, you notice that at each corner two
points come to lie on top of each other. If I were to point on one, you would not
know which one I mean, the one in front or the one in the back. What we have to
do is to draw two sketches of the same object, looking from different sides, so
every point has two distinct positions, one in each sketch. While in each sketch
two points can still overlap, no two same points overlap in both sketches.
Although you can

pick almost any two views, it is wise to choose special sketches: the top view and
one of two side views.

fig II.2: parallel-projecting an object onto two separate planes

If we now number all corners and project them onto the two sketches, we will
come up with something like this:

fig II.3: The cube as two sketches and in 3D

As you can see, no two points fall onto the same point in both sketches. To get
each points coordinates, all you have to do is look it up in each sketch and read
off the coordinates as you would do with any normal 2D-Graph.
There is something very important to remember that becomes obvious if you look
closely: both graphs have one common axis (here it is the X-axis). A point must
always have the same coordinates on the common axis of both sketches. If it does
not, you have made a mistake. This is an easy way to proof your sketch.
You might have noticed that in order to produce the sketches we used the XY and
the XZ plane. As you know, there is also the ZY plane. Yes, you could have used
this one instead of the XZ plane. In fact, you can use any combination of two of
the tree planes to generate the sketches.

This object's origin (the point with the coordinates [0,0,0]) lies outside the object.
Try locating it. While it sometimes might be useful to place the origin outside an
object, remember that the object will rotate around its

origin, and not its center as you might perceive it. In our demo object above, we
also use a cube. This is the sketch that I used to produce the coordinates:

fig II.3 Cube sketch and origin, 3D view of same cube

As you can see, there is no problem if coordinates have negative values. As
another example, look at the sketch of a house. Note how in the 'Front View'
below you can neither tell where the smokestack nor the windows are located.
Only the 'Top View' can clarify this.

fig II.4: Two sketches to define a house object

However, in the top view you cannot see what the windows look like. Conversely,
the front view does not show that the first window from the left appears on both
sides of the house. But both sketches taken together define every point.
Note also that windows that happen to be on the left or right wall (as seen from
the top view) would show in neither sketches. In this case it might be necessary to
draw another (third) sketch to define the remaining windows.

Using GrafSys
General Usage
To use the GrafSys you simply include the GrafSys library files into your project
and copy the resources into your project's resource file. Then you have to decide
if you want to use the library 'as is' or if you need to extend the objects provided.
In general you only need to extend the objects (usually the TSObject3D) if you
have complicated objects that have parts that move relative to each other such as
a robot arm with one or more flexible joints etc. GrafSys supports this through
the use of a hierarchy that enables the programmer to dynamically allocate and
deallocate hierarchies of objects while the program is running.

Program Structure
A typical program has three distinct parts:

• Initialization of the GrafSys package, opening 3D windows and initializing the
eyes

• Allocating objects and building (loading) their database, setting their attributes
(such as AutoErase etc.)

• Animating or simply drawing the object. Note that GrafSys allows you to
change the object's database even after their initial loading/building is done

For the first step, 'Initialization' you would use the general procedures that are not
object-oriented but classic Pascal procedures. Note that you must initialize the
GrafSys before you build any 3D objects. Note also that you must have opened at
least one 3D Window and initialized the eye before you may call any of the
object's transformation methods or those that call them indirectly (such as Draw
or fDraw, see below). If you open a 3D window an eye is automatically
attached to it. One eye is both the minimum and maximum number of eyes you
can attach to it. You cannot subdivide a window into two or more 3D ports that
have different eyes attached (well you could actually if you try really hard by
copying the data structure and assigning a different eye to a portion of it - don't
do it! There is another approach that is described in the 'Caveats' chapter).
Procedures exist to manipulate the eye in many different ways. See 'Using The
Eye', below.

The general-purpose object TSObject3D sports a so-called 'AutoErase' feature to
facilitate easy animation. If you decide to use this feature you do not have to keep
track of the position and size of your object where it was drawn last. Simple
animations are a snap if you use it since the Draw messages will then
automatically erase the previously drawn image. Without going into further
details let us look at a simple code fragment that rotates a cube around its X-axis
in front of you:

var
theCube : TSObject3D;
theWindow : WindowPtr;

begin
InitGrafSys; (* initialize the package *)

theWindow := GetNew3DWindow(cTheWindow, pointer(-1));
SetVector4(EyeLoc, 0, 0, -500);
SetEye(TRUE, EyeLoc, 0, 0, 0, 90 * degrees, fast);

(* now eye and the package are ready to use *)
(* the 3D graphics will be drawn in theWindow *)

New(theCube); (* allocate space for the 3D object *)
theCube.Init; (* init me *)
BuildObject(theCube); (* Build object database *)
theCube.SetAutoErase(TRUE);
(* now the cube is ready to animate *)

repeat
theCube.fDraw; (* erase it and redraw it*)
theCube.Rotate(5 * degrees, 0, 0);

until button;
end;

Number Representation In GrafSys
Since not all Macintosh Computers are equipped with a Floating-Point Processing
Unit (FPU) you have to decide which version of the GrafSys you want to use.
There are two available. The normal version works with real-numbers and direct
calls to the FPU. This is the fastest. The other version (GrafSys.fixed) uses fixed-
point arithmetic. This way the GrafSys still delivers an acceptable speed but
overall performance is visibly reduced. Use the fixed-point version whenever you
want to use your program on any Macintosh, the other one for development and
when you are sure that it is only used on FPU-equipped Macs. Programs written
for FPU that are run on machines without it are known for spectacular crashes.
Whatever internal number representation is used is of no importance to your code
since the interface to the core routines will do any conversion for you. To the
outside world the GrafSys always seems to work with real numbers so you do not
have to change a single line of code if you switch GrafSys versions.
GrafSys uses a special data structure called Vector4 to communicate some
internal number data. You should never assume anything about the number
format in this variable. Always use the supplied conversion routines
SetVector4 and GetVector4 for accessing its contents. If you do not follow
this advice you program will not compile if you switch between versions of the
GrafSys.

Resources
If you use the supplied TSObject3D object in your programs you can store and
retrieve the object's database into and from resource files [InsideMac, ResEdRef].
Note that only data definitions but not operator definitions are saved to resource.
GrafSys uses two resource types:

• 3Dob for storage of point, data and polygon definitions
• lClr to store line-color information.

For any given object the IDs must match, i.e. if your 3Dob resource has the ID of
1234, the lClr resource must have the same ID or it will not be loaded.
General Procedures
This section describes procedures supplied with the GrafSys outside the object
definitions, such as number conversion or procedures to convert 3D points to 2D
screen coordinates.

procedure InitGrafSys

This routine must be called before you can call any other routine or method in
the GrafSys package. It initializes certain data structures that are required for
all other operations. If you do not call InitGrafSys be prepared for some
especially nasty nil-Trap crashes (if you are lucky).

function InterpretError (theErr : integer) : Str255;

The different GrafSys methods can produce a variety of error codes. If any of
the supplied objects returns an error and you need a description in written text,
call this procedure. Note however, that all GrafSys errors provide a method to
display an alert with the current error number and description so you need this
function only if you want to override these methods or write to a log file. The
following error codes are currently defined:

const
cNoFFallocated = -1;
cOutOfMem = -2;
cBadMethodCall = -3;
cNothingToInherit = -4;
cTooManyPoints = -5;
cIllegalPointIndex = -6;
cTooManyLines = -7;
cIllegalLineIndex = -8;
cCantDeletePoint = -9;

cNotOwner = -10;

cBadFF = -11;
cBadFFType = -12;
cCantLoadRes = -13;
cNo3DWindow = -14;
cCantCreateOffscreen = -15;
cCantChangeOffscreen = -16
cNoOSAttached = -17;
cCantUseWindowCLUT = -18;

function GrafSysVersion: longint;

Use this function to determine the current version of the GrafSys. The high-
order two bytes contain the major release number, the low-order two bytes the
minor release number. Thus the hex number 00010007 would mean release
01.07. Likewise the number 00020201 means a release of 2.21. A non-zero first
byte means alpha (01) or beta (02) release, e.g. 01020000 is GrafSys version
2.00α.

As mentioned before, GrafSys supplies procedures to convert real numbers to the
internal number format so you can pass on or retrieve information from your
objects.

procedure SetVector4(var v : Vector4; x,y,z : real);

Use this procedure to convert three coordinates in real-number representation
to the internally used 3D point definition. You should never try to access v
directly yourself or try to 'smartly' take advantage of some alleged knowledge
of its contents.

procedure GetVector4(v : Vector4; var x,y,z : real);

This is the counterpart to SetVector4. Use it to convert an internal-number
format to real numbers. You should never try to access v directly yourself or try
to 'smartly' take advantage of some alleged knowledge of its contents.

function GetNewObject (theObjectID: INTEGER)
: TSObject3D;

GetNewObject allocates memory and initializes an object like NewObject and

then tries to read in a resource of type '3Dob'

with the specified ID. This resource contains all points, lines and polygons for
this object and they are copied into the object.
If this was successful, it tries to load and locate a 'lClr' line-color definition
resource with the same ID.
GetNewObject returns the newly created object.
If the resource you specified does not exist, GetNewObject returns an empty
initialized Object.

function GetNewNamedObject (theName: Str255)
: TSObject3D;

GetNewNamedObject is the same as GetNewObject except that it tries to read
a resource with the specified name. If the named resource has been loaded
successfully, GetNewNamedObject will look for the 'lClr' resource with the
same ID (i.e. the name is irrelevant!) as the '3Dob' resource.

procedure SaveObject (Obj: TSObject3D; theName:
Str255; ID: integer);

Given an object, SaveObject writes the objects point, line and polygon
definitions to the current open resource file into a resource of type '3Dob' with
the given ID. Then it writes out the 'lClr' line-color information resource with
the same ID as the 3Dob resource.

Warning: If a resource with the same ID already exists, it gets
replaced.

The parameter theName defines the name the resources will have.

procedure SaveNamedObject (Obj: TSObject3D;
theName: Str255; var ID: integer);

Same as SaveObject except that the name is significant for saving. The
procedure returns the ID that was assigned for the resources.

Warning: If a resource with the same name already exists, it gets
replaced.

procedure FillTriangle (p1: Point; p2: point;
p3: Point; theColor: Integer; useQD: Boolean);

FillTriangle is a highly specialized routine that uses an ultra-fast algorithm to
draw the triangle defined by p1, p2 and p3 on the currently active GrafPort.
This routine is written for 8-bit 'deep' devices (mainly off-screen pixel maps,
see below) and can either write to off-screen pixel maps or directly to the
screen. If the currently active port is set to something other than 256
colors/grays (8 bit), then the normal QuickDraw PaintPolygon procedures
are used.
If you use FillTriangle to draw directly to the screen make sure that the
currently active port is frontmost (i.e. is not obscured by anything) and that you
bracket the FillTriangle calls with ShieldCursor and ShowCursor.
TheColor is the direct pixel color you want the triangle to have. If you use the
RGB color space, use Color2Index to convert the RGB color to the closest
match.
UseQD can be used to override the fast polygon drawing procedure and use
normal QuickDraw calls instead.

Use FillTriangle to build your hidden-surface animation techniques.

function IsVisible (k, l, m: Vector4): Boolean;

IsVisible checks to see what side of the plane defined by the three points k, l
and m is looking toward the eye. If IsVisible returns TRUE, the front side is
showing, if it returns FALSE, you are looking at the back side. IsVisible is
usually used for back-face removal on convex polyhedron. In order to function
correctly, you must order k, l and m correctly, i.e. clockwise:

If you look at the cube pictured above, you define the sides that face outside by
writing the direction of the clock on it and then specify the points in that order.
For example, if you wanted to define a cube with surfaces that all face outside,
you would have the following definitions:

Front: A, B, C
Back: D, F, E
Bottom: D, A, C etc.

(of course you can rotate the points, only the sequence must be clockwise,
CAB would define the same front just as BCA). It helps if you affix the vector
pointing outside to find the correct orientation.
Use IsVisible to build your hidden-surface animation techniques.

Using The Eye
One of the central elements of a graphics package is usually the eye. A good
Graphics package must be easy to control and yet be flexible enough to satisfy
almost any needs. This is of course impossible if you want to have adequate
performance. Implementing a m-eye-with-n-projection-plane system would not
be much more work but degrade performance to a minimum while making
programming (i.e. using it) a nightmare. As will be pointed out later the eye is
tied to a very common Macintosh data structure (the window) that is predestined
for it and limited to one eye per window. This enables the programmer to use 3D
windows as any other windows and it makes the few additional routines to
manipulate the eye intuitive to use.

If you use the provided drawing methods you do not have to keep track of those
objects that need to be recalculated if the eye has changed since the objects detect
this situation automatically.

Mac Windows
The eye is always attached to a 3D window. Although you can use any Macintosh
Toolbox routine (such as SetPort or TxFont) on a 3D window, the reverse is
not true. You cannot attach an eye to a normal Mac window yourself. This is
because GrafSys attaches its own information to the window data structure where
the Mac OS would not disturb it. For a description of this technique, please refer
to part III of this documentation. 3D windows are in one aspect different to
normal windows. The origin is initially placed in the center of the window (the
Mac places the origin in the upper left corner) and the positive Y direction is up
(down on the Mac). However, this only applies to 3D points and lines. If you use
normal QuickDraw routines to draw in a 3D window you will find everything as
usual.
Like QuickDraw the GrafSys uses an internal pointer to the currently active 3D
GrafPort. Likewise some routines affect the currently active 3D GrafPort. Care
must be taken since this is not necessarily the currently active QuickDraw
GrafPort. Be sure you know what you are doing if you mix the normal
SetPort and Set3DPort routines. For further discussion of this see the
description of the Set3DPort routine and the 'Caveat' chapter, below.

All GrafSys drawing takes place in normal Macintosh windows that have been
extended to support 3D graphics. As mentioned in part I of this documentation
the eye-distance (i.e. the distance between eye and projection plane) is calculated
using the view angle parameter and the size of the projection plane. When you
open a window the projection plane is assumed to be the same size as the
windows content region. GrafSys distinguishes between ProjectPlane and
ViewPlane. All drawing

takes place inside the ViewPlane while the ProjectPlane is used to transform the
object and calculate the eye-distance. Usually the ViewPlane is a rectangle inside
the projection plane. The center of projection is placed in the center of the
projection plane. Routines exist to relocate the origin and to move and resize both
projection and view plane.

GrafSys provides routines to allocate windows analogous to those found in Inside
Macintosh with the only restriction that you can no longer specify your own
storage space for window data but must let GrafSys allocate space for the
GrafPort storage (if you always passed nil as reference to wStorage in your
GetNewWindow or NewWindow calls you do not have to change anything).
When allocating a new window, GrafSys will always allocate a CWindow. This
should have no effect on your programs except that it will not run on the Mac
512K.
When you are done using a 3D window, you can use the normal Toolbox
DisposWindow procedure (although this is not recommended if you are using
off-screen pixel maps, described below). All memory allocated, including the
memory reserved for the eye, is deallocated.

Use GetNew3DWindow and New3DWindow to allocate 3D windows. To set the
3D GrafPort to a certain 3D window use the Set3DPort procedure. To check if
a certain window is a 3D window use the Is3DPort function.

The 3D GrafPort Data Structure
The 3D GrafPort is an extension to the normal CGrafPort (Macintosh Toolbox
standard data type). You should never access it directly but use the procedures
provided. Since GrafSys uses a technique called 'piggy-back data' to impose its
structure on the normal QuickDraw GrafPort data structure, you must type-cast a
WindowPtr to GrafSys TPort3DPtr to access the fields. No guarantee is
given that the data structure is really there so you must be quite sure about what
you are doing.

Type
TPort3DPtr = ^TPort3D;
TPort3D = record

theWindow: CWindowRecord;
versionType: OSType;
theOffscreen: WindowPtr;
ProjectionPlane: rect;
ViewPlane: rect;
left, right, top, bottom: integer;
center: point;
useEye: Boolean;

EyeKoord: Vector4;

ViewPoint: Vector4;
phi, theta, pitch: real;
ViewAngle: real;
d: real;
MasterTransform: Matrix4;
projection: ProjectionTypes;
clipping: ClippingType;
versionsID: longint;

end;

Name Type Description
theWindow CWindowRecord QuickDraw CGrafPort data

structure
versionType OSType Used for identification of 3D

GrafPort
theOffscreen TOffscreenRec Record structure that holds

information that the off-screen
package uses. In Effect it
contains pointers to the off-
screen port and GDevice

ProjectionPlane rect; Logical size of the projection
plane.

ViewPlane rect; Logical size of the view plane.
left integer Left coordinate (local) of view

plane. Internal use only
right integer Right coordinate (local) of view

plane. Internal use only
top integer Top coordinate (local) of view

plane. Internal use only
bottom integer Bottom coordinate (local) of

view plane. Internal use only
center point Coordinates of the logical

center of projection in local
window coordinates.

useEye Boolean Tells transformation methods to
use the eye settings for
transformation.

EyeKoord Vector4 Eye location in world
coordinates.

ViewPoint Vector4 (not used)
phi real Phi parameter for eye as

described below
theta real Theta parameter for eye as

described below
pitch real Pitch parameter for eye as

described below
ViewAngle real ViewAngle parameter for eye as

described below. A view angle
of zero means parallel
projection

d real Distance of eye behind
projection plane

MasterTransform Matrix4 Eye transformation matrix
projection ProjectionTypes Projection type used with this

3D GrafPort. Either parallel or
perspective

clipping ClippingType Clipping type used with this 3D
GrafPort. Valid types are none,
arithmetic and fast.

versionsID longint Used by the objects to detect a
change in the eye settings.

Operations Affecting the 3D GrafPort

function GetNew3DWindow (ID: integer; behind: ptr)
: WindowPtr;

Use this function to open a new 3D window. The Mac tries to load a 'WIND'
and corresponding 'wctb' (optional) resource with the number ID. Behind
points to a window behind which this window is to be opened. If you want to
open the window in front of all windows, pass pointer(-1) as parameter. The
currently active 3D Port is set to this window as well as QuickDraw's current
GrafPort.

The eye is automatically initialized to [0,0,0,0,0,0], parallel projection and
clipping to none. The center of projection is set to the center of the window's
portRect. The eye is switched off.
GetNew3DWindow returns a pointer to the newly opened window.

function New3DWindow (boundsRect: Rect; title:
Str255; visible: BOOLEAN; procID: Integer;
behind: WindowPtr; goAwayFlag: BOOLEAN; refCon:
longint): WindowPtr;

New3DWindow opens a new 3D window. The parameters are the same as for
NewWindow as described in Inside Macintosh. Note that there

is no wStorage pointer since New3DWindow always allocates memory for the
window itself.
The currently active 3D Port is set to this window.
The eye is automatically initialized to [0,0,0,0,0,0], parallel projection and
clipping to none. The center is set to the center of the window's portRect. The
eye is switched off.
New3DWindow returns a pointer to the newly opened window.

procedure Dispos3DWindow (theWindow: WindowPtr);

This procedure releases the memory associated with the 3D window pointed to
by theWindow. If you do not use off-screen buffering (as described below) you
might as well use the normal DisposWindow procedure to close, remove and
deallocate the window.

Note: If you use off-screen buffering it is safer to use this procedure since it
will also release the off-screen buffer associated with this 3D
window (if it was allocated).

When drawing 3D entities into windows GrafSys uses an internal data structure
called current3Dport that points to the currently active 3D port similar to
QuickDraw's current GrafPort variable. The differences are subtle. Since GrafSys
uses the Mac Toolbox calls to draw lines it draws using QuickDraw's current
GrafPort variable. However it transforms according to the eye settings of the
currently active 3D port. Since a 3D port holds information about the eye setting,
projection types and clipping it is important that you always set the currently
active 3D port to the 3D window you are using. However, QuickDraw's current
GrafPort and GrafSys current 3D port do not necessarily have to be the same
since calling QuickDraw's SetPort routine does not affect the setting of the
current3Dport. How to use this feature to achieve some effects that are otherwise
impossible (e.g. drawing 3D images on non-3D windows) will be described in the
'Caveats' chapter of this documentation.

Keep in mind that with using Set3DPort you specify the currently active eye
settings that are attached to the 3D Port. All transformation and drawing routines
use this information.

procedure Set3DPort (the3DPort: WindowPtr);

Set3DPort sets the current 3D GrafPort to the one specified. For all following
transformations, this 3D port's settings are used. Set3DPort

calls SetPort (Mac Toolbox) to set QuickDraw's current GrafPort to the
window you specified.

Note: When you change the 3D GrafPort you also change to the eye
settings associated with this window.

Note: If you specify a window that is not a 3D only QuickDraw's current
GrafPort will be changed. To find out if a window is a 3D window,
use the Is3DPort function described below

procedure Get3DPort (var the3DPort: WindowPtr);

Returns a pointer to the currently active 3D GrafPort. Note that this does not
necessarily mean that this is the currently active window (i.e. the GrafPort
QuickDraw draws into). This procedure merely returns the window whose eye
setting GrafSys is using. Should Get3DPort return nil, trying to draw using
GrafSys will result in a crash. In this case you have either not allocated a 3D
window or just deallocated the currently active 3D port. This is analogous to
trying to draw into a window that has been disposed of.

function Is3DPort (thePort: WindowPtr): Boolean;

Use this function to find out if a window is a 3D window or not. It returns
TRUE if GrafSys allocated the window, FALSE otherwise.

procedure SetView (ProjectPlaneSize,
ViewPlaneSize: Rect);

SetView sets the size of the projection plane and view plane. The projection
plane is used to calculate the various perspective parameters. The view plane
rectangle specifies a clipping region for drawing. Note that unlike QuickDraw,
GrafSys places the origin of its coordinate system for drawing in the center of
the viewing plane.
The center of projection is set to the center of ProjectPlaneSize.

Note: Although the coordinate system for drawing is the center of the
viewing plane, ProjectPlaneSize and ViewPlaneSize should be given
in the window's local coordinates as described in Inside Macintosh:

fig II.5: ProjectPlane, ViewPlane, Center of Projection and Window Origin (0,0)

Note: This procedure operates on the current active 3D GrafPort and
Quic

GrafSys, off-screen pixel maps are always tied to a 3D window. Any 3D
window may only use one off-screen buffer. The off-screen buffer
is always the same size as the 3D window and uses the same
coordinate system. The off-screen buffer always uses 256 (8-Bit)
color, no matter what your 3D window uses.

To use off-screen PixMaps you have to follow six simple rules:

• Allocate an off-screen buffer for a 3D window using the
AttachOffscreen procedure. This creates the off-screen buffer and
attaches it to the 3D window data structure. Since the off-screen buffer is
always 8 bit 'deep' (i.e. uses 256 colors/grays), it will use a significant amount
of memory. For example, a window of 640 by 320 pixels uses 200K of
memory. Make sure that there is enough memory available.

• When resizing the 3D window, resize the off-screen buffer using
ChangeOffscreen.

• To begin drawing to the off-screen pixel map, call BeginOSDraw. From now
on all QuickDraw drawing commands draw to your off-screen buffer. When
done drawing to the

off-screen buffer, call EndOSDraw. Now all drawing will be done to screen
again.

• To copy a portion of the off-screen buffer to your window, use
CopyOS2Screen. This will transfer a rectangular portion of the off-screen
buffer to the screen. If the screen uses a different bit depth or color table, the
colors are converted to their on-screen representation.

• If you are done using the off-screen buffer, use CloseOffscreen to
deallocate the buffer. If you forget to do this you will end up fragmenting the
heap and probably run out of memory soon.

• If you need a fast routine to erase a whole off-screen pixel map, you can use
the FastPixErase routine.

Therefore all you normally have to do to add off-screen buffering to your
animations is to bracket your normal animation code with BeginOSDraw and
EndOSDraw calls and add a CopyOS2Screen command.

Normal Animation Code

...

repeat

theObject.Erase
theObject.Draw

until HellFreezesOver
...

Off-Screen Animation Code

(* Offscreen buffer must have *)
(* been allocated *)
...

repeat
BeginOSDraw(the3DWindow)
theObject.Erase
theObject.Draw
EndOSDraw(the3DWindow)
CopyOS2Screen(...)

until HellFreezesOver
...

Off-Screen Handling Routines
To simplify off-screen buffer handling, GrafSys imposes some rules that normally
do not apply to off-screen pixel maps. Firstly, off-screen pixel maps are always
256-colors/grays. Secondly, the buffer should always be the same size as the
window it buffers (this is not mandatory but you should follow this guideline).
Thirdly, the off-screen buffer procedures only work on 3D windows, not on the

normal Macintosh window.

The off-screen package defines some error codes that can be interpreted using the
InterpretError procedure the GrafSys provides. The following error codes are
defined:

const
cNo3DWindow = -14;
cCantCreateOffscreen = -15;
cCantChangeOffscreen = -16
cNoOSAttached = -17;

cCantUseWindowCLUT = -18;

function AttachOffScreen (theWindow: WindowPtr;
theColors: CTabHandle): integer;

AttachOffScreen creates an off-screen buffer for the 3D window pointed to by
theWindow. theWindow must be a 3D window. If it is a normal Macintosh
window, the procedure will exit without allocating a buffer. The buffer
allocated will always use 256 colors/grays.
theColors specifies the color look-up table (CLUT) to use for the off-screen
buffer. If you pass -1 (as you normally would), the off-screen buffer uses the
same CLUT theWindow uses. If you pass -2 as argument, AttachOffScreen will
load the default 256 color CLUT the system provides.

If successful, AttachOffScreen returns noErr and the buffer is allocated and
attached to the 3D window. Otherwise it will not allocate anything and return
an error-code that can be interpreted with the standard GrafSys InterpretError
procedure.

function ChangeOffscreen (theWindow: WindowPtr;
 theColors: CTabHandle): integer;

Use this function whenever you resize the 3D window po

to the Point and Line subclasses and a class of its own. Subclassed twice more,
it knows first about a collection of points and then about a collection of lines
over the point collection. The latest incarnation, TSObject3D is the single most
powerful object in the class hierarchy and should be the base of most of your
class extensions.

How To Use TSObject3D
Since TSObject3D is so powerful it is important that you fully understand its
abilities and how to work with it. Built-in into this class is a database that may
contain up to 250'000 points and (currently) 8000 lines. Special algorithms
implement high-speed access to this tremendous amount of points while still
minimizing memory allocation.
A TSObject3D can inherit transformation sequences from other TSObject3D
objects and knows how to draw itself on the screen.

If you want to use the TSObject3D there are only a few simple steps to follow
and you can have fast and simple animation:
• Before allocating any 3D objects, initialize the GrafSys package using

InitGrafSys and open at least one 3D Window using Get3DWindow or
GetNew3DWindow. If you want to use it, initialize the eye using SetEye. If
you do not do it, remember the eye defaults to parallel projection, no clipping
and the eye switched off (which has no effect on clipping and projection type).

• Directly after allocating the object, pass the Init message.
• Build the point and line database. GrafSys supports a way to store and retrieve

this database in resources so it might be a good idea to design an object with
an object-editor and then simply import the data through resources keeping the
code small.

• Set the object's attributes such as AutoErase etc.
• Animate the object by calling the Draw or fDraw messages repeatedly.

Cloning
All objects understand the Clone message. This message will cause the object to
produce an exact copy of itself. While this would normally simply mean a call to
the Macintosh Toolbox HandToHand procedure, things are actually not as
simple as it seems. Since the TSObject3D was designed to hold a very large
amount of data it allocates memory dynamically in order to minimize memory
waste. If you clone a TSObject3D all dynamically allocated buffers for point and
line information will be cloned as well (automatically). The same goes for the
user-installed operators that are equally cloned. Note that there is a slight
irregularity involved if you use inheritance as will be explained in that chapter,
below.

Killing
The first thing you need to know after allocating an object is how to ever get rid
of it again. Since a Pascal Delete command would not deallocate the different
buffers the Init method allocated, you need a safe way to dispose a
TSObject3D. Invoking the Kill message will cause the object to first deallocate
all buffers used for points, lines and additional operators (see below). In case
another object inherited from this object it will be killed as well. See Inheritance,
below.

Defining Points
Points are defined by passing their model coordinates as real numbers to the
point-defining procedures. To retrieve them they are referenced through index
numbers. You should never assume anything about the internal data format in
which the points are stored or where to find them since this can change with
different versions of the GrafSys. Points may be added, deleted or changed
between successive draws of the object. Relevant messages are AddPoint,
DeletePoint and ChangePoint.

Defining Lines
Lines are defined by passing the reference numbers of the two points the line
connects. You should never assume anything about the internal data format in
which the lines are stored or where to find them since this can change with
different versions of the GrafSys. Lines may be added, deleted or changed
between successive draws of the object. Relevant messages are AddPoint,
DeletePoint and ChangePoint.

Color
GrafSys supports the full RGB color space. Each line can be assigned a color.
Since it is sensible to assume that if a line has a certain color the next line will
have the same (object coherency), you only specify the lines where you change
the color. This means that if you told a line to change its color (e.g. to red) all
subsequent lines (i.e. all lines that have a higher index number) will have the
same color until another line changes its color.
Note that this can lead to problems if you delete a line that changes it's color since
that information is lost. TSObject3D does not check to prevent this since this
effect could well be intentional.
TSObject3D provides methods to change the line color and reset it (this means
that the line should be drawn in the previously selected color). The default color
for lines is black (RGB black). This means that if you do not ever change color in
your object, the whole object will be drawn in black lines. Relevant messages are
GetLineColor, ChangeLineColor and KeepLineColor.

Transformations
The TSObject3D understands two sets of transformations which are identical
except that they work on different operators (matrices). Transformations are
messages to the object to rotate, scale or translate. Rotation, scale and translation
can be either in/decremented or set to absolute values. Rotation can be done
around the three major axes (X, Y, Z) and around any arbitrary axis. Scaling can
only be done along the three major axes.

Fixed-order (default standard) Transformations
GrafSys distinguished between default-order transformation that work on the
built-in operators and free-order transformations that work on the user-
allocated operators. The built-in operators (also called default standard
operators) are executed in the following order rotation (X first, then Y, then
Z), translation, scaling, arbitrary rotation. Relevant messages are
Translate, SetTranslation, Rotate, SetRotation, Scale, Se
tScale, RotArb and ResetArb.

Free-order (optional) Transformations
After evaluating the arbitrary-rotation operator the free-order operators are
applied. Free-order operators are used when you want to deviate from the
predefined order of transformation or want to inherit transformations. The
free-order operators are attached to the 3D object through a linked list.
Methods exist to either pre- or postconcatenate an operator to the current
list. You cannot remove an operator from the list except when you kill the
whole object in which case the free-order operators get deallocated

automatically. When using the 3D object's methods to manipulate the free-
order operators you can only manipulate the latest allocated operator. Note
however that since the operators understand the different transformation
messages themselves you would normally access them directly without
going through the 3D object.
Relevant messages to manipulate the operators (through the 3D object) are
FFTranslate, FFRotate, FFScale, FFRotArbAchsis and FFRe
set. To allocate and pre- or post-concatenate the operators use
FFNewPreConcat and FFNewPostConcat.

fig II.11 : Functionality of the FF operators

To evaluate all operators use the CalcTransform message. If you use the
supplied Draw and fDraw messages to draw your objects you never have to
call CalcTransform yourself. CalcTransform handles all inheritance by itself.

Attributes
The TSObject3D only has two additional attributes that you can change. They are
the AutoErase and UseBounds attributes. When AutoErase is set, calling the
Draw of fDraw methods will cause them to erase the part of the current active
window that corresponds to the bounding rectangle (the bounding rectangle is the
smallest rectangle into which the image fits) of the previously drawn image.
Usually this will only erase the image drawn just before. If you changed ports
with QuickDraw's SetPort routine, however, it will have unpredictable results.
If you only set the UseBounds attribute, the fDraw and Draw methods collect
the bounds information but will not erase the last image drawn.
Relevant messages are SetAutoErase and SetUseBounds.

Using Resources
Reading from and writing to resources using the object is very easy. Usually you
would create objects using an interactive 3D object editor and save the objects to
a resource file. This eliminates the need for long and tedious object definitions
inside a program. The TSObject3D supports resources. The routines for accessing
resources have been covered in the 'General Procedures' section, above.

Inheritance
One of the most powerful features of the TSObject3D is the possibility to inherit
transformations to other TSObject3Ds. For this GrafSys uses two special
instances of the operator. When inheriting transformation you have to specify two
objects: The Father (who supplies the transformations) and the Son, who inherits.

What it is
Imagine we want to model a robot arm with a hand. The hand is mounted on
a flexible joint. If we move the arm, the hand has to be moved along with it.
If we rotate the arm, the hand has to stay at the end of the arm and must be
rotated accordingly. As it turns out, exactly the same transformations done to
the arm must be repeated for the hand.

fig II.12 : Robot arm and hand (left) and rotated (right)

So instead of repeating the same rotations for the hand over and over again it
would be much more efficient if we could simply pass the (already
calculated) transformations on to the hand that moves relative to the arm.

fig II.13: Hand rotated relative to rotated arm

If we now rotate the hand we could either apply all transformations first
from the arm and then from the hand or we could use the previously
calculated arm transformations and then apply the hand transformation.
GrafSys supports this kind of linking one object to another through a
specialized FF operator.

How to use it
Usage is pretty simple. With the father, allocate all operators that you want
another object to inherit. Then allocate a special 'PassOn' operator. This will
be postconcatenated to the father's operator list.

fig II.14a: Object 2 inherits free transformations from Object 1

Locate the object that should inherit the transformations. Send it the
FFInherit message and a special operator will be created that links the son to
the father. Note that any operators that have been allocated previously by the
son will remain previous to the inheritance.
If, for example, you allocated two operators A and B before you passed the
FFInherit message and then allocated another operator D, each time you
calculate the transformation, A and B will be executed, then the inherited
transformations and then D.
While it is it very common that a father has multiple sons, using this
technique it is also possible to implement multiple inheritance (i.e. a son
with more than one father). If you should ever find a need for this, however,
you are probably doing something wrong because an object seldom moves
relative to two objects at once. If it does, you can be quite sure that one of
them actually moves relative to the other and the correct implementation
would be a hierarchy of inheritances.

fig II.14b: Multiple inheritance (left) and corrected inheritance (right)

However, there is no guarantee that this will always work and there might
indeed be some strange reason why you should want to do this. Therefore
GrafSys supports multiple inheritance.

Relevant messages are FFInherit and FFPassOn.

Note that the default transformations are always inherited from the father
object. Likewise, the default transformations are always applied before any
other transformations (including inherited) are applied.

Cloning
All objects understand the Clone message. This will produce an exact
copy of the object. However, there are some subtle details involved when
cloning an object that inherits transformations.

fig II.15a: B inherits from A

Since all operators that are allocated are cloned as well, so will be the inherit
operator. In this special case, the father's FF operator chain will be modified
and another PassOn operator inserted so that both clones now correctly
inherit the same information from the father:

fig II.15b: C is cloned from B. A new PassOn operator was installed in father object

If, on the other hand you clone a father object, the PassOn operator is not
cloned to avoid double inheritance, since it would make no sense at all. If,
for example, a son inherited a translation of 100 along the X-axis, cloning
the father would result in inheriting this twice, translating the son for 200.
Therefore, be careful when cloning an object that passes on, since the clone
in this case is just a twin.

Killing
Again, the possibility of inheritance can give cause for headache. Imagine
you had an object B that inherited from object A. If you now send B a Kill
message, there is no problem. But what if we send the father a Kill message?
We would end up with a dangling inheritance. The next time we try to
calculate the transformation we would end up with a reference to a dead
object. Since inheriting means logically that one object (the 'slave') moves
relative to another (the 'master'), it is sensible to assume that if the master is
removed, the slave should be removed as well since it has nothing to move
relative to.
Therefore killing a father will result in killing all sons as well!

fig II.16: B inherits from A. Effect of killing B (middle) versus killing A (right)

This means that if a son is father to another object, the 'grandson' will be
killed as well if its father is killed etc.

The GrafSys Class Library
This chapter is the reference section for all messages and methods currently
implemented in the class library.

TGenericObject

Introduction
TGenericObject is an abstract class to provide a common denominator for
all GrafSys objects and provide standardized house-keeping and error-
handling messages. It is the root class.

Heritage
Superclass none
Subclasses TMatrixList

Tabstract3DObject

Using TGenericObject
TGenericObject provides the GrafSys with a standard for error-handling and
error-notification as well as house-keeping chores.

Variables
Variable Type Description
ErrorCode Integer Result of last operation

The following error codes are defined by GrafSys:

Label Value Description
noErr 0 No error encountered
cNoFFallocated -1 Operation tried on a FF

matrix when none was
allocated

cOutOfMem -2 Cannot allocate memory for
this operation

cBadMethodCall -3 You called a method that
should be instanced but not
called

cNothingToInherit -4 [obsolete]
cTooManyPoints -5 Model's database is full.

Maximum number of points
exceeded

cIllegalPointIndex -6 You tried to access a point
with an illegal index (either

negative or larger than
number of points defined)

cTooManyLines -7 Too many lines defined.
cIllegalLineIndex -8 You tried to access a line

with an illegal index (either
the index was negative or
larger than the number of
lines defined)

cCantDeletePoint -9 The point cannot be deleted
because at least one line
references it

cNotOwner -10 The matrix you specified
does not belong to this object

cBadFF -11 The matrix you specified has
not been allocated

cBadFFType -12 The matrix you specified
cannot be activated

cCantLoadRes -13 The resource you specified
(either by name or ID) cannot
be loaded. This usually
happens when it cannot be
found.

Methods
procedure Init;

Call Init only once for every object and directly after allocating it. This
message will cause the object to reset itself to a predefined state and allocate
all buffers it needs to function properly.
This method just resets ErrorCode to noErr.

procedure Reset;

Reset will reset the object to its default predefined state. It is like Init except
that no buffers are allocated.

procedure Kill;

Kill will release the memory associated with the object. Use this method to
only release the memory the object itself occupies. Other

instances of this message will also deallocate buffers associated with the
object.

function Clone: TGenericObject;

Clone returns an exact copy of your object. Use this method to just clone the
object but not the associated buffers. This way the two objects (clone and
original) share the same buffers. All instances of this method will also clone
the different allocated buffers.

procedure HandleError;

HandleError is the default error handler for the GrafSys. If called, it looks up
ErrorCode and tries to translate the error to text. It displays the error code
inside a Stop-Alert:

fig II.17: Standard error alert

procedure ResetError;

This method resets ErrorCode to its default value, noErr.

function Test (opcode: integer): integer;

This is the basic sanity-check routine. You can instance it to include your
own checking routines. Opcode can be used to pass anything to the checking
routine. GrafSys ignores the opcode parameter and only checks the
ErrorCode. In any case Test will display an Information-Alert similar to the
one below:

fig II.18: Standard test notification alert

Test returns the ErrorCode when done.

Resources
GrafSys uses two resources for it's error-handling and testing:

Resource Type ID
DITL 32700
ALRT 32700

TMatrixList

Introduction
TMatrixList is the central transformation operator type. Higher GrafSys
objects use this type to implement free-order transformations and inheritance
of transformation.

Heritage
Superclass TGenericObject
Subclasses TMatrixInherit

TMatrixPass

Using TMatrixList
All TMatrixList objects understand messages to rotate, scale and translate.
You would normally use them in conjunction with the TSObject3D free-
order transformation feature. You should never allocate a TMatrix object
yourself but let other (higher) GrafSys methods do this. Once allocated,
though you can (and normally would) directly access them to tell them to
rotate etc.
If you modeled above mentioned robot arm, you would let the TSObject3D
allocate the FF operator (which is of TSMatrix3D type). Later in your
program however you would tell the operator directly to transform without
going through the TSObject3D.

Variables

Name Type Description
M Matrix4 This is the actual

transformation matrix
next TMatrixList Next operator in list
owner TGenericObject Object that own this

operator

Methods
Inherited methods:

function Clone: TGenericObject;
procedure Kill;
procedure HandleError;
procedure ResetError;
function Test (opcode: integer): integer;

Other Methods:

procedure Init;
override;

Init initializes the object first by calling the inherited Init method and then
by setting the M to Identity. Next and owner are set to nil.

procedure Reset;
override;

Reset is like Init except that owner and Next aren't set to nil. M is set to
Identity.

procedure TMRotate (dx, dy, dz: real);

TMRotate calculates the matrix required to accomplish a rotation of dx
radians further around the X-axis, dy radians further around the Y-axis and
dz radians around the Z-axis. The result is multiplied with M and stored in
M.

procedure TMScale (dx, dy, dz: real);

TMScale calculates the matrix required to accomplish a scaling of a factor of
dx along the X-axis, dy along the Y-axis and dz along the Z-axis. The result
is multiplied with M and stored in M.

procedure TMTranslate (dx, dy, dz: real);

TMScale calculates the matrix required to accomplish a translation of dx
along the X-axis, dy along the Y-axis and dz along the Z-axis. The result is
multiplied with M and stored in M.

procedure TMRotArbAchsis (p, x: Vector4;
phi: real);

TMRotate calculates the matrix required to accomplish a rotation of phi
radians around the axis defined by the two points p and x.

fig II.19: Arbitrary rotation

The axis is defined as looking from the point P to X. A positive phi will
rotate clockwise, a negative counter-clockwise.

The result is multiplied with M and stored in M.

TMatrixInherit

Introduction
This instance of TMatrixList is for internal use only and should not be used
by you. Usage is for inheritance of transformations.

Heritage
Superclass TMatrixList
Subclasses none

Using TMatrixInherit
Don't.

Variables
Name Type Description
upLink TMatrixList Pointer to link in FF

chain of father
meTheSon Tabstract3DObject Pointer to owner

Methods
Inherited methods:

function Clone: TGenericObject;
procedure Kill;
procedure HandleError;
procedure ResetError;
function Test (opcode: integer): integer;
procedure Reset;
procedure TMRotate (dx, dy, dz: real);
procedure TMScale (dx, dy, dz: real);
procedure TMTranslate (dx, dy, dz: real);
procedure TMRotArbAchsis (p, x: Vector4;

phi: real);

Other Methods:

procedure Init;
override;

Calls inherited Init and then sets upLink and meTheSon to nil.

TMatrixPass

Introduction
This instance of TMatrixList is for internal use only and should not be used
by you. Usage is for inheritance of transformations.

Heritage
Superclass TMatrixList
Subclasses none

Using TMatrixPass
Don't.

Variables
Name Type Description
downLink TMatrixList Pointer to link in FF

chain of son
meTheFather Tabstract3DObject Pointer to owner

Methods
Inherited methods:

function Clone: TGenericObject;
procedure Kill;
procedure HandleError;
procedure ResetError;
function Test (opcode: integer): integer;
procedure Reset;
procedure TMRotate (dx, dy, dz: real);
procedure TMScale (dx, dy, dz: real);
procedure TMTranslate (dx, dy, dz: real);
procedure TMRotArbAchsis (p, x: Vector4;

phi: real);

Other Methods:

procedure Init;
override;

Calls inherited Init and then sets downLink and meTheFather to nil.

Tabstract3DObject

Introduction
Tabstract3DObject is the basic 3D object. It implements the methods for
handling transformations and FF operators as well as inheritance. Use this
object whenever you want to build objects that do not use Cartesian
coordinates since this object knows nothing about points, lines or anything
else about the object database.

Heritage
Superclass TGenericObject
Subclasses TLine3D

TPoint3D
TSGenericObject3D

Using Tabstract3DObject
Directly after allocating the Tabstract3DObject call the Init method to
initialize the default and free-order operators. All default operators are set to
Identity, the translation and rotation values are set to zero, the scale factors
are set to one. No FF operator is allocated, so the FFMatrix and
currentFF fields are set to nil.
Use the calcTransform message to evaluate the different operators in
the described order (default rotation, default translation, default scaling,
default arbitrary rotation, FF list, eye) to generate the xForm operator that
you can use to transform points.
Use the Kill method to deallocate the object and Reset to reset the object
to the predefined state of zero rotation, zero translation and scale of one (this
will also reset all allocated FF operators, see below).

Variables
Name Type Description
xTrans real X coordinate in world

coordinates of the object's origin.
Used to build the default
standard operator.

yTrans real Y coordinate in world
coordinates of the object's origin.
Used to build the default
standard operator.

zTrans real Y coordinate in world
coordinates of the object's origin.
Used to build the default
standard operator.

xScale real Scaling factor for the object's X
axis. Used to build the default
standard operator.

yScale real Scaling factor for the object's Y
axis. Used to build the default
standard operator.

zScale real Scaling factor for the object's Z
axis. Used to build the default
standard operator.

xrot real Rotation (in radians) of object
around its X-axis. Used to build
the default standard operator.

yrot real Rotation (in radians) of object
around its Y-axis. Used to build
the default standard operator.

zrot real Rotation (in radians) of object
around its Z-axis. Used to build
the default standard operator.

xForm Matrix4 Final transformation matrix. This
is the result of all
transformations.

arbRot Matrix4 All arbitrary operations on
default operator are stored here.

currentFF TMatrixList Points to the currently active FF
operator.

FFMatrix TMatrixList Points to first element in the FF
operator chain.

objChanged Boolean Indicates if the object's data base
has changed. A call to
calcTransform will reset it.

versionsID longint Used for synchronization with
eye to detect if a recalculation of
xForm is required since xForm
also holds eye transformation

hasChanged Boolean Indicates that a
calcTransform call changed
the transformed point
description. This is used to flag
to Draw methods that they have
to redraw.

Methods
Inherited methods:

procedure HandleError;
procedure ResetError;
function Test (opcode: integer): integer;

Other Methods:

procedure Init;
override;

Init calls the inherited Init method and then initializes the default and free-
order operators. All default operators are set to Identity, the translation and
rotation values are set to zero, the scale factors are set to one. No FF
operator is allocated, so the FFMatrix and currentFF fields are set to
nil.

procedure Kill;
override;

Use Kill to deallocate the memory associated with this object. This method
will also deallocate all owned FF operators and all objects that inherit
transformations from this object. See the 'Inheritance' chapter, above.

procedure Reset;
override;

Reset calls the inherited Reset method and then resets the default and free-
order operators. All default operators are set to Identity, the translation and
rotation values are set to zero, the scale factors are set to one. All FF
operator are reset to identity.

function Clone: TGenericObject;
override;

Clone returns an (almost) exact clone of the object. All FF operators owned
by the object are cloned as well. If the original object inherits transformation
from another object (called the father), Clone will place a PassOn FF
operator into the FF chain of the father directly behind the PassOn operator
for the original.

fig II.20: The result of cloning B yielding C

In above example B inherited from A. When B was cloned (yielding C) a
PassOn operator was inserted in A's FF operator chain. If on the other hand
an object passes on, this link to the son will not be cloned; the link is lost to
avoid double inheritance.

procedure Translate (dx, dy, dz: real);

Displaces the object's origin for the vector [dx,dy,dz]. Translate operates on
the default operator as reflected by the objects variables xTrans, yTrans and
zTrans.

procedure SetTranslation (x, y, z: real);

Moves the object's origin to the world coordinates [x,y,z]. SetTranslation
operates on the default operator as reflected by the objects variables xTrans,
yTrans and zTrans.

procedure Rotate (dx, dy, dz: real);

Rotates the object further around its main axes. If rotation is positive, it will
be clockwise. dx specifies the amount (in radians) around the X-axis, dy
around the Y-axis, dz around the Z-axis. Rotate operates on the default
operator as reflected by the object's variables xrot, yrot and zrot.

procedure SetRotation (x, y, z: real);

Sets the object's rotation around the main axes to the amount specified. If
rotation is positive, it will be clockwise. dx specifies the amount (in radians)
around the X-axis, dy around the Y-axis, dz around the Z-axis. SetRotation
operates on the default operator as reflected by the object's variables xrot,
yrot and zrot.

procedure Scale (dx, dy, dz: real);

Scale increments the scaling factors for the object by the given values.
Scaling is independent from any previous translation or rotation (i.e. it will
scale the object along its original local x, y and z-axis). A (resulting) setting
of 1 means no scaling, a setting of 2 means double size, a setting of 3 triple
size etc. A factor of zero will shrink that axis into nonexistence. Negative
scaling will produce mirror-effects (I guess).
Scale operates on the default operator as reflected by the object's variables
xS

CGrafPort) data structure. That is why the TPort3DPtr is compatible
with the WindowPtr (or GrafPtr for that matter). The first part is the
same. GrafSys uses a current3DPort variable similar to QuickDraw's
currentPort variable 'thePort'. If you call Set3DPort, GrafSys sets its own
current3DPort variable to the window you specify and then tells QuickDraw
to set its own currentPort variable to the same window.

A B

QuickDraw currentPort

GrafSys current3DPort

3D Window Non-3D Window

fig II.26: Normally QuickDraw points to window A. Drawing takes place in A.
GrafSys points to A. A's eye settings will be used.

Since GrafSys uses QuickDraw's MoveTo and LineTo procedures to draw
lines, all drawing will take place in the GrafPort QuickDraw's currentPort
variable points to. And here is the clinch.
You can now call QuickDraw's SetPort to set its currentPort to another window;
GrafSys would not be notified about this. It will still assume that you are drawing
into the window pointed to by current3Dport and therefore use its eye settings.

A B

QuickDraw currentPort

GrafSys current3DPort

3D Window Non-3D Window

fig II.27: QuickDraw points to window B. Drawing takes place in B. GrafSys points
to A. A's eye setting will be used but the image will appear in B.

Imagine we had two windows, A and B. A is a 3D window, B is not. Now, to set
GrafSys up we will use Set3DPort(A). GrafSys and QuickDraw will now be
drawing into window A. Now, use QuickDraw's SetPort(B). All actual
drawing will from now on take place in window B. But since the GrafSys
current3DPort pointer still points to A, GrafSys will use A's 3D window structure.
That way you can draw 3D graphics into non-3D ports. Use the same technique
to allow two eye settings for one window: allocate a second 3D window, hide it
but use its eye settings to draw the object on the first window by using SetPort to
set the QuickDraw port to it.

Another application for this technique is when you want to print the object. Once
again, you first use Set3DPort to initialize the projection routines and then
continue with a call to PrOpenDoc [InsideMac]. Another, simpler approach
would be to surround the Draw message by

OpenPicture and ClosePicture calls and then draw the picture on the
printing device [InsideMac, TN021, TN059, TN297].

Example 1: Robot Arm (transformation inheritance)
Let us begin with a fairly simple demonstration of the GrafSys capabilities. The
first demo, RobotArm is a mere 2D animation of the previously mentioned robot
arm to demonstrate transformation inheritance and how you would model such an
object.

Robot Arm Points and Lines
The whole arm will look like this:

fig II.28: Robot arm

The problem is that the whole robot arm has parts that can move independently
from one another (i.e. the hand can rotate without moving the arm). We therefore
have to subdivide the robot arm into two parts: Arm and Hand.
The first step in modeling the arm is defining the point and line database for both
objects.

X

y
1 2

3
4

5
6

78

1 2

34

5
6

X

y

Hand:
1:15,15,05:25,- 5,0
2:45,15,06:35,- 5,0
3:35, 5,07:45,-15,0
4:25, 5,08:15,-15,0

Arm:
1: 0, 15,0
2:70, 15,0
3:70,-15,0
4: 0,-15,0

fig II.29: Database definition of hand (top) and arm (bottom).
Line numbers are not shown

As can be seen, the origin of the hand is outside the object and is placed into the
center of the joint that is attached to the arm. For building the object's databases
we define two objects, BuildHand and BuildArm.

procedure BuildArm (Obj: TSObject3D);

 var
 OK: longint;

begin
 OK := Obj.AddPoint(0, 15, 0);
 OK := Obj.AddPoint(70, 15, 0);
 OK := Obj.AddPoint(70, -15, 0);
 OK := Obj.AddPoint(0, -15, 0);
 OK := Obj.AddLine(1, 2);
 OK := Obj.AddLine(2, 3);
 OK := Obj.AddLine(3, 4);
 OK := Obj.AddLine(4, 1);

 OK := Obj.AddPoint(85, 0, 0); (* joint is circle with this center *)
 OK := Obj.AddPoint(70, 0, 0); (* joint radius calculated with this *)

end;

procedure BuildHand (Obj: TSObject3D);
 var
 OK: longint;

begin
 OK := Obj.AddPoint(15, 15, 0);
 OK := Obj.AddPoint(45, 15, 0);
 OK := Obj.AddPoint(35, 5, 0);
 OK := Obj.AddPoint(25, 5, 0);
 OK := Obj.AddPoint(25, -5, 0); (* used to model joint *)
 OK := Obj.AddPoint(35, -5, 0); (* used to model joint *)
 OK := Obj.AddPoint(45, -15

the four major transformations (translation, rotation, arbitrary rotation and
scaling).

Homogenous Coordinates
All points in the GrafSys have three coordinates: x, y, z. The most simple
transformation, the translation, can be expressed as a simple vector-addition.
But when we come to rotation or scaling or (even worse) to arbitrary
rotation –where translation and rotation are mixed– the transformation
becomes a matrix multiplication [Foley90]. To make things more consistent,
we need a way to express all transformations the same way. Using linear
algebra, we project this 3D problem into the 4-dimensional space. Each
vector [x,y,z] now becomes [x,y,z,c]. Note that you can choose any value for
c since this transformation is equivocal. The mathematical implication of c is
a scaling factor [Pavli82] and we would normally set it to 1 [Hearn86] so the
transformation becomes unequivocal.

Note: The GrafSys always uses the [x,y,z,1] representation. This is
transparent to the user and there is no sure way (and no actual use)
for you to manipulate the fourth coordinate.

Since we now have transformed a three-dimensional problem into four
dimensions all operations become matrix-multiplications and

we have a universal way to transform a point (i.e. through matrix-matrix
multiplication). The new representation using four coordinates is also called
'using homogenous coordinates'.
Since we are now using four-dimensional coordinates, everything is simple
to implement. The operator is always a 4x4 matrix and transforming a point
(or vector) has always the form

The operator always has the following general appearance:

fig III.1: General structure of transformation matrix

As it immediately becomes apparent we can store both translation and
rotation in the same operator as long as they do not get mixed (as in arbitrary
rotation). However I do not recommend you do this unless you know exactly
what you are doing.

Multiple Transformations
The greatest advantage of using homogenous coordinates becomes obvious
when we want to perform multiple transformations onto the same object.
Now all we have to do is perform a matrix multiplication for each
transformation. The resulting matrix is the operator that will perform all
transformations at once according to their sequence of execution.

Translation
This is a very simple transformation. All you do is displacing the coordinates
for a certain vector [dx,dy,dz]:

To reverse this translation, simply pass [-dx,-dy,-dz] as parameters.

Rotation
Rotation about the main axes (X, Y, Z) is fairly simple. There are three
principal rotation matrices that are used: Let θ be the angle you want to
rotate.

 Rotation about X Rotation about Y Rotation about Z

To reverse the operation you can do two things: Either use the negative angle
or transpose the matrix (which becomes obvious if you look at the rotation
matrix more closely). The GrafSys uses the latter approach since it is faster
than recalculating the sine and cosines.

Arbitrary Rotation
Arbitrary Rotation can get rather unpleasant if you do not adhere to the
following guidelines:

• Never use two arbitrary rotations with the same operator except the
reverse operation (in this case it is much faster to use the Reset method in
GrafSys).

• Never use any other transformation with the operator that does an
arbitrary rotation.

• Using arbitrary rotation will displace the object's origin so GrafSys'
internal procedures will incorrectly reflect the position. If you use
arbitrary rotation you must use the TransformedPoint message with
[0,0,0] to get the correct origin position. This is because arbitrary rotation
mixes translation and rotation and the results are not easily predictable.

GrafSys implements arbitrary rotation the following way which has the
distinct advantage that it uses only previously defined operations [Foley90]:

• First you specify an axis by defining two points P1 and P2 on the axis.
This defines a

