XTLite for Quark Publishing Systeme®
User’s Guide and Getting Started Manual

XTLite is a publically available toolkit that allows you to write software that adds custom features and
enhancements to the QuarkCopyDesk element of the Quark Publishing System. Using XTLite you will be
able to:

e Add a Word Processing Filter
* Add Menu Items

*  Trap and Post User Events

*  Create Dialog Boxes

*  Manipulate Text.

This manual is designed to be an introduction to XTLite, as well as a tutorial for the three main features of
XTLite. Step-by-step instructions are included for writing a word processing filter, adding a menu item, and
trapping and posting user events with XTLite. Additional information is included at the end of this manual

about QuarkXTensions® technology and the XTension® developer program.

The Quark Publishing System (QPS) electronically integrates writing and editing, page layout and artistic
design,document planning, and the file management aspects of a publishing system. The two elements of the
QPS system that XTlite Bulbs can be written for are QuarkXPress and QuarkCopyDesk. QuarkXPress is used
in the QPS system to design, lay out, and output pages. Although there are some limitations, most XTLite
Bulbs that are written for QuarkXPress can be used within QPS. Specific information about writing Bulbs for
QuarkXPress can be found in the “XTLite for Macintosh User’s Guide and Getting Started Manual”. The
information in this manual is specifically for QuarkCopyDesk.

QuarkCopyDesk is the editorial aspect of QPS. It consists of standard word processing features that lets you
create and edit text, insert editorial notes into text, view word, character, and line counts, view column depth,
and display text exactly as it would appear on a Quark XPress page.

For more information about the QPS developer program please see the chapter at the end of this document
titled “Becoming an XTension Developer”.

This manual is freely distributable; you may copy and redistribute it under certain conditions. Please see the
copyright and distribution statement on the following page.



License Agreement

©1994 by Quark, Inc. All rights reserved.
Printed in the United States of America

This documentation and the accompanying software is made available “AS IS” without charge and without warranty of any
kind.

QUARK, INC. DISCLAIMS ANY IMPLIED WARRANTY OF THIS PRODUCT INCLUDING, BUT NOT LIMITED TO, ANY
IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL
QUARK, INC. BE LIABLE TO A CUSTOMER FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING FROM THE USE OF OR INABILITY TO USE THE SOFTWARE OR ACCOMPANYING DOCUMEN-
TATION HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY. THESE LIMITATIONS WILL APPLY EVEN IF
QUARK HAS BEEN ADVISED OF SUCH POSSIBLE DAMAGES. Some states or regions do not allow the exclusion or
limitation of incidental or consequential damages, or limitations on implied warranties, so the above limitations or exclu-
sions may not apply to particular customers.

Trademark Information

Quark Publishing System, QPS and XTensions are trademarks of Quark, Inc. Quark, QuarkXPress, and QuarkCopyDesk
are trademarks of Quark, Inc. which have been registered in the U.S. Patent and Trademark Office and in many other
countries.

Apple Disclaimer

The following disclaimer is required by Apple Computer, Inc. It applies to Apple software. All other software is covered by
the limited liability of Quark,Inc.

Apple Computer, Inc.’s (“Apple”) licensor(s) makes no warranties, express or implied, including without limitation the
implied warranties of merchantability and fitness for a particular purpose, regarding the software. Apple’s licensor(s) does
not warrant, guarantee or make any representations regarding the software in terms of its correctness, accuracy, reliabili-
ty, currentness or otherwise. The entire risks as to the results and performance of the software is assumed by you. The
exclusion of implied warranties is not permitted by some jurisdictions. The above exclusion may not apply to you.

In no event will Apple’s licensor(s), and their directors, officers, employees or agents (collectively Apple’s licensor) be
liable to you for any consequential, incidental or indirect damages (including damages for loss of business profits, busi-
ness interruption, loss of business information, and the like) arising out of the use or inability to use the software even if
Apple’s licensor has been advised of the possibility of such damages. Because some jurisdictions do not allow the exclu-
sion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. Apple’s
liability to you for actual damage from any cause whatsoever, and regardless of the form of the action (whether in con-
tract, tort (including negligence), product liability or otherwise), will be limited to $50.



Contents

What is XTLite

For the QuarkCopyDesk User 1

For the Programmer 1

How XTLite Works 2

How to Write an XTLite Bulb

Tools you Need 3

Things you Need to Know 4
Type Definitions 5
Data Structures 7

Tutorials 7
Setting Up Think C 7
Adding Code to your Bulb 8
Writing a Word Processing Filter 9
Adding a Menu Item 15
Trapping/Posting User Events 16

Required Routines 17
endread () 18
endwrite() 19
idlecall () 20
menucall () 21
readtext () 22
setipfilter() 23
setupidle() 24
setupmenu () 25
startread () 26
startwrite() 27
wri bebext () 28

Optional Routines 29
deletetext () 30
getraraattribute() 31
gettext () 32
ettextattribite () 33
gettextinfo() 34
inserttext () 35
Istexthoourrent () 36
readchar () 37
Setparaattribute() 38
settextattribute() 39



Contents

Optional Routines continued...

settextselection () 40

tmoffrextselection() 41

Technical Support 43

America OnLine 43

AppleLink 43

CompuServe 43

Internet 43

Becoming an XTension Developer 45

Differences between XTLite Bulbs

and XTensions 45

Availability 45

How to become Certified 46

Cost 46

Sample Routines 47

Opcodes 47

Alphanumeric Routines 48

Error Handling Routines 48

Dialog and Window Routines 48

Menu Handling Routines 49

Text Routines 49

Style Sheets and Hé&]J Routines 49

Import and Export Routines 50

System Routines 50

File Handling Routines 50

Network Communication Routines 50

Hidden Text Routines 50

Utility Routines 51

Box Routines 51

Spread and Page Routines 52

Color Routines 52

Additional Information 53

Ground Mail Address 53

Electronic Mail 53

Fax 53

Application 53



What is XTLite ?

For the QuarkCopyDesk User

Custom Features: With XTLite you can add custom features to QuarkCopyDesk
through software code modules called Bulbs.

Bulbs: A Bulb is created using XTLite routines and data structures. These routines act as
a hooks into QuarkCopyDesk and facilitate communication between QuarkCopyDesk

and the Bulb you write.

Free: XTLite is publically available software, provided free of charge from Quark Inc.

For the Programmer

Easy: We have designed the XTLite interface to give you quick and easy programming
access to some of the more common features of QuarkCopyDesk, such as creating word
processing filters, adding menu items, and handling AppleEvents.

Written in C: A common programming language in use today.

Free: XTLite technology is available to give you a free opportunity to experiment with
QuarkCopyDesks” underlying data structures and routines. By writing software that adds
custom features and enhancements to QuarkCopyDesk, you can see if you're interested
in writing more complex software modules.

XTension Technology: If you become interested in writing more complex modules,
or upgrading XTLite, you may become a Quark Certified XTension Developer and
receive information about and programming access to the QuarkCopyDesk through
QuarkXTensions technology. The XTension interface is very similar to the Bulb interface,
but incorporates more than 600 additional routines and data structures.

XTension Advantage: Currently, the worldwide Quark developer network has pro-
duced over 200 QuarkXPress and Quark Publishing System commercial XTensions.The
benefits of becoming a Certified XTension Developer range from receiving free copies of
Beta and Gamma Quark products to having access to an XTension marketing and supply
company called XChange ( for more information see the chapter titled, “Becoming an
XTension Developer”).

XTLite User's Guide and Getting Started Manual Page 1 Quark Publishing System



What is XTLite ?

How XTLite Works

» In general, XTLite Bulbs are individual code modules consisting of eleven XTLite
required routines, four XTLite data structures, and any other routines you choose to add.

e QuarkCopyDesk sends information to your Bulb via automatic calls to the XTLite
routines. These routines are called by QuarkCopyDesk at different times while it is run-
ning. When a routine is called, any code that you added to the body of the routine in
your Bulb will be executed. When the code segment has been run, control is automatical-
ly passed back to QuarkCopyDesk. Information can also be sent from your Bulb to
QuarkCopyDesk via the parameters in the XTLite routines. This process is invisible to the
user, so your Bulb acts like an integrated part of QuarkCopyDesk.

e Specifically: QuarkCopyDesk, on launch, loads any Bulb in its home folder and calls
the three XTLite routines: setupfilter(), setupidle(), and setupmenu(). At this time, any
code in these three routines is executed. For example, in the sample Bulb MenuShell, the
setupmenu() routine returns a value of TRUE, and passes a string “Sample XTLite Menu
Item” to QuarkCopyDesk. QuarkCopyDesk then sets up “Sample XTLite Menu Item” as
a menu item in the Utilities menu. If at some point the user selects “Sample XTLite Menu
Item”, QuarkCopyDesk will call another XTLite routine menucall(). Any code in body of
the menucall() routine, that you may have added to the Bulb, will then be executed.

¢ Communication between XTLite and QuarkCopyDesk is facilitated by:

Eleven Required XTLite Routines that can be used to:

- Read/write text to and from QuarkCopyDesk using a word processing filter

- Setup and display menus

- Link into the main event loop of QuarkCopyDesk, to trap/post events, such as a
‘mouseUp event’.

Twelve Optional Routines that can:
- Check the status of a text box

- Get information about text

- Insert and delete text

- Setand get text attributes

- Set and get paragraph attributes

Four QuarkCopyDesk Data Structures that can be used to:

- Set text attributes such as font, face, style, size, etc.

- Set tab justification to be LEFT, RIGHT, CENTER, and ALIGNED
- Set leading to be relative or absolute

- Set paragraph attributes such as indentation, justification, etc.

e For More Information: The remainder of this manual includes details about how the

XTLite routines work, in what context they should be used, and how to obtain more
powerful ways to communicate with QuarkCopyDesk.

XTLite User's Guide and Getting Started Manual Page 2 Quark Publishing System



How to Write an XTLite Bulb

Tools you Need

e The Macintosh XTLite toolkit:

XTLite for Macintosh User’s Guide and Getting Started Manual: the file
you are currently reading.

- XTLitelib: the Think C pre-compiled library file.

- XTLite.h: the Think C header file that contains a list of XTLite routines and data
structures to use in your Bulb.

- Five Sample XTLite Bulbs: each of which is a complete Think C project:
Sample XTLite: adds an import/export filter
FilterShell: adds an import/export filter
MenuShell: demonstrates adding a menu item
Event Shell: demonstrates trapping and posting user events
Display Chunks: demonstrates text chunk manipulation (see the section
titled, “Writing a Word Processing Filter” for more information about
text chunks).

The sample XTLite Bulbs can be used to get you started. We suggest you study these

examples and modify the code to make your own Bulb. For more information see the
section titled, “Adding Code to your Bulb”.

e QuarkCopyDesk: The Bulb you create will add custom features to QuarkCopyDesk.
To run your Bulb, you must have a copy of Quark Publishing System version 1.0 or high-
er.

e Think C Compiler: The XTLite library files were compiled with Think C. We cur-
rently recommend you use this compiler to create Macintosh Bulbs.

o Inside Macintosh Reference Library (Recommended): Throughout the
remainder of this guide references will be made to information contained in this library.

XTLite User's Guide and Getting Started Manual Page 3 Quark Publishing System



How to Write an XTLite Bulb

Things you Need to Know

¢ Knowledge of the C Programming Language: All sample Bulbs are written in
C. To create your own Bulbs you will add C code to the sample Bulbs.

* Macintosh Programming Experience: In order to trap/post user events, and
manipulate dialog boxes it is helpful to be familiar with Macintosh Toolbox calls. Almost
any Macintosh Toolbox routine can be used in your Bulb. For more information see
“Inside Macintosh”.

¢ Familiarity with the QuarkCopyDesk Interface: The more familiar you are
with the QuarkCopyDesk interface, the easier it will be for you to decide which features
of XTLite you want to incorporate into your Bulb.

Type Definitions

* QuarkCopyDesk uses its own type definitions that may be different from the standard C
type definitions that you are used to working with. Listed below are standard C type def-
initions with the corresponding type definitions you should use when writing XTLite
Bulbs.

e XTLite uses Macintosh Fixed notation. For more information see the section titled
“Adding Code to your Bulb”, or “Inside Macintosh”.

Standard C Type Definitions XTLite Type Definitions
char int8
ghort, int ntle
long int32
unsigned char uchar

unsigned short, wnsigned int uintl6

Boolean bool8
unsigned long uint32

short double floated

double flcat80

XTLite User's Guide and Getting Started Manual Page 4 Quark Publishing System



How to Write an XTLite Bulb

Data Structures - Alphabetical with Description

o There are four XTLite Data Structures that control Leading, Paragraph Attributes, Tab
Placement, and Text Attributes. For more information about specific use of these struc-
tures see the “Writing a Word Processing Filter” section.

» Leading Control Structure: The structure that controls leading consists of a relative
vs. absolute bit. To set the leading to relative, set this bit to 1; otherwise set it to zero, and
leading will be absolute.

/* Leading Control Structure */

typedef struct {
wnsignad intl6 relative : 1; /* Leedirg is relative (ve. dosolute) */
} filterarabits;

e Paragraph Attributes Structure incorporates information from the Tab Align and
Leading structures, with some additional fields.

- The just field indicates the justification that should be used for this paragraph.

- The leftindent and rightindent fields are indentation amounts from each side, in points.

- The firstindent field is the amount the first line of this paragraph should be indented.

- The leading field is the leading amount for this paragraph, in points.

- The spcbefore and spcafter fields are, in points, the amount of space that should be left
between this paragraph and those that precede and follow it.

/* Paragraph Attributes Structure */

typadef stuct {
filterpardbits a; /* bool8 attributes fram the Ieading structure */
Byte just; /* LEFT, CENTER, RICHT, JUSTified */

Fixed leftirdent; /* Ieft Indent (relative to colum/box left ede) */

Fixed firstindent; /*First Line Indmnt (relative to  leftirdent ) */

Fixed rightindent; /* Right Indent (relative to colum/box richtedge) */

Fixed lesding; /* 0 means auto leading */

Fixed spcoefore;  /* Space Before paragraph */

Fixed spcafter;  /* Space After paragraph */

filtertabspec tabs [MAXTABRS]; /* User tabs fram the Tab Placament struct */
} filtearaatrib;

e Tab Placement Structure controls tab justification, alignment, lead characters, and
tab indents.

- Tab justification can be set to either left, right, center or character-aligned justification
using the tabjust field.

- When the tabjust field is set to TABALIGNON, the alignon field can be used to set the
alignment character (such as a decimal point).

- Use the tablead field to insert a leader before each tab, such as spaces or dots.

- The tabindent field is the amount a particular tab is indented, in points.

XTLite User's Guide and Getting Started Manual Page 5 Quark Publishing System



Data Structures - Alphabetical with Description
/* Tab Placeament Structure */

typedef struct{
Byte tabjust;/* TABLEFT, TABCENTER, TABRIGHT, TABALIGNON */
Byte alignm; /* byte to align on when TARALIGNON */
wnsigned intl6 tablead; /* Two characters to fill tab with */
Fixed tabindent; /* Offset to tab */
} filtertaospec;

o Text Attributes Structure includes information about fonts, style (face), font size,
horizontal scaling, shading, kerning and tracking.

- The font field contains the QuarkCopyDesk font ID number of the text.

- The face field controls style attributes such as bold, italic, etc.

- The size field is a fixed number that indicates the point size of the type.

- The hscale field is the horizontal scaling of the text, from 25 to 400%.

- The shade field indicates the shading of the text color, from 0 to 100%.

- The kern and track field each represent the kerning and tracking of the text, in frac-
tional 200ths of an em space.

- To change the value of the font, size, hscale, shade, kern or track fields, change the value
field in the data structure.

- To set a particular face attribute, logically “OR” it with the current face. For example,
to set the text face to BOLD,
textface |= BOLD;
to turn bold off,
textface &= ~BOLD;

/* Text Attributes Structhire */

typedef struct {
intl6 faut; /* Fat id %/
intl6 face; /* Face (style) flags */
Fixed size; /* Fart size */

Fixed hscale;  /* Horizt. scale factor (1.0 is 100%) */
Fixed shade; /* 1.0 is 100% */

Fixed kem; /* Fractianal 200ths an */
Fixed tradk; /* Fractiaal 200ths an */
} filterttattrib;

XTLite User's Guide and Getting Started Manual Page 6 Quark Publishing System



Tutorials

Setting up Think C

Sample Projects: If you use one of the sample Bulb projects included in this toolkit
you will not need to make any of the following changes to the set up of the Think C pro-
ject. The following information is provided only to explain how these sample projects
were set up.

e Set up the project type as a Desk Accessory.

o ‘vers’ Resources: XTensions should include ‘vers’ resources, to indicate both their
own version and the version of QuarkCopyDesk they are compatible with. The ‘vers 2’
resource appears directly under the Bulbs name, make sure this name says
“QuarkCopyDesk 3.1”. You may change the “vers 1’ resource to provide your own
Copyright information.

e Only ‘vers 1’ should be changed by you. The ‘vers 2’ refers to the minimum version of
QuarkCopyDesk that your Bulb will run with.

e In order for QXP to link to your Bulb: Your Bulb must be named so that
QuarkCopyDesk will install the proper Bulb resources for you. To do this you must:

- Set the file creator to XPRS (from the “Set Project Type ...” menu in Think C).

- Set the file type to CUST (from the “Set Project Type ...” menu in Think C).

- Name your Bulb ‘QuarkXTension!’, so than when XPress is launched, it will add the
proper resources to your Bulb

- After XPress has loaded your Bulb once, you may change the name of the file to any
thing you like.

e Icons: You may use a resource editor to change your Bulbs creator to XPR3, which will
cause your XTension to be loaded by QuarkCopyDesk.

e On Launch QuarkCopyDesk looks for all files in its folder that have the resources dis-
cussed above, and identifies them as Bulbs (or XTensions). The total number of Bulbs and

XTensions that QuarkCopyDesk can handle is 50.

o For More Information see the reference material included with your copy of Think
C, and the sample Bulbs included in this toolkit.

XTLite User's Guide and Getting Started Manual Page 7 Quark Publishing System



Tutorials

Setting up your Bulb

1. Review the Sample Bulbs, they illustrate how the routines should be used. Take
code from the samples and use it in your own Bulb.

2. Review the XTLite.h header file included in this toolkit to become familiar with the
QuarkCopyDesk type definitions, XTLite routines, and the XTLite data structures.

3. Set up your Think C Project as show above.

4. Include all Eleven of the Required XTLite Routines, because
QuarkCopyDesk will expect to be able to call them. Therefore, you must include all
eleven, even if you do not add code to some of them (see the sample files for an example
of how this is done). If you fail to include all eleven required XTLite routines, your Bulb
MAY NOT WORK!

5. Use the Optional Routines to help simplify the process of writing a Bulb.

6. A Bulb is not Limited to the eleven required and twelve optional routines, add your
own routines as you see fit.

7. Fixed Notation: Some items in the header file use Fixed notation. These are 4-byte val-
ues that contain both the integer and fixed portions of a decimal number. Fixed values
are stored as 2-byte integer part and 2-byte fractional part. When using fixed fields, the
integer portion must be in the upper 16 bits of the variable. For example, to set leading to
12 points, write:

myparaattribs.leading = 12L<<16;
By shifting 12 to the left 16 bits, you have stored 12 in the Hiword (or integer portion) of
myparaattribs.leading. See “Inside Macintosh” for additional documentation on fixed

notation.

8. Each XTLite Filter can accommodate only one file type, so you must write a different
Bulb for each file type.

9. Each XTLite Bulb can accommodate only one menu item, so you must write a differ-
ent Bulb for each additional menu item.

10. In order for QuarkCopyDesk to run your Bulb, put it in the folder with XPress. On
launch QuarkCopyDesk will automatically load your Bulb.

11. QuarkCopyDesk can run a total of 50 Bulbs and XTensions. If you exceed this num-
ber, they will not be loaded correctly, and may not run.

12. For More Information: See the section in this document titled “Technical Support”.

XTLite User's Guide and Getting Started Manual Page 8 Quark Publishing System



Tutorials

Writing a Word Processing Filter

e A Description and Example of each routine appears in the section titled

“Routines”, it may be helpful to review this information before reading the following sec-
tions.

* For More Information see the sample Bulbs.

* Word Processing Filters are code modules that allow QuarkCopyDesk to read and
write a variety of text formats.

e Add Code to the Filtershell Sample Bulb To write a word processing filter, you
will need to add your own code to the seven routines setupfilter(), startread(), readtext(),

endread(), startwrite(), writetext(), and endwrite(); and manipulate four data structures
in the Filtershell Sample Bulb.

1. Set up your Think C Project as shown in the previous section.

2. Write a setupfilter() routine to install the filter.

* QuarkCopyDesk will call this routine automatically once at startup.

e Set the variables fcreator, and ftype to be the four-character Macintosh file types (for
example, TEXT, or XDOC) that refer to the file creator that you want to read, and the
file type of the document (see ‘Inside Macintosh’ for an explanation of Macintosh file
types).

* Set the variable importok to TRUE if you can read the file format, and set exportok to
TRUE if you can write the file format; set them to FALSE otherwise.

e Set the two strings, getstr and savestr, to be the strings that you want to appear in the
“Get Text ...” and “Save Text...” Dialog boxes.

o The fextension field is the three character file extension of a text import file (the .ABC
extension from DOS). If your filter does not use DOS files, pass this value as NULL.

XTLite User's Guide and Getting Started Manual Page 9 Quark Publishing System



Writing a Word Processing Filter

Example:

void setupfilter (OSType *fcreator,OSType *ftype,lool8 *importok,bool8 *exportcok, Str255 getstr,

Str255 savestr, Str255 fextension)

{
*fcreator = OURTEXTCREATOR; /* set w file creatar infommetion */
*ftype = OURTEXTTYPE; /* set W file type infomation */
*importok = *exportok = TRUE;  /* we can inport and export this format */
GetIndString (getstr, STRINGRESID, IMPORTSTRID) ; /* get Get Text String */
GetIndString (savestr, STRINGRESID, EXPORTSTRID) ; /* get Save Text String */

maxtabs = maxnumoftabs () ; /* always get the maximum rumber of tabs */

3. Write a startread() routine

*  When called, this routine will initialize variables and open the necessary files to start
importing text. The example below shows the global storage set up and allocation
that may be needed.

*  QuarkCopyDesk will call this routine each time the user chooses “Get Text...” from
the file menu, and selects your file type from the dialog box..

* Decide what kind of global storage your filter will need, and whether you will need
to allocate buffers, etc.

e Do all setup, allocation, and initialization during startread()

*  On entry, fnum will contain the file reference number that is automatically assigned to
each file. The file reference number is used a reference, don’t open this file,
QuarkCopyDesk will do this for you.

XTLite User's Guide and Getting Started Manual Page 10 Quark Publishing System



Writing a Word Processing Filter

Example:
void startread (intl6 frum)
{

ntl6 i;

nytextattr = (filtertxtattrilotr) NewPtr (sizeof (Filtertxtattrib) ) ;
nyparaattr =(filtercaraattrilopotr) NewPtr (sizeof (filterparaattrib)
+mextabs*sizeof (filtertabspec)) ;

mytextattr->font = helvetica; /* set text to 12 point helvetica */
mytextattr->Face = PLAIN /* set text to plain style */
mytextattr->size = 12I<<16; /* point size is fixed notation, so << 16 */
mytextattr->kerm = 0L; /* auto keming */
mytextattr->shade = 0x00010000; /* 100% shade color */
mytextattr->hscale = 0x00010000; /* 100% horizontal scaled text */

nytextattr->track = 0L;

myparaattr->relative = FALSE; /* ot relative leading */
myparaattr->just = LEFT; /* left Justified tedt */
myparaattr->leftindent = 0L; /* 1o left irdat */
myparaattr->firstindent = 0L; /* 1o first lire of paregragh indent */
mypareattr->rightindent = 0L; /* 1o richt irdent */
myparaattr->leading = 0L; /* 0 means auto leading */

myparaattr->spcbefore = 0L; /* 1o space before or after paragraghs */
nmyparaattr->spcafter = 0L;

/* tabs every .5 inches (all -1L means default)...*/
for (1 =0; i <nextabs; it
myparaattr->tabs [1] . tabindent = -11;

thetextaolor.red = 0; /* text colar is black */
thetextcolor.green = 0;
thetextcolor.blue = 0;

fileouffer = (unsigned int8 *)NewPtr (BUFSIZE) ;
ramaining = doffset = 0;

}
4. Write a startwrite() routine

*  QuarkCopyDesk will call this routine when the user chooses “Save Text...” from the
File menu, and selects your text format.

¢ Use this routine set up any global data structures you will need and initialize any
variables.

* Note that fnum is used the same way as with startread().

XTLite User's Guide and Getting Started Manual Page 11

Quark Publishing System



Writing a Word Processing Filter

Example:

void startwrite (intl6 frum)

{
mydlog = GetNewDialog (20000, 0, (WindowPtr) -1L);
displaywind = TRUE;

ShowWindow (mydlog) ;
}
5. Write a readchar() routine
*  QuarkCopyDesk will call the readchar() routine to read one character at a time from
the file buffer.
* The variable fnum is the file reference number that is automatically assigned to the
file.
* The example code below can be used to fill a buffer with characters, and return one
character at a time using readchar().
Example:
void readchar (intl6 frum)
{
intl6 err;
if (rawaining = 0) {
/* if buffer is ampty then reed a buffer full */
remaining = BUFSIZE;
err = FSRead (frum, &ramaining, filebuffer) ;
if (err & !remaining) {
if (exr = edffrr) reum () ;
retum (O:FF) ;
}
doffset = 0;
}
remaining ;
retum (filebuffer [Goffset] ) ;
}

6. Write your readtext() routine

* Your filter will import text using the readtext() routine, and will export text using the
writetext() routine.

¢ readtext() and writetext() routines will be repeatedly called as long as there is text to
read or write.

® A text run is a series of characters with identical attributes (i.e. font, size, color). A
text run automatically ends when either a text attribute changes, the maximum num-
ber of 256 characters is read, or the end of a paragraph is reached, marked ‘\r". If the
textbuffer consists of 256 characters, it is referred to as a chunk.

e If a text run is longer than 256 characters, return it one chunk at a time. When you
have filled your buffer with a text run, set the text attributes and return the buffer
(along with the character count) in textbuffer (For more information see the Display
Chunks sample Bulb).

*  QuarkCopyDesk will call the readtext() routine to read a text run from the source file
and import it into QuarkCopyDesk in the data structures provided.

XTLite User's Guide and Getting Started Manual Page 12 Quark Publishing System



Writing a Word Processing Filter

e Import the attributes of the text using the textattribs and paraattribs data structures.

e Import the text color in the textcolor record as an RGB bvalue. QuarkCopyDesk will
convert the RGB bvalue into the closest matching QuarkCopyDesk color (there are 8
such colors: red, green,blue, yellow, black, cyan, magenta, and white). For more
information about the RGB structure see “Inside Macintosh”.

* The count parameter should contain the number of characters in the textbuffer. When
you are finished reading text, set the count parameter to 0.

* The fnum parameter contains the file reference number for use with the Macintosh
File Manager routines.

Example:
void readtext (intl6 frum,Str255 textbuffer,int32 *count,
filtertxtattrib *textattribs, filterparaattrib *pareattribs, RBXIlar *textaolar)
{

int8 chy;

ntl6 i;

1i=0;
while (TRUE) {

ch = readchar (frum) ; /* See readchar() above */

/* Hardle the characters you read here */

if ch>= [|dh= \t ||c= \r)

texthuffer [i+] = cy;

if = \r || i=2%) breek;

else if (ch = -1) bresk;
}
/* set the text attributes before retuming */
textattribs->font = mytextattr->font;
textattribs->face = nytextattr->face;
textattribs->size = mytextattr->size;
textattribs->hscale = nytextattr->hscale;
textattribs->shade = mytextattr->shade;
textattribs->kem = mytextattr->kem;
textattribs->track = mytextattr->track;
paraattribs->relative = myparaattr->relative;
paraattribs->just = myparaattr->just;
paraattribs->leftindent = myparaattr->leftindent;
paraattribs->firstindent = myparaattr->firstindent;
paraattribs->rightindent = myparaattr->rightindent;
paraattribs->leading = myparaattr->leading;
paraattribs->spcbefore = myparaattr->spcoefore;
paraattribs->spcafter = myparaattr->spcafter;
BlockMove (paraattribs ->tabs, myparaattr->tabs,
mextabs*sizeof (filtertabspec)) ;

textcolor->red = thetextcolor.red;
textocolor->green = thetextcolor.green;
textcolor->blue = thetextcolor.blue;

*qoat = 1i; /* tell QXP how many characters are in the text buffer */

XTLite User's Guide and Getting Started Manual Page 13 Quark Publishing System



Writing a Word Processing Filter

7. Write your writetext() routine.

¢ Use this routine to write out your text data.

¢ QuarkCopyDesk will call the writetext() routine as long are there are characters to be
written out.

* The fnum parameter contains the file reference number for use with the Macintosh
File Manager routines.

* textbuffer contains the characters that need to be written out.

* count contains the number of characters in textbuffer.

* textcolor is an RGB value that matches the color of the text being written.

NOTE: textbuffer is NOT a Pascal string, begin writing from textbuffer[0].
Example:

void writetext (intl6 frum, Str255 textiuffer, int32 count, filtertxtattrib *textattribs, filterparaattrib
*paraattribs, REBColor *textcolor)
{

nt8 dhy;

16 1,3;

int32 size;

intl6 fserr;

Str255 tempbuffer;

for G=1=0; 1 <aomt; i+ {
¢ = tethuffer(il;
/* Ramanber to filter special characters here, See the Sample XILite Bulb */

}
size = Jj;
fserr = FOWrite (fnum, &size, temdouffer) ;
}
8. Deallocate your buffers with endread().
* The endread() function is automatically called when you are finished reading text
and have set the count parameter in readtext() to 0.
* Dispose of any storage that you had previously allocated as shown in the example
below.
Example:
void endread(int16 frum)
{
if (fileouffer) DisposPtr((Ptr) filgouffer) ;
DisposePtr ( (Ptr)mytextattr) ;
DisposePtr ( (Ptr)myparaattr) ;
}
9. De-initialize your variables with endwrite().
e Call the endwrite() function at the end of text export to de-initialize variables.
* Dispose of any storage that you had previously allocated as shown in the example
below.
Example:
void endwrite(intl6 frum)
{
int32 size;
int16 feerr;
DisposeDialog (mydlog) ;
}

10. For more information see the section in this document titled “Technical Support”.

XTLite User's Guide and Getting Started Manual Page 14 Quark Publishing System



Tutorials

Adding a Menu Item

o Items are Added to the Utilities Menu XTLite gives you the ability to add a
menu item to the Utilities menu of QuarkCopyDesk.

e Add Code to the MenuShell Sample Bulb To add a menu item you will need to
add your own code to the two routines setupmenu() and menucall().

e One Menu Item per Bulb Each Bulb may add only one menu item.Write an addi-

tional Bulb for each menu item you need to add. The maximum number of Bulbs you can
add to QuarkCopyDesk is 50.

=

Set up your Think C project as shown in the previous section.

Add your own MENUSTRID to setupmenu()

3. Return TRUE in setupmenu()

e This routine is called once at the startup of QuarkCopyDesk to determine if your Bulb
will add a menu item in the Utilities menu.

e The variable menustr should contain the text, that will appear to the user, of the menu
item.

* Set setupmenu() to TRUE if you want to add your own menu item and FALSE other-
wise.

¢ The routine GetIndString() is a Macintosh toolbox call that gets the menu name text
string from a resource.

N

Example:

bool8 setupmenu (Str255 menustr)

{
GetIndString (menustr, STRINGRESID, MENUSTRID) ; /* get Mam String */
return (TRUE) ;

4. Write your own menucall() routine
* This routine is called each time the user selects your menu item from the Utilities
menu.
* At this point, the code you write in this routine will be activated.

Example:

void menucall (void)

{

/* Put you own code here! */
SysBeep(1) ;

}

5. For more information see the section in this document titled “Technical Support”.

XTLite User's Guide and Getting Started Manual Page 15 Quark Publishing System



Tutorials

Trapping and Posting User Events

o User Events can be Trapped: The XTLite interface allows user events to be trapped
before they are sent to QuarkCopyDesk.

» Add Code to the EventShell Sample Bulb: XTLite traps events through the use
of the routines setupidle() and idlecall().

=

Set up your Think C compiler as previously shown.

2. Set the value of setupidle() to TRUE

e This routine is called once at the startup of QuarkCopyDesk to determine if your Bulb
wants to handle Idle calls.

* Set the value of setupidle() to TRUE if you want to handle Idle calls, and FALSE oth-

erwise.
Example:
bool8 setupidle (void)
{
retum (TRUE) /* Idle calls will be handled */
}
3. Write your own idlecall() routine
* QuarkCopyDesk calls this routine each time it cycles through its main event loop,
which is approximately three times a second, but in some cases there may be long
delays. For instance, if an alert appears, you won't receive idle calls until the user
clicks OK.
*  Whatever code you have in the idlecall() routine will be activated during each pass.
* The Macintosh EventRecord is passed into this routine, which lists the most recent
user event that has occurred.
* The example code below demonstrates the trapping of the ‘mouseDown’ event.
* See “Inside Macintosh” for a complete listing of items in the EventRecord structure.
* The example idlecall() demonstrates the trapping of the ‘mouseDown’ event.
Example:
void idlecall (EventRecord *myevent)
{
/* Tnsert your code here */
if (myevent->what == mouseDown)
SysBeep (0) ;
}
4. Use PPostEvent in idlecall()
e To post user events, call the Macintosh toolbox routine PPostEvent() from idlecall().
e PPostEvent() will post the event and return a pointer to the event queue.
* The following sample code demonstrates how to post the keyboard event Command
K.
Example:

#define KELLEQUIV 0x4B /* Post a Camand K */
/* reed varigble ...*/
EVQE1l *eventqueue;
/*post event and return pointer to event quee... */
PPostEvent (keyDown, (int32)KILLEQUIV, &eventqueue) ;
/* set camerd key modifier... */
eventqueue->evtQModifies = cmdKey;

5. For more information see the section in this document titled “Technical Support”.

XTLite User's Guide and Getting Started Manual Page 16 Quark Publishing System



Routines

Required Routines

e Include all Eleven of these Routines in your Bulb, even if you do not add any
code to them (for more information see the section titled “Adding Code to your Bulb”).

» Each Routine is listed in this section alphabetically, and is categorized as either a
Word Processing, Menu Item, or User Event routine.

» For More Information and an example of how to use each routines, see the corre-
sponding section in the chapter titled “Tutorials”.

Routine
endread ()

endwrite()

sehpfilter()

setupidle()
setupmenu ()
startread()
startwrite()

writetext ()

Prototype

void endread (intl6 frum)

void endwrite(intl6 frum)

void idlecall (EventRecord *myevent)

void menucall (void)

void readtext (intl6 frum, Str255 textlbuffer,

Int32 * cont, filterxtattrils *textattriks,
filterparaattribs *pareattribs, REBB0lor *paraattribs)
void setupfilter (OSType *fcreator, OSType *ftype,
bool8 *exportok, Str255 getstr, Str255 savestr,
Str255 fextension)

bool8 setupidle (void)

bool8 setupmenu (Str255 menustr)

void startread(intl6 frum)

void startwrite(intl6 frium)

void startwrite(intl6 frim)

XTLite User's Guide and Getting Started Manual Page 17

Page Number
18
19
20

21

22

23
24
25
26
27

28

Quark Publishing System



Required Routines

endread() Word Processing

Synopsis

void endread(int16 fnum)

Description
Add code to this routine to deallocate the buffers used to read text into QuarkCopyDesk.

QuarkCopyDesk will automatically call this routine when you are finished reading text, and
have set the count parameter in readtext() to 0.

Entry

frnum The file reference number that is automatically assigned to the file, do not
attempt to set or change the value of this variable.

Exit

frnum The file reference number that is automatically assigned to the file, do not
attempt to set or change the value of this variable.

Example

void endread(intl6 frum)

{
if (fileouffer) DisposPtr((Ptr) filgouffer) ;
DisposePtr ( (Ptr)mytextattr) ;
DisposePtr ( (Ptr)myparaattr) ;

}

See Also

endwrite(), readtext()

XTLite User's Guide and Getting Started Manual Page 18 Quark Publishing System



Required Routines

endwrite() Word Processing

Synopsis

void endwrite(intl6 fnum)

Description
Add code to this routine to deallocate the buffers used to write text from QuarkCopyDesk.

QuarkCopyDesk will automatically call this routine when you are finished writing text, and
have set the count parameter in writetext() to 0.

Entry

frnum The file reference number that is automatically assigned to the file, do not
attempt to set or change the value of this variable.

Exit

frnum The file reference number that is automatically assigned to the file, do not
attempt to set or change the value of this variable.

Example

void endwrite (intl6 frum)

{
Int32 size;
intl6 feerr;
DisposeDialog (mydlog) ;
}
See Also

endread(), writetext()

XTLite User's Guide and Getting Started Manual Page 19 Quark Publishing System



Required Routines

idlecall() User Event

Synopsis

void idlecall(EventRecord *myevent)

Description
Add your own code to this routine to trap events from EventRecord, and post events with
the toolbox call PPostEvent().

QuarkCopyDesk will call this routine each time it cycles through its main event loop
(approximately 3 times per second, although long delays can occur).

Entry

myevent The Macintosh EventRecord that lists the most recent user event that has
occurred.

Exit

myevent The Macintosh EventRecord.

Example

void idlecall (EventRecord *myevent)

{
/* Insert yaur code here */
if (myevent->what == mouseDown)
SysBeep (0) ;
}
Caveats

See “Inside Macintosh” for more information about the Macintosh EventRecord.

See Also
setupidle()

XTLite User's Guide and Getting Started Manual Page 20 Quark Publishing System



Required Routines

menucall() Menu Item

Synopsis

void menucall(void)

Description
The code you add to this routine will be executed each time the user selects the menu item
set up with the routine setupmenu().

QuarkCopyDesk will call this routine each time the user selects the setupmenu() menu item.

Entry

None.

Exit
None.

Example

void menucall (void)

{

/* Put you own code here! */
SysBeep(1) ;

}

See Also

setupmenuy()

XTLite User's Guide and Getting Started Manual Page 21 Quark Publishing System



Required Routines

readtext() Word Processing

Synopsis
void readtext(intl6 fnum, Str255 textbuffer, int32 *count, filterxtattribs *textattribs,
filterparaattribs *paraattribs, RGBColor *paraattribs)

Description
Use this routine to import text into QuarkCopyDesk from a source file.

QuarkCopyDesk will call this routine each time the user selects “Get Text...” with your file
import type selected.

Entry

frnum The file reference number that is automatically assigned to the file, do not
attempt to set or change the value of this variable.

Exit

frnum The file reference number that is automatically assigned to the file, do not
attempt to set or change the value of this variable.

textbuffer This buffer of text that is to be read into QuarkCopyDesk

count The number of characters in textbuffer.

textattribs The text attributes data structure.

paraattribs The paragraph attributes data structure.

textcolor The text color data structure (the RGB structure in “Inside Macintosh”).

Example

void readtext (intl6 frum, Str255 textbuffer, int32 *count,
filtertxtatirib *textattrks, filterarsatirib *caraattrils,
RG@BColor *textcolor)
{

int8 dy;

ntle i;

1=0;

while (TRUE) {
ch = readchar (frum) ; /* See readchar() above */
/* Handle the characters you read here */
if ch>= |[d= \t [|c= \r)

texthuffer[i++] = ch;

if = \r || i=25) lresk;
else if (ch = -1) bresk;

}

/* initialize all text attrilbutes here */

/* initialize all paregragh attributes here */

BlockMove (paraattribs->tabs,myparaattr->tabs,

nmextabs*sizeof (filtertabspec)) ;
/* initialize all text wlar attrihates here */

*comt = 1; /* tell QXP how meny characters are in the text buffer */
}
See Also

writetext()

XTLite User's Guide and Getting Started Manual Page 22 Quark Publishing System



Required Routines

setupfilter() Word Processing

Synopsis
void setupfilter (OSType *fcreator, OSType *ftype, bool8 *importok, bool8 *exportok,
Str255 getstr, Str255 savestr, Str255 fextension)

Description
Add code to this routine to setup the necessary elements of your word processing

filter.

QuarkCopyDesk will call this routine once at startup to install your word processing filter.

Entry
None.

Exit

fcreator Set this to be the four-character Macintosh file creator.

ftype Set this to be the four-character Macintosh file type.

importok Set this to TRUE if the filter can import text, FALSE otherwise.

exportok Set this to TRUE if the filter can export text, FALSE otherwise.

getstr Set this to be the string you want to appear in the “Get Text...”
QuarkCopyDesk dialog box.

savestr Set this to be the string you want to appear in the “Save Text...”
QuarkCopyDesk dialog box.

fextension Use this field as the three character file extension of a text import file (i.e. the
.ABC extension from DOS). If your filter does not use DOS files, pass this
value as NULL.

Example

void setupfilter (OSType *fcreator,OSType *ftype,lool8 *importok,
bool8 *exportok, Str255 getstr, Str255 savestr, Str255 fextension)
{
*fcreator = OURTEXTCREATCR; /* set up file creator information */
*ftype = CURTEXTIYPE; /* set up file type information */
/* we can inport and export this fomat. . .*/
*importok = *exportok = TRUE;
GetIndString (getstr, STRINGRESID, IMPORTSTRID) ; /* Get Text String*/
/* Save Text Strirg...*/
GetIndString (savestr, STRINGRESID, EXPORTSTRID) ;
nmaxtabs = maxnunmoftabs () ; /* get the meximum nunber of tabs */
}

Caveats
See “Inside Macintosh” for more information about Macintosh file types.

XTLite User's Guide and Getting Started Manual Page 23 Quark Publishing System



Required Routines

setupidle() User Event

Synopsis
bool8 setupidle(void)

Description
Use this routine to inform QuarkCopyDesk that you want to receive idle calls.

QuarkCopyDesk will call this routine once at startup.

Entry
None.
Exit
Function Return TRUE if your Bulb will receive idle calls (meaning the idlecall()
routine in your Bulb will be called by QuarkCopyDesk), and FALSE
otherwise.
Example

bool8 setupidle (void)
{

retum (TRUE) /* Idle calls will be handled */
}

Caveats

See “Inside Macintosh” for more information about receiving user events via the Macintosh
EventRecord.

See Also
idlecall()

XTLite User's Guide and Getting Started Manual Page 24 Quark Publishing System



Required Routines

setupmenul() Menu Item

Synopsis

bool8 setupmenu(Str255 menustr)

Description
Use this routine to set up the name of your menu item.

QuarkCopyDesk will call this routine on startup to put menustr in the Utilities menu.

Entry
None.
Exit
menustr The string corresponding to your menu item that appears in the
QuarkCopyDesk Utilities menu.
Example

bool8 setupmenu (Str255 menustr)

{
/* et Mau Strirg... */
GetIndString (menustr, STRINGRESID, MENUSTRID) ;
return (TRUE) ;

}

Caveats

See “Inside Macintosh” for more information about the GetIndString() routine.

See Also

menucall()

XTLite User's Guide and Getting Started Manual Page 25 Quark Publishing System



Required Routines

startread() Word Processing

Synopsis
void startread(int16 fnum)

Description
Use this routine to initialize any variables and open any necessary files to start importing
text.

QuarkCopyDesk will call this routine when the user selects “Get Text...” with your file type.

Entry

frnum The file reference number that is automatically assigned to the file, do not
attempt to set or change the value of this variable.

Exit

frnum The file reference number that is automatically assigned to the file, do not
attempt to set or change the value of this variable.

Example

void startread (intl6 frum)

{
ntl6 i;
nytextattr = (filtertxtattrilotr) NewPtr (sizeof (Filtertxtattrib) ) ;
nyparaattr =(filterparaattrilptr) NewPtr (sizeof (filterparaattrib)
+rextabs*sizeof (filtertabspec)) ;
/* Tnitialize text attrioutes here ... %/
/* Tnitialize paragrach attributes here ...*%/
/* tabs every .5 inches (all -1L means default) */
for (1 =0; i <nextabs; i+
myparaattr->tabs [1] . tabindent = -11;
thetextaolor.red = 0; /* tet wlar is black */
thetextcolor.green = 0;
thetextcolor.blue = 0;
fileouffer = (unsigned int8 *)NewPtr (BUFSIZE) ;
ramining = doffset = 0;
}
See Also

startwrite(), readtext()

XTLite User's Guide and Getting Started Manual Page 26 Quark Publishing System



Required Routines

startwrite() Word Processing

Synopsis

void startwrite(intl6 fnum)

Description

Use this routine to initialize any variables and open any necessary files to start exporting

text.

QuarkCopyDesk will call this routine when the user selects “Save Text...” with your file type.

Entry

frnum The file reference number that is automatically assigned to the file, do not
attempt to set or change the value of this variable.

Exit

frnum The file reference number that is automatically assigned to the file, do not
attempt to set or change the value of this variable.

Example

void startwrite(intl6 frim)

{
mydlog = GetNewDialog (20000, 0, (WindowPtr) -1L);
displaywind = TRUE;
ShowWindow (mydlog) ;

}

See Also

startread(), writetext()

XTLite User's Guide and Getting Started Manual Page 27 Quark Publishing System



Required Routines

writetext() Word Processing

Synopsis
void writetext(int16 fnum, Str255 textbuffer, int32 *count, filterxtattribs *textattribs,
filterparaattribs *paraattribs, RGBColor *paraattribs)

Description
Use this routine to export text from QuarkCopyDesk into a destination file.

QuarkCopyDesk will call this routine each time the user selects “Save Text...” with your file
export type selected.

Entry

frnum The file reference number that is automatically assigned to the file, do not
attempt to set or change the value of this variable.

Exit

frnum The file reference number that is automatically assigned to the file, do not
attempt to set or change the value of this variable.

textbuffer This buffer of text that is to be read into QuarkCopyDesk.

count The number of characters in textbuffer.

textattribs The text attributes data structure.

paraattribs The paragraph attributes data structure.

textcolor The text color data structure (see Inside Macintosh).

Example

void writetext (int16 frum, Str255 textluffer, int32 count,
RGBColor *textcolor)
{

nt8 dhy;

16 1,3;

int32 size;

intl6 fserr;

Str255 temdbuffer;

for G=1=0; 1 <aant; i) {
ch = textiuffer(i] ;
/* Ramenber to filter special Garacters here ... */
/* See the Sample XILite Bulb */

}

S1ze = J;

fserr = FOWrite (fnum, &size, temdouffer) ;
}
See Also

readtext(), startwrite()

XTLite User's Guide and Getting Started Manual Page 28 Quark Publishing System



Routines

Optional Routines

o Twelve Optional Routines: In addition to the eleven required routines that make
up the XTLite Toolbox, there are twelve optional routines available. You may use these
routine in your Bulb, or write your own version of these routines, as you see fit.

o Use these routines to manipulate text and paragraph attributes, and to work with
QuarkCopyDesk data structures.

o For More Information see the example below, and the sample Bulbs included in this

toolkit.

Routine
deletetext()

getparaattribute ()

gettext ()

cettextattribate ()

gettextinfo()

Inserttext()

istextiboxcurrent ()

readchar ()

setparaattribute()

settextattribute ()

settextselection ()

tumofftextselection ()

Prototype

bool8 deletetext (int32 offset, int32 numberofchars)

bool8 getparaattribute (intl6 whichattribute,
Fixed *attribute, int32 startoffset, int32 endoffset)

bool8 gettext (int32 offset,
int32 munberofcharacters, uchar *textstr)

bool8 gettextattribute (intl6 whichattribute,
Fixed *attribute, int32 startoffset, int32 endoffset)

bool8 gettextinfo (int32 selectionstart,
int32 selectionend, int32 totallength)

bool8 inserttext (int32 nunberofcharacters,
udar *textstr, int32 offset)

bool8 istexthboxcurrent (void)

void readchar (intl6 frnum)

bool8 setparaattribute (intl6 whichattribute,
Fixed *attribute, int32 startoffset,

int32 endoffset, booll6 redrawtext)

bool8 settextattribute (intl6e whichattribute,
Fixed *attribute, int32 startoffset,

int32 endoffset, booll6 redrawtext)

bool8 settextselection (Iint32 startoffset,
Int32 endoffset)

bool8 tumofftextselection (void)

Exanple Using these routines

XTLite User's Guide and Getting Started Manual Page 29

Page Number

30

31

32

33

34

35
36

37

38

39

40
41

42

Quark Publishing System



Optional Routines

deletetext()

Synopsis

bool8 deletetext(int32 offset, int32 numberofcharacters)

Description
This routine will delete text from the current text box.

Entry

offset Set this to be the text offset amount that you want.
numberofcharacters Set this to be the number of characters to delete.
Exit

Function Return TRUE if the text was deleted, and FALSE otherwise.
Example

See the example at the end of this section, on page 42.

See Also
gettext(), inserttext()

XTLite User's Guide and Getting Started Manual Page 30 Quark Publishing System



Optional Routines

getparaattribute()

Synopsis
bool8 getparaattribute(intl6 whichattribute, Fixed *attribute, int32 startoffset, int32 endoffset)

Description
Use this routine to get the attributes of a paragraph.

Entry

whichattribute The paragraph attribute you want.

attribute Storage for the value of the attribute.

startoffset The start of the offset.

endoffset The end of the offset.

Exit

attribute The value of the attribute requested in whichattribute.

Function Return TRUE if whichattribute was returned in the attribute field; and
FALSE if the paragraph attribute could not be returned or there was
a conflict (i.e. more than one value for that paragraph attribute in the
given text range).

Example

See the example at the end of this section, on page 42.

See Also
setparaattribute()

XTLite User's Guide and Getting Started Manual Page 31 Quark Publishing System



Optional Routines

gettext()

Synopsis

bool8 gettext(int32 offset, int32 numberofcharacters, uchar *textstr)

Description
Use this routine to get text from the current text box.

Entry

offset The text offset amount that you want.

numberofcharacters The number of characters to delete.

textstr The start of the offset.

Exit

Function Return TRUE if the offset, numberofcharacters were returned from the cur-
rent box in the string textstr; and FALSE otherwise.

Example

See the example at the end of this section, on page 42.

See Also
gettextinfo(), deletetext()

XTLite User's Guide and Getting Started Manual Page 32 Quark Publishing System



Optional Routines

gettextattribute()

Synopsis
bool8 gettextattribute(intl6 whichattribute, Fixed *attribute, int32 startoffset, int32 endoffset)

Description
Use this routine to get the attributes of text.

Entry

whichattribute The text attribute that you want (i.e. T_SIZE).

attribute Storage for the value of the attribute.

startoffset The start of the text offset.

endoffset The end of the text offset.

Exit

attribute The value of the attribute requested in whichattribute.

Function Return TRUE if whichattribute was returned in the attribute field; and
FALSE if the text attribute could not be returned or there was
a conflict (i.e. more than one value for that text attribute in the
given range).

Example

See the example at the end of this section, on page 42.

See Also
settextattribute()

XTLite User's Guide and Getting Started Manual Page 33 Quark Publishing System



Optional Routines

gettextinfo()

Synopsis
bool8 gettextinfo(int32 selectionstart, int32 selectionend, int32 totallength)

Description
Use this routine to get general information about the current text from the current text box.

Entry

None.

Exit

selectionstart The start of the selected text.
selectionend The end of the selected text.

totallength The total length of the text in the story.

Example
See the example at the end of this section, on page 42.

See Also
gettext(), deletetext()

XTLite User's Guide and Getting Started Manual Page 34 Quark Publishing System



Optional Routines

inserttext()

Synopsis

bool8 inserttext(int32 numberofcharacters,uchar *textstr, int32 offset)

Description
Use this routine to insert text into the current text box with the given offset.

Entry

numberofcharacters The number of characters to insert.

textstr The text string to be inserted.

offset The text offset amount.

Exit

Function Return TRUE if numberofcharacters of the string textstr were inserted into
the current box by the given offset amount; and FALSE otherwise.

Example

See the example at the end of this section, on page 42.

Caveats
The variable textstr is not a Pascal string, start reading from textstr[0].

See Also
deletetext(), gettext().

XTLite User's Guide and Getting Started Manual Page 35 Quark Publishing System



Optional Routines

istextboxcurrent()

Synopsis

bool8 istextboxcurrent(void)

Description
Use this routine to determine if a text box is currently selected.

Entry
None.
Exit
Function Return TRUE if a text box is both current selected and the current tool mode
is CONTENTS mode, and FALSE otherwise.
Example

See the example at the end of this section, on page 42.

XTLite User's Guide and Getting Started Manual Page 36 Quark Publishing System



Optional Routines

readchar()

Synopsis

void readchar(intl6 fnum)

Description
Use this routine to read characters, one at a time, from a file buffer.

Entry

frnum The file reference number that is automatically assigned to the file, do not
attempt to modify it.

Exit

frnum The file reference number that is automatically assigned to the file, do not
attempt to modify it.

Example

See the sample Bulb Display Chunks.

See Also
gettext()

XTLite User's Guide and Getting Started Manual Page 37 Quark Publishing System



Optional Routines

setparaattribute()

Synopsis
bool8 setparaattribute(intl6 whichattribute, Fixed *attribute, int32 startoffset, int32 endoffset,
bool16 redrawtext)

Description
Use this routine to set the attributes of a paragraph.

Entry

whichattribute The paragraph attribute that you want to set (i.e. P_LEFTINDENT).

attribute Storage for the new attribute value (i.e. 72L<<16(1 inch)).

startoffset The start of the offset.

endoffset The end of the offset.

redrawtext Set to TRUE if you want the paragraph redrawn and FALSE other-
wise.

Exit

Function Return TRUE if whichattribute was set and FALSE if the paragraph attribute
could not be set.

Example

See the example at the end of this section, on page 42.

See Also
getparaattribute()

XTLite User's Guide and Getting Started Manual Page 38 Quark Publishing System



Optional Routines

settextattribute()

Synopsis
bool8 setparaattribute(intl6 whichattribute, Fixed *attribute, int32 startoffset, int32 endoffset,
bool16 redrawtext)

Description
Use this routine to set a text attribute.

Entry

whichattribute The text attribute that you want to set (i.e. T_SIZE).

attribute Storage for the new attribute value, (i.e. 72L<<16(1 inch)).

startoffset The start of the offset.

endoffset The end of the offset.

redrawtext Set to TRUE if you want the text redrawn and FALSE other-
wise.

Exit

Function Return TRUE if whichattribute was set and FALSE if the text attribute
could not be set.

Example

See the example at the end of this section, on page 42.

See Also
gettextattribute()

XTLite User's Guide and Getting Started Manual Page 39 Quark Publishing System



Optional Routines

settextselection()

Synopsis
bool8 settextselection(int32 startoffset, int32 endoffset)

Description
Use this routine to set the current text selection range, and redraw the text range.

Entry

startoffset The start of the text offset.

endoffset The end of the text offset.

Exit

Function Return TRUE if the text selection range was set, and FALSE if the text selec-
tion range could not be set.

Example

See the example at the end of this section, on page 42.

Caveats
The turnofftextselection() routine should have been called prior to this routine to turn off the
same text.

See Also

turnofftextselection()

XTLite User's Guide and Getting Started Manual Page 40 Quark Publishing System



Optional Routines

turnofftextselection()

Synopsis

bool8 turnofftextselection(void)

Description
Use this routine to turn off the current text selection range.

Entry

None.

Exit
None.

Example
See the example at the end of this section, on page 42.

Caveats

If you use this routine, always make sure that you call the settextselection() routine after you
have finished working with text.

See Also

settextselection()

XTLite User's Guide and Getting Started Manual Page 41 Quark Publishing System



Optional Routines - Example

void idlecall (EventRecord *myevent)
{
register int32 c;
int32 start,end,amount, textlen;
Fixed kem;
intl6 character;
uchar ch;
bool8 plus;

#define PLUSTRACKCHAR (30<<8) /* the + track value dvracter } */
#define MINUSTRACKCHAR (33<<8) /* the - track value daracter { */

character = (*myevent) .messageskeyCodeMask;
if (((*myevent) .what = keyDown || (*myevent).what = autcKey)
&& ((*myevent) .modifiersé& (controlKey+shiftKey+cmdKey)) =
controlKey+shif tKey+cmdKey
&& (character == PLUSTRACKCHAR || character == MINUSTRACKCHAR)) {
if (istexthoarrent() {
gettextinfo (&start, &end, &textlen) ;
if (start =ad) {
plus = character == PLUSTRACKCHAR;
amount = ( (*myevent) .modifiers&optionKey) ? 11<<16:
10L<<16;
turmofftextselection () ;
far (c = start; c < exd; o) |
gettext (c, 11, &ch) ;
if h=  &&c !=tetle) {
gettextattribute (T_KERN, &kermn, c,ctl) ;
if Ehe) {
kern += amount;
bl
(!settextattribute (T_KERN,kern,c,c+1l,FAISE)) {
SysBeep (1) ;
break;

}
else {
kern -= amount;
hid
(!settextattribute (T_KERN,kern,c,c+1l,FAISE)) {
SysBeep(1) ;
break;

}
}
settextselection (start, end) ;
}

else SysBeep(l);
(*myevent) .what = nullEvent;

XTLite User's Guide and Getting Started Manual Page 42 Quark Publishing System



Technical Support for XTLite

e Peer Support for XTLite is available on America Online, CompuServe, and the
Internet.

e Questions, answers, suggestions, constructive comments, and bug reports may be
posted on any of these forums.

America Online
* The America Online forum for XTLite can be found by using:
Keyword QUARK
e The XTLite toolkit can be found in the following location:
Quark Software Libraries
QuarkXTensions
Macintosh XTLite.sea
Power Macintosh XTLite.sea
CopyDesk XTLite.sea
QXP-Windows XTensions

CompuServe
* The CompuServe forum for XTLite can be found in
the DTP Forum or by using the the keyword: GO DTPFORUM.
e The XTLite toolkit can be located in:
DTP Forum (GO DTPFORUM)
Mac DTP Utilities (Library 5)
MACXTL.SEA (XTLite for Mac)
PMCXTL.SEA (XTLite for Power Mac)
CDKXTL.SEA (XTLite for CopyDesk)
PC DTP Utilities (Library 6)
XTLITE.ZIP (XTLite for PC)

AppleLink

* There is no public forum for XTLite on AppleLink.
e The XTLite toolkit can be found in the following location:
Software Sampler
3rd Party Demos/Updates
Software Updates
Companies K-R
Quark
Mac Software Libraries
XTensions
Macintosh XTLite.sea
CopyDesk XTLite.sea
Power Macintosh XTLite.sea

Internet

o XTLite Listserver: A listserver exists on the Internet as a way for developers to send
and receive messages. It works as a remailing service — once you subscribe you will
receive ALL electronic mail messages any other XTLite subscriber posts on the server.
Likewise, any electronic mail message you post on the server will be remailed to ALL
other XTLite developers that have subscribed. If you want to ask a question of a specific
developer, or are uncomfortable posting your question in a widely distributed forum,
please don’t use this listserver. Send any private messages directly to the electronic mail
account of the person you want to contact.

XTLite User's Guide and Getting Started Manual Page 43 Quark Publishing System



Internet

o To subscribe to the XTLite Listserver
Send the following one line message:

subscribe XTPD
to...

majordomo@csn.org
No other special commands are required.
» To post a message to the XTLite Listserver

Send your message to...
XTPD@QUARK.COM

No other special commands are required.
» To remove yourself from the XTLite Listserver

Send the one-line message

unsubscribe XTPD
to...

majordomo@csn.org

e All commands must be sent to MAJORDOMO and NOT the list! Send ONLY mail
contributions to XTPD@quark.com The commands go in the body of the mail, and not the
subject.

o Activities These public forums are designed to help XTLite developers share communi-
ty knowledge specific to XTLite development. These activities are encouraged:

- Questions regarding programming XTLite Bulbs for QuarkCopyDesk.

- Exchange of XTLite Bulbs with other XTLite developers.

- Public discussion of ways to improve the XTLite program. Please be constructive. It is
easy to complain, but far more useful to work towards a solution.

e Inappropriate Activities that will cause us to revoke your listserver subscription:

- Carping, complaining, and moaning without any intention of working towards a res-
olution.

- Personal messages to another developer.

- Exchange of any copyrighted materials. We assume that any material that is
exchanged over this listserver is NOT proprietary or trade secret.

o For More Information: Users of XTLite who may require additional assistance

beyond the public domain forums can consider becoming a fully certified XTension
developer.

XTLite User's Guide and Getting Started Manual Page 44 Quark Publishing System



Becoming an XTension Developer

Differences between XTLite Bulbs and XTensions

* An XTLite Bulb can access three features of QuarkCopyDesk, an XTension can access
100% of the features of QuarkCopyDesk.

¢ A Bulb communicates with QuarkCopyDesk only when it is called, an XTension can send
information to and receive information from QuarkCopyDesk using special routines
called Opcodes (there are approximately 100 Opcodes in the XTension interface).

e Each Bulb can add one menu item to the Utilities menu. An XTension can add several
menu items, to any QuarkCopyDesk menu except the File menu.

e Each Bulb can handle one file type at a time, each XTension can handle multiple file
types.

e XTLite consists of eleven routines to communicate with QuarkCopyDesk, the XTension
interface consists of over 600 (see the following section for samples).

* Asan XTLite developer you receive Peer technical support, XTension developers receive
free technical support from Quark XTension programmers through electronic mail, fax,
and phone.

* Asan XTension developer you will receive a free subscription to a monthly technical
newsletter, which is a compilation of regular electronic developer feeds that you will
receive if you have an electronic mail account.

¢ XTension developers are eligible to attend Quark-sponsored training camps at both inter-
national and U.S. locations.

e XTension developers are eligible to receive Gamma and Beta releases of upcoming Quark
Software.

Availability

* The XTension Developer Program is currently available for
- QuarkXPress for Macintosh (which includes Power Macintosh)
- QuarkXPress for Windows
- Quark Publishing System (which includes QuarkCopyDesk).
These programs are managed by our corporate U.S. headquarters. See the section
titled “Additional Information” for the ground mail address, electronic mail address,
and FAX number.

e East Asian Japanese and Korean versions of QuarkXPress, which is handled through our
Tokyo office. If you are interested in our East Asian developer program, please contact
our Tokyo office:

QMH Japan B.V., Japan Branch
SFKHO Building

3-14-16 Higashi

Shibuya-ku

Tokyo 150 Japan

XTLite User's Guide and Getting Started Manual Page 45 Quark Publishing System



Becoming an XTension Developer

e How to become Certified

- Decide which program(s) you wish to write XTensions for. Developers can be certi-
fied for more than one platform.

- If you are interested in the Macintosh, Windows, or Quark Publishing System devel-
oper program, print the Application included in this document, fill it out, enclose the
appropriate payment, and mail it to:

U.S. QuarkXTension Developer Desk
1800 Grant Street
Denver, CO 80203

- Upon receiving your application, we will send you a Quark License agreement, and a
ten-page brochure outlining the program.

- When we receive your signed license agreement, we will review your application and
if approved you will receive an acceptance letter followed by the “Inside
QuarkXPress Developer Kit” or the “Inside Quark Publishing System Developer Kit”
depending on the platform(s) for which you are certified.

e Cost

The current fee (U.S.) for certification is $500. For information about the cost of East
Asian versions of QuarkXPress, contact our Tokyo office at the address above.

XTLite User's Guide and Getting Started Manual Page 46 Quark Publishing System



Becoming an XTension Developer

Sample Routines

The XTension documentation contains all of the information you need to write
your own XTensions, including sample QuarkXTensions. Listed below are some of the
types of routines that are available through the XTension interface (this is not a complete

list).

Opcodes are the commands issued to denote events. They allow you to initialize an
XTension and add it to the Quark environment, handle menu selections, and handle

Quark system events.

BOX_ACTIVATE
BOX_BYTESWAP
BOX_CLICK
BOX_COLOR
BOX_COLORIZE
BOX_CREATE
BOX_CURSOR
BOX_DEACTIVATE
BOX_DISPOSE
BOX_DUPLICATE
BOX_FONTINFO
BOX_IDLE

BOX_KEY
BOX_MINSIZE
BOX_MODIFY
BOX_MOVE
BOX_PRINTEND
BOX_PRINTHEADER
BOX_PRINTSTART
BOX_RESIZE
BOX_SHADE
BOX_STYLE
BOX_UPDATE
HIDDEN_CLICK
HIDDEN_COPY
HIDDEN_DELETION
HIDDEN_DRAWTEXT
HIDDEN_LEADING
HIDDEN_PASTE
HIDDEN_WIDTH
MISC_ABORTPRINT
MISC_ADDEPSCOLOR
MISC_BACKGROUND
MISC_BOXCOPY
MISC_CHECKFILETYPE
MISC_CHECK-
PAGERANGE
MISC_CHECKPLATES

XTLite User's Guide and Getting Started Manual

MISC_CLICKOUT
MISC_CLOSE
MISC_CONVERTEPS
MISC_CREATEEPSFONTS
MISC_DBPICT
MISC_DELETEITEM
MISC_DOCSTATSINFO
MISC_DRAGNDROP
MISC_DRAWBOX
MISC_DUPTABLEEND
MISC_DUPTABLESTART
MISC_EDITSAVE
MISC_EXTSAVEPICT
MISC_FRAME
MISC_GETCOLORSPACE
MISC_IMAGEFILENAME
MISC_INITPRINT
MISC_LAUNCHEPS
MISC_LAUNCHPRINT
MISC_NETENTITY
MISC_NETINIT
MISC_NETUPDATE
MISC_NEW

MISC_OPEN
MISC_OPENGUIDE
MISC_PRECOPYITEM
MISC_PREDELPAGES
MISC_PREDUPITEM
MISC_PREPCOLLECT
MISC_REGTEXT
MISC_REPORTXT
MISC_REVERT
MISC_REVERTPREP
MISC_SAVE
MISC_SAVEAS
MISC_SAVECOMPLETE
MISC_SAVEPREP
MISC_SENDCLIPPATH

Page 47

MISC_SETPLATE
MISC_SLUGBYTESWAP
MISC_TRAPINFOHELP
PS_COMMENTS
PS_ENDDOC
PS_ENDEPS
PS_ENDPAGE
PS_ENDTIFF
PS_INITIALIZATION
PS_OPIADDITIONAL
PS_PROCSETS
PS_STARTDOC
PS_STARTEPS
XT_ADDMENUITEMS
XT_BOXDEF
XT_COLORSEP
XT_COLORSTUFF
XT_DEINIT
XT_DEINITTEXTREAD
XT_DEINITTEXTWRITE
XT_DOCOMMAND
XT_DOMENUITEM
XT_FREEMEM
XT_GETSTATUS
XT_HIDDEN

XT_IDLE

XT_INIT
XT_INITTEXTREAD
XT_INITTEXTWRITE
XT_MISC
XT_NETLISTCHANGE
XT_NETRECEIVE
XT_OPENPALETTES
XT_PRINTEPS
XT_PRINTPS
XT_READSTUFF
XT_UPDATEMENUITEMS
XT_XTCALL

Quark Publishing System



Sample Routines

¢ Alphanumeric Routines handle string conversion and manipulation.With them you
can convert between fixed values and strings, and copy, compare, and concatenate

strings.

liucompstringpstremp
pstrconcat

pstrcpy
str2val

str2val2
str2valbuf
stremp
strconcat

strcpy
val2str2

val2strbuf

e Error-Handling Routines allow quick error checking and reporting. These routines
allow you to add error descriptions to the error list, notify the user of errors that may
have occurred, and check values entered in dialog boxes for validity.

allocerrorclearerror
fieldrangecheck
giveerror
irangecheck

istrrangecheck
rangecheck
recorderror
seterror

strrangecheck

e Dialog and Window Routines handle dialog boxes, palettes, and windows. These
routines enable you to open windows, palettes, and dialog boxes, handle events that
occur within windows, palettes and dialog boxes, handle controls, and set and retrieve

values from fields.

activatewnd
alertfilter
BEGINWAP
closewnd
dehilitetxt
displaywindow
disposebits
dodialog
dotdotdot
dotdotfullpath
doupdates
drawdisableditem
edithilite
ENDWAP
fgetfield
findpalette
frontwindow
fsetfield
getfield
getnewdialog

XTLite User's Guide and Getting Started Manual

getnewpaletteid
getpalettewptrs
invalditem
isdocumentkind
ispalette
linedraw
locktexthilite
myalert
openwnd
outlines
palettewsetup
redisplaywindow
restorewnds
selectwindow
setcheck
setditemenable
setfield
setkeywnd
setmessageparams
setradio

Page 48

updatewnd
WACTIVATE
WAUTOZOOM
WCHGDOCSTAT
WCLICK
WCLOSE
WCURSOR
WDEACTIVATE
WDRAG

WIDLE

wink

WKEY
WKEYSWTCHOUT
WOPEN
WOTHER
WRESIZE1
WRESIZE2
WUPDATE

Quark Publishing System



Sample Routines

 Menu-Handling Routines add and handle menu items.

allochierid allocmenuid
allocmenuiconid deltmpcolormitem

makestylemenu

e Text Routines allow you to access the textual content of an open document. They
enable you to create and delete characters, retrieve and change character attributes, and
retrieve and change paragraph formats.

beginfract getxepstuff2 xedrawall
blkemp getxetstuff xedrawsel
chngpostatrib getxetstuff2 xegetallattribs
cpos2bptr locatenextstory xegetattrib
create_fontlist myfonttype xegetinfo
cursorposition nukedocs xegetinfo2
delchars putchar xegetselrect
endfract putchars xegetstoryattb
extractword recalcdoc xegetstorylock
FCharWidth setparafmt xeputchar
getchar showsel xeputchars
getchars storydirty xesetattrib
getfontnameorid textscroll xesetcalc
getlos updatfontlisthndl xesetsel
getlos2 updathndlorvars xesetstoryattb
getparafmt xeactivate xesetstorylock
getpattribs xecalc xgetcaretpos
gettattribs xecopytext xtgetauxfontinfo
getxepstuff xedelchars

e Style Sheets and H&]J Routines allow you to access style sheets and H&J specifica-
tions. These routines enable you to: add, modify, and delete style sheets; and add, modi-
fy, and delete H&]J specifications.

addhandj
addhyphexcep
addstyle
beginhyphexcep
counthandjs
countstyles
delhandjbyindex
delhyphexcep
delstylebyindex
endhyphexcep

XTLite User's Guide and Getting Started Manual

findhyphexcep

findhyphexcepbyindex

gethandjbyindex
gethandjbyindex2
gethandjbyindex3
gethandjbyname
gethandjbyname2
gethandjbyname3
gethyphmethod
getstylebyindex

Page 49

getstylebyindex2
getstylebyname
getstylebyname2
hyphenateword
numhyphexceps
sethandjbyindex
sethyphmethod
setstylebyindex
setstyleontext

Quark Publishing System



Sample Routines

e Import and Export Routines enable QuarkXPress to read and write new file for-

mats from text to geometry and graphics.

addpicimport addtextimport2
addpicimport2 addtiffimport
addtextexport exportbuf
addtextexport2 getfilterinfo
addtextimport gettextpict

gettextpict2
importbuf
savetext
savetext2

e System Routines allow you to access system parameters at both the document and

system level.

getprefs getsysdefs2
getspacealignvalues getsysinfo
getstepoffsets setprefs

getsysdefs setspacealignvalues

setstepoffsets
setsysdefs
setsysdefs2
setsysinfo

e File-Handling Routines give you the power to find files, save documents, and

manipulate path names.

addftypealias getfile
duplicatefile getfilesbytype
extendedsave getfilesbytype2
extractflname getfullpath
findfile HandToXHand
getbackuppath newsave

processtats
putfile

save
setbackuppath
setuppath?2
writestats

¢ Network Communication Routines exchange information between XTensions so
that you can find out who is available on a network; and send and receive information

from other XTensions.

getnetinfo getruncount
getnetinfo2 gpacketcancel
getnetlist gpacketsubscribe

gphandler
rebuildnetlist
sendq

e Hidden Text Routines allow XTensions to insert hidden text data into the text

stream. You can use the routines to anchor elements to text (anchored graphics are a form
of hidden text), and identify text so that it can be read and processed by your machine.

cleanselrange h_delchars

decrement h_getchar

findopcode h_getchars
XTLite User's Guide and Getting Started Manual Page 50

increment
inserthidden
xegetchars

Quark Publishing System



Sample Routines

Utility Routines provide XTensions with an array of flexible routines that allow you
to simplify XTension source code, debug XTension source code, add and select tools, add
menu commands, hyphenate words, obtain information about a printer, and send
PostScript commands directly to a printer.

addhelp

addtool

ADDXT
ADDXTSECURE
allocicon
BEGIN_XT
cmdperiod
copyprintsetup
devtype

docommand

docommand?
END_XT
getmode
getwarrantyinfo
getxtinfo
LOCK_XT
makeeps
postsend
postsendbuf
postsendnocr

quitxpress
registersecurext
registerxt
scrollxticon
setmode
setundo
spellmenu
UNLOCK_XT
updatedocfonts
zerodata

Box Routines allow you to access text and picture boxes so you can create, manipulate,
and delete picture and text boxes; navigate between boxes, perform global operations on
the contents of boxes, and identify boxes for current and future reference.

addframe
box2page
bringforward
copyitems
createmultbox
curboxsprdorigin
deletebox
disposebox
doframe
dohandles
drawbox
fgetbbox
findslug
findslug?2
finsetpoly
firstbox
free_pixmap
getbox
getbox2
getboxtype
getboxtypes?2

XTLite User's Guide and Getting Started Manual

getscaledcontrgn
getscaledframe
getscaledframerect
getslug
getslug?
getsprdbox
gettextflowrgn
gotobox
hasrunpolys
inhandles
installbox
invalbox
invalframe
isapicture
isgraphicbox
ismanualimage
istextbox
isuserbox
lastbox
movebox
newbox

Page 51

newbox2
nextbox
nexttextbox
offsetbox
pasteitems
pasteitemsatxy
prevbox
prevtextbox
relinkbox
sendbehind
setbox
setbox2
setcurbox
setslug
setslug?2
settextoutset
simplefpoly
special
updatethebox
xelinkbox
xeunlinkbox

Quark Publishing System



Sample Routines

e Spread and Page Routines handle the creation and manipulation of spreads and
pages. Use them to create, move, and delete spreads and pages; navigate among spreads
and pages; apply master pages; and convert spread coordinates between spread and page

coordinates.

applymaster2pages insertpages pagept2sprd
createmaster insertpages2 redrawpage
deldefpages interdoccopypages replicateitems
deletepages isdbldef rightmaster
getdisppagenum mousepage setsectionstart
getfullmastername movepages setsprdorigin
getmastername nummasterpages sprd2pages
getpagedata nummastersprds sprdfrect2page
getpagedata2 numpages sprdpt2page
getpageseq numsprds updatepagepalette
gotomaster offpage whichpage
gotopage pagefrect2sprd xtgetpageinfo

e Color Routines control the color attributes in a document and enable you to add,
change, and delete colors; get information about specific colors; retrieve and change tap-
ping values, convert between RGB, CMYK, and HSB color models.

addbackground
addcolor
cmyk2rgb
countcolors
delcolorbyid
getcolorbyindex
getcolorbyname
hsv2rgb

XTLite User's Guide and Getting Started Manual

mygetgray
pantone2rgb
restorecolor
rgb2cmyk
rgb2hsv
setcolor
setcolorbyid
shadecmykcolor

Page 52

shadecolor
xtgetlistcolor
xtgetlistcolor2

Quark Publishing System



Becoming an XTension Developer

Additional Information

» To receive more information about the XTension Developer program, you may
contact the Developer Desk by ground mail, electronic mail or Fax.

e Electronic Mail: You can reach the XTension Developer Desk at Quark via electronic
mail in several ways. Electronic mail messages can be received via AppleLink,
CompuServe, and America Online. Messages received by electronic mail will receive pri-
ority of any other means of communication.

- Electronic Mail Address

AppleLink QUARKXT
CompuServe 75140,1136
Internet 75140.1136@ COMPUSERVE.COM

Japan Developer Desk (for East Asian Developers)

AppleLink QUARK.]J.DV] (send ATTN: XTension East Asian
Developer Desk)

- Ground Mail Address for all programs except East Asian

U.S. QuarkXTension Developer Desk
1800 Grant Street
Denver, CO 80203

- Ground Mail Address for a East Asian Developers

QMH Japan B.V,, Japan Branch
5FKHO Building

3-14-16 Higashi

Shibuya-ku

Tokyo 150 Japan

- Fax Number
(303) 894-3399

Application for the QuarkXTension Developer Program

* The complete application for the developer program is included in the enclosed file:
XTension Developer Application. You may print the application, fill it out, and send in
the appropriate payment to the address above. Upon approval you will receive the com-
plete XTension Developer Kit which includes everything you need to create your own
XTensions.

XTLite User's Guide and Getting Started Manual Page 53 Quark Publishing System



